Inyecciones de alta presión: Jet grouting

Figura 1. Esquema básico del funcionamiento de la inyección a alta presión o jet-grouting. Fuente: https://commons.wikimedia.org/wiki/File:Jetgrouten.png

La inyección de alta presión, conocida como Jet-Grouting es un proceso que implica romper el suelo (o roca suelta), mezclarlo y reemplazarlo parcialmente por un agente cementante (en general, cemento). La desagregación se logra mediante un fluido con alta energía, que puede incluir el propio agente cementante (Figura 1).

El jet-grouting, por tanto, se considera como una técnica de tratamiento del terreno que mejora sus propiedades resistentes y su compresibilidad, y reduciendo la permeabilidad.

La primera patente se aplicó en el Reino Unido en los años 50, aunque su desarrollo real se llevó a cabo en Japón a principios de los 70, y a mediados de los 70 se introdujo en Europa. Hoy en día se ha desarrollado extraordinariamente la técnica.

En general se usa una mezcla de agua y cemento. Se pueden utilizar otro tipo de conglomerantes hidráulicos, como bentonita, filler y cenizas volantes. Si se emplea bentonita en la mezcla, se debe preparar e hidratar la suspensión de agua y bentonita antes de agregar el cemento.

Esta técnica de alta presión consigue desagregar el suelo o la roca poco compacta, mezclándolo y sustituyéndolo por cemento, así se van llenando huecos y discontinuidades. Básicamente, se expulsan chorros de lechada de cemento (grout) a través de unas toberas a velocidades muy altas, logrando así la rotura del terreno y su íntima mezcla con el mismo. La distancia que alcanza la erosión por chorro (energía de corte) varía en función del fluido empleado, tipo de suelo, velocidad de ascenso, etc., pudiendo alcanzar hasta 5 m de diámetro. La técnica del jet-grouting tiene múltiples aplicaciones (mejora del terreno, impermeabilización, túneles, etc.), siendo el fluido de perforación también variable (cemento, bentonita, mezclas químicas, etc.).

Las presiones de trabajo varían, llegando en algunos casos puntuales hasta los 90 MPa. Los sistemas jet-grouting permiten inyectar lechadas de cemento en suelos de grano muy fino, en los que con otros sistemas solo serían inyectables productos químicos o ni siquiera estos. El jet-grouting puede aplicarse en arenas, limos e incluso en suelos arcillosos de cierta consistencia.

La perforación del terreno previa a la inyección, puede hacerse con cualquier equipo (a rotación o a rotopercusión, con las condiciones que requiera el terreno) con tal que el varillaje se adapte a las altas presiones a las que se efectúa la inyección.

Casi todos los equipos de perforación empleados en la ejecución de anclajes son utilizables. Si la perforación se hace con jet en suelos blandos, para inyectar después de perforar, el cambio de salida del agua por el de la lechada en algunos equipos puede hacerse por medio de una válvula situada en la boquilla de inyección.

En gravas, la inyección a alta presión introduce el mortero a través de los huecos, lo mismo que con un equipo convencional, pero en este caso forma un bloque mucho más compacto, sin dificultades que originan los rellenos de arcilla en el procedimiento tradicional.

Dependiendo del sistema de desplazamiento y fracturación del terreno y su mezcla con la lechada inyectada, la normativa europea (EN 12716) distingue los siguientes sistemas de jet-grouting (ver Figura 2):

  • Sistema de fluido único: La disgregación y cementación del suelo se obtiene con un chorro único de un fluido a alta presión, que suele ser lechada de cemento.
  • Sistema de doble fluido (aire): La presencia de aire desagrega y cementa el suelo, y también facilita la evacuación de los detritus generados. En comparación con un sistema de fluido único, produce un jet mayor y realiza una mayor sustitución del terreno.
  • Sistema de doble fluido (agua): El suelo se rompe mediante un chorro de agua a alta presión que fluye a través de la boquilla superior, mientras que por la inferior se inyecta una lechada para cementar el suelo.
  • Sistema de triple fluido: Mediante un chorro de agua a alta presión, un chorro de aire a presión y lechada de cemento se consigue romper el suelo. Es el más complejo de los sistemas, pero puede sustituir todo el suelo y producir una columna de mayor diámetro.
Figura 2. Sistemas de jet-grouting. Fuente: http://www.interempresas.net/Mineria/Articulos/146294-Diametro-columnas-jet-grouting-funcion-energias-especificas-perforacion-inyeccion.html

El sistema de fluido único es apropiado en arenas medias a densas y suelos cohesivos muy blandos. El doble fluido suele usarse en arenas medias a densas y suelos cohesivos de blandos a medios. En cambio, el triple fluido se puede utilizar prácticamente para cualquier suelo.

En la Tabla 1 se recogen los parámetros de trabajo más habituales para la maquinaria empleada en el jet-grouting.

Tabla 1. Parámetros de trabajo estándares para la maquinaria de jet-grouting

Parámetros de trabajo

Fluido sencillo

Doble fluido (aire) Doble fluido (agua)

Triple fluido

Presión de la lechada (MPa)

30 – 50

30 – 50 > 2

> 2

Caudal de la lechada (l/min)

50 – 450

50 – 450 50 – 200

50 – 200

Presión de agua (MPa)

30 – 60

30 – 60

Caudal de agua (l/min)

30 – 150

50 – 150

Presión de aire (MPa)

0,2 – 1,7

0,2 – 1,7

Caudal de aire (m3/min)

3 – 12

3 – 12

El rango de aplicación del jet-grouting está limitado principalmente por la resistencia del terreno que va a ser erosionado. Esta es una de las principales diferencias con las inyecciones comunes, donde lo importante es el tamaño de las fracturas y de los poros, que en el jet-grouting es irrelevante.

El jet-grouting puede emplearse en la mayoría de terrenos, desde rocas débiles a arcillas, puesto que solo requiere su fracturación, al igual que ocurre con las inyecciones con fracturación. A diferencia de las inyecciones convencionales, destaca la aplicabilidad del jet-grouting en los suelos cohesivos. No obstante, cada tipo de sistema de jet-grouting posee un campo de validez característico.

El límite superior de aplicabilidad del jet-grouting está en las gravas de 60 mm de diámetro. Obviamente, es imposible mover y cortar elementos gruesos en el entorno del jet, como bolos o bloques, ya que su energía no es suficiente.

La aplicación principal del jet-grouting son los suelos, pero también puede emplearse en el caso de emboquilles con roca alterada, rocas con cementación escasa, roca afectada por una excavación, etc. En roca sana, su resistencia a compresión se opone a la erosión provocada por los jets.

Las aplicaciones principales del jet-grouting son:

  • Mejora del terreno
  • Control de agua (permeabilidad)
  • Recalces
  • Túneles

La principal ventaja de este método radica en su versatilidad y flexibilidad. Como ya se ha indicado, es utilizable en todo tipo de terrenos y puede realizarse en espacios reducidos, alcanzando profundidades importantes sin tener que descubrir el terreno hasta la superficie.

En la Figura 3 se puede observar el aspecto de las columnas de refuerzo que se pueden conseguir con la inyección a elevada presión.

Figura 3. Sistemas de jet-grouting. Fuente: http://www.interempresas.net/Mineria/Articulos/146294-

Sin embargo, una aplicación de interés es el uso del jet-grouting para ejecutar cortinas de impermeabilización. El caso más habitual es la construcción de columnas secantes, solapadas en una o varias filas (Figura 4).

Figura 4. Ejecución de una pantalla con jet-grouting mediante columnas secantes. Fuente: https://www.terratest.cl/soluciones-cortinas-de-impermeabilizacion-pantallas.html

Otro empleo muy común es la creación de pantallas de estanqueidad en el caso del fondo de un recinto apantallado sometido a subpresiones (Figura 5), o bien en barreras de impermeabilización en núcleos de presas (Figura 6).

Figura 5. Croquis de un tapón ejecutado con jet-grouting en el fondo de un recinto apantallado. Fuente: https://2bd7e8ad-9629-4fd0-a14e-4054a92f2fc8.filesusr.com/ugd/c939f2_2befc25a84ae4fc1b8741456e0fd9584.pdf
Figura 6. Croquis de barreras de impermeabilización con jet-grouting en una presa de materiales sueltos. Fuente: https://aetess.com/wp-content/uploads/Aplicaciones-del-jet-grouting-2019.pdf

También se puede utilizar el jet-grouting como elemento de impermeabilización en juntas de pantallas in situ o como elemento de cierre en pantallas de pilotes o micropilotes, cuando estos se construyen separados. En este caso, las columnas se realizan cada dos pilotes. Los pilotes serían el elemento estructuras y el jet-grouting garantizaría la impermeabilización.

Os dejo, por su interés, el artículo 677 del PG-3, donde se describen las características técnicas exigibles al jet-grouting.

GDE Error: Error al recuperar el fichero. Si es necesario, desactiva la comprobación de errores (404:Not Found)

Os paso varios vídeos al respecto, empezando por una animación sobre del Jet grouting de triple fluido:

Referencias:

ARMIJO, G.; HONTORIA, E. (2015). Diámetro de las columnas de jet grouting en función de las energías específicas de perforación e inyección. Ingeopres, 246:36-41.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Es el agua de mar agresiva para el hormigón?

http://www.ohlinnovacion.com/soluciones-tecnologicas-innovadoras/cubipod/

La gran cantidad de obras marítimas que se realizan han obligado a realizar numerosos estudios sobre el comportamiento de los hormigones sometidos a la acción del agua del mar. El hormigón, como material heterogéneo que es, presenta propiedades que varían de las características de sus componentes, de sus cantidades, de la forma de poner dicho hormigón en obra, del curado y conservación, del medio donde va a estar trabajando, entre otras.

En efecto, el agua de mar provoca un proceso muy complejo sobre el hormigón en el que intervienen gran número de parámetros mecánicos, físicos, químicos, biológicos y atmosféricos. Sin embargo, la agresividad química de los componentes del agua marina sobre los productos de hidratación del cemento, en especial el hidróxido de magnesio (Mg(OH)2) y el sulfato cálcico (CaSO4), provocan expansiones debidas a la reacción álcali-árido, si hay árido reactivo, a la presión de cristalización de sales en el hormigón, a la acción del hielo en climas fríos, a la corrosión de las armaduras y a la erosión física debida al oleaje. Estas acciones aumentan la permeabilidad del hormigón, lo que retroalimenta el proceso. Son los iones sulfato del interior de la matriz los que reaccionan con el monosulfatoaluminato produciendo estringita, que es la responsable de la expansión y la rotura. Con todo, el agua de mar es menos agresiva para el hormigón que cada una de las soluciones que la componen individualmente debido a que el comportamiento expansivo asociado con formación de estringita está inhibido por la presencia de cloruros y facilita su solubilidad. Además, el CO2 disuelto en el agua carbonata gradualmente al hormigón, formando una capa superficial de carbonato cálcico que actúa como protector frente al ataque del hidróxido de magnesio y del sulfato cálcico los cuales terminan colmatando los poros restantes.

Lo anteriormente expuesto indica que, en un hormigón de razonable calidad, no suele ser un serio problema el ataque químico por el agua de mar. El parámetro esencial que determina el buen comportamiento de un hormigón es su compacidad y la morfología de sus poros. Por tanto, aunque el agua de mar podría considerarse como poco agresiva respecto de los hormigones, el ambiente marino, por sí mismo, resulta fuertemente agresivo. En efecto, el ataque químico del agua de mar depende de si el hormigón se encuentra sumergido total o parcialmente. Si está totalmente sumergido, tienen lugar fundamentalmente los procesos químicos. En la zona de oscilación, actúan los ataques químicos con otras acciones físicas como cristalizaciones de sales, heladas, etc. En la zona no sumergida, pero cercana al agua, ésta sube por capilaridad y arrastra sales que pueden cristalizar dando lugar a expansiones. Además, los cloruros del agua marina (MgCl2) solubilizan el hidróxido de calcio (Ca(OH)2) (portlandita) que se ha formado durante el fraguado y endurecimiento del cemento, formando cloruro de calcio e hidróxido de magnesio.

http://blog.hidrodemolicion.com/2013/02/corrosion-del-hormigon-en-ambiente.html

El tema se complica cuando tratamos con hormigón armado. Efectivamente, los cloruros (incluso los bromuros) presentes en el agua marina atacan a las armaduras. Los iones cloruro penetran por difusión por los poros del hormigón y llegan a las armaduras, donde forman un electrolito conductor que rompe su capa pasivante y se produce la oxidación llamada de “picadura”. Es por ello, que en las estructuras de hormigón armado situadas en ambiente marino, resulta fundamental respetar los recubrimientos recomendados para evitar la corrosión descrita.

Os dejo a continuación una guía técnica de IECA donde se describe con mayor detalle el comportamiento del hormigón en ambiente marino.

Descargar (PDF, 4.78MB)

Protección de estructuras de hormigón mediante revestimientos

Revestimiento de suelo de resina epoxi líquida

Un revestimiento constituye una barrera que impide el paso y el acceso de los agentes agresivos exteriores en el hormigón. Se trata de capas finas, de unas micras hasta 3 mm de espesor, de diferentes productos, que pueden ser pinturas o micromorteros de diferentes composiciones químicas. Los agentes agresivos de los que el revestimiento debe realizar una protección son, entre otros, los siguientes:

  • El agua, por lo que el revestimiento debe ser impermeable
  • Líquidos agresivos, por lo que el revestimiento debe ser resistente químicamente
  • Cloruros y otros iones, que normalmente vienen disueltos en agua
  • Dióxido de carbono, por lo que el revestimiento debe ser una barrera a dicho gas

 

Se utilizan como revestimiento productos diferentes según el tipo de protección que se quiera realizar. Los productos más habituales son las resinas epoxi, las resinas de brea-epoxi, las emulsiones bituminosas, las pinturas acrílicas, las impregnaciones de siloxanos, los micromorteros de cementos y los micromorteros de epoxi-cemento.

Resinas epoxi

La resina epoxi constituye un revestimiento formado por dos componentes termoendurecibles.  Son muy interesantes como revestimiento del hormigón porque presentan una gran adherencia, buenas resistencias mecánicas, magnífica resistencia química, elevada impermeabilidad a líquidos y gases y una buena resistencia a la abrasión y a los golpes. Las resinas epoxi puras presentan las mejores características, pero debido a la dificultad existente en su aplicación por la elevada viscosidad, se emulsionan con agua o se disuelven con disolventes orgánicos.

Resinas de brea-epoxi

La unión de la brea -que es un producto dúctil y elástico-, con la resina epoxi -que presenta una excesiva rigidez-, produce un revestimiento de mayor flexibilidad y menor coste que la  resina epoxi, si bien con unas características menores en cuanto a la resistencia química y mecánica. Así y todo, resulta un producto adecuado para determinados usos.

Pinturas bituminosas

Las emulsiones bituminosas se componen de betún asfáltico, agua y un agente emulsionante. Son pinturas que se pueden aplicar a brocha, rodillo o proyección mecánica. Estos productos se caracterizan por su gran impermeabilidad al agua, su facilidad de aplicación y colocación, su buen comportamiento en contacto con el terreno y su bajo coste.

Pinturas acrílicas

Se trata de resinas acrílicas emulsionadas en agua o con disolventes orgánicos a fin de mejorar su fluidez y aplicabilidad. Se trata de unas pinturas que se suelen utilizar para evitar la carbonatación del hormigón. Entre sus características principales destaca su excelente impermeabilidad tanto al agua, al dióxido de carbono y a los cloruros, su buen aspecto estético y su permeabilidad al vapor de agua.

Impregnaciones a base de siloxanos

Son impregnaciones que, sin llegar a formar una película continua, se introducen en los poros del hormigón e impiden la entrada de las gotas de agua al cambiar su tensión superficial. Este carácter hidrófugo hacen a estas impregnaciones adecuadas para proteger al hormigón de los ataques por cloruros, pues éstos viajan disueltos en el agua.

Micromorteros de cemento

Son mezclas de cemento, arena fina y resinas sintéticas (normalmente acrílicas). Forman un revestimiento de 2-3 mm impermeables y con una buena resistencia a la abrasión. Dejan una superficie muy cerrada y adecuada para una posterior aplicación de otra pintura de revestimiento. Son adecuados estos revestimientos para hormigones que puedan estar sumergidos de forma no permanente, incluso en entornos donde ataquen los cloruros.

Micromorteros de epoxi-cemento

Son como los anteriores, pero sustituyendo las resinas acrílicas por resinas epoxi. En este caso, además de aditivo, las resinas epoxi actúan como ligante junto al cemento. Ello permite una gran impermeabilidad y resistencia mecánica, y unas resistencias químicas aceptables. Para un ataque químico medio suele bastar una capa de 2 mm. Además, también son recomendables en combinación con posteriores aplicaciones de pinturas de resinas epoxi.

 

Hormigón proyectado con fibras

Fuente: http://esp.sika.com

El uso de fibras como refuerzo en materiales frágiles tiene raíces ancestrales, remontándose a épocas antiguas donde se empleaban paja o crines de caballo para fortalecer arcillas en la producción de ladrillos o para reforzar suelos. No obstante, el enfoque moderno de incorporar fibras discontinuas y discretas en materiales frágiles, como morteros de cemento y hormigón, se consolidó a principios del siglo XX.

La eficacia de este refuerzo se debe no solo a las propiedades mecánicas de la fibra, que contribuyen al cierre de fisuras en planos perpendiculares a las direcciones principales de tracción, sino también a su capacidad de trabajar en conjunto con la matriz del hormigón. Las interacciones entre la fibra y la matriz, la adherencia y la forma de anclaje son factores críticos que inciden en el comportamiento del material compuesto. Por lo tanto, además de investigar diversos tipos de materiales, la literatura técnica también analiza una amplia variedad de formas y acabados superficiales con el fin de optimizar el comportamiento del material compuesto.

En este contexto, cada vez se está imponiendo más, sobre todo en reparación de estructuras de hormigón, el hormigón o mortero proyectado reforzado con fibras. Estas fibras, metálicas o plásticas, al proyectarse quedan distribuidas en todas direcciones, resultando un material con buenas prestaciones a tracción, flexión, impacto, fatiga y fisuración. Las fibras se mezclan en la masa y fluyen sin problema por el cañón de lanzamiento. Se trata de una solución de gran interés en el caso de la fisuración que permite sustituir las soluciones clásicas de mallas electrosoldadas y telas de gallinero.

Una aplicación interesante es la reparación de estructuras dañadas por el fuego, en recrecidos, en revestimientos de túneles, consolidación de taludes y reparación de presas. Si se usan fibras de acero inoxidable, áridos refractarios y cemento aluminoso, se pueden revestir hornos y conductos de gases a elevadas temperaturas.

Lo habitual es utilizar fibras de acero de bajo contenido en carbono, de unos 30 mm de longitud y diámetros entre 0,3 y 0,5 mm. Su proporción es inferior al 1% en volumen (menos de 80 kg/m³). Las fibras suelen ser rectas o con los extremos conformados, más empleadas, pues mejoran el anclaje en la masa y permite el uso de fibras más cortas, y, por tanto, mezclas más dóciles.

Se pueden utilizar fibras distintas a las de acero. La fibra de carbono presenta tiene propiedades ideales, pero su precio es muy alto para su utilización usual. La fibra de vidrio es adecuada en aplicaciones de partículas finas especiales, debiendo cumplir con los requisitos especiales para su comportamiento a largo plazo. La fibra de polímero se emplea fundamentalmente para reparar el hormigón, pues mejora la cohesión interna del hormigón proyectado y reduce el agrietamiento por contracción durante el desarrollo de la resistencia inicial. La fibra plástica mejora la resistencia al fuego del hormigón en general.

Os dejo un vídeo donde se puede ver la aplicación del hormigón proyectado con fibras.

Os paso a continuación un vídeo de una conferencia de Markus Jahn, Ingeniero de Producto de Sika, donde nos cuenta cuáles son los últimos desarrollos en aditivos acelerantes para el hormigón lanzado y cuáles son las nuevas tecnologías para transportar concretos en largas distancias dentro de túneles. Espero que os sea de interés.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València. 189 pp.

¿Qué es una recicladora de asfalto?

 

descargaQuizás sea pertinente insistir en la necesidad que tenemos de conservar nuestras infraestructuras. De este tema ya hablamos en su momento en un post denominado “la crisis de las infraestructuras“. Hoy vamos a seguir la línea abierta comentando el reciclaje de firmes. Se trata de una simple pincelada de lo que nuestros alumnos aprenden con mayor profundidad en la asignatura de Procedimientos de Construcción en nuestra escuela de ingenieros de caminos de Valencia.

El reciclado del asfalto no es algo nuevo. El pavimento de una carretera está sujeto a un envejecimiento progresivo debido a la acción del tráfico, la meteorología y del propio material. Sin embargo, volver a calentar el asfalto para regenerarlo producía un material seco y grumoso que conservaba poco de los aceites del hormigón asfáltico original. A menudo, el asfalto se volvía a calentar de forma estática, sin agitarlo ni mezclarlo durante el proceso. Esto daba como resultado temperaturas desiguales que producían resultados dispares; una parte estaba muy caliente, otra parte estaba demasiado fría y otra a la temperatura justa. Hoy día, donde los costos del petróleo crecen y los presupuestos son escasos, la recicladora de asfalto es una forma económica de mantener las superficies asfaltadas sin dañar el medioambiente, reciclando los productos de hidrocarburos en lugar de desecharlos y utilizar material nuevo en reemplazo. El reciclaje de asfalto tiene numerosas ventajas. Una de ellas es que permite emplear el 100% del pavimento dañado, lo que disminuye los costos de mantenimiento vial en más de 40%.

blog_16

Para reciclar el asfalto, se pueden usar diversas técnicas.  Todas ellas se basan en la reutilización de los materiales del firme defectuoso, a los que se pueden añadir otros materiales. Los tipos habituales, sin considerar el reciclado en planta, son los siguientes:

  • Reciclado “in situ” en caliente: Se reutilizan todos los materiales del firme mediante una aportación de calor que se realiza en la misma obra. El firme se calienta con unos quemadores y se fresa en un grosor determinado. A este material se añaden agentes rejuvenecedores. La nueva mezcla se extiende y compacta mediante medios convencionales.
  • Reciclado templado “in situ”: En este caso la temperatura de fabricación es menor a la anterior, lo cual presenta ventajas desde el punto de vista medioambiental. Se utilizan para ello emulsiones bituminosas.
  • Reciclado “in situ” en frío con cemento: Se fresa en frío un cierto espesor del firme y se mezcla con un conglomerante hidráulico (normalmente cemento). La mezcla se extiende y compacta.
  • Reciclado “in situ” en frío con emulsiones bituminosas (RFSE):  Tras el fresado, se mezcla el material envejecido con emulsiones y otros aditivos. Se extiende, compacta y cura la capa

 

Si queréis ampliar información, os dejo el enlace a la página de ANTER (Asociación Nacional Técnica de Estabilizados de Suelos y Reciclado de Firmes): http://www.anter.es/. A continuación os dejo varios vídeos para que veáis la maquinaria y la forma de realizar el reciclado de asfalto. Espero que os gusten.

En este vídeo podemos ver cómo se emplea la técnica del reciclado en frío.

Referencias:

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

¿Qué es el reciclado de firmes con cemento?

https://www.eurovia-es.com/soluciones-constructivas/por-tipo-de-aplicacion/tecnicas-amigables-con-el-medioambiente/reciclado-in-situ-con-cemento

El reciclado es una técnica cuyo objetivo principal consiste en transformar un firme degradado en una estructura homogénea y adaptada al tráfico que debe soportar. Se trata de reutilizar sus materiales para la construcción de una nueva capa portante, lo que permite claras ventajas medioambientales y económicas.

Para ampliar los conocimientos sobre este tema, os dejo una videoconferencia proporcionada por Structuralia sobre aplicación del cemento en la conservación de carreteras. El ponente es Jesús Díaz Minguela, Doctor Ingeniero de Caminos, Canales y Puertos y Director Técnico de IECA. Espero que os sea de utilidad.

Referencias:

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

Planta de hormigonado de tipo radial

Figura 1. Planta Liebherr Compactmix 0.5 con almacenamiento estrella

Se denominan plantas de hormigonado de tipo radial debido a la disposición de los acopios de áridos. Los áridos se almacenan sobre el suelo, en compartimentos radiales, sobre un muro de áridos en estrella que conforman sectores circulares completando un semicírculo. El paso de los áridos desde el acopio a la báscula de dosificación se realiza a través de las aberturas practicadas en un bastidor metálico donde confluyen los distintos tabiques divisores. El movimiento de los áridos se efectúa mediante pala, mediante dragalina situada sobre el escudo de áridos o mediante radio rascante o radio-rascadores que ataca el montón de áridos, por un lado.

Figura 2. Esquema en alzado de planta de tipo radial
Figura 3. Esquema en planta de tipo radial

En el vídeo siguiente podemos ver una planta de hormigonado de tipo radial que utiliza radios rascantes.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València.

Preguntas sobre la elaboración y puesta en obra del hormigón

El artículo 71 de la Instrucción de Hormigón Estructural EHE-08 trata sobre la elaboración y puesta en obra del hormigón. Leyendo su articulado tienes las respuestas a estas preguntas típicas que me hacen los alumnos:

  • ¿Qué diferencia existe entre la homogeneidad y la uniformidad del hormigón? ¿Cómo se evalúa normalmente la uniformidad?

La homogeneidad del hormigón consiste en el mantenimiento de características similares dentro de una misma amasada. En cambio la uniformidad consiste en el mantenimiento de características similares entre distintas amasadas.

La uniformidad se analiza evaluando, mediante el coeficiente de variación, la dispersión que existe entre características análogas de distintas amasadas. Para ello, normalmente, se utilizan los valores de la resistencia a compresión a 28 días.

  • ¿Qué se entiende por “hormigón preparado”?

Se entiende, en el marco de la Instrucción de Hormigón Estructural EHE-08, que el hormigón preparado es aquel que se fabrica en una central que no pertenece a las instalaciones propias de la obra y que está inscrita en el Registro Industrial según el Título 4º de la Ley 21/1992, de 16 de julio, de Industria y el Real Decreto 697/1995, de 28 de abril, estando dicha inscripción a disposición del peticionario y de las Administraciones competentes.

  • ¿En qué consiste la segregación de los áridos?

La segregación de los áridos consiste en la separación de sus partículas de forma que no presenten una distribución uniforme. De forma análoga, se entiende que la segregación del hormigón es la separación de sus componentes una vez amasado provocando que la mezcla de hormigón fresco presente una distribución de sus partículas no uniforme.

Imagen de planta de hormigón
  • ¿Qué se debe hacer cuando cambiamos de aditivo y utilizamos el mismo dosificador?

En el caso de que no tengamos un dosificador diferente para cada aditivo, antes de hacer el cambio de aditivo, deberá limpiarse el sistema dosificador, excepto en el caso en que los diferentes aditivos sean compatibles entre sí, de acuerdo con la documentación aportada por el Suministrador del aditivo.

  • ¿Cómo se comprueba la homogeneidad del hormigón?

La homogeneidad se analiza evaluando la dispersión que existe entre características de diversas muestras tomadas de la misma amasada, lo que permite comprobar la idoneidad del proceso de dosificación, amasado y transporte. Deben comprobarse siempre el índice de consistencia y la resistencia a compresión a 7 días, y, al menos, dos de las siguientes: densidad del hormigón, contenido de aire, contenido de árido grueso y módulo granulométrico del árido.

  • ¿Qué datos técnicos deben estar visibles en una placa referidos a una amasadora móvil?

Volumen total del tambor, su capacidad máxima en términos de volumen de hormigón amasado, y las velocidades máxima y mínima de rotación.

  • ¿Por qué se recomienda que se almacenen los áridos bajo techado?

Se recomienda almacenar los áridos bajo techado, en recintos convenientemente protegidos y aislados, con el fin de evitar el empleo de áridos excesivamente calientes durante el verano o saturados de humedad en invierno o en época de lluvia.

  • ¿Cuál es la cantidad mínima de cemento que se puede utilizar en la fabricación dedicada a hormigón armado? ¿En qué caso se puede utilizar dicho mínimo?

El contenido mínimo de cemento para el hormigón armado es de 250 kg/m3, siempre y cuando la clase de exposición sea I y no se supere una relación agua/cemento de 0,65. Para otras clases de exposición este mínimo puede subir hasta 350 kg/m3, en el caso de clases de exposición IIIc, Qb y Qc.

  • ¿Cuál es la cantidad máxima de cemento que podemos utilizar en la fabricación de 1 m3 de hormigón? ¿Por qué se limita?

La cantidad máxima de cemento por metro cúbico de hormigón será de 500 kg. En casos excepcionales, previa justificación experimental y autorización expresa de la Dirección de Obra, se podrá superar dicho límite. Aún en los casos excepcionales, no es aconsejable una dosificación de cemento superior a los 500 kg/m3. El peligro de emplear mezclas muy ricas en cemento, reside en los fuertes valores que, en tales casos, pueden alcanzar la retracción y el calor de fraguado en las primeras edades.

  • ¿Cómo influye la cantidad de cemento a utilizar en función del tamaño de los áridos?

Con carácter general, la cantidad mínima de cemento por metro cúbico de hormigón depende, en particular, del tamaño de los áridos, debiendo ser más elevada a medida que disminuye dicho tamaño, y más reducida  a medida que aumenta el tamaño de éstos.

  • ¿Cuántas fracciones granulométricas de áridos, al menos, se deben utilizar en la fabricación del hormigón?

El árido deberá componerse de al menos dos fracciones granulométricas, para tamaños máximos iguales o inferiores a 20 mm, y de tres fracciones granulométricas para tamaños máximos mayores.

  • ¿Cuáles son las fuentes de donde procede el agua de amasado y que deben tenerse en cuenta para calcular el total de agua empleado en una amasada?

El agua de amasado está constituida, fundamentalmente, por la directamente añadida a la amasada, la procedente de la humedad de los áridos y, en su caso, la aportada por aditivos líquidos.

  • ¿Qué diferencia existe en el amasado de un hormigón de alta resistencia respecto a uno convencional?

Se recomienda el empleo de amasadoras fijas en la central de hormigón, así como incrementar, como mínimo, en un 50% el tiempo de amasado respecto al empleado en hormigones convencionales con los medios usuales.

  • ¿Cuánto tiempo puede pasar entre la adición de agua de amasado al cemento y a los áridos y la colocación del hormigón? ¿Qué factores pueden hacer cambiar esta prescripción?

El tiempo transcurrido entre la adición de agua del amasado al cemento y a los áridos y la colocación del hormigón, no debe ser mayor de hora y media, salvo que se utilicen aditivos retardadores de fraguado. Dicho tiempo límite podrá disminuirse, en su caso, cuando el Fabricante del hormigón considere necesario establecer en su hoja de suministro un plazo inferior para su puesta en obra. En tiempo caluroso, o bajo condiciones que contribuyan a un rápido fraguado del hormigón, el tiempo límite deberá ser inferior, a menos que se adopten medidas especiales que, sin perjudicar la calidad del hormigón, aumenten el tiempo de fraguado.

  • ¿Cuánto podemos llenar el tambor de una amasadora móvil durante el transporte?

Cuando el hormigón se amasa completamente en central y se transporta en amasadoras móviles, el volumen de hormigón transportado no deberá exceder del 80% del volumen total del tambor. Cuando el hormigón se amasa o se termina de amasar, en amasadora móvil, el volumen no excederá de los dos tercios del volumen total del tambor.

  • ¿Se puede adicionar agua u otras sustancias una vez se ha fabricado la masa fresca? ¿Qué podemos hacer si el asentamiento es menor que el especificado?

Queda expresamente prohibida la adición al hormigón de cualquiera cantidad de agua u otras sustancias que puedan alterar la composición original de la masa fresca. No obstante, si el asentamiento es menor que el especificado, el suministrador podrá adicionar aditivo plastificante o superplastificante para aumentarlo hasta alcanzar dicha consistencia, sin que ésta rebase las tolerancias indicadas por la Instrucción EHE-08 y siempre que se haga conforme a un procedimiento escrito y específico que previamente haya sido aprobado por el Fabricante del hormigón. Para ello, el elemento de transporte o, en su caso, la central de obra, deberá estar equipado con el correspondiente sistema dosificador de aditivo y reamasar el hormigón hasta dispersar totalmente el aditivo añadido. El tiempo de reamasado será de al menos 1 min/m3, sin ser en ningún caso inferior a 5 minutos.

  • ¿Por qué no es recomendable el vertido del hormigón en grandes montones y su posterior distribución por medio de vibradores?

El vertido en grandes montones y su posterior distribución por medio de vibradores no es, en absoluto, recomendable, ya que produce una notable segregación en la masa del hormigón.

  • ¿Qué ocurre si se vierte el hormigón desde una altura superior a 2 m?

Si se realiza un vertido del hormigón en caída libre, con una altura superior a 2 m, se produce inevitablemente, la disgregación de la masa, y puede incluso dañar la superficie de los encofrados o desplazar éstos y las armaduras o conductos de pretensado, debiéndose adoptar las medidas oportunas para evitarlo.

  • ¿Cuándo se puede decir que un hormigón está bien compactado?

El proceso de compactación deberá prolongarse hasta que refluya la pasta a la superficie y deje de salir aire. De este modo se eliminan los huecos y se obtiene un perfecto cerrado de la masa, sin que llegue a producirse segregación.

  • ¿Cuál es el espesor de la tongada de hormigón a compactar, en situaciones normales?

El espesor de las capas o tangadas en que se extienda el hormigón estará en función del método y eficacia del procedimiento de compactación empleado. Como regla general, este espesor estará comprendido entre 30 y 60 cm.

  • ¿Qué puede ocurrir si hemos realizado una compactación del hormigón excesiva?

Una excesiva compactación del hormigón en obra puede conducir a defectos como la formación de una capa superficial débil que no se reflejen suficientemente en el valor de la resistencia a compresión.

  • ¿Qué tipo de compactación se utilizará para un hormigón de consistencia fluida?

A título informativo, la EHE-08 recomienda un picado con barra cuando la consistencia es fluida.

  • ¿Cuál es el límite inferior de temperatura de la masa de hormigón en el momento de verterla en el molde o encofrado?

La EHE-08 indica que la temperatura de la masa de hormigón, en el momento de verterla en el molde o encofrado, no será inferior a 5ºC.

  • ¿Qué efectos tiene el tiempo frío sobre el hormigón en fase de endurecimiento?

La hidratación de la pasta de cemento se retrasa con las bajas temperaturas. Además, la helada puede dañar de manera permanente al hormigón poco endurecido si el agua contenida en los poros se hiela y rompe el material.

  • ¿Bajo qué condiciones se suspenderá el hormigonado en tiempo caluroso?

Si la temperatura ambiente es superior a 40ºC o hay un viento excesivo, salvo que, previa autorización expresa de la Dirección Facultativa, se adopten medidas especiales.

  • Si se está hormigonando una gran masa, ¿qué temperatura como máximo deberá tener la masa de hormigón fresco?

Se debe asegurar que la temperatura en el momento del vertido sea inferior a 15ºC en el caso de grandes masas de hormigón.

  • ¿Dónde se deben disponer las juntas de hormigonado?

Las juntas de hormigonado, que deberán, en general, estar previstas en el proyecto, se situarán en dirección lo más normal posible a la delas tensiones de compresión, y allí donde su efecto sea menos perjudicial, alejándolas, con dicho fin, de las zonas en las que la armadura esté sometida a fuertes tracciones. Se les dará la forma apropiada que asegure una unión lo más íntima posible entre el antiguo y el nuevo hormigón. Cuando haya necesidad de disponer juntas de hormigonado no previstas en el proyecto se dispondrán en los lugares que apruebe la Dirección Facultativa, y preferentemente sobre los puntales de la cimbra.

  • ¿Qué debe hacerse al reanudar el hormigonado sobre una junta de hormigonado previa?

Antes de reanudar el hormigonado, se retirará la capa superficial de mortero, dejando los áridos al descubierto y se limpiará la junta de toda suciedad o árido que haya quedado suelto. En el caso de que el hormigón antiguo esté seco, es necesario humedecer antes de proceder al vertido del hormigón fresco. En cualquier caso, el procedimiento de limpieza utilizado no deberá producir alteraciones apreciables en la adherencia entre la pasta y el árido grueso. Expresamente se prohíbe el empleo de productos corrosivos en la limpieza de juntas.

  • Imagine que existe contacto entre dos hormigones con resistencias características muy distintas, como es el caso de edificios con pilares de hormigón de alta resistencia y formados de hormigón convencional. ¿Qué medidas deberemos adoptar?

En tal caso, se puede adoptar una de las siguientes medidas:

Disponer, en la zona de forjado ocupada por el pilar, hormigón de la resistencia característica de éste. Esta superficie debería extenderse 600 mm más allá de la cara del pilar. Es importante disponer en primer lugar el hormigón de alta resistencia, para prevenir posibles caídas de hormigón convencional en la posición del pilar. Es responsabilidad del proyectista definir en planos las zonas donde el hormigón de alta resistencia y el hormigón convencional van situaos.

Ejecutar todo el forjado con hormigón convencional. En tal caso, el hormigón del pilar en el canto del forjado tiene una resistencia menor que en el resto del pilar pero mayor que la del forjado por estar confinado por éste. Conviene estudiar específicamente la resistencia de esta zona.

  • ¿Cuáles son los principales métodos de curado del hormigón?

Los principales método para el curado del hormigón son los siguientes: protección con láminas de plástico, protección con materiales humedecidos (sacos de arpillera, arena, paja, etc.), riego con agua, aplicación de productos de curado que formen membranas de protección.

PROBLEMA: Determinar la duración mínima, en días, del curado de un hormigón con una clase de exposición normal, con una temperatura media durante el curado de 10ºC, no expuesta ni al sol ni al viento, con una humedad relativa del 85%, con una clase del cemento 42,5 R CEM II y una relación a/c = 0,55.

Para una estimación de la duración mínima de curado D, en días, se puede aplicar la siguiente expresión de la EHE-08:

D=K·L·D0 +D1

K es el coeficiente de ponderación ambiental. Según la Tabla 71.6.d, K=1,00.

L es el coeficiente de ponderación térmica. Según la Tabla 71.6.e, L=1,30.

D0 es el parámetro básico de curado. Según la Tabla 71.6.a y la Tabla 71.6.b, D0=3.

D1 es un parámetro función del tipo de cemento. Según la Tabla 71.6.c, D1=1.

 

Con los datos anteriores, D=1,00·1,30·3+1 = 4,9. Adoptamos 5 días como duración mínima de curado.

 

Instalaciones de dosificación para la fabricación de hormigón

http://www.horus.es/ci/portfolio-view/control-de-plantas-de-hormigon/

La dosificación es el conjunto de operaciones que permiten cargar los constituyentes del hormigón en la mezcladora siguiendo un orden preestablecido y garantizando que se respeten las proporciones fijadas por las fórmulas correspondientes a cada mezcla.

El artículo 71.2.3 de la Instrucción de Hormigón Estructural, EHE-08, proporciona las características que deben de cumplir las instalaciones de dosificación.

En la realidad, la cantidad de materiales que se utilizan realmente en una amasada varían con respecto a los valores nominales de las fórmulas. Las normas UNE-EN206-1:2008 y la EHE-08 definen las tolerancias que se deben respetar en la dosificación. En la Tabla 1 se recogen dichas tolerancias.

Los materiales constituyentes del hormigón se encuentran en estado sólido (cemento, áridos y adiciones) o líquido (agua y aditivos). Cada constituyente posee su línea de dosificación propia. La Tabla 2 resume las instalaciones de dosificación empleadas.

Las instalaciones de dosificación deben disponer silos con compartimentos adecuados y separados para cada una de las fracciones granulométricas necesarias de árido. Se garantizará en cada compartimento que la descarga sea eficaz, sin atascos y con una segregación mínima.

Los constituyentes sólidos como el cemento, los áridos y las adiciones se dosifican por peso; el agua se puede dosificar por peso o por volumen, al igual que los aditivos líquidos. Hoy día, el agua se dosifica normalmente por peso, debido a la mayor rapidez y precisión. Para mayor precisión, algunas plantas disponen de medidores de humedad y corrección del agua de amasado al incluir la que aportan los áridos.

Los aditivos líquidos se continúan dosificando por volumen, aunque muchas centrales vienen preparadas para dosificarlos también en peso. En los aditivos, como las cantidades son bajas, las básculas deben ser más pequeñas y por consiguiente son más sensibles a las vibraciones existentes en las centrales. Se debe de poder medir con claridad la cantidad de aditivo correspondiente a 50 kg de cemento. Se recomienda, para el caso de los aditivos, que se utilice un dosificador diferente para cada uno de ellos. En caso contrario, debería realizarse una limpieza del sistema dosificador, salvo que los diferentes aditivos fueran compatibles entre sí.

En el caso de una dosificación ponderal por peso, se emplean básculas para pesar los materiales, garantizando que en ningún caso se dosifiquen cantidades por debajo del 10% de la capacidad total de la escala de la báscula empleada.

Existen diversos tipos de básculas, aunque todas se componen de un receptáculo, un dispositivo de medida y un sistema de evacuación. Es muy importante que se encuentren perfectamente limpios todos los puntos de apoyo, las articulaciones y partes análogas de las básculas.

 

Imagen de planta de hormigón

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València.

El Plan de Estudios del Máster en Ingeniería del Hormigón

IMG_20121106_094440En este post me gustaría dar cierta información básica del Máster Oficial en Ingeniería del Hormigón que se imparte en el Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil de la Universitat Politècnica de València. Se trata de un máster verificado por ANECA que deriva de la docencia impartida en el Programa de Doctorado de dicho departamento. Es un máster de orientación tanto profesional como investigadora, con una fuerte presencia de alumnos procedentes de otros países, fundamentalmente del ámbito latinoamericano y europeo. Se trata del único máster especializado en hormigón impartido en lengua española a nivel internacional. Sus profesores pertenecen todos ellos al ICITECH, Instituto de Ciencia y Tecnología del Hormigón, instituto de investigación con laboratorios e instalaciones propias para desarrollar las líneas de investigación asociadas.

Los estudios del Máster en Ingeniería del Hormigón proporcionan tanto un amplio conocimiento sobre el hormigón como material de construcción como las habilidades necesarias para el análisis y diseño de estructuras de hormigón. Estos estudios incluyen aspectos que van desde la naturaleza y propiedades químicas de los componentes que lo constituyen y las propiedades tecnológicas y de durabilidad, incluyendo la tecnología de diseño, producción y puesta en obra del hormigón, hasta los relacionados con el diseño, análisis, construcción, mantenimiento y reparación de estructuras. Todos ellos abordados  teniendo en cuenta criterios de calidad, seguridad, sostenibilidad, cooperación al desarrollo y responsabilidad social corporativa.

Los alumnos pueden acceder a este máster desde perfiles diversos, por lo que se oferta  un plan  de estudios con una adecuada y amplia optatividad que les permita construir su currículo específico dentro del mundo del hormigón y afines. Estos estudios están orientados a la formación de  investigadores, docentes y especialistas en algunos de los siguientes campos del hormigón:

1.- Propiedades físico-químicas y tecnológicas de los hormigones y sus materiales constituyentes convencionales y avanzados, su fabricación y sus aplicaciones.

2.- Propiedades físico-químicas y tecnológicas de los materiales para la reparación de construcciones de hormigón estructural y sus aplicaciones.

3.- Procedimientos constructivos, maquinaria y medios auxiliares para la construcción de estructuras de hormigón convencionales y singulares.

4.- Durabilidad de las construcciones de hormigón y medidas de protección.

5.- Aspectos medioambientales y ciclo de vida del hormigón.

6.- Evaluación y diagnóstico de construcciones de hormigón estructural, y los métodos, mecanismos y medios para su reparación y rehabilitación.

7.- Comportamiento mecánico-resistente de las construcciones de hormigón estructural, su modelización numérica y análisis experimental.

8.- Diseño, optimización y proyecto de construcciones de hormigón.

9.- Construcción industrializada y prefabricación

.facebook_2096399093El Plan de Estudios está divido en un módulo básico, de 60 créditos, que se impartirá en el primer año académico, un segundo módulo complementario, de 15 créditos, que se impartirá en el primer cuatrimestre del segundo año académico y el Trabajo de Fin de Máster, de 15 créditos, lo cual suma los 90 créditos del máster. El módulo básico se divide en tres materias de carácter común y obligatorio para todos los alumnos, cada una de ellas de 20 créditos. En dicho módulo básico se encuadrarán las materias de “Materiales constitutivos y durabilidad del hormigón”, “Análisis de estructuras de hormigón” y “Concepción y diseño de estructuras de hormigón”. Este módulo se desarrollará durante el primer curso, tanto en los cuatrimestres primero y segundo. En cuanto al módulo complementario, éste se desarrollará íntegramente en el primer cuatrimestre del segundo año, constando de una materia denominada “Complementos de construcción y tecnología del hormigón”, de 15 créditos.

Con respecto al Trabajo de Fin de Máster, no se exige un período cerrado y obligatorio para su entrega y su defensa, si bien se estima una duración de 3-4 meses. El motivo de esta atemporalidad reside en facilitar al alumno incrementar el período en el que desarrolle esta actividad minimizando el solapamiento con la docencia del primer cuatrimestre del segundo año. Por otra parte, y teniendo en cuenta que una parte importante de los Trabajos de Fin de Máster estarán fundamentados en resultados experimentales de laboratorio, será necesario prever períodos de ensayos y medidas experimentales que deberán ser coordinados con las actividades investigadoras habituales. 

A continuación tenéis un enlace embebido de la página oficial del máster donde podéis ver el Plan de Estudios e información adicional.