Innovación en puentes de gran escala: optimización 3D y sostenibilidad mediante análisis acoplado de elementos finitos

Un artículo reciente publicado en la revista Structures, del primer cuartil del JCR, presenta un enfoque innovador de optimización estructural acoplada con el fin de mejorar la sostenibilidad y la eficiencia en la construcción de puentes hiperestáticos de gran escala. Este trabajo, titulado «Three-dimensional finite element-coupled optimisation assessment of extra-large bridges», se centra en el diseño de puentes con doble torre y cableado, y presenta un modelo de optimización estructural que integra métodos matemáticos avanzados, simulaciones de elementos finitos y un análisis detallado de variables aleatorias. Esta investigación constituye un importante avance en la búsqueda de métodos sostenibles que minimicen la huella medioambiental del sector de la construcción y contribuyan a los objetivos de desarrollo sostenible en ingeniería civil.

Esta trabajo, llevado a cabo por un equipo de expertos de la Universidad de Ciencia e Ingeniería de Hunan (China) y de la Universitat Politècnica de València (España), se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València.

Contexto de la investigación: la construcción sostenible y sus retos

La construcción es una de las industrias con mayor impacto ambiental a nivel mundial, ya que genera el 33 % de las emisiones de carbono y es un gran consumidor de agua y energía. En particular, el diseño y construcción de grandes infraestructuras, como puentes, requiere de grandes cantidades de recursos y genera altos niveles de emisiones de gases contaminantes debido al uso extensivo de materiales como el hormigón armado y el acero. Frente a este desafío, el estudio propone un enfoque para optimizar el diseño de puentes hiperestáticos y promover prácticas de construcción sostenibles mediante el uso de herramientas avanzadas de optimización.

Objetivos de la investigación

El objetivo principal del artículo es reducir el consumo de materiales y optimizar el diseño estructural de puentes con múltiples torres y sistemas de cableado, como los puentes atirantados de doble torre. Dicha optimización incluye la implementación de una metodología que integra diversas herramientas matemáticas y de simulación, como modelos de microestructura reticulada y métodos estadísticos para gestionar las variables aleatorias que influyen en el comportamiento estructural de los puentes.

Entre los objetivos específicos del estudio destacan:

  1. Desarrollar un modelo que permita la optimización topológica en 3D de puentes hiperestáticos.
  2. Reducir el impacto ambiental mediante el uso eficiente de materiales.
  3. Mejorar la estabilidad y el rendimiento estructural de estos puentes en condiciones de carga complejas.
  4. Proporcionar un marco teórico para futuras investigaciones sobre la optimización de grandes infraestructuras.

Metodología:

El enfoque metodológico del estudio integra varios modelos teóricos y herramientas de simulación estructural, entre las que se incluyen:

  1. Modelo de optimización: La investigación utiliza un modelo de optimización para el diseño estructural de puentes. Este modelo se basa en la disposición de microelementos en una red tridimensional para optimizar el uso de materiales y la capacidad estructural. Este enfoque permite controlar la densidad y distribución del material en áreas específicas de la estructura, como las torres y los cables del puente, donde las cargas y tensiones son mayores.
  2. Optimización estadística de variables discretas: Las estructuras de puentes están sujetas a fuerzas externas e imprevistos, como fluctuaciones en la velocidad del viento o cambios en la carga de vehículos. Para hacer frente a esta incertidumbre, el estudio implementa un modelo matemático basado en la estadística de variables discretas. Este modelo incorpora métodos de perturbación para evaluar el comportamiento de las variables aleatorias y su influencia en la estructura, garantizando así una mayor estabilidad y precisión en el diseño.
  3. Convergencia y estabilidad estructural: Uno de los mayores retos en la optimización de estructuras complejas es garantizar la estabilidad bajo condiciones no lineales. Zhou et al. utilizan técnicas avanzadas de resolución de ecuaciones no lineales y una combinación de diferencias finitas con métodos característicos. Este enfoque permite alcanzar soluciones precisas y asegurar que la estructura mantenga su integridad ante cargas variables.

Estudio de caso: Puente Nan Ao Da

Para validar su enfoque, los autores realizaron un análisis detallado del puente Nan Ao Da (NADB) en la provincia de Cantón, en el sur de China. Este puente atirantado, que tiene una longitud total de 9341 metros y una configuración de doble torre, es un caso de estudio ideal para aplicar la metodología de optimización propuesta. El estudio abarcó varios aspectos clave:

  1. Cargas estructurales y condiciones de diseño: El diseño del NADB tiene en cuenta múltiples tipos de carga, como el peso estructural, la presión del viento y las cargas vehiculares. Para optimizar la estructura, se realizaron cálculos de elementos finitos en secciones específicas del puente. La simulación modeló factores como la gravedad, la presión del viento a diferentes alturas y los efectos de las cargas en los cables de suspensión, lo que permitió comprender completamente la distribución de fuerzas en la estructura.
  2. Simulación y análisis de elementos finitos: La simulación de elementos finitos en el NADB implicó dividir la estructura en más de 79 000 elementos, lo que permitió realizar cálculos detallados de tensiones y desplazamientos en diversas partes del puente. La metodología incluyó la evaluación de 122 puntos de monitorización distribuidos en la estructura para analizar cómo las fuerzas y los desplazamientos afectaban a los elementos críticos de esta. Los resultados identificaron áreas de alta tensión, particularmente en las torres y los cables de soporte, que se optimizaron para reducir el uso de material sin comprometer la seguridad.
  3. Optimización de materiales y reducción de volumen: Mediante la optimización topológica, se logró reducir el volumen de materiales de las principales secciones del puente en un 2 %. Esta reducción no solo mejora la estabilidad estructural, sino que también reduce significativamente el peso total y el coste de construcción. Además, el ahorro de materiales implica una disminución de las emisiones de carbono y otros contaminantes.
Nan’ao Bridge

Resultados: impacto estructural y ambiental

La implementación de la optimización topológica en el NADB generó resultados significativos en términos estructurales y ambientales:

  1. Mejora en la estabilidad estructural: La reducción de material se logró al optimizar las áreas de mayor carga, como las torres y los cables, lo que resultó en una distribución de tensiones más eficiente. Los análisis de sensibilidad indicaron que, tras la optimización, las áreas de mayor energía interna se concentraban en los elementos de soporte, lo que facilitaba una transmisión de energía más efectiva y aseguraba la estabilidad estructural.
  2. Reducción de emisiones y eficiencia ambiental: Se realizó un análisis del ciclo de vida del puente optimizado utilizando el software OpenLCA y la base de datos Ecoinvent. Los resultados mostraron una reducción del 3,76 % en emisiones totales, así como disminuciones del 6,32 % en acidificación, eutrofización y generación de polvo atmosférico. Estos logros están alineados con los objetivos de sostenibilidad global y demuestran el potencial de la optimización estructural para reducir el impacto ambiental de la construcción..
  3. Ahorro económico: Desde una perspectiva económica, la reducción del uso de materiales se tradujo en un ahorro de 1,7 millones de yuanes chinos (CNY) en el coste de construcción del puente. Este ahorro económico refuerza la viabilidad de la optimización topológica como un método eficiente y rentable para proyectos de infraestructura de gran escala.

Discusión: implicaciones para el diseño y construcción de puentes

El análisis de optimización topológica aplicado al puente NADB subraya la importancia de integrar técnicas avanzadas de modelado en la ingeniería de grandes infraestructuras. Además de mejorar la eficiencia estructural, esta metodología ofrece una solución viable para alcanzar la sostenibilidad en la construcción, ya que reduce los costes y el impacto ambiental de los proyectos.

  1. Aplicaciones potenciales en otros proyectos: Los principios y métodos empleados en este estudio pueden aplicarse a otros tipos de estructuras hiperestáticas, como viaductos y puentes multipórtico. Esta flexibilidad demuestra la versatilidad del modelo y su capacidad para adaptarse a diversos contextos estructurales.
  2. Retos en la implementación práctica: Sin embargo, el artículo también reconoce importantes desafíos, especialmente en la modelación de estructuras bajo condiciones de carga combinada. Los autores sugieren que futuras investigaciones deberían explorar la integración de técnicas de inteligencia artificial y algoritmos de optimización avanzada para gestionar de forma más precisa las variables aleatorias y optimizar aún más la distribución de materiales.

Conclusiones

La investigación ofrece un enfoque completo para la optimización acoplada de puentes hiperestáticos en tres dimensiones. Los resultados de este estudio tienen importantes implicaciones para el desarrollo sostenible de la infraestructura y la construcción de grandes puentes, ya que demuestran que es posible reducir el uso de materiales y el impacto ambiental sin comprometer la estabilidad estructural. Las contribuciones clave del artículo son las siguientes:

  1. Un marco teórico sólido para la optimización acoplada en 3D, que permite mejorar la sostenibilidad de grandes infraestructuras.
  2. Un enfoque práctico  para reducir emisiones y ahorrar materiales mediante la optimización de elementos finitos y técnicas de modelado avanzadas..
  3. Un modelo aplicable a futuros proyectos de infraestructura que proporciona una base para el diseño de puentes de gran escala más eficientes y respetuosos con el medio ambiente.

El artículo sugiere que la investigación futura debería centrarse en desarrollar métodos de optimización inteligentes para el mantenimiento y la operación de estructuras complejas. La combinación de técnicas de inteligencia artificial y modelado predictivo podría revolucionar la construcción y el diseño de puentes, al tiempo que promovería prácticas de ingeniería sostenibles y rentables.

Referencia:

ZHOU, Z.; LIANG, Z.; ALCALÁ, J.; YEPES, V. (2024). Three-dimensional finite element coupled optimization assessment of extra-large bridgesStructures, 70:107743. DOI:10.1016/j.istruc.2024.107743

Este artículo se puede descargar gratuitamente hasta el próximo 2 de enero de 2025 accediendo directamente al siguiente enlace: https://authors.elsevier.com/c/1k5YY8MoIH2dmK

También dejo un vídeo sobre el puente al que se hace mención en el artículo.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Nuevo estudio propone solución clave para reducir la huella de carbono en grandes proyectos de construcción internacionales

Un estudio innovador, titulado «Research on coupling optimization of carbon emissions and carbon leakage in international construction projects» y publicado en la prestigiosa revista Scientific Reports, aborda un desafío crítico para la construcción internacional: cómo optimizar las emisiones y las fugas de carbono en grandes proyectos de infraestructura.

Liderado por Zhiwu Zhou, de la Hunan University of Science and Engineering, y colaboradores como Víctor Yepes de la Universitat Politècnica de València, el artículo desarrolla un modelo matemático avanzado para analizar y predecir las emisiones de carbono a lo largo de todo el ciclo de vida de los proyectos de construcción en diferentes países. Este estudio es especialmente relevante en un contexto donde la globalización y el comercio internacional están impulsando el crecimiento económico, pero también contribuyendo de manera significativa al cambio climático.

Contexto y relevancia del estudio

El fenómeno conocido como «fuga de carbono» se ha convertido en un problema clave en la lucha contra el cambio climático. Este término se refiere al traslado de actividades productivas intensivas en carbono desde países con regulaciones estrictas sobre emisiones a países con normativas más laxas, lo que, paradójicamente, puede aumentar las emisiones globales. A medida que los países desarrollados implementan políticas más estrictas para reducir sus emisiones, existe la preocupación de que esto pueda incentivar a las empresas a trasladar su producción a países en desarrollo, exacerbando el problema en lugar de solucionarlo.

La construcción es uno de los sectores que más contribuye a las emisiones de carbono a nivel mundial. De hecho, la infraestructura está vinculada al 50 % de las emisiones globales, y se prevé que la inversión en infraestructuras alcance los 94000 millones de dólares para 2040, lo que pone de manifiesto la importancia de abordar el problema en este sector. El estudio de Zhou y su equipo se centra en ofrecer una herramienta para medir y mitigar la fuga de carbono en los grandes proyectos internacionales de construcción.

Metodología del estudio

La investigación combina una revisión bibliográfica extensa con el desarrollo de un modelo matemático que tiene en cuenta múltiples factores de incertidumbre asociados a los proyectos internacionales. Para analizar las emisiones y fugas de carbono, los investigadores emplearon bases de datos de cadenas de suministro reconocidas a nivel internacional, como Ecoinvent y OpenLCA, conforme a los estándares ISO 14040 e ISO 14044. Estas bases de datos permiten rastrear el ciclo de vida completo de los materiales y la energía utilizados en un proyecto, desde la extracción de materias primas hasta el transporte, la construcción y la eventual demolición.

El estudio utilizó como caso práctico un importante proyecto de infraestructura: el puente transnacional China-Indonesia, un proyecto internacional clave gestionado bajo el modelo EPC (ingeniería, contratación y construcción). Este puente, que conecta ambos países, se convirtió en un ejemplo ideal para analizar la huella de carbono debido a su complejidad técnica y logística, así como su impacto transnacional. El análisis de este caso permitió a los autores validar la robustez de su modelo teórico.

Resultados más destacados

Uno de los hallazgos más importantes del estudio es la notable diferencia en la huella de carbono entre los países exportadores e importadores. En el caso del puente China-Indonesia, los datos revelaron que la proporción de emisiones de carbono entre los países exportadores e importadores era de 0,577:100, lo que indica que los países que producen materiales y maquinaria (en este caso, China) soportan una mayor parte de la carga de emisiones. Esto sugiere que los países importadores, que son los principales beneficiarios de los proyectos de infraestructura, deberían asumir una mayor responsabilidad en la compensación de estas emisiones.

Además, el estudio pone de relieve que la utilización de acero, cemento y otros materiales intensivos en carbono es una de las principales fuentes de emisiones en los proyectos de construcción internacionales. Sin embargo, los resultados mostraron que optimizar la cadena de suministro y aplicar técnicas de transporte más eficientes pueden reducir significativamente estas emisiones. Por ejemplo, el uso de transporte marítimo en lugar de aéreo o terrestre para mover grandes volúmenes de materiales redujo las emisiones de manera sustancial.

Otro resultado clave es que la fuga de carbono no solo se produce durante la fase de construcción, sino también a lo largo de todo el ciclo de vida del proyecto, desde el diseño hasta la demolición. Las emisiones asociadas al diseño, el transporte y el montaje de los materiales también representan una parte significativa del impacto ambiental total de los proyectos.

Implicaciones del estudio

Este estudio tiene importantes implicaciones para los responsables políticos y las empresas constructoras. En primer lugar, los autores destacan la necesidad de desarrollar políticas más eficaces para gestionar la fuga de carbono en el comercio internacional. Las políticas actuales, como los ajustes en las fronteras de carbono (Carbon Border Adjustment Mechanisms, CBAM), son un buen paso hacia la reducción de la fuga de carbono, pero no son suficientes si no se aplican de manera coordinada a nivel global. Los investigadores sugieren que las empresas que participan en proyectos internacionales de construcción deben tener en cuenta no solo el coste económico, sino también el impacto ambiental y la huella de carbono de sus operaciones.

Por otro lado, el estudio subraya la importancia de optimizar las cadenas de suministro internacionales para reducir las emisiones de carbono. Esto implica seleccionar cuidadosamente los materiales, gestionar de manera eficiente el transporte y adoptar tecnologías más limpias durante el proceso de construcción. Los investigadores argumentan que los esfuerzos por reducir las emisiones deben extenderse a todas las fases del proyecto, no solo a la construcción, y que las empresas deben colaborar más estrechamente con los gobiernos para diseñar estrategias eficaces de mitigación del carbono.

Conclusiones

En resumen, el estudio ofrece una herramienta valiosa para evaluar y mitigar las emisiones y fugas de carbono en proyectos de construcción internacionales. Al utilizar un enfoque matemático riguroso y bases de datos internacionales de alto nivel, este trabajo proporciona un marco científico sólido para ayudar a los gobiernos y a las empresas a tomar decisiones más informadas sobre cómo reducir el impacto ambiental de sus proyectos.

Este enfoque no solo es relevante para los proyectos de infraestructura a gran escala, sino que también tiene el potencial de influir en la forma en que las políticas de carbono se diseñan e implementan a nivel global. La investigación concluye que, aunque los costes iniciales de adoptar prácticas más sostenibles pueden ser elevados, los beneficios a largo plazo, tanto en términos económicos como ambientales, justifican plenamente esta inversión.

Referencia:

ZHOU, Z.; WANG, Y.; ALCALÁ, J.; YEPES, V. (2024). Research on coupling optimization of carbon emissions and carbon leakage in international construction projects. Scientific Reports, 14: 10752. DOI:10.1038/s41598-024-59531-4

Este artículo está publicado en abierto, por lo que puedes descargar aquí mismo:

Descargar (PDF, 10.82MB)

Impacto ambiental del ciclo de vida de las baterías de NiZn de la cuna a la tumba

Acaban de publicarnos un artículo en la revista Energies, revista indexada en el JCR. El artículo analiza los impactos ambientales de las baterías de níquel-zinc utilizando modelos matemáticos basados en las normas ISO y el método ReCiPe 2016. Asimismo, compara los impactos ambientales de las baterías de NiZn con los de otras tecnologías y sugiere formas de reducir su impacto mediante la energía renovable y la tecnología de recuperación ecológica. El documento sigue las normas ISO 14040 e ISO 14044 para la metodología de evaluación del ciclo de vida (LCA) y compara la batería de NiZn con las baterías de plomo-ácido y de iones de litio. También recopila los datos principales del inventario del ciclo de vida (LCI) de una producción a escala piloto en China para la fase inicial, centrándose en el consumo de electricidad y excluyendo determinadas evaluaciones de impacto ambiental. Utiliza el método ReCiPe 2016 para la evaluación del impacto, teniendo en cuenta las categorías de impacto intermedio y final, como el potencial de calentamiento global y los daños a la salud humana y los ecosistemas. Por último, aplica el software OpenLCA para modelar los impactos e incorpora los métodos de demanda energética acumulada (CED) y ReCiE 2016 con varios indicadores de impacto para realizar un análisis ambiental exhaustivo.

Las contribuciones más relevantes de este trabajo son las siguientes:

  • Desarrolla modelos matemáticos para estimar los impactos ambientales de las baterías de níquel-zinc durante el ciclo de vida, comparándolos con otras tecnologías de baterías.
  • Analiza los impactos ambientales de las baterías recargables de níquel-zinc desde el principio hasta la tumba, en consonancia con las normas ISO para el análisis del ciclo de vida.
  • Excluye las evaluaciones de impacto ambiental relacionadas con la infraestructura y los bienes de capital, y se centra en los impactos de los productos, el transporte y las contribuciones al final de su vida útil.
  • Proporciona funciones objetivas para optimizar el coste y el impacto medioambiental de las baterías de NiZn, lo que contribuye al objetivo del proyecto LOLABAT de lograr un alto rendimiento, una rentabilidad competitiva y una sostenibilidad.
  • Recibe financiación del programa de investigación Horizonte 2020 de la Unión Europea dentro del proyecto LOLABAT, lo que refleja las opiniones de los autores sobre la posible industrialización de las baterías de NiZn en el contexto europeo.

Las conclusiones más importantes del trabajo se pueden resumir de la siguiente forma:

  • Las baterías de NiZn tienen un impacto ambiental de aproximadamente 14 MJ para la demanda energética acumulada (CED) y de 0,82 kg de CO₂ equivalentes para el potencial de calentamiento global (GWP) por kWh de energía liberada, lo que las sitúa entre las baterías de iones de litio y las de plomo-ácido.
  • La fase de uso contribuye significativamente al impacto de la energía electromagnética, ya que las baterías de NiZn tienen un menor impacto ambiental en comparación con las baterías de plomo-ácido, pero son similares a las tecnologías de iones de litio.
  • Las baterías de NiZn tienen un impacto ambiental menor que las baterías de plomo-ácido, con un impacto ligeramente mayor en comparación con las baterías de iones de litio, lo que las convierte en una opción favorable tanto desde el punto de vista económico como medioambiental.
  • Se espera que las futuras mejoras en los procesos de fabricación y los componentes de las celdas reduzcan la carga medioambiental de las baterías de NiZn y respalden su potencial como solución de almacenamiento de energía más sostenible.

Abstract:

This paper presents a comprehensive and systematic analysis of the environmental impacts (EI) of novel nickel-zinc battery (RNZB) technology, a promising alternative for energy storage applications. The paper develops mathematical models for estimating the life cycle environmental impacts of RNZB from the cradle to the grave based on an extensive literature review and the ISO standards for life cycle costing and life cycle analysis. The paper uses the ReCiPe 2016 life cycle analysis (LCA) method to calculate the EI of RNZB in terms of eighteen Midpoint impact categories and three Endpoint impact categories: damage to human health, ecosystem diversity, and resource availability. The paper also compares the EI of RNZB with those of other battery technologies, such as lead-acid and lithium-ion LFP and NMC. The paper applies the models and compares results with those provided by the software openLCA (version 1.11.0), showing its reliability and concluding that NiZn batteries contribute approximately 14 MJ for CED and 0.82 kg CO₂ eq. for global warming per kWh of released energy. This places them between lithium-ion and lead-acid batteries. This study suggests that NiZn battery technology could benefit from using more renewable energy in end-use applications and adopting green recovery technology to reduce environmental impact. Further developments can use these models as objective functions for heuristic optimization of the EI in the life cycle of RNZB.

Keywords:

Sustainable energy; nickel-zinc battery; life cycle analysis modeling; environmental impacts of battery technologies

Reference:

MALVIYA, A.K.; ZAREHPARAST MALEKZADEH, M.; LI, J.; LI, B.; SANTARREMIGIA, F.E.; MOLERO, G.D.; VILLALBA-SANCHIS, I.; YEPES, V. (2024). A formulation model for computation to estimate the Life Cycle Environmental Impact of NiZn Batteries. Energies, 17:2751. DOI:10.3390/en17112751

Descargar (PDF, 3.66MB)

 

Investigación sobre la optimización de las emisiones de carbono en proyectos internacionales de construcción

Acaban de publicarnos un artículo en Scientific Reports, revista indexada en el JCR. El documento enfatiza la importancia de contar con modelos de evaluación sólidos para abordar las emisiones y de carbono en los proyectos internacionales. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El trabajo presenta el proyecto del puente marítimo de Suramadu en Indonesia, construido según el modelo EPC por el gobierno chino, y muestra las especificaciones de diseño detalladas y los procesos de construcción. Además, establece un modelo de evaluación de las emisiones de carbono de los proyectos de inversión internacionales, que integra ocho etapas para analizar las fugas de carbono, destacando la importancia de evaluar con precisión las emisiones de carbono en los proyectos internacionales.

De Sakurai Midori – Trabajo propio, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=8028163

El documento contribuye al demostrar la fiabilidad y la naturaleza científica de los datos de evaluación mediante la combinación de la bibliografía, la evaluación y el acoplamiento multidisciplinario de modelos matemáticos, lo que contribuye a la formulación de políticas de emisiones y aranceles al carbono.

Analiza de manera innovadora los complejos efectos de acoplamiento de varios datos e indicadores de incertidumbre en los proyectos internacionales, proporcionando modelos y evaluaciones precisos de los efectos interactivos, algo esencial para los responsables políticos.

Abstract:

Due to the rapid economic development of globalization and the intensification of economic and trade exchanges, cross-international and regional carbon emissions have become increasingly severe. Governments worldwide establish laws and regulations to protect their countries’ environmental impact. Therefore, selecting robustness evaluation models and metrics is an urgent research topic. This article proves the reliability and scientificity of the assessment data through literature coupling evaluation, multidisciplinary coupling, mathematical model, and international engineering case analysis. The innovation of this project’s research lies in the comprehensive analysis of the complex coupling effects of various discrete data and uncertainty indicators on the research model across international projects and how to accurately model and evaluate interactive effects. This article provides scientific measurement standards and data support for governments worldwide to formulate carbon tariffs and carbon emission policies. Case analysis data shows that the carbon emission ratio of exporting and importing countries is 0.577:100; the carbon trading quota ratio is 32.50:100.

Keywords:

Construction industry, Environmental impact, Carbon trading, Model evaluation.

Reference:

ZHOU, Z.; WANG, Y.; ALCALÁ, J.; YEPES, V. (2024). Research on coupling optimization of carbon emissions and carbon leakage in international construction projects. Scientific Reports, 14: 10752. DOI:10.1038/s41598-024-59531-4

Como el artículo está publicado en abierto, os lo paso para su descarga:

Descargar (PDF, 10.82MB)

Optimización por acoplamiento térmico del impacto ambiental de un puente

Nos acaban de publicar en la revista Environmental Impact Assessment Review (primer cuartil del JCR) un artículo relacionado con la optimización por acoplamiento térmico del impacto ambiental de un puente. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El objetivo del artículo es minimizar el impacto ambiental del mantenimiento de los puentes durante una vida útil de 100 años mediante el desarrollo de un modelo de optimización termomecánica dinámica tridimensional. La fiabilidad del modelo se demuestra mediante un estudio de caso, que muestra una reducción de 49,9 millones de toneladas de emisiones, lo que equivale al 1,91% de las emisiones totales de diseño, durante un período de mantenimiento de 100 años.

Los resultados de la investigación pueden servir de base para futuros estudios y proporcionar un enfoque para evaluar el impacto ambiental de los cambios de temperatura a largo plazo en las estructuras. Esto puede contribuir al desarrollo de enfoques más eficaces para mitigar la contaminación ambiental en la industria de la construcción.

La editorial permite la descarga gratuita del artículo hasta el 30 de noviembre de 2023 en la siguiente dirección: https://authors.elsevier.com/c/1hv7iiZ5tCtN6

Abstract:

Infrastructure is a crucial aspect of promoting worldwide economic integration. However, the construction of infrastructure often results in high energy consumption and substantial emissions of greenhouse gases. Over time, the environment can also cause significant damage to bridges, leading to repeated repairs and replacements that further harm the environment. This research aims to minimize the environmental impact of bridge maintenance over a 100-year lifespan. The study utilizes a three-dimensional dynamic thermo-mechanical optimization model developed through comprehensive research and interdisciplinary collaboration in various fields such as Bibliometrics, Fluid Mechanics, Structural DynamicsThermoelectricity, and Damage Mechanics. From examining single crystal structures at a microscopic level to examining system components under extreme temperatures, this study provides a system for reducing environmental pollution. The model’s reliability is shown through a case study, demonstrating a reduction of 49.9 million tonnes of emissions, equivalent to 1.91% of total design emissions, over a 100-year maintenance period. This research provides a foundation for future studies and presents an approach for evaluating the environmental impact of long-term temperature changes in structures.

Keywords:

Construction industry; Structure; Temperature; Topology optimization; Stress; Sensitivity

Reference:

ZHOU, Z.; ZHOU, J.; ALCALÁ, J.; YEPES, V. (2024). Thermal coupling optimization of bridge environmental impact under natural conditions. Environmental Impact Assessment Review, 104:107316. DOI:10.1016/j.eiar.2023.107316

Evaluación del ciclo de vida de un puente en ambiente marino con ayuda de métodos no destructivos de detección de daños

Acaban de publicarnos un artículo en el Journal of Marine Science and Engineering, revista indexada en el JCR. Se trata de la evaluación del coste del ciclo de vida con ayuda de métodos no destructivos de un puente de hormigón en ambiente costero. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

  • El artículo evalúa el uso de métodos no destructivos de detección de daños, específicamente la técnica de densidad espectral de potencia (PSD), para reducir el impacto ambiental durante la reparación y el mantenimiento de un puente costero de hormigón. Los resultados muestran una reducción del 23% en los impactos ambientales cuando se utiliza el enfoque PSD durante la vida útil del puente.

  • La investigación evalúa las capacidades no destructivas y el enfoque dinámico de la técnica PSD para predecir la cantidad y la ubicación de los daños en la evaluación del ciclo de vida (LCA) del puente. Esta evaluación ayuda a los especialistas e ingenieros en el campo de la seguridad y el mantenimiento de los puentes.

Abstract:

Recently, using economic damage identification techniques to ensure the safety of bridges has become essential. But investigating the performance of those techniques for various conditions and environments and, in addition, a life cycle assessment (LCA) through these methods depending on the situation and during the life of a structure could help specialists and engineers in this field. In these regards, analyzing the implementation of a technique for the restoration and maintenance stages of costly structures such as bridges can illustrate the effect of each damage detection method on the LCA. This research assessed non-destructive abilities and a dynamic approach to predict the amount and location of damages in the LCA. For this purpose, the power spectral density (PSD) technique’s performance by different approaches in identifying corrosion damages for a coastal bridge and the effectiveness of using this technique on reducing the environmental impact compared with a conventional method were evaluated. The results demonstrate a reduction of the environmental impacts by approximately 23% when using the PSD during the bridge’s service life. In conclusion, the PSD approach does well in anticipating the damage quantity and location on a coastal bridge, which reduces the environmental impacts during the repair and maintenance.

Keywords:

Sustainability; non-destructive damage identification technique; life cycle assessment (LCA); environmental impacts assessment; concrete coastal bridge; corrosion; power spectral density method (PSD)

Reference:

HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023). Life Cycle Assessment of a Coastal Concrete Bridge Aided by Non-Destructive Damage Detection Methods. Journal of Marine Science and Engineering, 11(9):1656. DOI:10.3390/jmse11091656

Descargar (PDF, 5MB)

Desarrollo regional sostenible de la construcción basada en la teoría de la entropía

Acaban de publicarnos un artículo en Sustainability, revista indexada en el segundo cuartil del JCR. Se trata de aplicar la teoría de la entropía para evaluar el desarrollo sostenible de la construcción en una región determinada, en este caso, en China. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La humanidad se enfrenta actualmente al problema cada vez más urgente de la contaminación del medio ambiente. Para gestionar de forma rigurosa el medioambiente, los distintos gobiernos nacionales deberían basarse en bases científicas prácticas para ajustar y formular políticas y medidas legales basadas en el análisis de los datos existentes. En este trabajo se realiza un análisis basado en la teoría de la entropía de la innovación para evaluar el impacto de ocho provincias chinas, incluyendo los impactos ambientales, los económicos y los sociales. Los resultados muestran que los impactos en China deberían crecer desde 2021 hasta 2044 aproximadamente. Después de 2045, se estabilizarían, habiendo un crecimiento negativo en un corto período. La evaluación global del ciclo de vida (ECV) y la evaluación del impacto social (EIS) siguen siendo positivas. No habrá crecimiento negativo en los datos agregados y las emisiones serán nulas o negativas antes de 2108. Los datos finales de la investigación se presentan en forma de emisiones anuales, que proporcionan una base teórica para que el gobierno formule normativas y planes medioambientales a medio y largo plazo.

Abstract:

Human beings are now facing the increasingly urgent problem of global ecological environment pollution. To verify the scientific nature of environmental governance by governments of various countries, researchers need to provide a scientific basis and practical support for governments to adjust and formulate new policies and regulatory measures at any time through data analysis. This paper applies visual literature, aggregate analysis, engineering data programming, advanced mathematical science algorithms, and innovation entropy theory, and through this study, obtains sustainable impact data from eight Chinese provinces in the 21st century, including environmental, economic, and social impacts. The results show that China’s sustainable data should grow from 2021 to about 2044. After 2045, it will be stable, and there will be negative growth in a short period. The overall life cycle assessment (LCA) and social impact assessment (SIA) remain positive. There will be no negative growth in aggregate data and zero or negative emissions before 2108. The final research data are accurately presented in the form of annual emissions, which provide a scientific and theoretical basis for the government to formulate medium- and long-term ecological regulations and plans.

Keywords:

life cycle cost (LCC); life cycle assessment; social impact assessment; environment; bridge; carbon emissions

Reference:

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2022). Research on Sustainable Development of the Regional Construction Industry Based on Entropy Theory. Sustainability, 14(24): 16645. DOI:10.3390/su142416645

Como el artículo está publicado en abierto, os lo podéis descargar aquí mismo:

Descargar (PDF, 3.4MB)

Optimización de la estrategia de desarrollo sostenible en la gestión de proyectos de ingeniería internacionales

Acaban de publicarnos un artículo en la revista Mathematics, revista indexada en el primer decil del JCR. En este caso se ha desarrollado una aplicación para la optimización de una estrategia sostenible en la gestión de un proyecto de ingeniería internacional. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El objetivo de este artículo es establecer un marco internacional para la gestión sostenible de proyectos en ingeniería, completar la investigación en este campo y proponer una base teórica para el establecimiento de un nuevo sistema de gestión de proyectos. El artículo adopta como método de investigación la revisión de la literatura, un algoritmo de programación matemática y el estudio de casos. La revisión de la literatura analizó los resultados de 21 años de investigación en este campo. Como resultado, se constató que el sistema de gestión de proyectos presenta deficiencias. Se estableció un modelo matemático para analizar la composición y los elementos del sistema optimizado de gestión de proyectos internacionales. La investigación de casos seleccionó grandes puentes para su análisis y verificó la superioridad y viabilidad del sistema teórico propuesto. La aportación de esta nueva investigación radica en el establecimiento de un modelo de sistema de gestión de proyectos internacional completo; en la integración del desarrollo sostenible con la gestión de proyectos; y en la propuesta de nuevos marcos de investigación y modelos de gestión para promover el desarrollo sostenible de la industria de la construcción.

Abstract:

The aim of this paper is to establish an international framework for sustainable project management in engineering, to make up the lack of research in this field, and to propose a scientific theoretical basis for the establishment of a new project management system. The article adopts literature review, mathematical programming algorithm and case study as the research method. The literature review applied the visual clustering research method and analyzed the results of 21-year research in this field. As a result, the project management system was found to have defects and deficiencies. A mathematical model was established to analyze the composition and elements of the optimized international project management system. The case study research selected large bridges for analysis and verified the superiority and practicability of the theoretical system. Thus, the goal of sustainable development of bridges was achieved. The value of this re-search lies in establishing a comprehensive international project management system model; truly integrating sustainable development with project management; providing new research frames and management models to promote the sustainable development of the construction industry.

Keywords:

Bridge; project management; environmental impact; cost; optimization

Reference:

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Optimized application of sustainable development strategy in international engineering project management. Mathematics, 9(14):1633. DOI:10.3390/math9141633

Descargar (PDF, 4.59MB)

 

Análisis del ciclo de vida de puentes usando matemática difusa bayesiana

Acaban de publicarnos un artículo en la revista científica Applied Sciences (indexada en el JCR, Q2) un artículo que trata sobre el análisis del ciclo de vida de puentes usando redes bayesianas y matemática difusa. El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

En la actualidad, reducir el impacto de la industria de la construcción en el medio ambiente es la clave para lograr un desarrollo sostenible. Son muchos los que utilizan software para evaluar el impacto ambiental de los puentes. Sin embargo, debido a la complejidad y discreción de los factores medioambientales de la industria de la construcción, es difícil actualizarlos y determinarlos rápidamente, y se da el fenómeno de la pérdida de datos en las bases de datos. La mayoría de los datos perdidos se optimizan mediante la simulación de Monte Carlo, lo que reduce en gran medida la fiabilidad y precisión de los resultados de la investigación. Este trabajo utiliza la teoría matemática difusa avanzada bayesiana para resolver este problema. En la investigación, se establece una evaluación de matemática difusa bayesiana y un modelo de discriminación prioritaria de sensibilidad de varios niveles, y se definen los pesos y los grados de pertenencia de los factores de influencia para lograr una cobertura completa de los factores de influencia. Con el apoyo de la modelización teórica, se evalúan exhaustivamente todos los factores de influencia de las etapas del ciclo de vida de la estructura del puente. Los resultados muestran que la fabricación de materiales, el mantenimiento y el funcionamiento del puente siguen produciendo contaminación ambiental; la fuente principal de las emisiones supera el 53% del total de las emisiones. El factor de impacto efectivo alcanza el 3,01. Al final del artículo, se estableció un modelo de sensibilidad de “big data“. Optimizando con estas técnicas, las emisiones contaminantes del tráfico se redujeron en 330 toneladas. Se confirma la eficacia y la practicidad del modelo de evaluación integral de la metodología propuesta para tratar los factores inciertos en la evaluación del desarrollo sostenible en el caso de los puentes. Los resultados de la investigación contribuye a alcanzar los objetivos de desarrollo sostenible en la industria de la construcción.

El artículo se ha publicado en abierto, y se puede descargar en el siguiente enlace: https://www.mdpi.com/2076-3417/11/11/4916

ABSTRACT:

At present, reducing the impact of the construction industry on the environment is the key to achieving sustainable development. Countries all over the world are using software systems for bridge environmental impact assessment. However, due to the complexity and discreteness of environmental factors in the construction industry, they are difficult to update and determine quickly, and there is a phenomenon of data missing in the database. Most of the lost data are optimized by Monte Carlo simulation, which greatly reduces the reliability and accuracy of the research results. This paper uses Bayesian advanced fuzzy mathematics theory to solve this problem. In the research, a Bayesian fuzzy mathematics evaluation and a multi-level sensitivity priority discrimination model are established, and the weights and membership degrees of influencing factors were defined to achieve comprehensive coverage of influencing factors. With the support of theoretical modelling, software analysis and fuzzy mathematics theory are used to comprehensively evaluate all the influencing factors of the five influencing stages in the entire life cycle of the bridge structure. The results show that the material manufacturing, maintenance, and operation of the bridge still produce environmental pollution; the main source of the emissions exceeds 53% of the total emissions. The effective impact factor reaches 3.01. At the end of the article, a big data sensitivity model was established. Through big data innovation and optimization analysis, traffic pollution emissions were reduced by 330 tonnes. Modeling of the comprehensive research model; application; clearly confirms the effectiveness and practicality of the Bayesian network fuzzy number comprehensive evaluation model in dealing with uncertain factors in the evaluation of the sustainable development of the construction industry. The research results have made important contributions to the realization of the sustainable development goals of the construction industry.

Keywords:

Construction industry; environmental; impact factor; analysis; contribution

Reference:

ZHOU, Z.; ALCALÁ, J.; KRIPKA, M.; YEPES, V. (2021). Life cycle assessment of bridges using Bayesian Networks and Fuzzy Mathematics. Applied Sciences, 11(11):4916. DOI:10.3390/app11114916

Descargar (PDF, 5MB)

 

Análisis de ciclo de vida del puente atirantado sobre el río Hun He en Liaoning, China

Acaban de publicarnos un artículo en la revista International Journal of Environmental Research and Public Health (revista indexada en el JCR, en el primer cuartil) sobre el ciclo de vida del puente atirantado sobre el río Hun He, en Liaoning, China.

El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

En este trabajo se estudió impacto ambiental de un puente atirantado de tres torres mediante el software openLCA, y se analizaron más de 23.680 grupos de datos utilizando la cadena de Markov y otros métodos de investigación. La conclusión muestra que el control de la contaminación de los vehículos que pasan y la mejora de la durabilidad de los materiales de construcción son la clave para reducir la contribución del carbono.

ABSTRACT

Due to the rapid growth of the construction industry’s global environmental impact, especially the environmental impact contribution of bridge structures, it is necessary to study the detailed environmental impact of bridges at each stage of the full life cycle, which can provide optimal data support for sustainable development analysis. In this work, the environmental impact case of a three-tower cable-stayed bridge was analyzed through openLCA software, and more than 23,680 groups of data were analyzed using Markov chain and other research methods. It was concluded that the cable-stayed bridge contributed the most to the global warming potential value, which was mainly concentrated in the operation and maintenance phases. The conclusion shows that controlling the exhaust pollution of passing vehicles and improving the durability of building materials were the key to reducing carbon contribution and are also important directions for future research.

KEYWORDS

Greenhouse gas; environmental impact; cable-stayed bridge; life-cycle assessment; sustainable construction

REFERENCE:

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2020). Bridge Carbon Emissions and Driving Factors Based on a Life-Cycle Assessment Case Study: Cable-Stayed Bridge over Hun He River in Liaoning, China. International Journal of Environmental Research and Public Health, 17(16):5953. DOI:10.3390/ijerph17165953

Descargar (PDF, 7.85MB)