5 ideas reveladoras sobre la vida secreta de nuestros edificios y puentes (y por qué debería importarte).

Colapso de una torre de viviendas en Ronan Point (Reino Unido). By Derek Voller, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=59931718

Cada día cruzamos puentes y entramos en edificios con una confianza casi absoluta en su solidez. Damos por hecho que el hormigón y el acero que nos rodean son permanentes. Sin embargo, la realidad es que estas estructuras, al igual que cualquier otra cosa, envejecen, se desgastan y están expuestas a amenazas constantes. Esta degradación no es un problema lejano, sino una realidad silenciosa que ya está aquí. Se trata, como ya he comentado algunas veces, de una verdadera «crisis de las infraestructuras». De eso nos estamos ocupando en el proyecto de investigación RESIFIFE, del cual soy investigador principal.

Para comprender la magnitud del desafío, basta con echar un vistazo a las cifras. Según el informe de la Sociedad Americana de Ingenieros Civiles (ASCE) de 2021, casi el 42 % de todos los puentes de Estados Unidos tienen más de 50 años y un preocupante 7,5 % se consideran «estructuralmente deficientes». A nivel mundial, el panorama es igualmente preocupante. El Foro Económico Mundial estima que la brecha de inversión en infraestructuras podría alcanzar los 18 billones de dólares para el año 2040.

No se trata solo de un problema para ingenieros y gobiernos. Afecta a nuestra seguridad, a nuestra economía y a nuestro futuro. Por eso, hemos recopilado la investigación más reciente para compartir cinco de las ideas más reveladoras que los expertos están debatiendo sobre la gestión del ciclo de vida de nuestra infraestructura.

Los dos «enemigos» al que se enfrentan nuestras estructuras

La degradación de un edificio o un puente no es un proceso único. Para los ingenieros, el primer paso es siempre realizar un diagnóstico correcto. En este caso, hay dos tipos muy diferentes:

  • La degradación progresiva: piense en ella como un desgaste lento y constante. Se trata del «deterioro ambiental», por ejemplo, la corrosión del acero causada por la sal en el aire o la fatiga del material tras soportar cargas durante décadas. Es un enemigo paciente que debilita la estructura poco a poco a lo largo de toda su vida útil.
  • La degradación instantánea: son los impactos repentinos y violentos. Se trata de «eventos extremos», como terremotos, inundaciones o incluso desastres provocados por el ser humano. A diferencia de la degradación progresiva, un solo evento de este tipo puede reducir drásticamente el rendimiento de una estructura en cuestión de minutos.

Comprender esta diferencia es crucial, ya que no se puede utilizar la misma estrategia para reparar una grieta por fatiga que para recuperar una estructura después de un terremoto.

La caja de herramientas de los ingenieros: mantenimiento frente a reparación

Frente a estos dos enemigos, la ingeniería no lucha con las manos vacías. Cuenta con una caja de herramientas específica para cada amenaza, con dos categorías principales de soluciones o «mecanismos de intervención».

  • Mantenimiento: son acciones planificadas para combatir la degradación progresiva. Piense en ellas como la medicina preventiva. Estas «intervenciones preventivas o esenciales» incluyen tareas como reparar grietas, aplicar una nueva capa de pintura protectora o reemplazar componentes estructurales antes de que fallen. El objetivo es frenar el desgaste natural.
  • Reparación: son las acciones que se llevan a cabo en respuesta a la degradación instantánea. Pueden ser «preventivas», como reforzar una estructura (retrofit) para que resista mejor un futuro terremoto, o «correctivas», como las labores de recuperación para devolver la funcionalidad lo antes posible.

Este enfoque de «ciclo de vida» supone un cambio fundamental. En lugar de esperar a que algo se rompa para repararlo, los ingenieros modernos planifican, predicen e intervienen a lo largo de toda la vida útil de la estructura para garantizar su rendimiento a largo plazo.

Más allá de la seguridad: las cuatro formas de medir el «éxito» de una estructura

Es aquí donde el campo se ha vuelto realmente fascinante. La forma de evaluar el «éxito» de una estructura ha evolucionado desde una pregunta sencilla de «¿se ha caído o no?» basta un cuadro de mando sofisticado con cuatro indicadores clave. Para entenderlo mejor, podemos pensar en cómo se evalúa a un atleta profesional:

  • Fiabilidad (reliability): esta es la base. ¿Puede el atleta aguantar el esfuerzo de un partido sin lesionarse? Mide la probabilidad de que una estructura no falle en las condiciones para las que fue diseñada.
  • Riesgo (risk): este indicador va un paso más allá. Si el atleta se lesiona, ¿qué consecuencias tiene para el equipo? ¿Se pierde un partido clave o la final del campeonato? El riesgo tiene en cuenta las consecuencias de un fallo: sociales, económicas y medioambientales.
  • Resiliencia (resilience): este es un concepto más nuevo y crucial. En caso de lesión, ¿cuánto tiempo tardará el atleta en recuperarse y volver a jugar al máximo nivel? Mide la capacidad de una estructura para prepararse, adaptarse y, sobre todo, recuperarse de manera rápida y eficiente tras un evento extremo.
  • Sostenibilidad (sustainability): esta es la visión a largo plazo. ¿Está el atleta gestionando su carrera para poder jugar durante muchos años o se quemará en dos temporadas? La sostenibilidad integra los aspectos sociales, económicos y medioambientales para garantizar que las decisiones de hoy no afecten a las generaciones futuras.

Este cambio de enfoque para evaluar las consecuencias supone una revolución en el campo. Los expertos señalan un cambio de mentalidad fundamental: ya no basta con medir el rendimiento en términos técnicos. Ahora se centran en las consecuencias en el mundo real (sociales, económicas y ambientales), ya que estas ofrecen una visión mucho más fiel y significativa de lo que realmente está en juego.

 

La carrera contra el tiempo: por qué este campo está investigando ahora

El interés por modelar y gestionar el ciclo de vida de las estructuras no es solo una curiosidad académica, sino una respuesta directa a una necesidad global cada vez más acuciante. Un análisis de la investigación científica en este campo revela una clara «tendencia ascendente».

El número de artículos publicados sobre este tema ha crecido constantemente, pero se observa un «incremento importante» a partir de 2015. Este auge de la investigación no es académico, sino una respuesta directa a las alarmantes cifras que vimos al principio. La comunidad mundial de ingenieros está en una carrera contra el tiempo para evitar que ese déficit de 18 billones (18·1012) de dólares se traduzca en fallos catastróficos.

El futuro es inteligente: De la reparación a la predicción

Para gestionar esta complejidad, la ingeniería está recurriendo a herramientas cada vez más avanzadas que van más allá del cálculo tradicional. El objetivo es pasar de un enfoque reactivo a otro predictivo y optimizado. Es como pasar de ir al médico solo cuando tienes un dolor insoportable a llevar un reloj inteligente que monitoriza tu salud las 24 horas del día y te avisa de un problema antes incluso de que lo notes.

Entre las metodologías más destacadas se encuentran:

  • Optimización: algoritmos que ayudan a decidir cuál es la mejor estrategia de mantenimiento (cuándo, dónde y cómo intervenir) para obtener el máximo beneficio con recursos limitados.
  • Modelos de Markov: herramientas estadísticas que funcionan como un pronóstico del tiempo para las estructuras, ya que predicen su estado futuro basándose en su condición actual.
  • Inteligencia artificial (IA), aprendizaje automático y aprendizaje profundo: estas tecnologías permiten analizar grandes cantidades de datos (de sensores, inspecciones, etc.) para predecir fallos, identificar patrones invisibles al ojo humano y optimizar la gestión del ciclo de vida a una escala nunca antes vista.

Este cambio de paradigma significa que, en el futuro, las decisiones sobre cuándo reparar un puente o reforzar un edificio se tomarán con la ayuda de datos y algoritmos complejos que pueden prever el futuro de la estructura.

Conclusión: pensar en el mañana, hoy

Gestionar la salud de nuestra infraestructura es un desafío continuo, complejo y vital. Ya no basta con construir estructuras impresionantes; es fundamental adoptar una mentalidad de «ciclo de vida» que nos obligue a evaluar, intervenir y planificar constantemente pensando en el futuro. Solo así podremos garantizar que los edificios y puentes que usamos cada día no solo sean fiables, sino también resilientes ante los imprevistos y sostenibles para las próximas generaciones.

La próxima vez que cruces un puente, no pienses solo en dónde te lleva. Pregúntate cuál es su historia invisible en su lucha contra el paso del tiempo y si, como sociedad, estamos invirtiendo no solo para construir, sino también para perdurar.

Os dejo un vídeo que os puede servir de guía.

Referencias:

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Avances científicos en relación con los edificios prefabricados de hormigón sismorresistentes

Acaban de publicarnos un artículo en Structures, revista indexada en el JCR. El trabajo lleva a cabo un análisis exhaustivo de 127 artículos para identificar las tendencias predominantes y las brechas actuales en la investigación sobre edificios prefabricados de hormigón (PCB) resistentes a los terremotos. Estos edificios ofrecen ventajas como la rapidez de construcción, la mejora de la durabilidad y la reducción de la mano de obra, pero es necesario estudiar las conexiones entre los elementos prefabricados para garantizar su resistencia sísmica.

El estudio se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Entre otras, se pueden destacar las siguientes contribuciones del trabajo:

  • Reveló la correlación entre los PCB y temas como las conexiones secas, la disipación de energía, el diseño óptimo y el colapso progresivo, lo que puso de relieve la naturaleza diversa de las investigaciones actuales en este campo.
  • Identificaron los sistemas de marcos y pantallas de rigidización como las categorías predominantes en la investigación de los PCB, siendo el enfoque tradicional de construcción moldeada in situ la referencia para determinar su rendimiento sísmico.
  • Destacó la necesidad de explorar con mayor detalle sistemas estructurales innovadores y resilientes y de adoptar metodologías de vanguardia para integrar la seguridad sísmica y la sostenibilidad de los PCB.
  • Proporcionó una hoja de ruta para futuros proyectos de investigación e informó sobre los últimos avances y tendencias en la investigación de PCB con seguridad sísmica.

La editorial permite la descarga gratuita del artículo en la siguiente dirección: https://authors.elsevier.com/sd/article/S2352-0124(23)01686-7

Abstract:

Precast concrete buildings (PCB) offer several advantages, including swift construction, exceptional quality, enhanced durability, decreased formwork requirements, and reduced labour. However, it is crucial to effectively study the connections between the various prefabricated elements that make up the structure, particularly in the face of dynamic loads and seismic actions. Extensive research has been conducted to develop seismic-resistant PCB, underscoring the necessity of exploring research approaches, identifying trends, addressing gaps, and outlining future research directions. A thorough analysis was carried out on a literature set comprising 127 articles published between 2012 and May 2023, using a three-step research process that included bibliometric search, quantitative analysis, and qualitative analysis. The primary objective was to identify prevailing research trends and pinpoint current gaps that would contribute to the advancement of future research. The scientific mapping of authors’ keywords revealed the correlation between PCB and topics such as dry connections, energy dissipation, optimal design, and progressive collapse, highlighting the diverse nature of current research in the field. Furthermore, the qualitative literature analysis demonstrated that frame and shear wall systems emerged as the predominant categories. This dominance can be attributed to the seismic performance reference being the traditional cast-in-place building approach. Nonetheless, this study brings attention to several notable research gaps. These gaps include exploring innovative, resilient structural systems in greater detail and adopting state-of-the-art methodologies that facilitate decision-making processes in integrating PCB seismic safety and sustainability. This study provides a roadmap for future research projects and reports on the latest developments and trends in seismically safe PCB research.

Keywords:

Precast concrete; Prefabricated building; Connections; Seismic design; Construction industry; Modern methods of construction; State of the art

Reference:

GUAYGUA, B.; SÁNCHEZ-GARRIDO, A.; YEPES, V. (2023). A systematic review of seismic-resistant precast concrete buildings. Structures, 58; 105598. DOI:10.1016/j.istruc.2023.105598

 

Special Issue «2nd Edition of Trends in Sustainable Buildings and Infrastructure»

High visibility: indexed by the Science Citation Index Expanded, the Social Sciences Citation Index (Web of Science) and other databases. Impact Factor: 3.390 (2020)

JCR category rank: Q1: Public, Environmental & Occupational Health (SSCI) | Q2: Public, Environmental & Occupational Health (SCIE) | Q2: Environmental Sciences (SCIE)

Special Issue “2nd Edition of Trends in Sustainable Buildings and Infrastructure”

A special issue of International Journal of Environmental Research and Public Health (ISSN 1660-4601).

Deadline for manuscript submissions: 30 September 2022.

Special Issue Editors

Guest Editor

Prof. Dr. Víctor Yepes
Concrete Science and Technology Institute (ICITECH), Department of Construction Engineering and Civil Engineering Projects, Universitat Politècnica de València Valencia, Spain
Interests: multiobjective optimization; structures optimization; lifecycle assessment; social sustainability of infrastructures; reliability-based maintenance optimization; optimization and decision-making under uncertainty

Guest Editor

Prof. Dr. Moacir Kripka
Civil and Environmental Engineering Graduate Program (PPGEng), University of Passo Fundo, Passo Fundo CEP 99052-900, Brazil
Interests: structural analysis; optimization; building; engineering optimization; civil engineering; linear programming; mathematical programming; heuristics; structural optimization; concrete; combinatorial optimization; structural engineering; multiobjective optimization; reinforced concrete; optimization methods; discrete optimization; optimization theory; simulated annealing; optimization software

Special Issue Information

Dear Colleagues,

This Special Issue is the 2nd edition of Trends in Sustainable Buildings and Infrastructure. The recently established Sustainable Development Goals call for a paradigm shift in the way buildings and infrastructures are conceived. The construction industry is a main source of environmental impacts, given its great material consumption and energy demands. It is also a major contributor to the economic growth of regions through the provision of useful infrastructure and generation of employment, among others. Conventional approaches underlying current building design practices fall short of covering the relevant environmental and social implications derived from inappropriate design, construction, and planning. The development of adequate sustainable design strategies is therefore becoming extremely relevant with regard to the achievement of the United Nations 2030 Agenda Goals for Sustainable Development.

This Special Issue aims to increase knowledge on sustainable design practices by highlighting the actual research trends that explore efficient ways to reduce the environmental consequences related to the construction industry while promoting social wellbeing and economic development. These objectives include but are not limited to:

  • Life-cycle-oriented building and infrastructure design;
  • Design optimization based on sustainable criteria;
  • Maintenance design towards sustainability;
  • Inclusion of social impacts in the design of buildings and infrastructures;
  • Resilience and sustainability;
  • Use of sustainable materials;
  • Decision-making processes that effectively integrate economic, environmental, and social aspects.

Papers selected for this Special Issue will be subject to a rigorous peer-review procedure with the aim of rapid and wide dissemination of research results, developments, and applications.

Submission

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Environmental Research and Public Health is an international peer-reviewed open access semimonthly journal published by MDPI.

Keywords

  • Sustainable design and construction
  • Life cycle assessment
  • Sustainability in decision making
  • Green buildings
  • Sustainable maintenance
  • Resilient structures
  • Sustainable materials
  • Social life cycle assessment
  • Sustainable management of infrastructures
  • Multiobjective optimization for sustainable development

Special Issue «Trends in Sustainable Buildings and Infrastructure»

High visibility: indexed by the Science Citation Index Expanded, the Social Sciences Citation Index (Web of Science) and other databases. Impact Factor: 2.468 (2018)

Special Issue «Trends in Sustainable Buildings and Infrastructure»

A special issue of International Journal of Environmental Research and Public Health (ISSN 1660-4601).

Deadline for manuscript submissions: 31 October 2020.

Special Issue Editors

Guest Editor

Prof. Dr. Víctor Yepes
Concrete Science and Technology Institute (ICITECH), Department of Construction Engineering and Civil Engineering Projects, Universitat Politècnica de València Valencia, Spain
Interests: multi-objective optimization; life-cycle assessment; decision-making; sustainability; concrete structures; CO2 emissions; construction management

Guest Editor

Dr. Ignacio J. Navarro
Department of Construction Engineering and Civil Engineering Projects, Universitat Politècnica de València Valencia, Spain
Interests: multicriteria decision making; reliability-based maintenance optimization; sustainability of infrastructures; social impacts of infrastructures

Special Issue Information

Dear Colleagues,

The recently established Sustainable Development Goals call for a paradigm shift in the way buildings and infrastructures are conceived. The construction industry is a main source of environmental impacts, given its great material consumption and energy demands. It is also a major contributor to the economic growth of regions through the provision of useful infrastructure and generation of employment, among others. Conventional approaches underlying current building design practices fall short of covering the relevant environmental and social implications derived from inappropriate design, construction, and planning. The development of adequate sustainable design strategies is therefore becoming extremely relevant with regard to the achievement of the United Nations 2030 Agenda Goals for Sustainable Development.

This Special Issue aims to increase knowledge on sustainable design practices by highlighting the actual research trends that explore efficient ways to reduce the environmental consequences related to the construction industry while promoting social wellbeing and economic development. These objectives include but are not limited to:

  • Life-cycle-oriented building and infrastructure design;
  • Design optimization based on sustainable criteria;
  • Maintenance design towards sustainability;
  • Inclusion of social impacts in the design of buildings and infrastructures;
  • Resilience and sustainability;
  • Use of sustainable materials;
  • Decision-making processes that effectively integrate economic, environmental, and social aspects.

Papers selected for this Special Issue will be subject to a rigorous peer-review procedure with the aim of rapid and wide dissemination of research results, developments, and applications.

Submission

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Environmental Research and Public Health is an international peer-reviewed open access semimonthly journal published by MDPI.

Keywords

  • Sustainable design and construction
  • Life cycle assessment
  • Sustainability in decision making
  • Green buildings
  • Sustainable maintenance
  • Resilient structures
  • Sustainable materials
  • Social life cycle assessment
  • Sustainable management of infrastructures
  • Multiobjective optimization for sustainable development

The Ninth International Structural Engineering and Construction Conference

Esta semana, del 24 al 29 de julio de 2017, se celebra en la Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos de Valencia la 9ª Conferencia Internacional de Ingeniería Estructural y Construcción (The Ninth International Structural Engineering and Construction Conference, ISEC-9). Constituye esta Conferencia un evento de especial importancia internacional que este año trata sobre las construcción sostenible y las estructuras resilientes. El Chair de la Conferencia es nuestro Director de la Escuela de Caminos, el profesor Eugenio Pellicer. Mi participación consiste es la de pertenecer al Comité Científico y ser coeditor de las actas científicas.

Por si os interesa, la página web de la Conferencia es: https://www.isec-society.org/ISEC_09/index.php