La inteligencia artificial (IA) – tecnologías capaces de realizar tareas que normalmente requieren inteligencia humana – constituye un enfoque alternativo a las técnicas de modelización clásicas. La IA es la rama de la ciencia de la computación que desarrolla máquinas y software con una inteligencia que trata de imitar las funciones cognitivas humanas. En comparación con los métodos tradicionales, la IA ofrece ventajas para abordar los problemas asociados con las incertidumbres y es una ayuda efectiva para resolver problemas de elevada complejidad, como son la mayoría de problemas reales en ingeniería. Además, las soluciones aportadas por la IA constituyen buenas alternativas para determinar los parámetros de diseño cuando no es posible efectuar ensayos, lo que supone un ahorro importante en tiempo y esfuerzo dedicado a los experimentos. La IA también es capaz de acelerar el proceso de toma de decisiones, disminuye las tasas de error y aumenta la eficiencia de los cálculos. Entre las diferentes técnicas de IA destacan el aprendizaje automático (machine learning), el reconocimiento de patrones (pattern recognition) y el aprendizaje profundo (deep learning), técnicas que han adquirido recientemente una atención considerable y que se están estableciendo como una nueva clase de métodos inteligentes para su uso en la ingeniería civil.
Todos conocemos problemas de ingeniería civil cuya solución pone al límite las técnicas computacionales tradicionales. Muchas veces se solucionan porque existen expertos con la formación adecuada capaces de intuir la solución más adecuada, para luego comprobarla con los métodos convencionales de cálculo. En este contexto, la inteligencia artificial está tratando de capturar la esencia de la cognición humana para acelerar la resolución de estos problemas complejos. La IA se ha desarrollado basándose en la interacción de varias disciplinas, como son la informática, la teoría de la información, la cibernética, la lingüística y la neurofisiología.
A veces el concepto de “inteligencia artificial (IA)” se confunde con el de “inteligencia de máquina (IM)” (machine intelligence). En general, la IM se refiere a máquinas con un comportamiento y un razonamiento inteligente similar al de los humanos, mientras que la IA se refiere a la capacidad de una máquina de imitar las funciones cognitivas de los humanos para realizar tareas de forma inteligente. Otro término importante es la “computación cognitiva (CC)” (cognitive computing), que se inspira en las capacidades de la mente humana. Los sistemas cognitivos son capaces de resolver problemas imitando el pensamiento y el razonamiento humano. Tales sistemas se basan en la capacidad de las máquinas para medir, razonar y adaptarse utilizando la experiencia adquirida.
Las principales características de los sistemas de CC son su capacidad para interpretar grandes datos, el entrenamiento dinámico y el aprendizaje adaptativo, el descubrimiento probabilístico de patrones relevantes. Técnicamente, la IA se refiere a ordenadores y máquinas que pueden comportarse de forma inteligente, mientras que el CC se concentra en la resolución de los problemas empleando el pensamiento humano. La diferencia más significativa entre la IA y la CC puede definirse en función de su interactuación con los humanos. Para cualquier sistema de IA, hay un agente que decide qué acciones deben tomarse. Sin embargo, los sistemas de CC aprenden, razonan e interactúan como los humanos.
Por otra parte, los “sistemas expertos” son una rama de la IA. Un sistema experto se definiría como un programa de ordenador que intenta imitar a los expertos humanos para resolver problemas que exigen conocimientos humanos y experiencia. Por tanto, la IA incluye diferentes ramas como los sistemas expertos, el aprendizaje automático, el reconocimiento de patrones y la lógica difusa.
La IA se ha usado en estas últimas décadas de forma intensiva en las investigaciones relacionadas con la ingeniería civil. Son notables las aplicaciones de las redes neuronales, los algoritmos genéticos, la lógica difusa y la programación paralela. Además, la optimización heurística ha tenido una especial relevancia en muchos campos de la ingeniería civil, especialmente en el ámbito de las estructuras y las infraestructuras. Sin embargo, los métodos más recientes como el reconocimiento de patrones, el aprendizaje automático y el aprendizaje profundo son métodos totalmente emergentes en este ámbito de la ingeniería. Estas técnicas emergentes tienen la capacidad de aprender complicadas interrelaciones entre los parámetros y las variables, y así permiten resolver una diversidad de problemas que son difíciles, o no son posibles, de resolver con los métodos tradicionales.
El aprendizaje automático es capaz de descubrir información oculta sobre el rendimiento de una estructura al aprender la influencia de diversos mecanismos de daño o degradación y los datos recogidos de los sensores. Además, el aprendizaje automático y el aprendizaje profundo tienen una elevada potencialidad en el dominio de la mecánica computacional, como por ejemplo, para optimizar los procesos en el método de elementos finitos para mejorar la eficiencia de los cálculos. Estos métodos también se pueden utilizar para resolver problemas complejos a través del novedoso concepto de la Internet de las Cosas. En este contexto del Internet de las Cosas, se pueden emplear estas técnicas emergentes para analizar e interpretar grandes bases de datos. Esto abre las puertas al desarrollo de infraestructuras, ciudades o estructuras inteligentes.
Sin embargo, aún nos encontramos con limitaciones en el uso de estos métodos emergentes. Entre esas limitaciones figura la falta de selección racional del método de IA, que no se tenga en cuenta el efecto de los datos incompletos o con ruido, que no se considere la eficiencia de la computación, el hecho de que se informe sobre la exactitud de la clasificación sin explorar soluciones alternativas para aumentar el rendimiento, y la insuficiencia de la presentación del proceso para seleccionar los parámetros óptimos para la técnica de IA. Con todo, a pesar de estas limitaciones, el aprendizaje automático, el reconocimiento de patrones y el aprendizaje profundo se postulan como métodos pioneros para aumentar la eficiencia de muchas aplicaciones actuales de la ingeniería civil, así como para la creación de usos innovadores.
Referencias:
GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Structural and Multidisciplinary Optimization, 56(1):139-150.
NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2019). A review of multi-criteria assessment techniques applied to sustainable infrastructures design. Advances in Civil Engineering, 2019: 6134803.
SALEHI, H.; BURGUEÑO, R. (2018). Emerging artificial intelligence methods in structural engineering. Engineering Structures, 171:170-189.
SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513.
YEPES, V. (2013). Métodos no convencionales de investigación basados en la inteligencia artificial. https://victoryepes.blogs.upv.es/2013/11/12/metodos-no-convencionales-de-investigacion-basado-en-la-inteligencia-artificial/
YEPES, V. (2020). Computación cuántica y gemelos híbridos digitales en ingeniería civil y edificación. https://victoryepes.blogs.upv.es/2019/10/30/computacion-cuantica-gemelos-digitales/
YEPES, V.; GARCÍA-SEGURA, T.; MORENO-JIMÉNEZ, J.M. (2015). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4):1024-1036
Os dejo a continuación un informe sobre cómo la inteligencia de máquina permite crear valor y se postula como una herramienta de primer nivel en todos los ámbitos.
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.