Los muros de contención de tierras constituyen una de las estructuras más frecuentes en la construcción de obras civiles y de edificación, siendo habitual la tipología de muros ménsula de hormigón armado. El proyecto de estos elementos de contención constituye un problema de interacción entre el suelo y la estructura cuya finalidad consiste en retener un material de forma suficientemente segura y económica.
Los muros se proyectan basándose en la validación de un diseño inicial que se modifica sucesivamente hasta cumplir con todas las exigencias. En primer lugar, se adopta una geometría previa empleando reglas de predimensionamiento sancionadas por la práctica o referencias de casos similares. Sobre este diseño tentativo se analiza el cumplimiento de determinados requisitos de seguridad (estabilidad y resistencia) y durabilidad. Si la estructura no cumple estos requerimientos, o si lo hace de forma muy holgada, se modifica el esquema inicial y se repite el proceso.
Todo ello conforma un panorama de procedimientos artesanales de diseño alejados de una metodología objetiva en la elección de las dimensiones y los materiales. Tales métodos conducen a proyectos seguros estructuralmente, pero cuya economía queda muy ligada a la experiencia previa del ingeniero. Con todo, una estructura no sólo debe cumplir las condiciones de seguridad, calidad y funcionalidad, sino que además debe construirse al menor coste posible.
Algunos trabajos sobre optimización han tratado de resolver el diseño automatizado de estos problemas y buscar soluciones óptimas desde el punto de vista económico y medioambiental. Para aquellos que quieran profundizar en el tema, podéis consultar las referencias.
Pero, para los que queráis predimensionar rápidamente, os paso una serie de reglas prácticas que creo son de interés y que permiten realizar presupuestos y encajes rápidos para este tipo de estructuras, siempre dentro de rangos habituales o normales (entre 4 y 10 m). Llamamos altura total la distancia entre la parte inferior de la zapata y la parte superior del alzado.
“La zapata de un muro tendrá una longitud igual a las dos terceras partes de su altura total. El canto de la zapata y el espesor del alzado serán la décima parte de la altura total. La longitud del talón será la quinta parte de la altura total más 1 metro”.
“El volumen de hormigón necesario será la sexta parte del cuadrado de la altura total, repartido en proporción 3 a 2 entre el alzado y la zapata. Además, se precisan en torno a 60 kg de acero por cada metro cúbico de hormigón”.
YEPES, V.; ALCALÁ, J.; PEREA, C.; GONZÁLEZ-VIDOSA, F. (2008). A Parametric Study of Optimum Earth Retaining Walls by Simulated Annealing. Engineering Structures, 30(3): 821-830. ISSN: 0141-0296.
YEPES, V.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J.; VILLALBA, P. (2012). CO2-Optimization Design of Reinforced Concrete Retaining Walls based on a VNS-Threshold Acceptance Strategy.Journal of Computing in Civil Engineering ASCE, 26 (3):378-386. DOI: 10.1061/(ASCE)CP.1943-5487.0000140.
Una de las unidades de obra que más vidas se cobra es la excavación de zanjas. Se entiende por zanja una excavación larga y angosta realizada en el terreno. En los trabajos llevados a cabo en zanjas se producen con frecuencia accidentes graves o mortales a causa del desprendimiento de tierras. Por ello es necesario adoptar aquellas medidas que garanticen la seguridad de los trabajadores que tienen que llevar a cabo labores en el interior de las mismas . Con carácter general se deberá considerar peligrosa toda excavación que, en terrenos corrientes, alcance una profundidad de 0,80 m y 1,30 m en terrenos consistentes. Un buen monográfico al respecto es el elaborado por el Instituto Vasco de Seguridad y Salud Laborales, o este otro del Instituto Regional de Seguridad y Salud en el Empleo, de la Comunidad de Madrid. Por su interés, os recomiendo que os lo estudiéis atentamente.
Evidentemente, con una buena entibación y el buen juicio y la prudencia de las personas se pueden evitar muchos problemas. Aunque a veces, es suficiente con bermas y taludes adecuados. El desmoronamiento de una zanja afecta gravemente a la seguridad de los operarios que trabajan en ella. Para evitar accidentes es importante conocer el empuje de tierras a los que se somete una entibación para evitar su colapso. Con el objetivo de ayudar a entender de forma cualitativa a nuestros alumnos el comportamiento de la presión a la que está sometida una entibación en función del peso específico y ángulo de rozamiento interno del terreno y la profundidad a la que se encuentra dicha entibación, en la Universitat Politècnica de València se han desarrollado unos objetos de aprendizaje que permiten visualizar dicho comportamiento. Con todo, existen causas más importantes incluso que provocan el desmoronamiento de una zanja como es la heterogeneidad del terreno, la presencia de elementos intermedios (canalizaciones, etc), las acciones de agentes externos (trafico rodado, acopios) y las inclemencias del tiempo y condiciones climáticas. Por tanto, el modelo que os pasamos es, evidentemente, demasiado sencillo, pero permite una primera llamada de atención ante este grave problema. Como siempre, la experiencia y el buen juicio del responsable de la obra y de los operarios está por encima de cualquier otra consideración. Os paso a continuación este pequeño objeto de aprendizaje.
La forma de trabajar con ellos es muy sencilla. Se debe seleccionar: la profundidad de la zanja (valores entre 1 y 15 m), peso específico aparente del terreno (hasta 30 kN/m3) y ángulo de rozamiento interno del terreno (en grados sexagesimales, hasta un valor de 60º). No se admiten valores negativos. Espero que os guste. El enlace es: https://laboratoriosvirtuales.upv.es/eslabon/Entibacion/
Además, os paso varios vídeos al respecto. Espero que os sean de utilidad.
La organización de una obra constituye una estructura jerarquizada, sujeta a una serie de reglas y normas de comportamiento que permiten a la empresa constructora alcanzar con eficacia y eficiencia los objetivos de economía, plazos, calidad y seguridad. Para que estos fines se alcancen de forma coordinada, las actividades se agrupan en departamentos o secciones con una asignación clara de funciones y responsabilidades, donde cada persona sepa el papel que debe cumplir y la forma en que sus tareas se relacionan con las restantes.
La organización interna de una obra consta de niveles funcionales establecidos en un organigrama. En él se determinan los estándares de interrelación entre los órganos o cargos, definidos por una serie de normas, directrices o reglamentos internos necesarios para alcanzar los objetivos. Cada empresa constructora tiene una forma de organizar sus obras, adaptando su funcionamiento a las particularidades de cada caso. Por tanto, se podría decir que hay tantos tipos de organización como de obras.
Una buena organización de una obra supone ventajas económicas, de ejecución en plazos, de seguridad y calidad. Con todo, no existen dos obras iguales porque cada una se desarrolla en emplazamientos diferentes, a la intemperie, con un exceso de personal contratado temporalmente y con escasa preparación. Además, los proyectos suelen presentar numerosos cambios a lo largo de su ejecución por imprevistos, deficiencias u otro tipo de circunstancias. Todo ello hace que la organización de la obra sea una de las claves decisivas en el éxito de la obra.
La propia dinámica de las obras hace inviable una organización reglamentaria, basada en normas rígidas establecidas de antemano. Una estructura de estas características, propia de las administraciones públicas, tiene la ventaja de resolver problemas similares de la misma forma. Sin embargo, el funcionamiento de la obra es lento y burocrático; es decir, carece de la flexibilidad necesaria para adaptarse a las situaciones cambiantes de la propia obra.
Las obras suelen estar organizadas de forma lineal. Esta estructura es la más simple y antigua caracterizada por el principio de autoridad lineal, donde las comunicaciones entre los miembros de la organización siguen la línea jerárquica establecida y la transmisión de órdenes, actuaciones, obligaciones y responsabilidades es clara y precisa. Las ventajas de la organización lineal pasa por su sencillez, facilidad de implantación y estabilidad. La construcción es un campo propicio a esta modalidad de organización, especialmente en obras pequeñas y medianas, no demasiado especializadas, con tareas estandarizadas y rutinarias, y con plazos de ejecución usuales.
Existen obras que, bien por su dimensión, complejidad o largos plazos de ejecución requiere de asesores, consejeros o departamentos especializados. Es el caso de una organización funcional, donde el mando se basa en el conocimiento, no teniendo ningún superior una autoridad total sobre los subordinados. Esta organización facilita la descentralización de las decisiones y la comunicación directa sin intermediarios. Sin embargo, en una obra, una organización funcional pura podría llevar a una pérdida de autoridad de mando, a una subordinación múltiple de distintos departamentos especializados y a confundir los objetivos.
Para evitar los problemas anteriores, aumentar las ventajas de las organizaciones anteriores, en las obras de determinada complejidad se propone una organización jerárquica-consultiva. En este tipo de organizaciones el principio de autoridad única se mantiene y son los órganos consultivos o de apoyo los que aconsejan a los jefes de línea respecto de algunos aspectos de sus actividades. La jerarquía (línea) asegura el mando y la disciplina, mientras que los especialistas proveen los servicios de consultoría y asesoría.
Una obra de tamaño medio suele estar dirigida por el jefe de obra, del que normalmente dependen tres departamentos, los servicios técnicos, los servicios administrativos y la producción propiamente dicha. En la Figura se presenta un organigrama tipo para estas obras.
El jefe de obra es la persona que asume la responsabilidad de los objetivos asignados. Es fácil que dependa del director técnico de la empresa constructora o del jefe de un grupo de obras. Entre sus cometidos se encuentran:
La representación de la empresa y el trato con el personal.
La definición, junto con la dirección facultativa, de aquellos puntos del proyecto que presentan indefiniciones o dudas.
La confección de las listas de unidades de obra o de materiales (subcontratistas, procedencia de materiales, etc.).
La decisión sobre el emplazamiento de las instalaciones y talleres.
El análisis de los procesos constructivos.
La planificación de los trabajos.
La coordinación y el seguimiento de la ejecución.
La relación con la oficina central de la empresa, el cliente y los subcontratistas.
La colaboración, con la dirección facultativa, en la elaboración de las certificaciones y la liquidación de la obra.
El jefe de obra también responde de la gestión administrativa: recepción y almacenamiento de los materiales, consumo de materiales, inventarios de obra, contratación y gestión del personal, valoración de los trabajos de subcontratistas, gestión de maquinaria y de consumos de combustible, electricidad, etc. En cuanto a la ejecución propiamente dicha, esta figura dirige las operaciones preparatorias al inicio de las obras, ordena los trabajos del personal y la maquinaria y la aplicación correcta de los materiales. Asimismo tiene asignada la responsabilidad del control de los tajos, de los subcontratistas, de los partes de trabajo y de la seguridad y salud en la obra.
Sin embargo, en estos cometidos, el jefe de obra necesita de una organización capaz de ayudarle en la consecución de los objetivos. Los jefes de producción (cuando las obras son importantes), los encargados de obra y los capataces completan, a grandes rasgos, la organización necesaria para llevar adelante la obra.
Una de las figuras más importantes es la del encargado de obra. Es una persona con gran experiencia capaz de organizar, dirigir y vigilar los trabajos de forma directa y cercana. Supone el enlace jerárquico entre los obreros y el personal gestor. En obras grandes, con tajos distanciados o unidades especializadas, pueden existir varios encargados coordinados por un encargado general.
Los capataces son el vínculo de unión de los encargados con los operarios asignados a un tajo. Suelen seleccionarse por su alto grado de experiencia y responsabilidad. Cuidan el rendimiento de la cuadrilla, se encargan de la puntualidad y el orden de los subalternos y de su formación si fuese necesario. Cumplimentan los partes diarios de mano de obra, maquinaria y materiales. Además, proponen a la dirección todos los cambios, modificaciones y controles convenientes.
Los servicios técnicos se encuentran al margen de la línea de producción, bajo la dependencia del jefe de obra. Las funciones que realiza este departamento son:
Oficina técnica: diseño de detalle, estudios, cálculos, mediciones, certificaciones y control de costes.
Gestión de la calidad y del medio ambiente: laboratorios y control técnico.
Los servicios administrativos también dependen directamente del jefe de obra, estando al margen de la línea ejecutiva. Se encargan de:
Los pedidos de compra de materiales y herramientas, de su almacenamiento, distribución y control.
Gestión de instalaciones y equipos: talleres, mantenimiento, parque de maquinaria, etc.
Los asuntos administrativos y legales relacionados con el personal.
El registro de operaciones contables.
La administración de cobros y pagos.
Otras tareas de apoyo: correspondencia, mecanografía, archivo, etc.
Os dejo a continuación un Polimedia sobre la importancia de la organización en los proyectos, presentada por Alberto Palomares. Espero que os guste.
Referencias:
PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.
YEPES, V. (2008). Site Setup and Planning, in Pellicer, E. et al.: Construction Management. Construction Managers’ Library Leonardo da Vinci: PL/06/B/F/PP/174014. Ed. Warsaw University of Technology, pp. 102-114. ISBN: 83-89780-48-8.
En ocasiones resulta muy complicado realizar demoliciones en espacios muy reducidos o peligrosos. En estos casos la utilización de máquinas guiadas o robots puede ser una solución interesante. A continuación os paso información sobre el robot de demolición BROKK 180, aportada como servicio por la empresa Perforaciones y Cortes Saldaña, así como varios vídeos explicativos de cómo se puede utilizar este tipo de maquinaria especializada. Este tipo de máquinas son eléctricas, lo cual evitan humos. Presentan pesos reducidos, por lo que pueden trabajar sobre determinados forjados, repartiendo el peso con orugas de goma y estabilizadores. Espero que os resulte de interés.
En primer lugar os paso un vídeo de una demolición parcial de la planta 12 de un total de 18, del edificio Torre Libertad, en Concepción (Chile). El robot de demolición Brokk 180 en este caso presenta una pinza de demolición Darda CC420 y un martillo hidráulico Atlas Copco. Este vídeo corresponde a la empresa Voladuras y Demoliciones Chile (http://www.voladurasydemoliciones.cl).
Ha caído en mis manos un antiguo manual de Ferrovial fechado en julio de 1962, ya hace 50 años, denominado “Manual contra el despilfarro”. Es una joya que pone de manifiesto que el problema de los costes de la calidad viene de antiguo y hoy es un tema candente. Se habla del Despilfarro -con mayúsculas- como del dragón de siete cabezas que se infiltra por todas partes. Veamos la definición que nos da este pequeño manual:
“Despilfarro es UNA PÉRDIDA que no se recupera, y que a nadie beneficia y a todos perjudica. Ya sean materiales, tiempo, trabajo o energía, se pierden las más de las veces por falta de organización o negligencia, sin que esta pérdida -que perjudica a la empresa y a su personal- produzca regularmente el menor beneficio a nadie“.
Es un buen comienzo para enlazar este post con otros anteriores relacionados con la calidad, los clientes, los proyectos y la innovación. En este caso, os invitamos a ver un pequeño vídeo, de unos 10 minutos, en los que se divulgan los conceptos más importantes relacionados con los costes de la calidad. Algunos de ellos, relacionados con el despilfarro mencionado, otros, justamente necesarios para erradicarlos. Espero que os sea útil.
Referencias:
PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.
YEPES, V. (2001). Garantía de calidad en la construcción. Tomo 1.Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-660. Depósito Legal: V-3150-2001.
YEPES, V. (2001). Garantía de calidad en la construcción. Tomo 2. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-961. Depósito Legal: V-3151-2001.
La durabilidad de las construcciones constituye uno de los aspectos clave que preocupan y van a preocupar a los técnicos en las próximas décadas. Tras un crecimiento masivo en la construcción, se plantean problemas tan serios como el mantenimiento y la sostenibilidad de las infraestructuras, de forma que se consigan los indicadores mínimos de servicio que permitan un uso seguro y adecuado de las mismas. Estamos inmersos, de hecho, en una verdadera “crisis de las infraestructuras”, fuertemente relacionada con la crisis financiera, económica, social y ética que nos envuelve en este momento. Todo ello, como podemos ver, tiene que ver con la durabilidad, tal y como vimos en una tesis de máster que dirigí recientemente (Esteve, 2015). Para poder hablar sobre los factores que afectan a la durabilidad, es necesario primero definir el concepto de durabilidad según la normativa y según diversos autores, así como el concepto de vida útil, final de vida útil y rendimiento. También se definen otros conceptos aparecidos en el estudio, como vulnerabilidad y mantenibilidad.
Durabilidad
La Instrucción de Hormigón Estructural (EHE-08) define la durabilidad de una estructura de hormigón como “su capacidad para soportar, durante la vida útil para la que ha sido proyectada, las condiciones físicas y químicas a las que está expuesta, y que podrían llegar a provocar su degradación como consecuencia de efectos diferentes a las cargas y solicitaciones consideradas en el análisis estructural. Una estructura durable debe conseguirse con una estrategia capaz de considerar todos los posibles factores de degradación y actuar consecuentemente sobre cada una de las fases de proyecto, ejecución y uso de la estructura”.
En la norma ISO 15686-1 se define la durabilidad como “la capacidad de los edificios o alguna de sus partes para desenvolver el papel para el cual fueron diseñados durante un período específico bajo la influencia de determinados agentes”.
El concepto de durabilidad también puede ser entendido como la “habilidad que un edificio o componente de un edificio tiene para alcanzar el rendimiento óptimo de sus funciones en un determinado ambiente o sitio, bajo un determinado tiempo sin realizar trabajos de mantenimiento correctivo ni reparaciones” (CSA, 2001).
Algunos autores han intentado ofrecer una definición de durabilidad más completa, teniendo en cuenta los efectos actuales del cambio climático. Es el caso de Mendoza y Castro (2009), que definen la durabilidad como “la capacidad de un material de construcción, elemento o estructura de hormigón de resistir las acciones físicas, químicas, biológicas y ambientales vinculadas al efecto del cambio climático global con su entorno durante un tiempo determinado previsto desde el proyecto, manteniendo su serviceabilidad y conservando su forma original, propiedades mecánicas y condiciones de servicio”. Se entiende por “serviceabilidad” (sic) como la capacidad de un producto, componente, ensamble o construcción para desempeñar las funciones para las cuales son diseñadas y construidas (ACI, 2000).
Vida útil
La Instrucción de Hormigón Estructural (EHE-08) define la vida útil de una estructura como el “período de tiempo, a partir de la fecha en la que finaliza su ejecución, durante el que debe mantenerse el cumplimiento de las exigencias. Durante ese período requerirá una conservación normal, que no implique operaciones de rehabilitación. La vida útil nominal depende del tipo de estructura y debe ser fijada por la Propiedad previamente al inicio del proyecto”. En esta instrucción, se emplea el término “vida útil” de forma equivalente a como lo hace el Código Técnico de la Edificación cuando hace referencia al “período de servicio”.
En la norma ISO 15686-1 se define la vida útil de un edificio como “el período de tiempo después de la instalación o construcción durante el cual un edificio o sus partes cumplen o exceden los requisitos mínimos de rendimiento para lo cual fueron diseñados y construidos”.
Muchas veces el concepto de vida útil es confundido con el de durabilidad. Según Silva (2001), puede considerarse que la vida útil es la cuantificación de la durabilidad, y por tanto es cada vez más importante que se proyecte y construya teniendo en cuenta criterios de durabilidad para, de ese modo, prolongar la vida útil de las edificaciones.
Algunos autores han propuesto una definición de vida útil o vida de servicio teniendo en cuenta los efectos actuales del cambio climático. Es el caso de Mendoza y Castro (2009), que definen la vida de servicio como el “periodo de tiempo durante el cual el desempeño de un material, elemento o estructura de hormigón conserva los requerimientos de proyecto en términos de seguridad (resistencia mecánica y estabilidad, seguridad en caso de incendio, seguridad en uso), funcionalidad (higiene, salud y medio ambiente, protección contra el ruido y ahorro energético y confort térmico) y estéticos (deformaciones, agrietamientos, desconchamientos), con un mínimo de mantenimiento que permita controlar los efectos del cambio climático global en su entorno”.
Fin de la vida útil
Es difícil determinar cuándo se produce el final de la vida útil de una edificación. Según autores como Talon et al. (2004) “el final de la vida útil llega cuando los materiales o componentes de construcción, una vez instalados y construidos, usados y aplicados a una parte del inmueble, ya no responden a los requerimientos de rendimiento; y cuando por sus fallos físicos ya no es conveniente económicamente seguir con un mantenimiento correctivo para dichos componentes”.
Por su parte, otros autores como Gaspar (2002) definen el final de la vida útil de una construcción como un “punto en el tiempo en el cual ésta deja de poder asegurar las actividades que en ella se desarrollan, por obsolescencia funcional, falta de rentabilidad económica o degradación física de sus componentes más determinantes”.
En definitiva, el final de la vida útil se dará cuando los requisitos esenciales dejen de cumplirse. Los requisitos esenciales establecidos en el Código Técnico de la edificación son:
Seguridad estructural.
Seguridad en caso de incendio.
Seguridad de utilización y accesibilidad.
Higiene, salud y protección del medio ambiente.
Protección frente al ruido.
Ahorro de energía.
En la siguiente gráfica, elaborada por Ferreira (2009), se muestra como el fin de la vida útil está condicionado por criterios de seguridad, funcionalidad y aspecto. La seguridad es el criterio más importante, por lo que tiene un nivel de exigencia superior a los otros dos criterios. A pesar de eso, algunas veces el fin de la vida útil puede verse condicionado sólo por criterios estéticos o funcionales, como muestra la siguiente figura:
Rendimiento
El rendimiento, según la definición de Trinius (2005), “es la capacidad del material para cumplir con sus funciones dentro del sistema edificado, y se puede medir tanto cuantitativamente como cualitativamente, dependiendo de los requerimientos de diseño y de las condiciones de la fase de uso, operación y mantenimiento del inmueble”.
Por su parte, el British Standards Institute define el rendimiento de una edificación como el comportamiento de un producto durante su utilización.
Tal como establece Mairteinsson (2005), tanto la vida útil como el rendimiento dependerán directamente de los factores de uso del material, no solamente de manera aislada, sino de manera integrada al edificio como parte de un sistema completo.
Vulnerabilidad
La vulnerabilidad, según es entendida por Monjo (2007), “es el conjunto de debilidades (procesos patológicos posibles) que presenta un elemento constructivo al quedar expuesto a las acciones exteriores previsibles durante su vida útil”. La vulnerabilidad depende de la calidad del elemento constructivo, es decir. De sus características físicas y químicas, así como de la solución constructiva empleada. Puede considerarse la inversa de la durabilidad.
Según este autor, la durabilidad de un producto de construcción debe establecerse en función del análisis de su vulnerabilidad, y dicha vulnerabilidad depende de una serie de condiciones objetivas que afectan al elemento constructivo:
La función constructiva del elemento en el edificio.
Las acciones externas que actúan sobre el elemento constructivo.
La calidad del producto
Mantenibilidad
La norma ISO/IEC 2382-14 define la mantenibilidad como “la habilidad de una unidad funcional, bajo unas condiciones de uso dadas, para ser mantenidas, o restauradas a un estado en el cual puedan realizar sus funciones requeridas, cuando el mantenimiento es ejecutado bajo condiciones establecidas y utilizando procedimientos y recursos prescritos”.
Por su parte, Chew y Silva (2003) expresan el término mantenibilidad como la habilidad de lograr el rendimiento óptimo a través de la vida útil del edificio con un mínimo coste de ciclo de vida.
Referencias:
ACI American Concrete Institute. (2000). Reported by ACI Committee 365 (365.1R-00), Service-Life Prediction, State-of-the-Art Report.
Chew, M. Y. L.; De Silva, N. (2003). Maintainability problems of wet areas in high-rise residential buildings. Building Research and Information, 31(1), 60-69.
CSA Canadian Standards Association. (2001). Guideline on Durability in buildings. Canadá, S478-95, 9-17.
Esteve, V.F. (2015). Estado del arte de los factores que afectan a la durabilidad de las edificaciones. Trabajo Fin de Máster. Máster en planificación y gestión de la ingeniería civil. Universitat Politècnica de València.
Ferreira, A. F. (2009). Previsão da vida útil de revestimentos de pedra natural de paredes. Instituto Superior Técnico. Lisboa: Universidad Técnica de Lisboa.
Gaspar, P. L. (2002). Metologia para o cálculo da durabilidade de rebocos exteriores correntes. Instituto Superior Técnico. Lisboa: Universidad Técnica de Lisboa.
ISO 15686:2011. (2011). ISO (Ed.), Buildings and constructed assets, service life planning.
Marteinsson, B. (2005). Service life estimation in the design of buildings; a development of the factor method. Tesis Doctoral, KTH Research School, Centre for Built Environment, University of Gävle, Suecia.
Mendoza, J. M., Castro, P. (2009). Credibility of concepts and models about service life of concrete structures in the face of the effects of the global climatic change. A critical review. Materiales de construcción, 59(276), 117-124.
Monjo, J. (2007). Durability vs Vulneravility. Informes de la construcción, 59(507), 43-58.
Silva, T. (2001). Como estimar a vida util de estruturas projetadas com critérios que visam a durabilidade. II Workshop sobre Durabilidad de las Construcciones, Sao José dos Campos, Brasil, 133-143.
Talon, A., Boissier, D., Chevalier, J. L., & Hans, J. (2004). A methodological and graphical decision tool for evaluating building component failure. CIB World Building Congress, Toronto, Canadá.
Trinius, W. (2005). Performance based building and sustainable construction. CEN Construction Sector Network Conference, Prague.
La capacidad de la hoja empujadora de un buldócer (bulldozer en inglés) depende de la geometría de dicha hoja y de las características del material que va a empujar. Es importante limitar la capacidad de la hoja en función de la potencia del tractor y de las características del material. Puede admitirse que la sección del volumen de tierra acumulada delante de la hoja y en la dirección del empuje, forma una cuña, cuya altura es la altura de la hoja “H”, y cuya base depende del ángulo de reposo o talud natural del material, que denominaremos “α”. Es fácil deducir que el volumen teórico sería, considerando que el terreno es llano:
donde,
VL = Volumen de material suelto.
L = Anchura de la hoja empujadora.
H = Altura de la hoja empujadora.
α = Ángulo del talud en reposo del material.
La siguiente tabla proporciona, para distintos materiales, sus ángulos de talud en reposo y el factor 1/2 tgα:
Los distintos fabricantes de maquinaria nos proporcionan directamente la capacidad de cada hoja, o un coeficiente del tipo de hoja “K”, que multiplicando a L·H2 nos da su capacidad. Dicho coeficiente es habitual que se acerque a 0,80 para las hojas universales y varía entre 0,5 y 0,7 para las hojas rectas.
Por si os gustan los nomogramas, os dejo uno que hemos hecho en colaboración con el profesor Pedro Martínez Pagán. Espero que os sea de interés.
Los dúmperes son vehículos de transporte con caja basculante, cuyas características de cargas por eje[1] y dimensiones no le permiten circular por carreteras, circulando por tanto sólo dentro de las obras o en explotaciones mineras. Todos sus elementos son robustos, sobre todo la suspensión, eje y bastidor, ya que circulan por pistas en mal estado. Tienen dos ejes, el delantero de dirección y el trasero de tracción, con ruedas gemelas. Necesitan trasladarse de una obra a otra mediante trailers.
Sus dimensiones pueden llegar a los 8 m de anchura, 3.000 CV de potencia y 250 t de carga útil, aunque las habituales son una carga útil entre 10 y 75 t.[2], una potencia entre 130 y 700 CV. y una anchura máxima entre 2,50 y 5,00 m. Sus taras oscilan entre 7 a 60 t y la distancia entre ejes varía de 1,15 a 1,95 veces del ancho de la vía. Pueden desplazarse a 50 o 60 Km/h en pistas en buen estado, por lo que precisan motores potentes. Su dirección es hidráulica, con radios de giro mínimos y por tanto gran maniobrabilidad, mejor que la de los camiones.
A continuación dejamos un enlace a un objeto de aprendizaje donde nuestros alumnos tratan de entender cómo varían las emisiones de polvo cuando se carga un dúmper, en función del contenido de limo en el material, de la velocidad media del viento a 4 m del suelo, de la altura de descarga, del contenido de humedad del material y de la capacidad de carga del equipo. Espero que os resulte útil. https://laboratoriosvirtuales.upv.es/eslabon/EmisionesCirculacionDumper/
[1]Su peso propio es del orden de 3 a 4 veces superior al de un camión normal, relación tara/carga equivalente a 0,75 mientras que en un camión es de 0,5.
[2]A partir de aquí ya no se usan en ingeniería civil, sino en minería.
Referencias:
INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1995). Manual de arranque, carga y transporte en minería a cielo abierto. Ministerio de Industria y Energía.
YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia, 158 pp.
Aquí nos vamos a ocupar de la distancia crítica de transporte. En un movimiento de tierras, por ejemplo, es aquella distancia en la que el equipo de cargadoras y camiones está equilibrado. Es decir, ni sobran ni faltan camiones o cargadoras. O dicho de otra forma, es la distancia de transporte en la que no existen esperas en las máquinas. Esta es una distancia teórica, puesto que para calcularla debemos conocer todos los datos de antemano, y estos no son deterministas. Por otra parte, en obra ocurre lo contrario: tenemos una distancia de transporte como dato, pero en este caso se trataría de saber cuántos camiones y cargadoras serían necesarios para que no existiesen demoras. Afortunadamente en obra se puede corregir rápidamente cualquier desfase. Para entender este concepto os paso un laboratorio virtual que usan nuestros alumnos para facilitar la comprensión de este concepto. Espero que os guste.
La motivación de los consumidores de los espacios rurales influye decisivamente en la caracterización de la oferta, de forma que la satisfacción de sus expectativas y necesidades se convierte en una de las herramientas necesarias para la supervivencia de estas empresas (Yepes, 2000). Los turistas buscan un contacto directo con las tradiciones culturales, la familiaridad y el trato cercano, así como una atención personalizada. Además, ese regreso al entorno rural como contrapunto al ambiente urbano, implica satisfacer un mayor contacto con la naturaleza, el deseo de tranquilidad, y la oferta de una alimentación sana basada en productos “típicos”. Del mismo modo, son las motivaciones del turista las que demandan atributos de calidad en los productos y los servicios relacionados con el confort, la calidez en la acogida y la autenticidad en la experiencia turística.
Sin embargo, la mera satisfacción de los gustos, deseos y necesidades de los consumidores turísticos en los espacios rurales no garantiza la sostenibilidad de esta actividad. Existen numerosos ejemplos, tanto en ámbitos costeros como urbanos, donde el desarrollo de una oferta guiada exclusivamente por la demanda, al carecer de toda planificación, compromete la subsistencia de la actividad en el medio y largo plazo. En este sentido, ¿la calidad garantiza la sostenibilidad? Desde esta perspectiva la respuesta es negativa. Por tanto, es indispensable reformular el concepto de gestión de la calidad para garantizar el mantenimiento de la actividad turística (Yepes, 2003). Continue reading “¿La calidad garantiza la sostenibilidad? El turismo en espacios rurales”→