Un algoritmo heurístico basado en el jazz ayuda a decidir en qué infraestructuras es prioritario invertir

By World-Telegram staff photographer [Public domain], via Wikimedia Commons

Investigadores de la Universitat Politècnica de València y de la Universidad de La Frontera (Chile) han elaborado un algoritmo, basado en la armonía musical del jazz, que determina qué inversión es más adecuada

La metodología ya se ha aplicado en El Salvador, donde ha permitido priorizar las inversiones en carreteras

Las administraciones públicas se enfrentan continuamente con problemas de gran calado social cuando tienen que invertir grandes sumas de dinero en infraestructuras clave, como puede ser una carretera, un hospital o una universidad.

Ahora, un equipo de investigadores de la Universitat Politècnica de València y de la Universidad de La Frontera (Chile) ha desarrollado un novedoso estudio que demuestra que el jazz puede ayudarles a decidir en qué infraestructuras es mejor invertir el dinero, para favorecer así la calidad de vida de los ciudadanos. Su trabajo ha sido publicado en el Journal of Cleaner Production.

La metodología diseñada por el equipo de científicos españoles y chilenos se basa en la inteligencia subyacente en la armonía musical del jazz.  “La armonía nos ha servido de inspiración para elaborar un algoritmo que es capaz de determinar el impacto de una determinada decisión –invertir en un aeropuerto o en una línea de AVE, por ejemplo – tanto a corto como a medio y largo plazo”, apunta Víctor Yepes, investigador del Instituto Universitario de Ciencia y Tecnología del Hormigón (ICITECH) de la Universitat Politècnica de València.

Según explica el profesor Yepes, el algoritmo de búsqueda armónica (harmony search, en inglés) se basa en el proceso de la improvisación musical. “No todo el mundo posee habilidad para improvisar música, pues es un proceso que requiere experiencia y conocimiento previo de las armonías. Por ejemplo, en el jazz, el músico compone una nueva melodía basándose en sus conocimientos musicales para seleccionar nuevas notas aleatoriamente. Si el conjunto de notas tocadas se consideran una buena armonía, esta se guarda en la memoria de cada músico, incrementando la posibilidad de hacer una buena armonía la próxima vez”, señala el investigador de la UPV.

El algoritmo desarrollado por los investigadores españoles y chilenos hace algo parecido. Cada melodía se define por un vector, al igual que cada infraestructura que debe ser elegida. Cada nueva iteración del algoritmo elige una melodía (infraestructura) parecida que, si es mejor, se añade al repertorio. “Al final del proceso, el algoritmo es capaz de definir una melodía (infraestructura) de calidad muy alta. Dicho de otro modo, la inteligencia del algoritmo permite ayudar a elegir la mejor infraestructura posible, considerando aspectos tan diversos como la empleabilidad, la educación, la sanidad, el confort o la calidad de vida”, apunta Víctor Yepes.

Más objetivo

El método permite minimizar los errores al decidir qué tipo de inversión es la más adecuada, haciendo más objetiva la decisión de las autoridades, al considerar no solo los efectos económicos y medioambientales, sino también los sociales, que son más difíciles de evaluar.

“Los factores económicos o medioambientales condicionan el tipo de decisión. Pero los efectos en la sociedad a corto y largo plazo pueden ser irreversibles. Muchos son los ejemplos de malas decisiones con graves repercusiones: aeropuertos infrautilizados, líneas de alta velocidad innecesarias, altas listas de espera en hospitales, altísimos porcentajes de paro, etc. Este método ayudaría a acabar con estas situaciones”, destaca Víctor Yepes.

El Salvador

La metodología se ha aplicado ya en El Salvador, donde ha permitido priorizar las inversiones en carreteras, maximizando los beneficios tanto a corto como a largo plazo. “La trascendencia del método desarrollado es su aplicabilidad a cualquier contexto y territorio, lo que permite mejorar las condiciones de vida de amplios sectores sociales con ayuda de la inteligencia subyacente en la música”, concluye Víctor Yepes.

Os dejo también una entrevista radiofónica en À Punt Ràdio:

Agradecimientos:

Luis Zurano, de la Unidad de Cultura Científica e Innovación de la Universitat Politècnica de València

Referencias:

SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects.  Journal of Cleaner Production, 176:521-534. https://doi.org/10.1016/j.jclepro.2017.12.140

http://www.upv.es/noticias-upv/noticia-9959-algoritmo-de-bu-es.html

http://www.expansion.com/sociedad/2018/04/21/5adb576e468aebd0578b466b.html

http://www.cope.es/noticias/cultura/jazz-ayuda-decidir-que-infraestructuras-prioritario-invertir_206188

http://www.lavanguardia.com/vida/20180421/442818278872/el-jazz-ayuda-a-decidir-en-que-infraestructuras-es-prioritario-invertir.html

http://agencias.abc.es/agencias/noticia.asp?noticia=2797859

https://www.elconfidencial.com/ultima-hora-en-vivo/2018-04-21/el-jazz-ayuda-a-decidir-en-que-infraestructuras-es-prioritario-invertir_1499304/

https://www.efe.com/efe/comunitat-valenciana/portada/el-jazz-ayuda-a-decidir-en-que-infraestructuras-es-prioritario-invertir/50000877-3591711

https://www.diarilaveu.com/noticia/81405/algoritme-inspirat-jazz-decidir-infraestructures

http://ruvid.org/wordpress/?p=39656

¿Cómo valorar el impacto social de las infraestructuras? Estado del arte

Acaban de publicarnos un artículo en la revista Journal of Cleaner Production (primer decil del JCR), de la editorial ELSEVIER, en la que revisamos el estado del arte de la investigación realizada a nivel internacional sobre la aplicación de las técnicas de valoración multicriterio al impacto social de las infraestructuras. El tema no es nada sencillo, puesto que los impactos sociales son mucho más difíciles de valorar que los impactos económicos o medioambientales. Nos referimos a aspectos como el empleo, el bienestar social, la salud pública, la productividad, el desarrollo regional, la equidad intergeneracional, la igualdad social, la educación, etc. Además, hay que tener en cuenta que, al igual que una piedra cae en una balsa de agua, las ondas generadas (el impacto) presentan un estado transitorio (corto plazo) y otro estacionario (largo plazo). A veces es difícil conjugar el corto y el largo plazo en la evaluación de la sostenibilidad social.

Podéis encontrar el artículo en el siguiente enlace: https://www.researchgate.net/publication/323859703_A_Review_of_Multi-Criteria_Assessment_of_the_Social_Sustainability_of_Infrastructures

Referencia: 

SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513. https://doi.org/10.1016/j.jclepro.2018.03.022

Abstract:

Nowadays multi-criteria methods enable non-monetary aspects to be incorporated into the assessment of infrastructure sustainability. Yet evaluation of the social aspects is still neglected and the multi-criteria assessment of these social aspects is still an emerging topic. Therefore, the aim of this article is to review the current state of multi-criteria infrastructure assessment studies that include social aspects. The review includes an analysis of the social criteria, participation and assessment methods. The results identify mobility and access, safety and local development among the most frequent criteria. The Analytic Hierarchy Process and Simple Additive Weighting methods are the most frequently used. Treatments of equity, uncertainty, learning and consideration of the context, however, are not properly analyzed yet. Anyway, the methods for implementing the evaluation must guarantee the social effect on the result, improvement of the representation of the social context and techniques to facilitate the evaluation in the absence of information.

Keywords:

Infrastructure
Multi-criteria
Social sustainability
Equity
Stakeholders
Uncertainty

 

Highlights:

  • Review of multi-criteria assessment methods of infrastructure social sustainability.
  • Identify trends of social criteria considered.
  • Identify trends of participation of stakeholders.
  • Identify trends of multi-criteria methods.
  • Identify trends of consideration of equity, context and social learning.

 

 

¿Cómo afectan los costes al mantenimiento de un puente cuando se consideran aspectos sociales?

https://www.ailladearousa.com

Pocas veces se incorporan en los proyectos de puentes actuales las variables sociales como factores determinantes de su diseño. Tampoco se dedica la atención suficiente al análisis del coste del ciclo de vida para evaluar la mejor alternativa posible de diseño. Considerar en nuestros proyectos este tipo de variables podría reducir, por ejemplo, en un 60% los costes de mantenimiento. También se constataría el hecho de que incrementar solamente 5 mm el recubrimiento de las armaduras de las estructuras de hormigón podría reducir el coste del mantenimiento en un 40%. Un ejemplo de la aplicación de este tipo de metodologías es la que nos acaban de publicar en la revista Sustainability. Allí se ha analizado el coste del ciclo de vida de las medidas de prevención aplicado a un puente de hormigón postesado expuesto al ataque de clorhídricos. Para ello se ha elegido el puente de la Isla de Arosa, en Galicia (España). Os dejo el artículo completo y la referencia.

Referencia:

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3):845. doi:10.3390/su10030845 .

Descargar (PDF, 1.87MB)

La perspectiva del ciclo de vida de los puentes

Fotografía: Xosé Manuel López Gallego

La sostenibilidad en el ámbito de la construcción constituye una línea de trabajo importante en este momento (Yepes et al., 2016; Torres-Machí et al., 2017; Zastrow et al., 2017). Los puentes se proyectan para ser funcionales durante muchos años, por lo que deben considerarse todos los aspectos relacionados con su ciclo de vida: proyecto, construcción, operación y desmantelamiento. Es por ello que la inversión debe contemplar el deterioro del puente y su mantenimiento para mantener la estructura en buenas condiciones el máximo tiempo posible. Una revisión reciente de la aplicación de los métodos de decisión multicriterio a los puentes puede consultarse en el trabajo de Penadés-Plà et al. (2016).

Sarma y Adeli (1998) revisaron los estudios realizados sobre la optimización de estructuras de hormigón y detectaron cierta carencia en cuanto a la investigación en el ámbito de la optimización de las estructuras que considere el coste de todo el ciclo de vida, y no solo el coste inicial de su construcción. Frangopol y Kim (2011) también reivindicaron la importancia de extender la vida útil de las estructuras, pues muchas de ellas empiezan a mostrar señales significativas de deterioro antes de lo esperado. Para prolongar la vida de las estructuras deterioradas, se pueden aplicar medidas de mantenimiento que retrasen la propagación de los daños, o bien reducir el grado de dicho daño (Kim et al., 2013). Frangopol y Soliman (2016) describieron las acciones necesarias para la planificación eficaz del mantenimiento para maximizar las prestaciones de la estructura durante el ciclo de vida bajo restricciones presupuestarias. García-Segura et al. (2017) han optimizado las labores de mantenimiento de puentes pretensados desde el punto de vista de sostenibilidad económica, social y ambiental partiendo de diseños optimizados con múltiples objetivos (económico, durabilidad y seguridad).

El mantenimiento de los elementos de los puentes de grandes luces situados en zonas costeras deteriorados por corrosión representa la mayor parte del coste del ciclo de vida de estas estructuras (Cheung et al., 2009). Kendall et al. (2008) propusieron un modelo que integraba el análisis del ciclo de vida y los costes asociados desde la perspectiva de la sostenibilidad. Lee et al., (2006) evaluaron la fiabilidad de un puente cuando la corrosión y el tráfico de camiones pesados afectan a la estructura. Propusieron una metodología realista de los costes a lo largo del ciclo de vida, incluyendo los costes iniciales, los de mantenimiento, los esperados en la rehabilitación, las pérdidas por accidentes, los costes del usuario de la carretera y las pérdidas socioeconómicas indirectas. Penadés-Plà et al. (2017, 2018) han estudiado el ciclo de vida de puentes de sección en cajón y puentes de vigas artesa. Navarro et al. (2018) han analizado en un trabajo reciente el coste del ciclo de vida de las estrategias de mantenimiento en puentes pretensados expuestos al ataque de clorhídricos.

Neves y Frangopol (2005) indicaron cómo la evaluación de la seguridad de una estructura constituye un indicador básico para medir su rendimiento, pues el estado de la estructura no es un indicador preciso para evaluar la seguridad y la funcionalidad de un puente. Liu y Frangopol (2005) estudiaron la mejor planificación del mantenimiento de un puente durante su ciclo de vida mediante una optimización multiobjetivo de la vida útil, el nivel de seguridad y el coste del mantenimiento. Como se puede ver, los objetivos de rendimiento estructural y de economía se han añadido a los aspectos sociales y ambientales de las acciones de mantenimiento de las estructuras (Dong et al., 2013; Sierra et al., 2016; García-Segura et al., 2017).

Referencias:

Cheung, M. M.; Zhao, J.; Chan, Y. B. (2009). Service life prediction of RC bridge structures exposed to chloride environments. Journal of Bridge Engineering, 14(3), 164–178.

Dong, Y.; Frangopol, D.M.; Saydam, D. (2013). Time-variant sustainability assessment of seismically vulnerable bridges subjected to multiple hazards. Earthquake Engineering & Structural Dynamics, 42(10), 1451–1467.

Frangopol, D.M.; Kim, S. (2011). Service life, reliability and maintenance of civil structures. In L. S. Lee; V. Karbari (Eds.), Service Life Estimation and Extension of Civil Engineering Structures (pp. 145–178). Elsevier.

Frangopol, D.M.; Soliman, M. (2016). Life-cycle of structural systems: recent achievements and future directions. Structure and Infrastructure Engineering, 12(1), 1–20.

García-Segura, T.;  Yepes, V.; Frangopol, D.M.; Yang, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391.

Kendall, A.; Keoleian, G.A.; Helfand, G. E. (2008). Integrated life-cycle assessment and life-cycle cost analysis model for concrete bridge deck applications. Journal of Infrastructure Systems, 14(3), 214–222.

Kim, S.; Frangopol, D.M.; Soliman, M. (2013). Generalized probabilistic framework for optimum inspection and maintenance planning. Journal of Structural Engineering, 139(3), 435–447.

Lee, K.M.; Cho, H.N.; Cha, C.J. (2006). Life-cycle cost-effective optimum design of steel bridges considering environmental stressors. Engineering Structures, 28(9), 1252–1265.

Liu, M.; Frangopol, D. M. (2005). Multiobjective maintenance planning optimization for deteriorating bridges considering condition, safety, and life-cycle cost. Journal of Structural Engineering, 131(5), 833–842.

Navarro, I.J.; Yepes, V.; Martí, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3), 845.

Neves, L.C.; Frangopol, D.M. (2005). Condition, safety and cost profiles for deteriorating structures with emphasis on bridges. Reliability Engineering & System Safety, 89(2), 185–198.

Penadés-Plà, V.; García-Segura, T.; Martí, J.V.; Yepes, V. (2018). An optimization-LCA of a prestressed concrete precast bridge. Sustainability, 10(3):685.

Penadés-Plà, V.; Martí, J.V.; García-Segura, T.;  Yepes, V. (2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10):1864.

Penadés-Plà, V.; García-Segura, T.; Martí, J.V.; Yepes, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design. Sustainability, 8(12):1295.

Sarma, K.C.; Adeli, H. (1998). Cost optimization of concrete structures. Journal of Structural Engineering, 124(5), 570–578.

Sierra, L.A.; Pellicer, E.; Yepes, V. (2016). Social sustainability in the life cycle of Chilean public infrastructure. Journal of Construction Engineering and Management ASCE, 142(5):  05015020.

Torres-Machí, C.; Pellicer, E.; Yepes, V.; Chamorro, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Journal of Cleaner Production, 148:90-102.

Yepes, V.; Torres-Machí, C.; Chamorro, A.; Pellicer, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550.

Zastrow, P.; Molina-Moreno, F.; García-Segura, T.; Martí, J.V.; Yepes, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: a parametric study. Journal of Cleaner Production, 140:1037-1048.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Análisis de ciclo de vida de puentes óptimos de vigas artesa

Acaban de publicarnos un artículo en la revista internacional Sustainability sobre análisis de ciclo de vida de puentes óptimos de vigas. La evaluación del impacto ambiental se realiza a lo largo del ciclo de vida de puentes de hormigón postesado de vigas artesa que previamente han sido optimizados mediante una metaheurística de algoritmos meméticos. Os dejo a continuación la referencia de la revista. Además os podéis descargar y distribuir el artículo sin problema, pues está editado en abierto:

http://www.mdpi.com/2071-1050/10/3/685/html

Referencia:

PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2018). An optimization-LCA of a prestressed concrete precast bridge. Sustainability, 10(3):685. doi:10.3390/su10030685

Descargar (PDF, 2.69MB)

Más de 10 años investigando la optimización de estructuras de hormigón

Parece que fue ayer, pero este 2018 cumplimos 10 años desde que nos publicaron el primer artículo internacional relacionado con la optimización heurística de estructuras de hormigón. Sin embargo, todo empezó un poco antes, en el 2002, año en que defendí mi tesis doctoral denominada “Optimización heurística económica aplicada a las redes de transporte del tipo VRPTW”. Con ella pude ponerme al día con los procedimientos de optimización heurística más prometedores en ese momento. Sin embargo, pronto me dí cuenta de las posibilidades que tenía aplicar estos algoritmos a la optimización de problemas reales de ingeniería, en particular las estructuras de hormigón.

Por tanto, en septiembre del año 2002 fue el inicio del Grupo de Investigación de Procedimientos de Construcción, Optimización y Análisis de Estructuras. La iniciativa de creación del grupo correspondió a los profesores González-Vidosa y Yepes Piqueras. El primero de ellos, con una amplia experiencia en la investigación y la práctica profesional de las estructuras de hormigón armado y pretensado; y el segundo, con una experiencia reciente en el campo de la optimización heurística en la ingeniería. A partir de ese momento empezaron a gestarse las primeras tesis doctorales, las primeras de las cuales se defendieron en el año 2007, correspondientes a Cristian Perea de Dios y a Ignacio Javier Payá Zaforteza. En el año 2008 se publicaron nuestros tres primeros artículos: Perea et al. (2008), Payá et al. (2008) y Yepes et al. (2008).

En aquellos momentos, las preguntas a las que pretendíamos dar una solución fueron las siguientes:

  • ¿Es capaz la inteligencia artificial de diseñar automáticamente las estructuras?
  • ¿La inteligencia artificial podrá suplantar la experiencia del ingeniero en el prediseño de las estructuras?
  • ¿Se pueden utilizar técnicas procedentes del campo de la Investigación Operativa en la optimización de las estructuras?
  • ¿Puede alcanzarse una economía importante en los costes de construcción de las estructuras sin merma de la calidad?
  • ¿Aparecerán nuevas patologías si los módulos de optimización automática empiezan a implantarse de forma habitual en los paquetes de cálculo comerciales?
  • ¿Deberían revisarse las normas de cálculo si se extiende el cálculo optimizado de estructuras?
  • ¿Deberán tenerse en cuenta estados límites no considerados hasta ahora en la comprobación de las estructuras optimizadas?
  • ¿Pueden optimizarse varios criterios a la vez? ¿Cómo son las estructuras de bajo coste y alta seguridad?
  • ¿Es posible valorar el coste de la seguridad integral de una estructura?
  • ¿Podemos diseñar estructuras de bajo coste y que a la vez consuman poco CO2 y energía para hacer una ingeniería sostenible?
  • ¿Se puede aplicar el concepto de “huella ecológica” al diseño de las estructuras?

 

Fueron nuestros tres primeros artículos internacionales, pero a fecha de hoy ya se han publicado más de 60 y dirigido una quincena de tesis doctorales, así como una decena de proyectos de investigación. La lista la podéis ver en el blog: http://victoryepes.blogs.upv.es/publicaciones/articulos-jcr/

Referencias:

PEREA, C.; ALCALÁ, J.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2008). Design of Reinforced Concrete Bridge Frames by Heuristic Optimization. Advances in Engineering Software, 39(8): 676-688.

PAYÁ, I.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2008). Multiobjective Optimization of Reinforced Concrete Building Frames by Simulated Annealing. Computer-Aided Civil and Infrastructure Engineering, 23(8): 596-610.

YEPES, V.; ALCALÁ, J.; PEREA, C.; GONZÁLEZ-VIDOSA, F. (2008). A Parametric Study of Optimum Earth Retaining Walls by Simulated AnnealingEngineering Structures30(3): 821-830.

 

Los puentes de sección en cajón de hormigón postesado

Figura 1.- Esquema de un puente de hormigón postesado de sección en cajón para carreteras

Una viga de sección en cajón unicelular consta de una losa superior, dos almas y una losa inferior (Figura 1). La losa superior materializa la plataforma del puente, actúa como cabeza de compresión frente a momentos flectores positivos y sirve de alojamiento del pretensado necesario para resistir los momentos negativos. Las almas sostienen la losa superior, transmiten las cargas de cortante a los apoyos del puente y pueden alojar los cables de pretensado cuando estos se desplazan a lo largo del puente. Por último, la losa inferior une las secciones inferiores de las almas, aloja el pretensado para resistir los momentos positivos, sirve de cabeza de compresión ante momentos negativos y cierra el circuito de torsión de la estructura.

Según Schlaich y Scheef (1982), la sección en cajón es la tipología de superestructura más ampliamente utilizada en el proyecto y construcción de puentes. El Puente de Sclayn, sobre el río Maas, fue el primer puente continuo pretensado de sección en cajón. El puente, con dos tramos de 62,7 m, fue construido por Magnel en 1948. La sección en cajón no solo se puede encontrar en los puentes viga, sino en otras tipologías tipo arco, pórtico, atirantados y colgantes. El número de puentes continuos con esta sección ha aumentado recientemente (Ates, 2011) debido a su resistencia tanto a momentos flectores positivos como negativos, así como a la torsión. Además, otra característica importante es el peso propio reducido frente a otras tipologías. En cuanto a los métodos de construcción, los puentes de sección en cajón se pueden construir “in situ” o bien prefabricarse en dovelas que posterormente se izan y pretensan (Sennah y Kennedy, 2002). En la Figura 2 se muestra un puente en cajón situado sobre el nuevo cauce del río Turia, cuyo autor es Javier Manterola y que fue uno de los primeros puentes que tuve la oportunidad de construir durante mi etapa profesional en Dragados y Construcciones, S.A.

Figura 2.- Imagen aérea de la Estructura E-10, sobre el nuevo cauce del Turia, de Javier Manterola (1991). Uno de los primeros puentes que tuve la oportunidad de construir en mi etapa profesional en Dragados y Construcciones, S.A.

La investigación en el ámbito de los puentes en cajón ha tratado de mejorar su diseño (Yepes, 2017). Al principio, los trabajos se centraron en mejorar el comportamiento estructural (Chang y Gang, 1990; Ishac y Smith, 1985; Luo et al., 2002; Mentrasti, 1991; Razaqpur y Li, 1991; Shushkewich, 1988). Estos trabajos se centraron en el análisis del cortante y la distorsión de la sección. Posteriormente, Ates (2011) estudió el comportamiento de un puente viga continuo durante la etapa de construcción, incluyendo efectos dependientes del tiempo. Moon et al. (2005) también se centraron en la etapa de construcción, estudiando las grietas que aparecieron en la losa inferior de un puente prefabricado, que ocurrieron por una deformación excesiva durante el tesado provisional de las dovelas.

Otros autores investigaron el efecto de las condiciones de durabilidad en la resistencia. Liu et al. (2009) propusieron detectar los daños desarrollando técnicas de monitorización y evaluando el estado del puente. Guo et al. (2010) evaluaron la fiabilidad para estudiar la fluencia, la retracción y la corrosión a lo largo del tiempo de un puente mixto de vigas en cajón expuesto a un ambiente de cloruros. Lee et al. (2012) propusieron un sistema de gestión del ciclo de vida de puentes en cajón que integrase el diseño y la construcción. Fernandes et al. (2012) utilizaron métodos magnéticos para detectar la corrosión en los cables de pretensado de puentes prefabricados. Saad-Eldeen et al. (2013) estudiaron el momento flector último en vigas afectadas por corrosión. Los resultados se utilizaron para proponer un módulo tangente equivalente que tiene en cuenta la reducción total del área de la sección transversal debido a este tipo de degradación.

También existen algunas recomendaciones para el predimensionamiento de los puentes en cajón (Schlaich y Scheff, 1982; Fomento, 2000; SETRA, 2003). Sin embargo, consta relativamente muy poca investigación que haya abordado su diseño eficiente. Schlaich y Scheff (1982) indican que en el caso de puentes de sección en cajón “la solución óptima, siempre y exclusivamente una evaluación subjetiva, solo puede ser encontrada a través de la comparación de muchas soluciones alternativas”. La eficiencia, entendida como la máxima seguridad posible con un mínimo de inversión, constituye un objetivo común en el diseño estructural. Este tipo de problema presenta tal cantidad de variables, cada uno de las cuales puede adoptar una amplia gama de valores discretos, que hace que el espacio de soluciones sea tan inmenso que es muy difícil abordar la optimización sin emplear la inteligencia artificial. Además de esto, la preocupación por el medio ambiente, la importancia de la durabilidad y el desarrollo de nuevos materiales pueden modificar el diseño del puente. Los métodos de optimización ofrecen una alternativa eficaz a los diseños basados en la experiencia (García-Segura et al., 2014a; 2014b; 2015; 2017a; 2017b; García-Segura y Yepes, 2016; Yepes et al., 2017). Así, estas técnicas se han utilizado para abordar la optimización de sistemas estructurales reales. Por último, destacar la aplicación de las técnicas de decisión multicriterio a la hora de proyectar este tipo de puentes (Penadés-Plà et al., 2016).

Referencias:

  • Ates, S. (2011). Numerical modelling of continuous concrete box girder bridges considering construction stages. Applied Mathematical Modelling, 35(8), 3809–3820.
  • Chang, S.T.; Gang, J. Z. (1990). Analysis of cantilever decks of thin-walled box girder bridges. Journal of Structural Engineering, 116(9), 2410–2418.
  • Fernandes, B.; Titus, M.; Nims, D.K.; Ghorbanpoor, A.; Devabhaktuni, V. (2012). Field test of magnetic methods for corrosion detection in prestressing strands in adjacent box-beam bridges. Journal of Bridge Engineering, 17(6), 984–988.
  • Fomento M. (2000). New overpasses: general concepts. Madrid, Spain: Ministerio de Fomento.
  • García-Segura, T.; Yepes, V.; Alcalá, J. (2014a). Sustainable design using multiobjective optimization of high-strength concrete I-beams. In The 2014 International Conference on High Performance and Optimum Design of Structures and Materials HPSM/OPTI (Vol. 137, pp. 347–358). Ostend, Belgium.
  • García-Segura, T.; Yepes, V.; Martí, J.V.; Alcalá, J. (2014b). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures, 11(7), 1190–1205.
  • García-Segura, T.; Yepes, V.; Alcalá, J.; Pérez-López, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92, 112–122.
  • García-Segura, T.; Yepes, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125, 325–336.
  • García-Segura, T.; Yepes, V.; Frangopol, D.M. (2017a). Multi-objective design of post-tensioned concrete road bridges using artificial neural networks. Structural and Multidisciplinary Optimization, 56(1):139-150.,
  • García-Segura, T.; Yepes, V.; Frangopol, D.M.; Yang, D. Y. (2017b). Lifetime reliability-based optimization of post-tensioned box-girder bridges. Engineering Structures, 145, 381-391.
  • Guo, T.; Sause, R.; Frangopol, D.M.; Li, A. (2010). Time-Dependent Reliability of PSC Box-Girder Bridge Considering Creep, Shrinkage, and Corrosion. Journal of Bridge Engineering, 16(1), 29-43.
  • Ishac, I.I.; Smith, T.R.G. (1985). Approximations for Moments in Box Girders. Journal of Structural Engineering, 111(11), 2333–2342.
  • Liu, C.; DeWolf, J.T.; Kim, J.H. (2009). Development of a baseline for structural health monitoring for a curved post-tensioned concrete box–girder bridge. Engineering Structures, 31(12), 3107–3115.
  • Luo, Q.Z.; Li, Q.S.; Tang, J. (2002). Shear lag in box girder bridges. Journal of Bridge Engineering, 7(5), 308.
  • Mentrasti, L. (1991). Torsion of box girders with deformable cross sections. Journal of Engineering Mechanics, 117(10), 2179–2200.
  • Moon, D.Y.; Sim, J.; Oh, H. (2005). Practical crack control during the construction of precast segmental box girder bridges. Computers & Structures, 83(31-32), 2584–2593.
  • Penadés-Plà, V.; García-Segura, T.; Martí, J.V.; Yepes, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design. Sustainability, 8(12), 1295.
  • Razaqpur, A.G.; Li, H. (1991). Thin‐walled multicell box‐girder finite element. Journal of Structural Engineering, 117(10), 2953-2971.
  • Saad-Eldeen, S.; Garbatov, Y.; Guedes Soares, C. (2013). Effect of corrosion severity on the ultimate strength of a steel box girder. Engineering Structures, 49, 560–571.
  • Schlaich, J.; Scheff, H. (1982). Concrete Box-girder Bridges. International Association for Bridge and Structural Engineering. Zürich, Switzerland.
  • Sennah, K.M.; Kennedy, J.B. (2002). Literature review in analysis of box-girder bridges. Journal of Bridge Engineering, 7(2), 134–143.
  • SETRA (2003). Ponts en béton précontraint construits par encorbellements successifs: guide de concéption. M.E.T.L.T.M.
  • Shushkewich, K.W. (1988). Approximate analysis of concrete box girder bridges. Journal of Structural Engineering, 114(7), 1644–1657.
  • Yepes, V. (2017). Trabajo de investigación. Concurso de Acceso al Cuerpo de Catedráticos de Universidad. Universitat Politècnica de València, 110 pp.
  • Yepes, V.; Martí, J.V.; García-Segura, T.; González-Vidosa, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4), 738-749.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

 

 

Motivos para renovar la metodología de diseño de las estructuras

https://construblogspain.wordpress.com/

Los métodos tradicionales empleados para el proyecto de un puente se basan en procedimientos de prueba y error que sirven para mejorar los diseños (Figura 1). Si bien la experiencia del proyectista permite definir “a priori” la geometría de la estructura, el resto de variables se determinan atendiendo al cumplimiento de los diferentes estados límite exigidos por los reglamentos para las situaciones de proyecto consideradas. De esta forma, la solución propuesta, si bien es funcionalmente correcta, no tiene porque ser la óptima. Los métodos de optimización, como pueden ser los algoritmos metaheurísticos o estocásticos, proporcionan una alternativa eficaz a los diseños estructurales basados en la experiencia. Estos algoritmos se caracterizan porque combinan unas reglas de decisión y la aleatoriedad para buscar de forma eficaz soluciones de alta calidad en espacios de soluciones de gran tamaño, tal y como son los originados por los problemas estructurales reales. Además, al explorar una gran cantidad de posibles combinaciones, encuentra soluciones que pueden estar alejadas de las reglas de diseño habituales empleadas por los proyectistas.

Figura 1. Diseño por prueba y error de las estructuras (Yepes, 2017)

Así, por ejemplo, los puentes de sección en cajón constituyen uno de las tipologías más habituales en los puentes continuos, pues presentan ventajas tanto desde la perspectiva de su eficiencia resistente como por su bajo peso propio. Sin embargo, las normas de diseño actuales no siempre contemplan los objetivos y las prioridades de una sociedad cambiante. El informe Brundtland (WCED, 1987) propone una visión a largo plazo para mantener los recursos, que serán necesarios para las necesidades futuras. El desarrollo sostenible requiere una triple visión que equilibre el desarrollo económico y las necesidades ambientales y sociales. Por lo tanto, las preocupaciones por construir un futuro más sostenible obligan a considerar aspectos como el impacto ambiental, la durabilidad y el nivel de seguridad, entre otros. Esto ha llevado al desarrollo de materiales de baja emisión de carbono, la búsqueda de nuevos diseños que reduzcan el impacto ambiental, la planificación de mantenimiento para prolongar la vida útil de las estructuras y la evaluación de su ciclo de vida para contemplar su impacto en su conjunto.

Esta nueva visión implica renovar la metodología de diseño de estructuras de modo que se consideren los criterios de sostenibilidad, que permita el uso de nuevos materiales y que, además, garantice un análisis estructural preciso. En este sentido, la optimización multiobjetivo encuentra soluciones óptimas con respecto a distintos objetivos, algunos de ellos contradictorios entre sí. Los actuales procedimientos de optimización heurística han permitido el diseño automatizado de estructuras óptimas. Sin embargo, existe una tendencia a considerar el diseño inicial y las operaciones de mantenimiento de la estructura como objetivos separados. Es decir, por una parte se estudia el diseño óptimo de una estructura para cumplir con los estados límite últimos y de servicio, y por otra parte, se considera la optimización de las operaciones de mantenimiento del puente durante su vida útil como un objetivo diferente, partiendo de una estructura ya construida, con un determinado estado de seguridad conocido. Como el mantenimiento depende del estado, el diseño inicial debe considerar los aspectos del ciclo de vida que también minimizan el mantenimiento futuro. Por lo tanto, es importante considerar la durabilidad con el fin de diseñar estructuras longevas y reducir los impactos a largo plazo. Es decir, se debe proyectar una estructura considerando todos los aspectos relacionados con su ciclo de vida.

La optimización multiobjetivo (MOO) de las estructuras reales requiere tiempos de cálculo elevados, incluso con la potencia de los actuales ordenadores, debido a la existencia de muchas variables de decisión, al procedimiento de análisis con métodos como el de los elementos finitos y al número de funciones objetivo consideradas. El uso de modelos predictivos tales como las redes neuronales artificiales (Artificial Neural Networks, ANNs) permite reducir el número necesario de evaluaciones exactas de la estructura y sustituir dicho cálculo por predicciones aproximadas. ANN aprende de los datos disponibles y permite predicciones incluso cuando las relaciones son altamente no lineales. Esta característica reduce el elevado coste computacional de las interaciones necesarias en los algoritmos de optimización heurística, al sustituir en dicho proceso una parte de los cálculos exactos por otros aproximados.

MOO conduce a una gama de soluciones óptimas, que se consideran igualmente buenas en función de los mútiples objetivos –la denominada frontera de Pareto-. El proceso de toma de decisiones para elegir la mejor de las opciones tiene lugar a posteriori, donde los expertos eligen la mejor solución en función de sus preferencias utilizando técnicas de toma de decisiones. Sin embargo, la asignación de pesos a cada uno de los objetivos del problema puede estar sujeta a incertidumbres o falta de objetividad. Sobre esta base, este trabajo sugiere una metodología capaz de introducir la información de selección (preferencia) en un proceso de toma de decisiones multicriterio en el que existen incertidumbres asociadas a la comparación de criterios.

Referencias:

  • García-Segura, T.; Yepes, V.; Alcalá, J.; Pérez-López, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92, 112–122.
  • García-Segura, T.; Yepes, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125, 325–336.
  • García-Segura, T.; Yepes, V.; Frangopol, D.M. (2017a). Multi-objective design of post-tensioned concrete road bridges using artificial neural networks. Structural and Multidisciplinary Optimization, 56(1):139-150.,
  • García-Segura, T.; Yepes, V.; Frangopol, D.M.; Yang, D. Y. (2017b). Lifetime reliability-based optimization of post-tensioned box-girder bridges. Engineering Structures, 145, 381-391.
  • Martí, J.V.; García-Segura, T.; Yepes, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120, 231–240.
  • Martí, J.V.; González-Vidosa, F.; Yepes, V.; Alcalá, J. (2013). Design of prestressed concrete precast road bridges with hybrid simulated annealing. Engineering Structures, 48, 342–352.
  • Martí, J.V.; Yepes, V.; González-Vidosa, F. (2015). Memetic algorithm approach to designing precast-prestressed concrete road bridges with steel fiber reinforcement. Journal of Structural Engineering, 141(2), 04014114.
  • Penadés-Plà, V.; García-Segura, T.; Martí, J.V.; Yepes, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design. Sustainability, 8(12), 1295.
  • Penadés-Plà, V.; Martí, J.V.; García-Segura, T.;  Yepes, V.(2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10):1864.
  • Yepes, V. (2017). Trabajo de investigación. Concurso de Acceso al Cuerpo de Catedráticos de Universidad. Universitat Politècnica de València, 110 pp.
  • Yepes, V.; García-Segura, T.; Moreno-Jiménez, J.M. (2015a). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4), 1024–1036.
  • Yepes, V.; Martí, J.V.; García-Segura, T. (2015). Cost and CO2 emission optimization of precast–prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49, 123–134.
  • Yepes, V.; Martí, J.V.; García-Segura, T.; González-Vidosa, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4), 738-749.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

 

 

Antecedentes y motivación del proyecto de investigación DIMALIFE (2018-2020)

Hoy 2 de enero de 2018 empezamos oficialmente el proyecto de investigación DIMALIFE (BIA2017-85098-R): “Diseño y mantenimiento óptimo robusto y basado en fiabilidad de puentes e infraestructuras viarias de alta eficiencia social y medioambiental bajo presupuestos restrictivos”. Se trata de un proyecto trianual (2018-2020) financiado por el Ministerio de Economía, Industria y Competitividad, así como por el Fondo Europeo de Desarrollo Regional (FEDER). La entidad solicitante es la Universitat Politècnica de València y el Centro el ICITECH (Instituto de Ciencia y Tecnología del Hormigón). Los investigadores principales son Víctor Yepes (IP1) y Eugenio Pellicer (IP2). Al proyecto también se le ha asignado un Contrato Predoctoral, que sacaremos a concurso próximamente. Con las restricciones presupuestarias tan fuertes en materia de I+D+i y con la alta competencia existente por conseguir proyectos de investigación, lo cierto es que estamos muy satisfechos por haber conseguido financiación. Además, estamos abiertos a cualquier tipo de colaboración tanto desde el mundo empresarial o universitario para reforzar este reto. Por tanto, lo primero que vamos a hacer es explicar los antecedentes y la motivación del proyecto.

La sostenibilidad económica y el desarrollo social de la mayoría de los países dependen directamente del comportamiento fiable y duradero de sus infraestructuras (Frangopol, 2011). Las infraestructuras del transporte presentan una especial relevancia, especialmente sus infraestructuras viarias y puentes, cuya construcción y mantenimiento influyen fuertemente en la actividad económica, el crecimiento y el empleo. Sin embargo, tal y como indica Marí (2007), estas actividades impactan significativamente en el medio ambiente, presentan efectos irreversibles y pueden comprometer el presente y el futuro de la sociedad. El gran reto, por tanto, será disponer de infraestructuras capaces de maximizar su beneficio social sin comprometer su sostenibilidad (Aguado et al., 2012). La sostenibilidad, de hecho, constituye un enfoque que ha dado un giro radical a la forma de afrontar nuestra existencia. El calentamiento global, las tensiones sociales derivadas de la presión demográfica y del reparto desequilibrado de la riqueza son, entre otros, los grandes retos que debe afrontar esta generación. Continue reading “Antecedentes y motivación del proyecto de investigación DIMALIFE (2018-2020)”