Nuestro trabajo seleccionado entre los mejores de Engineering Structures (Edición vols. 342-345)

Nos complace compartir una excelente noticia: nuestro artículo Life-cycle environmental impact optimization of an RC-THVS composite frame for sustainable construction ha sido reconocido con el Featured Paper Award de la revista Engineering Structures, de Elsevier.

Este galardón distingue a un número muy reducido de trabajos que destacan por su excelencia científica, originalidad y relevancia en la revista. Por tanto, se trata de un reconocimiento de alto nivel al impacto y la calidad de la investigación realizada.

¿Qué es Engineering Structures?

Engineering Structures es una de las revistas internacionales de referencia en el ámbito de la ingeniería civil y estructural. Su objetivo principal es publicar investigaciones avanzadas, tanto teóricas como aplicadas, relacionadas con el análisis, el diseño, el comportamiento y la optimización de estructuras, incluidos puentes, edificios y sistemas estructurales innovadores. La revista hace especial hincapié en los enfoques modernos que integran la sostenibilidad, los nuevos materiales, los métodos computacionales y la evaluación del ciclo de vida.

En términos bibliométricos, Engineering Structures se sitúa en el primer decil (D1) del Journal Citation Reports (JCR) en el área de ingeniería civil, lo que significa que se encuentra entre el 10 % de las revistas con mayor impacto científico a nivel mundial en su campo.

El significado del Featured Paper Award

Recibir el Featured Paper Award implica que el artículo ha sido considerado especialmente relevante por el equipo editorial de la revista, no solo por su calidad metodológica, sino también por su contribución al avance del conocimiento y su interés para la comunidad científica internacional. En este caso, el trabajo aborda la optimización del impacto ambiental a lo largo del ciclo de vida de sistemas estructurales compuestos, lo que lo alinea con uno de los grandes retos actuales de la ingeniería: el desarrollo de infraestructuras más sostenibles y eficientes.

Este reconocimiento aumenta la visibilidad del trabajo publicado y destaca la importancia de integrar criterios ambientales y de sostenibilidad en el diseño estructural, un enfoque cada vez más necesario en el contexto de la transición ecológica del sector de la construcción.

Desde nuestro equipo, agradecemos este reconocimiento y esperamos que el artículo contribuya a seguir impulsando la investigación en ingeniería estructural sostenible y en el análisis del ciclo de vida.

Podéis leer el artículo de forma gratuita si accedéis a este enlace: https://www.sciencedirect.com/science/article/pii/S0141029625018528

Referencia:

Negrín, I., Kripka, M., & Yepes, V. (2025). Life-cycle environmental impact optimization of an RC-THVS composite frame for sustainable construction. Engineering Structures, 345, 121461. https://doi.org/10.1016/j.engstruct.2025.121461

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Cómo lograr que tus estudiantes transformen su forma de pensar, según la ciencia

Introducción: ¿Por qué a veces enseñar parece una batalla perdida?

Todo educador conoce esa frustración: preparamos nuestras clases con esmero, organizamos los contenidos de forma lógica, explicamos con la mayor claridad posible y ponemos toda nuestra pasión en ello. Sin embargo, al final del semestre, nos damos cuenta de que muchos estudiantes no han retenido la información, no han conectado las ideas o, simplemente, no han llegado a comprender la esencia de lo que intentábamos transmitir. Es como si nuestras palabras se hubieran desvanecido en el aire.

La reacción instintiva ante este problema es intentar perfeccionar nuestra enseñanza. Buscamos ser más claros, organizar mejor el material o encontrar ejemplos más ilustrativos. Asumimos que, si mejoramos la forma en que transmitimos el conocimiento, el aprendizaje ocurrirá de forma natural. Pero ¿y si esa premisa fuera fundamentalmente incorrecta?

Décadas de investigación rigurosa en educación superior han revelado una serie de principios sobre cómo las personas realmente aprenden. Lo sorprendente es que muchas de estas conclusiones son profundamente contraintuitivas y entran en conflicto con nuestras ideas más arraigadas sobre la enseñanza. En este artículo, sintetizamos cinco de las lecciones más impactantes de esta investigación, organizadas en un proceso de creciente sofisticación pedagógica. Empezaremos por los fundamentos de la comunicación efectiva y llegaremos hasta las formas más avanzadas de diseño curricular, revelando un mapa que transforma la frustración en un aprendizaje real y duradero.

Lección 1: no se trata de lo que enseñas, sino de lo que ellos hacen.

El primer y más importante cambio de paradigma es el siguiente: el factor que determina los resultados del aprendizaje no es la calidad de la exposición del profesor, sino la de la actividad que realiza el estudiante. Se trata de una idea sencilla en apariencia, pero con implicaciones revolucionarias para el diseño de cualquier curso.

Investigadores como John Biggs han demostrado que el enfoque de la planificación docente debe cambiar por completo. Esta es la esencia del cambio de paradigma que Barr y Tagg describieron en su artículo «From Teaching to Learning», un pilar de la pedagogía moderna. En lugar de preguntarnos «¿qué temas voy a cubrir?», la pregunta fundamental debe ser «¿qué actividades voy a diseñar para que mis estudiantes piensen y trabajen?». Este principio nos obliga a cambiar nuestro papel de «presentadores de información» a «arquitectos de experiencias de aprendizaje».

Este cambio es difícil de asimilar porque nos saca del centro del escenario. Lo que realmente importa es el reto intelectual que proponemos y el trabajo cognitivo que los estudiantes realizan para superarlo, no nuestra brillante explicación. La enseñanza más eficaz no es la que transmite mejor, sino la que provoca la mejor actividad.

«Lo que el estudiante hace, y no tanto lo que el profesor hace, es lo que determina los resultados de aprendizaje».

Lección 2: Los sentimientos importan más de lo que crees.

A menudo, concebimos la enseñanza como un proceso puramente cognitivo: si la información es clara y está bien organizada, los estudiantes aprenderán. Sin embargo, la investigación demuestra que los aspectos afectivos y relacionales son, como mínimo, tan importantes. Factores como la cercanía, la expresividad y la credibilidad del docente pueden potenciar el aprendizaje.

Estas cualidades no son meros adornos. Tienen efectos directos y medibles: aumentan la motivación, reducen la ansiedad que sienten los estudiantes ante la información compleja y, lo que es crucial, impactan en el aprendizaje afectivo. Este último se refiere a los valores, actitudes y sentimientos que el estudiante desarrolla hacia la asignatura. De hecho, un hallazgo sorprendente es que la claridad del profesorado puede tener un efecto aun mayor en la actitud positiva del alumnado hacia la asignatura que en su aprendizaje puramente cognitivo.

La comunicación en el aula nunca es solo una transacción de información. Es un acto de construcción de relaciones. Cuando un profesor se muestra cercano y creíble, fomenta un entorno en el que los estudiantes están más dispuestos a implicarse, a confiar y, en definitiva, a valorar el conocimiento que se les ofrece.

«La mayoría de los estudiantes no valora intrínsecamente el aprendizaje que se les prescribe. Hay que enseñarles a valorar ese conocimiento».

Dominar la claridad y la conexión con el estudiante (lo que la investigación denomina nivel 1) es la base. Sin embargo, el verdadero salto en la efectividad se produce cuando cambiamos el enfoque de nosotros hacia ellos y empezamos a diseñar el aprendizaje en función de su actividad.

4. Lección 3: Olvida el «aprendizaje activo». Busca el «aprendizaje constructivo».

«Aprendizaje activo» se ha convertido en un término de moda, una especie de eslogan que todo el mundo apoya, pero pocos lo definen con precisión. La dicotomía simple entre «activo» (hacer cosas) y «pasivo» (escuchar) es engañosa. Escuchar una conferencia brillante puede ser una actividad intelectual increíblemente intensa, mientras que participar en una actividad mal diseñada puede ser una pérdida de tiempo.

La investigadora Michelene Chi propone un concepto mucho más útil y preciso: el aprendizaje constructivo. La clave no está en si los estudiantes «hacen algo» físicamente, sino en el tipo de trabajo mental que realizan. El aprendizaje es constructivo cuando la actividad exige a los estudiantes producir un resultado que va más allá de la información inicialmente proporcionada.

El aprendizaje constructivo se produce cuando el estudiante reorganiza las ideas, sintetiza, critica, diseña, aplica, ofrece soluciones, realiza diagnósticos o aporta análisis. La clave es la transformación, no la mera repetición. El objetivo de una buena actividad no es simplemente mantener a los estudiantes ocupados; es involucrarlos en un trabajo cognitivo de alto nivel que propicie una comprensión nueva y personal.

«…aquellas [actividades] en las que, al realizarlas, los estudiantes producen resultados añadidos, esto es, resultados que contienen ideas relevantes que van más allá de la información de partida que se les ha dado»

Lección 4: el mayor obstáculo es lo que los estudiantes ya «saben».

Uno de los descubrimientos más sólidos y, a la vez, más ignorados de la investigación educativa es que el mayor obstáculo para el aprendizaje no es la falta de conocimientos, sino las ideas preconcebidas, ingenuas o erróneas que los estudiantes traen al aula. Estas ideas, a menudo implícitas y profundamente arraigadas, pueden ser increíblemente resistentes al cambio y bloquear la asimilación de conceptos científicos o de expertos.

La magnitud de este problema es enorme. Un ejemplo famoso proviene de la física: cuando se diseñó el Force Concept Inventory (FCI), una prueba para evaluar la comprensión de los conceptos básicos de la mecánica newtoniana, los profesores universitarios predijeron que sus alumnos la superarían con facilidad. Los resultados reales fueron un shock: las puntuaciones medias se situaban en un desolador 20-25 %. Esto reveló que incluso los estudiantes más brillantes albergaban ideas profundamente erróneas sobre el movimiento. Sus cursos no los habían corregido porque la enseñanza tradicional simplemente añade capas de información nueva sobre estas concepciones resistentes sin llegar nunca a desplazarlas.

Una enseñanza verdaderamente eficaz no puede ignorar este hecho. Debe diseñarse explícitamente para facilitar el cambio conceptual. Para ello, es necesario crear situaciones y problemas que obliguen a los estudiantes a expresar sus ideas previas, a confrontarlas con las pruebas y, en última instancia, a modificar su forma de pensar. Si no se lleva a cabo este proceso deliberado, corremos el riesgo de que los estudiantes memoricen únicamente las respuestas correctas para el examen, mientras sus ideas erróneas originales permanecen intactas.

«¿Con qué frecuencia el profesor invierte un gran esfuerzo en ofrecer una explicación concienzuda de algún fenómeno sin darse cuenta de que los estudiantes están formando interpretaciones significativamente diferentes en sus cabezas?».

Si este «cambio conceptual» es el objetivo, ¿cómo diseñamos un curso entero en torno a él? La respuesta está en identificar los «portales» donde este cambio sea más necesario y transformador.

Lección 5: No enseñes temas; diseña «portales» de conocimiento.

El nivel más avanzado de diseño curricular abandona la idea de un temario como una mera lista de contenidos por cubrir. En su lugar, se centra en identificar y enseñar los conceptos umbral (threshold concepts). Esta idea, desarrollada por Meyer y Land, parte del concepto de «conocimiento problemático» (troublesome knowledge) de David Perkins, que se refiere a aquellas ideas contraintuitivas o complejas que, por tanto, resisten el aprendizaje superficial.

Un concepto umbral funciona como un portal: cuando el estudiante lo atraviesa, su forma de ver la disciplina (e incluso el mundo) cambia por completo. Abrirá una forma de pensar antes inaccesible. Estos conceptos suelen ser precisamente los puntos en los que los estudiantes se atascan, ya que a menudo resultan contraintuitivos, problemáticos o complejos. Son las ideas clave que, una vez comprendidas, conectan todo lo demás y permiten al estudiante empezar a pensar como un experto en la materia.

Pensemos, por ejemplo, en el concepto de «coste de oportunidad» en economía. Cuando un estudiante lo comprende de verdad, ya no ve las decisiones como simples elecciones, sino como un campo de renuncias y de alternativas. Este concepto transforma su manera de analizarlo todo, desde una política gubernamental hasta qué hacer el sábado por la noche. Ese es el poder de un portal conceptual.

La docencia de excelencia consiste, por tanto, en identificar estos portales conceptuales en una disciplina. El curso deja de ser una secuencia de temas para convertirse en un viaje cuidadosamente diseñado que guía a los estudiantes a través de estos umbrales transformadores. El objetivo ya no es «cubrir el temario», sino provocar saltos cualitativos en la comprensión.

«Un concepto umbral puede considerarse como un portal que abre una nueva forma de pensar sobre algo previamente inaccesible. Representa una forma transformada de comprender, interpretar o ver algo, sin la cual el estudiante no puede progresar».

Conclusión: un pequeño cambio, un gran impacto.

Estas cinco lecciones suponen una evolución coherente en nuestra forma de entender la docencia. Nos invitan a evolucionar desde el papel de profesor que presenta información de forma clara y cercana (lecciones 1 y 2), hasta el de arquitecto que diseña desafíos cognitivos (lección 3), diagnosticador que identifica los modelos mentales de sus estudiantes (lección 4) y, por último, guía que acompaña a los estudiantes a través de los portales intelectuales más transformadores de su disciplina (lección 5). El enfoque cambia de la perfección en la transmisión de contenidos a la creación de experiencias que faciliten un aprendizaje auténtico.

De estas cinco lecciones, ¿qué cambio podrías implementar en tu próxima clase para empezar a centrarte en lo que hace el estudiante?

En este audio podemos escuchar una conversación sobre este tema.

En este vídeo se sintetizan las ideas más importantes sobre el aprendizaje activo.

En este documento puedes ver las ideas más importantes.

Pincha aquí para descargar

Referencias:

Barr, R. B., & Tagg, J. (1995). From teaching to learning: A new paradigm for undergraduate education. Change Magazine, Nov/Dec.

Biggs, J. (1999). What the student does: Teaching for enhanced learning. Higher Education Research and Development, 18(1), 57–75.

Biggs, J. B., & Tang, C. (1999). Teaching for quality learning at university: What the student does. Society for Research into Higher Education & Open University Press.

Chi, M. T. H. (2005). Commonsense conceptions of emergent processes: Why some misconceptions are robust. Journal of the Learning Sciences, 14, 161–199.

Chi, M. T. H. (2008). Three types of conceptual change: Belief revision, mental model transformation, and categorical shift. En S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 61–82). Routledge.

Chi, M. T. H. (2009). Active-constructive-interactive: A conceptual framework for differentiating learning activities. Topics in Cognitive Science, 1(1), 73–105. https://doi.org/10.1111/j.1756-8765.2008.01005.x

Meyer, J. H. F., & Land, R. (2003). Threshold concepts and troublesome knowledge: Linkages to ways of thinking and practising within the disciplines. ETL Project, University of Edinburgh.

Meyer, J. H. F., & Land, R. (2005). Threshold concepts and troublesome knowledge (2): Epistemological considerations and a conceptual framework for teaching and learning. Higher Education, 49, 373–388. https://doi.org/10.1007/s10734-004-6779-5

Meyer, J. H. F., & Land, R. (2006). Threshold concepts and troublesome knowledge: An introduction. En J. H. F. Meyer & R. Land (Eds.), Overcoming barriers to student understanding: Threshold concepts and troublesome knowledge (pp. 3–18). Routledge.

Paricio, J. (2020). La calidad de «lo que el estudiante hace»: aprendizaje activo y constructivo. En J. Paricio, A. Fernández March y J. M. Carot Sierra (Eds.), Cartografía de la buena docencia universitaria (pp. 57-88). Narcea.

Perkins, D. (1999). The many faces of constructivism. Educational Leadership, 57(3), 6–11.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Marco Vitruvio Polión

Marco Vitruvio Polión (c. 80 a. C.-70 a. C., 15 a. C.). https://www.bbc.com/mundo/noticias-62321557

Marco Vitruvio Polión (en latín Marcus Vitruvius Pollio; c. 80 a. C.-70 a. C., 15 a. C.), conocido simplemente como Vitruvio, fue un arquitecto e ingeniero romano del siglo I a. C. Se desconoce su lugar y año de nacimiento exactos, pero existen varias hipótesis. Maffei lo consideraba originario de Verona; otros estudios señalan Placentia, y algunos autores sostienen que nació en Mola di Gaeta (la antigua Formia), siendo esta última suposición la que parece estar mejor fundada, especialmente por la presencia de la gens Vitruvia en esa zona de la Campania. A pesar de la incertidumbre sobre su biografía, se sabe con certeza que tuvo una vida larga y activa y que su obra ha dejado una huella perdurable en la historia de la arquitectura y la ingeniería.

Vitruvio vivió en un periodo de fuertes transformaciones políticas. Tras décadas de guerras civiles, Roma se encontraba en plena transición de la República al Imperio y nuevos grupos sociales accedían a posiciones de poder antes inaccesibles. Este escenario de expansión territorial, riqueza y cambios culturales generó un gran interés por la construcción, tanto pública como privada, y constituyó el marco en el que Vitruvio desarrolló su carrera. En su juventud, sirvió como soldado bajo el mando de Julio César en Hispania y Grecia, donde trabajó como ingeniero militar especializado en la fabricación de piezas de artillería, como ballistae y scorpiones. En esas campañas adquirió experiencia en construcción militar e infraestructuras que después aplicaría en obras civiles. Posteriormente, residió en Roma, donde trabajó en obras imperiales. Tanto Julio César como Augusto le concedieron una subvención vitalicia en su vejez, lo que constituyó un reconocimiento explícito de su valía profesional y prestigio técnico. La obra que compuso en los últimos años de su vida, ya anciano y enfermo, fue el tratado De Architectura, dedicado a Augusto, su protector, y probablemente terminado antes del año 27 a. C., dado que no menciona los grandes edificios de mármol que caracterizaron el final del reinado de Augusto.

La influencia de Vitruvio también se extiende a su relación con la familia imperial. En su obra se insinúa que contó con la protección de Octavia, hermana de César Augusto, lo que refuerza la idea de que su carrera profesional estuvo vinculada al círculo más próximo al poder. En cuanto a su legado material, sus obras se han perdido casi por completo. Aun así, se conservan vestigios en la ciudad de Fano, donde construyó una famosa basílica y un arco de triunfo augusteo, que aún es visible, aunque ha sido modificado. En el ámbito técnico, se le atribuye la invención del módulo quinario en la construcción de acueductos, lo que constituye una importante aportación a la ingeniería hidráulica romana, y se detalla, además, el uso de la chorobates para nivelar el terreno con una precisión asombrosa. También diseñó máquinas de guerra y construyó numerosos monumentos, aunque la mayoría no han llegado hasta nuestros días.

El Hombre de Vitruvio, de Leonardo da Vinci ilustra, cinco siglos después, las proporciones del cuerpo humano descritas por Vitruvio. https://es.wikipedia.org/wiki/Vitruvio

La fama de Vitruvio se debe, sobre todo, a su tratado De Architectura, la única obra de estas características que se conserva de la Antigüedad clásica. Probablemente compuesto hacia el año 27 a. C., tiene carácter de manual resumido y divulgativo y refleja los procedimientos de la arquitectura romana del último siglo de la República. Aunque en ocasiones resulta incompleto u oscuro, el tratado se organiza en diez libros que abarcan de forma sistemática los distintos aspectos de la arquitectura, desde la teoría hasta la práctica constructiva. Su estructura y contenido constituyen un documento insustituible, también por la información que aporta sobre la pintura y la escultura griegas y romanas, con referencias a artistas y obras.

El libro I comienza con consideraciones sobre las cualidades y los deberes del arquitecto y define la arquitectura como ciencia y arte. Vitruvio expone que la aedificatio incluye la construcción de edificios públicos, clasificados según su finalidad en defensio, religio u oportunitas, y la construcción de edificios privados, en los que se integran aspectos como la gnomónica y la machinatio. El primer libro también aborda problemas urbanísticos, como la elección de lugares adecuados para fundar ciudades, el trazado de calles orientadas para evitar los vientos dominantes, la construcción de murallas defensivas y la distribución de edificios dentro del recinto urbano.

En el libro II, tras repasar la evolución de la arquitectura desde los primeros tiempos, Vitruvio aborda la elección y el uso de materiales y de estructuras murales, con ejemplos prácticos de obras romanas y griegas, destacando especialmente las propiedades de la arena volcánica de Pozzuoli (pulvis puteolanus) para la fabricación de hormigón hidráulico. El libro III describe los distintos tipos de templos y establece normas de proporción y simetría para sus planimetrías y sus partes, prestando especial atención al orden jónico. La columna adquiere una importancia central, ya que regula matemáticamente las proporciones del templo. El libro IV trata sobre los templos dóricos, corintios y toscanos e incorpora preceptos técnicos y rituales de construcción.

El libro V se dedica a los edificios de utilidad pública: foros, basílicas, erarios, cárceles, curias, teatros, pórticos, baños, palestras y puertos. En este apartado, Vitruvio demuestra sus conocimientos técnicos, especialmente en lo relativo a teatros y puertos, donde describe el uso de vasos de bronce afinados armónicamente para mejorar la acústica (echea). Se aprecia un carácter innovador al mencionar y describir brevemente una obra propia: la basílica de Fano. El libro VI trata sobre los edificios privados y supone un distanciamiento respecto a los tratadistas griegos, pues Vitruvio reflexiona sobre cómo el clima y las costumbres determinan las diferencias en la disposición de las viviendas griegas y romanas. El libro VII ofrece preceptos prácticos para los acabados, como enjalbegados, pavimentos y decoraciones esculpidas o pintadas, que confieren a los edificios venustatem y firmitatem.

En el libro VIII, Vitruvio se presenta como un estudioso de la hidráulica y constructor de conductos hidráulicos y aborda cuestiones relacionadas con la ingeniería del agua, incluyendo métodos para descubrir manantiales subterráneos observando la vegetación y los vapores matutinos. El libro IX trata de problemas geométricos y astronómicos aplicados a la gnomónica. Finalmente, en el libro X, retomando conocimientos griegos, se abordan la mecánica y las máquinas de paz y de guerra. En esta última parte, el autor se adentra en un campo de gran interés para él, aunque su lectura resulta difícil para el lector moderno debido a la pérdida de las ilustraciones originales y a la ausencia de un lenguaje técnico consolidado en latín. En este sentido, Vitruvio intentó crear un nuevo lenguaje técnico para describir la arquitectura, transliterando términos griegos o inventándolos en latín, un esfuerzo que algunos especialistas modernos han valorado como innovador.

Conceptualmente, el pensamiento de Vitruvio se inspira en un racionalismo aritmético heredado de la escuela pitagórica, que se complica al combinarse con principios prácticos. La experiencia constructiva interviene continuamente en su juicio, por lo que, desde un punto de vista teórico, algunas ideas resultan confusas y otras categorías no pueden interpretarse con seguridad, como ordinatiodispositiodistributioeuritmia o symmetria.  Entre sus conceptos más influyentes se encuentra la tríada vitruviana: la estabilidad, la utilidad y la belleza (firmitas, utilitas y venustas), que se presentan como cualidades inseparables de una estructura bien concebida. Estas ideas no solo se aplican a edificios públicos, sino también a las residencias privadas, especialmente a las villas de los más ricos, en las que Vitruvio hace hincapié en la decoración interior, la pintura mural y el estuco, así como en la orientación y la función de cada estancia.

A lo largo de los siglos, De Architectura tuvo una fortuna variable. Aunque se conoció y se empleó en la Edad Media —siendo copiado en monasterios como el de Saint Gall—, no ejerció una verdadera influencia sobre el pensamiento artístico hasta el Renacimiento, cuando figuras como León Battista Alberti retomaron y difundieron sus ideas. El redescubrimiento y la difusión del tratado se vieron favorecidos por la imprenta y la edición príncipe de 1486, publicada en Roma por Giovanni Sulpicio da Veroli, resultó decisiva para que los artistas renacentistas accedieran a las formas arquitectónicas de la antigüedad grecorromana. En el siglo XVI, la fama de Vitruvio superó los méritos reales de su obra y se convirtió en un canon rígido de la arquitectura antigua, interpretado de manera normativa en muchos tratados posteriores. En este periodo, el tratado se publicó en numerosos países y se consolidó como una fuente documental insustituible, no solo por su información sobre arquitectura, sino también sobre pintura y escultura, así como por las noticias que aporta sobre artistas y obras.

La influencia de Vitruvio se observa tanto en la evolución de la arquitectura renacentista como en la creación de imágenes emblemáticas como el Hombre de Vitruvio de Leonardo da Vinci (c. 1490). Este dibujo se basó en pasajes de De Architectura y refleja la idea, que se remonta al pensamiento pitagórico y platónico, de que el cuerpo humano es un modelo de proporción y armonía. La idea de que la geometría se deriva de la forma humana y de que las proporciones del cuerpo pueden inscribirse en figuras geométricas como el círculo y el cuadrado convirtió al Hombre de Vitruvio en un símbolo de la conexión entre la naturaleza, las matemáticas y la arquitectura.

Entre las traducciones más importantes destaca la versión italiana de Cesare Cesariano, publicada en 1512 en Como bajo el título Di Lucio Vitruvio Pollione e Cesare Augusto de Architetture… translato in vulgare sermone commentato et affigurato da Cesare Cesariano. Esta edición fue el primer intento de traducir el tratado al italiano y se acompañó de un extenso comentario con numerosas citas de autores clásicos como Plinio el Viejo. Aunque fue criticada por la oscuridad de su lenguaje, supuso un avance importante, ya que se revisaron los códices con método y se ofreció una rica presentación tipográfica. Sus adiciones y comentarios ejercieron una gran influencia en ediciones posteriores hasta que la traducción veneciana de Daniele Barbaro, ilustrada por Andrea Palladio, la superó en claridad y rigor.

En conjunto, Vitruvio puede considerarse una figura clave en la historia de la arquitectura y la ingeniería. Su tratado no solo documenta la técnica constructiva romana, sino que también plantea principios teóricos sobre proporción, belleza y funcionalidad que han perdurado a lo largo de los siglos y siguen siendo una referencia en la cultura arquitectónica occidental.

Dejo un par de videos sobre este eminente personaje. Espero que os sean de interés.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Nueva colaboración internacional: estancia de investigación del profesor Élcio Cassimiro Alves

Profesores Víctor Yepes y Élcio C. Alves

Nuestro grupo de investigación se siente especialmente orgulloso y afortunado de recibir con regularidad a profesores de reconocido prestigio internacional que visitan la Universitat Politècnica de València para colaborar, investigar y compartir experiencias. En entradas anteriores ya he comentado estancias y visitas tan relevantes como la del profesor Dan M. Frangopol, la del profesor Gizo Parskhaladze, o la del profesor Moacir Kripka, todas ellas realizadas junto a nuestro grupo en el ICITECH.

En esta línea de colaboración internacional, la Universitat Politècnica de València (UPV) acoge durante diez meses la estancia de investigación del doctor Élcio Cassimiro Alves, ingeniero civil y profesor de la Universidad Federal de Espírito Santo (UFES, Brasil). Esta estancia, que se desarrolla entre enero y octubre de 2026, tiene como objetivo reforzar la colaboración científica con el grupo de investigación del profesor Víctor Yepes, especialmente en los ámbitos de la optimización estructural y de la sostenibilidad en ingeniería civil.

El profesor Alves cuenta con una sólida trayectoria académica y docente. En la UFES imparte docencia en los grados de Ingeniería Civil y de Arquitectura, así como en los programas de máster y de doctorado en Ingeniería Civil. A lo largo de su carrera ha asumido importantes responsabilidades de gestión académica, entre ellas la coordinación de los grados y másteres en ingeniería civil, periodo durante el cual impulsó de manera decisiva la creación del programa de doctorado en esta disciplina en su universidad.

Más allá de su actividad estrictamente académica, destaca también su compromiso social. Ha coordinado proyectos de extensión universitaria vinculados a la ONG Ingenieros Sin Fronteras, participando en iniciativas orientadas a la transferencia del conocimiento de la ingeniería a comunidades vulnerables, lo cual se alinea directamente con la visión contemporánea de la ingeniería como herramienta de transformación social.

Durante su estancia posdoctoral en la UPV, financiada por la Fundación de Apoyo a la Investigación del Espíritu Santo (FAPES, Brasil), el profesor Cassimiro Alves trabajará estrechamente con el grupo del profesor Víctor Yepes en líneas de investigación comunes. Su trabajo se centra en la optimización estructural, con especial énfasis en criterios de sostenibilidad y en la reducción del impacto ambiental, abordando temas como la minimización de emisiones de CO₂, el análisis estructural lineal y no lineal, el hormigón armado y las estructuras mixtas de acero y hormigón.

Este tipo de estancias refuerza la internacionalización de la investigación, favorece el intercambio de conocimientos y experiencias y contribuye al desarrollo de soluciones innovadoras para uno de los grandes retos actuales de la ingeniería civil: diseñar estructuras más eficientes, seguras y sostenibles. Sin duda, la colaboración entre la UFES y la UPV durante estos meses será una oportunidad enriquecedora para ambas instituciones y para el avance de la investigación en ingeniería estructural.

 

Vivienda social sostenible: un enfoque integrador de ciclo de vida y evaluación multicriterio

Acaban de publicar un artículo nuestro en Sustainable Cities and Society, una de las revistas de mayor impacto científico, ubicada en el primer decil del JCR. En este trabajo se propone un enfoque integrador basado en el ciclo de vida y en métodos de evaluación multicriterio para analizar la vivienda social sostenible. La investigación se enmarca en el proyecto RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València. A continuación, se presenta un resumen del trabajo.

Los principales resultados revelan que el sistema Light Steel Frame (LSF) es la alternativa más sostenible, ya que logra un equilibrio superior entre la eficiencia en el uso de los recursos, la durabilidad y la reducción del mantenimiento. Un descubrimiento crucial es el papel de la dimensión social, que representó casi el 40 % del peso total en la evaluación, por encima de las dimensiones económica y medioambiental. El análisis causal identifica el coste de construcción, la funcionalidad y los agentes de la cadena de valor como los principales factores que condicionan el rendimiento sostenible del resto del sistema.

El artículo presenta un marco metodológico integrador que combina evaluaciones basadas en el ciclo de vida —análisis de ciclo de vida (LCA), análisis de coste del ciclo de vida (LCC) y análisis de ciclo de vida estocástico (S-LCA)— con técnicas avanzadas de decisión multicriterio: método mejor-peor (BWM), análisis DEMATEL difuso y análisis MARCOS. Esta integración permite incorporar ponderaciones de expertos, modelar relaciones causales entre criterios y sintetizar resultados frente a soluciones ideales o anti-ideales, lo que aumenta la transparencia en la priorización de alternativas constructivas. Este enfoque se ha aplicado a un caso real de vivienda social en Perú, en el que se han comparado cinco sistemas estructurales representativos: LSF, LBSPS, RCW, RCF-M y RCF-CP. El estudio ha proporcionado pruebas empíricas sobre los costes del ciclo de vida, los impactos ambientales y las prestaciones sociales que respaldan las decisiones de diseño y las políticas.

El estudio analiza cinco sistemas constructivos adaptados a contextos de urbanización rápida (específicamente en Lima, Perú), que van desde métodos convencionales hasta industrializados:

Entre las aportaciones metodológicas, la combinación de BWM con una agregación basada en credenciales profesionales reduce la carga de comparación y atenúa los sesgos en la agregación de juicios, mientras que la extensión difusa de DEMATEL permite identificar los criterios que funcionan como impulsores del sistema y los que actúan como receptores. Esta capacidad para distinguir entre causas y efectos permite aclarar qué palancas hay que modificar para lograr efectos amplificados en la sostenibilidad. Por último, la validación cruzada con otros métodos de MCDM y los ensayos de sensibilidad aumentan la confianza en la estabilidad de los resultados.

Discusión de resultados

Los análisis económicos muestran que, en un horizonte de 50 años y por metro cuadrado, los sistemas basados en acero ligero (LSF) tienen los menores costes totales de ciclo de vida, mientras que algunas alternativas prefabricadas, como el LBSPS, tienen los mayores costes de construcción. Estos datos implican que si solo se tiene en cuenta la inversión inicial, se pueden tomar decisiones subóptimas, ya que no se consideran el mantenimiento y el fin de vida.

En términos ambientales, la evaluación con ReCiPe (endpoint) sitúa al LSF como el sistema con el menor impacto agregado, principalmente debido a su menor intensidad material. Por el contrario, las soluciones con mayor presencia de hormigón y ladrillo presentan una carga superior, especialmente en la dimensión de recursos. Esta diferenciación pone de manifiesto la influencia del perfil material y del proceso de fabricación en la huella medioambiental de la vivienda y sugiere que, en la práctica profesional, se deben priorizar medidas que reduzcan la demanda de materiales energéticamente intensivos en la fase de fabricación.

La S-LCA revela una tensión entre la industrialización y la exposición social: las alternativas más industrializadas, como el LSF y el LBSPS, presentan mayores valores de exposición laboral y de funcionalidad exigente, mientras que las tipologías convencionales de hormigón muestran menores riesgos sociales, medidos en Medium Risk Hours. Este resultado indica que la adopción de sistemas industrializados exige prestar atención explícita a la gestión del trabajo, la formación y la coordinación de la cadena de suministro para evitar que los impactos negativos se transfieran al personal y a la comunidad.

La síntesis mediante MARCOS ubica a LSF como la alternativa mejor valorada en el escenario analizado, seguida de RCW y RCF-M. Los sistemas LBSPS y RCF-CP quedan en posiciones inferiores. Las pruebas de sensibilidad (variación de los pesos de ±15 %, escenarios de distancia de transporte y estratificación de expertos) muestran que el orden general se mantiene, lo que indica cierta robustez frente a perturbaciones razonables en los supuestos. Estos resultados permiten extraer una conclusión práctica: en contextos con características similares a las del caso estudiado, las soluciones ligeras industrializadas pueden mejorar la relación entre coste, impacto ambiental y rendimiento técnico, siempre que se gestionen adecuadamente los aspectos sociales y de ejecución.

Un aspecto metodológico de interés es la identificación de los criterios causales. La técnica DEMATEL identifica el coste de construcción, la funcionalidad y las interacciones con la cadena de valor como criterios que inciden en el resto del sistema, mientras que los indicadores ambientales, como la salud humana y la conservación de los ecosistemas, se presentan principalmente como efectos. Esto sugiere que las intervenciones en los costes de construcción y en la organización funcional pueden provocar mejoras indirectas en la sostenibilidad ambiental y social, lo cual resulta relevante al diseñar políticas y contratos que incentiven las prácticas integradas.

Futuras líneas de investigación

Una línea de trabajo inmediata consiste en ampliar la diversidad y el tamaño del panel de agentes consultados para captar las variaciones en las prioridades y las competencias profesionales. Esto permitiría evaluar la sensibilidad de las ponderaciones y mejorar la representatividad social del proceso. Otra opción es trasladar y recalibrar el marco a otros contextos geográficos y tipologías constructivas, como viviendas de mayor altura o equipamientos públicos, para evaluar la transferibilidad de la clasificación y de la estructura causal identificada en este estudio.

En el ámbito técnico, utilizar datos primarios de obras reales en lugar de bases de datos secundarias aumentará la fiabilidad de la evaluación del ciclo de vida (LCA) y del análisis del ciclo de vida (S-LCA) y mejorará la precisión de los modelos de coste del ciclo de vida (LCC). La incorporación de enfoques dinámicos, como la LCA dinámica o las simulaciones acopladas a plataformas BIM, puede facilitar las evaluaciones en etapas iniciales y permitir análisis de sensibilidad más detallados relacionados con la sustitución de componentes, las reparaciones y las evoluciones tecnológicas. Asimismo, explorar técnicas de optimización multiobjetivo que vinculen explícitamente las restricciones económicas con las metas ambientales y sociales podría proporcionar soluciones de diseño más operativas para promotores y organismos públicos.

Desde la perspectiva social, investigar intervenciones concretas de capacitación, reorganización de procesos y de contratos que reduzcan la exposición de los trabajadores a los sistemas industrializados aportará pruebas sobre cómo mantener los beneficios ambientales y económicos sin incrementar los impactos sociales. Por último, el estudio de la interacción entre políticas públicas, incentivos financieros y la adopción tecnológica ofrecerá información útil para diseñar instrumentos que favorezcan soluciones constructivas más equilibradas en el marco de los programas de vivienda social.

Conclusión

El estudio proporciona un marco metodológico replicable y sólido que combina la evaluación del ciclo de vida con técnicas multicriterio capaces de representar las interdependencias y la incertidumbre. Los resultados empíricos indican que, en el caso analizado, las soluciones ligeras industrializadas presentan ventajas en términos de coste y de huella ambiental, aunque se requieren medidas específicas para reducir los riesgos sociales derivados de su ejecución. La metodología y los resultados obtenidos sientan las bases para orientar las políticas y las decisiones de los proyectos y ponen de manifiesto la necesidad de ampliar los datos primarios, diversificar la muestra de expertos y conectar el análisis con herramientas digitales de diseño y gestión.

Referencia:

LUQUE CASTILLO, X.; YEPES-BELLVER, L.; YEPES, V. (2026). Towards Sustainable Social Housing: An Integrative Life Cycle and Multi-Criteria ApproachSustainable Cities and Society, 137, 107164. DOI:10.1016/j.scs.2026.107164

Dejo a continuación el artículo completo, ya que está publicado en abierto.

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Unidades experimentales y muestrales en el diseño de experimentos

La unidad experimental (UE) es el elemento central en el diseño y el análisis de experimentos comparativos. Se define como la entidad a la que se le puede asignar un tratamiento de forma independiente y sobre la cual se realizan las mediciones. La identificación correcta de la UE es fundamental, ya que la estimación de la variabilidad natural, conocida como error experimental, depende exclusivamente de la comparación entre unidades experimentales idénticas que reciben el mismo tratamiento.

Una unidad experimental puede contener múltiples unidades muestrales, subelementos que reciben obligatoriamente el mismo tratamiento que la UE a la que pertenecen. Por esta razón, la variabilidad entre estas unidades muestrales internas no resulta útil para estimar el efecto del tratamiento. Un diseño experimental sólido se basa en la capacidad de distinguir los efectos reales de los tratamientos del «ruido» natural del sistema, una distinción que solo es posible mediante la correcta cuantificación de la variabilidad entre las unidades experimentales completas.

Definiciones fundamentales

El marco de un experimento se define a través de sus componentes básicos, en los que la unidad experimental y la unidad muestral desempeñan funciones distintas, aunque interconectadas.

1. La unidad experimental (UE)

La unidad experimental es el pilar de cualquier ensayo comparativo. Su definición formal es la siguiente:

«El elemento sobre el que se realizan las mediciones y al que se puede asignar un tratamiento de forma independiente».

El conjunto de todas las unidades experimentales disponibles para un estudio se denomina material experimental. La definición de una UE es flexible y se adapta a los objetivos de la investigación.

Ejemplos prácticos:

  • Ensayo de resistencia del hormigón: la unidad experimental puede ser un bloque o un cilindro de hormigón elaborado con una mezcla específica. Las unidades muestrales serían las probetas o las muestras extraídas del mismo bloque para realizar ensayos de compresión o de flexión.
  • Prueba de rendimiento de pavimentos: la unidad experimental puede ser un tramo de vía construido con un diseño o material específico (por ejemplo, un segmento de 50 metros). Las unidades muestrales serían los puntos de medición dentro del tramo, por ejemplo, las deflexiones o la rugosidad.
  • Ensayo de estructuras a escala en laboratorio: la unidad experimental puede ser una viga o una columna, construida según un diseño específico. Las unidades muestrales serían los puntos de medición (deformaciones, desplazamientos o tensiones) registrados por sensores a lo largo de la estructura.

El criterio esencial para definir una UE es que sea capaz de recibir diferentes tratamientos de manera independiente de las demás unidades.

2. La unidad muestral.

Dentro de una unidad experimental pueden existir subelementos en los que se aplican las condiciones experimentales. A estos se les conoce como unidades muestrales.

La regla fundamental que las rige es que todas las unidades muestrales de una misma unidad experimental deben recibir el mismo tratamiento. Como consecuencia directa, la asignación del tratamiento a estas subunidades no es independiente entre sí, lo que tiene implicaciones críticas para el análisis estadístico.

El papel de la estimación en la variabilidad.

La distinción entre unidades experimentales y muestrales es crucial para inferir correctamente los efectos de un tratamiento, ya que incide directamente en la medición de la variabilidad del sistema.

a. El error experimental

Para evaluar si un tratamiento tiene un efecto real, es necesario conocer la variabilidad natural del material experimental. Esta variabilidad inherente se conoce como error experimental. Es la base contra la que se comparan las diferencias observadas entre los tratamientos.

b. Metodología de estimación

La estimación correcta del error experimental solo se logra a partir de las diferencias observadas entre unidades experimentales que, en principio, son idénticas y han recibido el mismo tratamiento.

  • Fuente de estimación válida: la variación entre unidades experimentales es la única que permite estimar correctamente el error experimental.
  • Fuente de estimación no válida: la variación entre las unidades muestrales dentro de una misma unidad experimental es, por lo general, muy pequeña y no proporciona información útil para estimar el efecto del tratamiento ni el error experimental.

La observación clave es que «solo la unidad experimental completa permite estimar correctamente el error experimental».

Tipología de variables en un experimento.

Los datos recopilados en un experimento se organizan en dos categorías principales de variables:

Tipo de variable Descripción
Variables de respuesta Son las mediciones obtenidas de las unidades experimentales. Sus valores reflejan tanto los efectos de los tratamientos como la variabilidad natural del sistema.
Variables explicativas (factores) Son las variables que se manipulan o controlan porque se cree que influyen en las variables de respuesta. Incluyen los factores de clasificación, que definen los niveles o categorías sobre los cuales se realizan las inferencias estadísticas.

Conclusión: el fundamento de un diseño sólido.

La estructura de un diseño experimental robusto se basa en comparar unidades experimentales similares. Este enfoque permite a los investigadores distinguir de manera fiable el efecto real de los tratamientos aplicados del «ruido» o de la variabilidad natural inherente al sistema experimental. Por tanto, la identificación precisa y la gestión adecuada de la unidad experimental no son meros detalles técnicos, sino requisitos indispensables para que las conclusiones científicas derivadas del experimento sean válidas y fiables.

En este documento tenéis un resumen de las ideas más importantes.

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Pánico, secreto y vientos diagonales: La crisis de 59 pisos que casi colapsa el Citigroup Center

Base del Citigroup Center junto a la Iglesia de San Pedro, lo que obligó a una disposición inusual de las columnas. https://es.wikipedia.org/wiki/Citigroup_Center

Introducción: El gigante con pies de barro.

Los rascacielos son monumentos a la permanencia. Se elevan sobre nuestras ciudades como símbolos de ingenio, poder y estabilidad estructural. Sin embargo, en 1978, el Citigroup Center, uno de los edificios más innovadores y reconocibles de Nueva York, ocultaba un secreto aterrador. Inaugurado con gran fanfarria en 1977, este hito de la ingeniería estaba, de hecho, peligrosamente cerca del colapso.

La ironía central de esta historia es casi cinematográfica: el fallo catastrófico se descubrió gracias a la pregunta de una estudiante universitaria, y la persona que cometió el error de cálculo que puso en peligro a miles de personas fue la misma que se convirtió en el héroe que los salvó. Esta es la historia de cómo una combinación de error humano, ética profesional y una suerte increíble evitó uno de los mayores desastres arquitectónicos de la historia moderna.

1. No bastó con un solo error; se necesitaron dos para poner en jaque al gigante.

El fallo que puso en jaque al Citigroup Center no fue un simple descuido, sino la combinación de dos errores críticos que se multiplicaron entre sí.

El primero fue un error de cálculo cometido por William LeMessurier, el ingeniero jefe. Siguiendo el código de construcción de la época, calculó las cargas de viento que incidían perpendicularmente en las caras del edificio. Sin embargo, debido al diseño único de la torre, que estaba apoyada sobre cuatro enormes pilares situados en el centro de cada lado en lugar de en las esquinas, pasó por alto que los vientos diagonales (conocidos como quartering winds) ejercían una tensión mucho mayor. Este descuido incrementó la carga en las uniones estructurales clave en un 40 %.

El segundo error agravó fatalmente el primero. Durante la construcción, la empresa constructora Bethlehem Steel propuso sustituir las uniones soldadas, que eran más resistentes pero también más costosas, por uniones atornilladas, más económicas. Basándose en los cálculos originales de vientos perpendiculares, este cambio parecía una modificación rutinaria y segura, por lo que la oficina de LeMessurier lo aprobó sin que él revisara personalmente las implicaciones. En aquel momento, fue una decisión técnicamente sólida, pero con el paso del tiempo se consideró fatal.

La combinación de un error oculto y una decisión que parecía segura resultó devastadora. La carga adicional del 40 % de los vientos diagonales aplicada a las uniones atornilladas más débiles provocó un aumento catastrófico del 160 % en la tensión de las conexiones. Esto significaba que una tormenta que ocurre cada 55 años podría ser desastrosa. Sin embargo, el peligro real era aún mayor: si el amortiguador de masa sintonizado del edificio, que dependía de la electricidad, fallaba durante un apagón —algo muy probable durante un huracán—, una tormenta mucho más común, de las que golpean Nueva York cada dieciséis años, podría derribarlo.

2. El «héroe» de la historia fue el ingeniero que cometió el error.

Tras descubrir el fallo, William LeMessurier se enfrentó a un dilema ético devastador. Años después, relataría que consideró todas las opciones, desde guardar silencio y arriesgar miles de vidas hasta el suicidio para escapar de la desgracia profesional.

Sin embargo, LeMessurier tomó la decisión más honorable: asumir toda la responsabilidad. Consciente de que esto podría significar el fin de su carrera, la bancarrota y la humillación pública, se puso en contacto con los directivos de Citicorp para informarles de que su flamante rascacielos de 175 millones de dólares era fundamentalmente inseguro. En ese momento, su mentalidad no se limitaba al deber, sino que también reflejaba un profundo sentido de su posición única, como él mismo describió:

«Tenía información que nadie más en el mundo poseía. Tenía en mis manos el poder de influir en eventos extraordinarios que solo yo podía iniciar».

Para su sorpresa, la reacción de los ejecutivos de Citicorp, liderados por el presidente Walter Wriston, no fue de ira, sino de una calma pragmática. En lugar de buscar culpables, Wriston se centró de inmediato en la solución. Pidió un bloc de notas amarillo, empezó a redactar un comunicado de prensa y bromeó: «Todas las guerras se ganan con generales que escriben en blocs amarillos». Este gesto de liderazgo, enfocado y sereno, sentó las bases para la increíble operación de rescate que estaba a punto de comenzar.

El Citigoup Center. https://es.wikipedia.org/wiki/Citigroup_Center

3. Una llamada casual de una estudiante lo desencadenó todo.

Toda esta crisis existencial y de ingeniería se desencadenó en junio de 1978 por un hecho tan improbable como una simple llamada telefónica. Al otro lado de la línea estaba Diane Hartley, una estudiante de ingeniería de la Universidad de Princeton que analizaba la estructura del Citigroup Center para su tesis.

Hartley llamó a LeMessurier con preguntas sobre la estabilidad del edificio frente a vientos diagonales. Confiado en su diseño, LeMessurier le explicó pacientemente por qué la estructura era sólida. Sin embargo, la llamada de Hartley sembró una semilla. No porque tuviera una preocupación inmediata, sino porque la conversación lo inspiró, LeMessurier decidió que el tema sería un excelente ejercicio académico para la conferencia que preparaba para sus propios estudiantes de Harvard.

Fue durante este recálculo, realizado por pura curiosidad intelectual, cuando descubrió con horror su error original. La llamada casual de Hartley no le dio la respuesta, pero le hizo la pregunta correcta en el momento adecuado, lo que supuso el golpe de suerte que reveló una vulnerabilidad mortal y activó la carrera contrarreloj para evitar una catástrofe inimaginable.

4. Una operación secreta, un huracán y una huelga de prensa lo mantuvieron en secreto.

La reparación del Citigroup Center fue una operación clandestina de alta tensión. Bajo el nombre en clave «Proyecto SERENE», los equipos trabajaban con una precisión coreografiada. Cada noche, los carpinteros llegaban a las 17:00 h para construir recintos de madera contrachapada alrededor de las juntas que había que reparar. Entre las 20:00 y las 04:00, con el sistema de alarma contra incendios desactivado, los soldadores trabajaban para reforzar más de doscientas uniones atornilladas con placas de acero de dos pulgadas de espesor. Finalmente, un equipo de limpieza eliminaba todo rastro del trabajo antes de la llegada de los primeros empleados a las 8 a. m., ajenos al peligro que se cernía sobre ellos.

El drama alcanzó su punto álgido a principios de septiembre de 1978, cuando el huracán Ella, una tormenta muy intensa, se dirigía directamente hacia la ciudad de Nueva York. Con las reparaciones a medio terminar, el edificio seguía siendo vulnerable. En secreto, las autoridades elaboraron planes para evacuar la torre y una zona de diez manzanas a su alrededor.

Entonces, la suerte intervino de nuevo. A pocas horas de la posible catástrofe, el huracán Ella viró inesperadamente hacia el Atlántico, salvando a la ciudad. El suspiro de alivio fue inmenso. Y, como si esto no fuera suficiente, un último golpe de fortuna mantuvo todo en secreto: justo cuando la historia estaba a punto de filtrarse, comenzó una huelga de periódicos en toda la ciudad que duró varios meses. La huelga enterró la noticia por completo y el casi desastre permaneció oculto al público durante casi veinte años, hasta que fue revelado en un artículo de The New Yorker en 1995.

Conclusión: la delgada línea entre el desastre y la ética.

La historia del Citigroup Center es un poderoso recordatorio de la fragilidad que puede esconderse tras una apariencia de fortaleza. Una combinación de error humano, profunda ética profesional, liderazgo decisivo y una buena dosis de suerte evitó lo que podría haber sido uno de los peores desastres arquitectónicos de la historia. El ingeniero que cometió el error lo afrontó con una valentía que salvó incontables vidas y, paradójicamente, reforzó su reputación.

La historia del Citigroup Center nos recuerda que incluso los símbolos de la permanencia pueden ser frágiles. Nos deja con una pregunta: ¿cuántos otros secretos se esconden en las estructuras que nos rodean, esperando a que una simple pregunta los saque a la luz?

En esta conversación puedes escuchar las ideas más interesantes sobre este asunto.

Aquí puedes ver un vídeo que resume bien el contenido del artículo.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Neutralidad de carbono: tres claves de las nuevas normas ISO

En el mundo de la sostenibilidad empresarial, términos como «neutralidad de carbono» y «cero neto» están en todas partes. Sin embargo, existe una gran confusión acerca de su verdadero significado y muchas empresas utilizan estos términos como una potente herramienta de marketing, a menudo sin un respaldo claro ni riguroso. Esta situación ha generado escepticismo y alimentado las acusaciones de greenwashing. Para aportar claridad a este panorama, la Organización Internacional de Normalización (ISO) ha publicado nuevas normas para otorgar rigor y credibilidad a las declaraciones climáticas. En concreto, la norma ISO 14068-1 sustituye y supera la PAS 2060 como punto de referencia anterior y proporciona un marco global más estricto. Este artículo desglosa los aspectos más relevantes de estas nuevas normas (ISO 14068-1 y la futura ISO 14060) de manera fácil de entender.

1. La jerarquía es inegociable: primero reducir, luego compensar.

El cambio más fundamental que introduce la norma ISO 14068-1 es el establecimiento de una jerarquía estricta para alcanzar la neutralidad de carbono. Se acabaron los atajos. La norma formaliza un principio de mitigación que prioriza la descarbonización intrínseca sobre las acciones compensatorias. La máxima prioridad y el primer paso obligatorio son la reducción de las emisiones de gases de efecto invernadero (GEI), tanto directas como indirectas, y el aumento de la eliminación de GEI en la propia cadena de valor de la organización.

La compensación de emisiones mediante la compra de créditos de carbono solo está permitida como último recurso y para equilibrar las «emisiones residuales». La norma define estas emisiones de forma muy precisa como «las emisiones de gases de efecto invernadero (GEI) no abatidas que quedan después de aplicar todas las acciones de reducción de emisiones de GEI técnicamente y económicamente viables».

Este punto es crucial, ya que pone fin a una de las prácticas más criticadas: la de que las empresas adquieren créditos baratos para declarar una supuesta neutralidad sin haber descarbonizado sus operaciones. Esto supone un cambio fundamental en la rendición de cuentas corporativa, pues se pasa de preguntar «¿qué podemos comprar para parecer sostenibles?» a «¿qué debemos cambiar fundamentalmente en nuestras operaciones?».

2. «Neutralidad de carbono» y «cero neto» no son sinónimos (y las normas lo saben).

Aunque a menudo se usan indistintamente, los estándares de la ISO los tratan como conceptos complementarios, pero distintos. Esta distinción es clave para entender la estrategia climática de una organización y revela una hoja de ruta de dos velocidades: una para el corto plazo y otra para la transformación a largo plazo.

  • La norma ISO 14068-1 (Neutralidad de carbono) aplica a corto plazo, durante el período de un informe específico. Su ámbito de aplicación es amplio, ya que abarca tanto organizaciones como productos y eventos. Permite alcanzar la neutralidad mediante la compensación con créditos de carbono externos (fuera de los límites de la organización) para equilibrar las emisiones no reducidas. Supone un paso intermedio importante, pero no es el destino final.
  • La futura ISO 14060 (Cero Neto) se concibe como un plan a largo plazo (por ejemplo, con el objetivo de 2050) y está alineada con el Acuerdo de París. Su ámbito de aplicación es más limitado, ya que se aplica a organizaciones, pero no a productos ni servicios. La diferencia filosófica y estratégica más importante es que, para neutralizar las emisiones residuales, esta futura norma exige dar prioridad a las eliminaciones de carbono realizadas dentro del inventario de gases de efecto invernadero (GEI) de la propia organización, en lugar de depender de compensaciones externas.
https://revistanormalizacion.une.org/87/nuevos-estandares-iso-para-alcanzar-la-neutralidad-de-carbono-y-el-cero-neto/

Esta distinción ofrece a las empresas una hoja de ruta más clara y honesta: un objetivo inmediato y verificable (la neutralidad) y una meta final mucho más ambiciosa y transformadora (el cero neto).

3. Se acabaron los créditos de carbono de «dudosa calidad».

Uno de los mayores riesgos de ecoblanqueo proviene del uso de créditos de carbono baratos y de bajo impacto, que no suponen una reducción real de emisiones. La norma ISO 14068-1 aborda este problema de frente, exigiendo que cualquier crédito utilizado sea de «alta calidad».

Para garantizarlo, la norma establece una serie de criterios específicos y verificables:

  • Deben cumplir con el criterio de adicionalidad (la reducción de emisiones no habría ocurrido sin el proyecto).
  • Deben ser medibles, permanentes y certificados.
  • Deben evitar la doble contabilidad (es decir, que el mismo crédito sea reclamado por dos entidades).
  • Deben ser ex post, es decir, que correspondan a reducciones o remociones ya ocurridas.
  • Su fecha de emisión debe ser inferior a cinco años del inicio del periodo para el que se declara la neutralidad.

El impacto de estos requisitos es profundo: los criterios «ex post» y la antigüedad máxima de cinco años reducirán drásticamente el volumen de créditos aceptables en el mercado. Esto obligará a las empresas a ser más selectivas, aumentará el coste de la compensación creíble y, en consecuencia, incentivará aún más la reducción interna de emisiones.

El objetivo de estos requisitos es claro: la norma proporciona una lista detallada de lo que se entiende por alta calidad con el fin de minimizar el riesgo de lavado de imagen verde y de que las declaraciones puedan verificarse internamente o por terceros.

Con estos requisitos tan estrictos se pretende restaurar la credibilidad de la compensación de carbono y garantizar que, cuando se utilice, sea una herramienta legítima y efectiva.

Conclusión: Hacia una ambición climática verificable.

Estas nuevas normas ISO no son meros tecnicismos. Suponen un cambio de paradigma y son herramientas fundamentales para impulsar la acción climática empresarial. Los principios de ambición y urgencia, centrales en la ISO 14068-1, sientan las bases de todo el marco. La estricta jerarquía (punto 1) y los rigurosos criterios para los créditos (punto 3) materializan el principio de urgencia, exigiendo una acción inmediata y real. Por su parte, la hoja de ruta que distingue entre neutralidad y cero neto (Clave 2) encarna el principio de ambición, ya que establece un camino claro hacia una descarbonización profunda y alineada con la ciencia.

El objetivo final es claro: pasar de las meras declaraciones de marketing a un progreso medible, transparente y verificable. Se pretende que la neutralidad de carbono deje de ser una etiqueta y se convierta en el resultado de una estrategia climática sólida y creíble.

Con estas reglas más claras sobre la mesa, ¿estamos ante el fin de la era del greenwashing y el comienzo de una verdadera carrera hacia la neutralidad climática?

En este audio podemos escuchar una conversación sobre este tema.

En este vídeo se resumen las ideas más importantes sobre la neutralidad de la huella de carbono.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Clasificación y principios fundamentales del diseño experimental

Cuando pensamos en un experimento, solemos imaginar una prueba simple para ver qué opción es “mejor”. Sin embargo, esta visión apenas roza la superficie de una disciplina profunda y estratégica. Existen principios sorprendentes que rigen el diseño experimental y son cruciales no solo para la ciencia, sino también para cualquier toma de decisiones informada. A continuación, se describen brevemente los tipos de experimentos que pueden utilizarse en la investigación científica.

El diseño experimental se clasifica en dos categorías principales, según la propuesta de Anscombe (1947): el experimento absoluto y el experimento comparativo. El experimento absoluto se enfoca en la medición de propiedades físicas constantes para ampliar el conocimiento científico, utilizando un modelo estadístico de efectos aleatorios (Modelo II de Eisenhart), ya que los tratamientos se seleccionan al azar de una población más amplia. Por el contrario, el experimento comparativo está orientado a la toma de decisiones en ciencias aplicadas, con el fin de determinar cuál de varios tratamientos predefinidos es “mejor”. Este enfoque utiliza un modelo de efectos fijos (Modelo I de Eisenhart) y exige una definición precisa del problema para garantizar su validez.

El éxito de un experimento, especialmente el comparativo, depende del cumplimiento de cinco principios fundamentales: simplicidad, nivel de precisión adecuado, ausencia de error sistemático, amplio rango de validez de las conclusiones y una correcta cuantificación de la incertidumbre. La elección del diseño y el modelo estadístico asociado (fijo, aleatorio o mixto) determinan directamente el alcance y la naturaleza de las inferencias que pueden extraerse, vinculando de manera inseparable la planificación experimental con las conclusiones científicas y las decisiones de gestión.

La clasificación propuesta por Anscombe distingue los experimentos en dos grandes tipos según su objetivo fundamental: la adquisición de conocimiento puro o la fundamentación de decisiones prácticas.

Uno de ellos es el llamado experimento absoluto. En este tipo de experimento, el interés principal es medir y conocer las propiedades físicas de una población. Se asume que dichas propiedades permanecen constantes, lo que justifica el uso del término absoluto. El objetivo no es comparar alternativas concretas, sino ampliar el conocimiento científico sobre el fenómeno estudiado.

Los experimentos absolutos suelen centrarse en un solo factor y consideran un número limitado de tratamientos o niveles de ese factor. Estos tratamientos suelen elegirse de forma aleatoria. Por esta razón, si el experimento se repite, no es obligatorio utilizar exactamente los mismos tratamientos en cada ocasión.

Debido a esta forma de selección, los tratamientos se consideran variables aleatoriasEn consecuencia, el análisis se basa en un modelo de efectos aleatorios, también conocido como el Modelo II de Eisenhart (1947). Este tipo de modelo permite identificar y estimar los distintos componentes de la variación aleatoria presentes en una población compuesta, lo que constituye un enfoque especialmente útil para muchos problemas de ingeniería.

El experimento comparativo es el segundo tipo de experimento descrito por Anscombe. Este enfoque se utiliza cuando se analizan varios tratamientos y se observa que, aunque los valores absolutos de los resultados pueden fluctuar de forma irregular, las comparaciones relativas entre tratamientos suelen mantenerse estables. En este contexto, es posible concluir que, bajo condiciones similares, algunos tratamientos ofrecen resultados claramente mejores que otros.

Brownlee (1957) sitúa este tipo de experimentos en el ámbito de las ciencias aplicadas, y no es casualidad: la teoría estadística del diseño de experimentos se desarrolló originalmente para responder a las necesidades de este tipo de estudios.

En un experimento comparativo, los tratamientos se evalúan según su efecto promedio sobre una variable de respuesta, con el objetivo principal de determinar cuál es “mejor” según un criterio definido. A diferencia de los experimentos orientados al conocimiento fundamental, aquí el propósito central es apoyar la toma de decisiones prácticas, especialmente las administrativas o de gestión.

Una característica fundamental de los experimentos comparativos es que todos los tratamientos de interés están incluidos explícitamente en el estudio. Por esta razón, el análisis se basa en un modelo de efectos fijos, también conocido como el Modelo I de Eisenhart (1947). Si el experimento se repite, se utilizan exactamente los mismos tratamientos, ya que no se considera una muestra aleatoria. El interés principal radica en detectar y estimar relaciones constantes entre las medias de los tratamientos, lo que conduce naturalmente a la evaluación de hipótesis estadísticas sobre dichas medias.

Para que un experimento comparativo sea válido, debe comenzar con una definición clara y precisa del problema. No basta con plantear de manera general la idea de “comparar tratamientos”. Es imprescindible especificar con detalle los objetivos del estudio y formular con precisión las hipótesis que se probarán. Esta definición inicial determina la población a la que se aplicarán las conclusiones, identifica los factores, los tratamientos y sus niveles, establece las variables de respuesta que se medirán y define qué diferencias entre tratamientos se consideran relevantes. Sin estas especificaciones, no es posible diseñar un experimento adecuado.

Finalmente, una consecuencia natural de los experimentos comparativos es que casi siempre conducen a decisiones concretas. Dado un nivel suficiente de recursos, la hipótesis nula de igualdad entre tratamientos puede rechazarse, lo que obliga a actuar: mantener la situación actual o cambiar a un nuevo tratamiento. Este proceso de decisión consta de dos etapas bien definidas:

  1. Análisis estadístico de los datos, en el que se evalúan las probabilidades asociadas a los resultados y se extraen conclusiones técnicas.
  2. Decisión de gestión en la que, con base en esas conclusiones, se define la acción a realizar.

Esta conexión directa entre el análisis estadístico y la toma de decisiones explica por qué los experimentos comparativos son una herramienta central en la divulgación y la práctica de la ingeniería y de las ciencias aplicadas.

El estadístico cumple un rol clave en el proceso experimental: su responsabilidad es presentar, con la mayor precisión posible, las probabilidades obtenidas en la etapa de análisis, de manera que se reduzca al mínimo la posibilidad de tomar decisiones equivocadas cuando llegue el momento de actuar.

Dado que las decisiones sobre las hipótesis dependen directamente de experimentos cuidadosamente planificados, es esencial que dichos ensayos cumplan con una serie de principios básicos. A continuación se resumen los más importantes, con un enfoque práctico para la ingeniería:

  • Simplicidad: Tanto la selección de los tratamientos como la organización del experimento deben ser lo más simples posible. Un diseño sencillo facilita el análisis estadístico y la interpretación de los resultados y reduce el riesgo de errores innecesarios.
  • Nivel de precisión: El experimento debe permitir detectar diferencias entre tratamientos con el grado de precisión que el investigador considere relevante. Para lograrlo, se requiere un diseño experimental adecuado y un número suficiente de repeticiones que garanticen mediciones confiables.
  • Ausencia de error sistemático: El experimento debe planearse de modo que las unidades experimentales que reciben distintos tratamientos no difieran sistemáticamente entre sí antes de aplicarlos. Este cuidado es fundamental para obtener estimaciones insesgadas del efecto real de cada tratamiento, evitando que factores externos distorsionen los resultados.
  • Rango de validez de las conclusiones: Las conclusiones del experimento deben ser aplicables a un rango de situaciones lo más amplio posible. Los experimentos replicados y los diseños factoriales ayudan a ampliar este rango de validez, ya que permiten evaluar la consistencia de los resultados bajo diferentes condiciones.
  • Cuantificación de la incertidumbre: Todo experimento conlleva cierto grado de incertidumbre. Por ello, el diseño debe permitir calcular la probabilidad de que los resultados observados se deban únicamente al azar. Esta cuantificación es esencial para evaluar la solidez de las conclusiones.

Estos principios conducen a una clasificación clásica de los modelos estadísticos, propuesta por Eisenhart (1947), que conecta el diseño del experimento con el tipo de inferencia que se desea realizar:

  • Modelo de efectos fijos: se utiliza cuando las conclusiones se formulan sobre un conjunto específico y previamente definido de tratamientos. En este caso, el interés estadístico se centra en comparar los efectos medios de dichos tratamientos.
  • Modelo de efectos aleatorios: se aplica cuando los tratamientos evaluados representan una muestra aleatoria de una población más amplia de tratamientos. Aquí, las conclusiones se extienden más allá de los tratamientos observados y la inferencia se centra en las varianzas asociadas a dichos tratamientos.
  • Modelo de efectos mixtos: surge cuando el experimento combina tratamientos de efectos fijos y aleatorios en un mismo estudio.

Esta clasificación permite comprender cómo las decisiones sobre el diseño experimental influyen directamente en el tipo de conclusiones que pueden extraerse, un aspecto fundamental tanto en la práctica como en la divulgación de la ingeniería.

En este archivo de audio puedes escuchar una conversación sobre los tipos de experimentos.

En este vídeo se resumen las ideas más importantes sobre este tema.

Referencias:

Anscombe, F. J. (1947). The validity of comparative experiments. Journal of the Royal Statistical Society, 61, 181–211.

Brownlee, K. A. (1957). The principles of experimental design. Industrial Quality Control, 13, 1–9.

Eisenhart, C. (1947). The assumptions underlying the analysis of variance. Biometrics, 3, 1–21.

Melo, O. O., López, L. A., & Melo, S. E. (2007). Diseño de experimentos: métodos y aplicaciones. Universidad Nacional de Colombia. Facultad de Ciencias.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Hormigones líquidos: innovación y aplicación estructural

El hormigón de consistencia líquida es una innovación que destaca por su elevada fluidez y su capacidad de moldeado en la construcción moderna. En otros artículos ya hemos hablado del hormigón autocompactante en relación con este tipo de hormigón. A diferencia del hormigón tradicional, este material requiere muy poco vibrado, lo que optimiza la mano de obra, reduce el ruido y previene afecciones físicas en los trabajadores.

La dosificación de este tipo de hormigón exige un alto contenido de finos, así como el uso de aditivos superfluidificantes y áridos de tamaño reducido para evitar la segregación. Gracias a su facilidad de bombeo, es ideal para estructuras con armaduras densas, revestimientos de túneles y proyectos arquitectónicos complejos. En definitiva, no solo mejora la productividad en la obra, sino que también garantiza una mayor durabilidad y calidad en los acabados finales.

 

Introducción: el hormigón que fluye como un líquido.

Cuando pensamos en hormigón, nos viene a la mente una masa densa, pesada y difícil de trabajar, que requiere un gran esfuerzo para compactarla. Sin embargo, la ingeniería de materiales ha desarrollado una innovación que desafía esta idea: el hormigón líquido. Este material avanzado fluye con facilidad y se adapta a cualquier molde sin esfuerzo. En realidad, se trata de toda una familia de hormigones de alta fluidez que van desde los fluidos hasta los autocompactantes, diseñados para cada necesidad específica. Entonces, ¿cómo es posible que un hormigón que se comporta como un líquido sea clave para construir estructuras más rápidas, seguras y duraderas? La respuesta radica en una serie de ventajas que trascienden su apariencia superficial.

Los puntos clave del hormigón líquido

A continuación, exploramos las cuatro ventajas fundamentales que explican por qué el hormigón líquido se está convirtiendo en el nuevo estándar del sector.

1. La paradoja del coste: es más caro, pero el proyecto total resulta más barato.

A primera vista, el hormigón líquido parece una opción más costosa. Su precio por metro cúbico es entre un 5 % y un 10 % superior al del hormigón convencional. Sin embargo, esta cifra no lo es todo. El verdadero ahorro se revela al analizar el coste global del proyecto.

La fluidez del material permite una puesta en obra mucho más rápida, lo que reduce el plazo de ejecución en aproximadamente un tercio. A esto hay que sumar que se necesita menos mano de obra para la compactación y que los costes de acabado son más bajos gracias a su superficie más homogénea, lo que compensa con creces el mayor precio del material. En grandes obras de ingeniería civil, como el Viaducto de Bergara de la Y Vasca, esta aceleración es fundamental y demuestra que el proyecto resulta más ventajoso en términos económicos.

2. Su mayor fortaleza no radica en el estado endurecido, sino en su puesta en obra.

Aunque sus propiedades finales son excelentes, las características más competitivas de este hormigón se manifiestan durante su colocación. El principal enemigo de la durabilidad del hormigón convencional son los errores humanos durante su colocación, como un vibrado deficiente o excesivo. De hecho, se ha comprobado que los defectos de compactación pueden aumentar la permeabilidad del hormigón tradicional hasta en diez veces, lo que debilita la estructura desde el primer día.

El hormigón líquido minimiza drásticamente estos errores. Su capacidad para rellenar los encofrados por su propio peso garantiza una compactación óptima con un esfuerzo mínimo, asegurando la calidad y la durabilidad de la estructura desde el principio.

«La necesidad de garantizar la calidad del hormigón y obtener estructuras duraderas es una de las causas fundamentales del desarrollo del hormigón con consistencia líquida».

3. Una revolución silenciosa para la salud y la seguridad laborales.

El proceso de vibrado del hormigón es esencial, pero también conlleva riesgos. Genera niveles de ruido muy elevados y somete a los trabajadores a vibraciones constantes que, a largo plazo, pueden causarles dolores, fatiga, rigidez articular e incluso una afección circulatoria conocida como «dedos blancos», que provoca la pérdida de sensibilidad.

Al reducir drásticamente la necesidad de vibración, el hormigón líquido transforma el entorno de trabajo. Las obras son más silenciosas y se minimizan los riesgos para la salud de los trabajadores. Esto resulta especialmente valioso en aplicaciones como el revestimiento de túneles, donde el ruido se amplifica en espacios confinados, lo que crea un entorno laboral más seguro y sostenible.

4. Mejor que el original: un producto final con propiedades superiores.

Aunque su principal ventaja es la facilidad de uso, el hormigón líquido endurecido también supera al convencional. El secreto radica en unos aditivos superfluidificantes de alta tecnología que permiten reducir el volumen de agua en la mezcla sin que esta pierda fluidez. Esta simple mejora provoca una serie de beneficios: al utilizar menos agua, el hormigón es más impermeable y, por tanto, más duradero.

Las conclusiones del proyecto de investigación europeo Brite/EURam son claras: para una misma relación agua/cemento, el hormigón líquido consigue:

  • Mayores resistencias mecánicas.
  • Una microestructura más densa y menos porosa.
  • Menor permeabilidad al agua y a otros agentes externos.
  • Una adherencia superior a las armaduras de acero.

Esta menor permeabilidad se traduce en una mayor durabilidad, ya que protege las armaduras de acero internas de la corrosión y alarga la vida útil de puentes, edificios y túneles. Además, esta calidad se manifiesta en acabados superficiales superiores, lo que permite crear hormigones arquitectónicos con formas esbeltas y elegantes, como las observadas en rascacielos emblemáticos, como la Torre Iberdrola.

Conclusión: el nuevo estándar de la construcción.

El hormigón líquido ha dejado de ser una tecnología experimental para convertirse en una realidad técnica que se extiende por todo el mundo en aplicaciones que van desde los cimientos más profundos y la prefabricación hasta los rascacielos más emblemáticos y las estaciones de tratamiento de aguas. Su capacidad para optimizar la productividad, garantizar una calidad superior y mejorar la seguridad en las obras lo posiciona no como una alternativa, sino como el futuro estándar de la construcción. Sus ventajas son tan contundentes que invitan a una reflexión final: ¿será este material el pilar sobre el que construiremos las ciudades más eficientes y sostenibles del mañana?

En esta conversación puedes escuchar aspectos interesantes sobre el tema tratado, que te serán de utilidad para comprenderlo mejor.

Este vídeo condensa de manera efectiva las ideas principales sobre los hormigones líquidos.

Os dejo un documento con algunas de las ideas más importantes.

Pincha aquí para descargar

Podéis acceder a la Guía Técnica de hormigones líquidos de IECA en este enlace: https://www.ieca.es/producto/hormigones-liquidos-pdf/

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.