Entrevista en Construnews — Monográfico infraestructuras en España

A continuación, os paso una entrevista que me hicieron recientemente en Construnews sobre las infraestructuras en España. Forma parte de una serie de entrevistas a personas relacionadas directamente con el sector de la construcción. Espero que os resulte interesante.

“Hay que reingenierizar el modelo de financiación, ejecutar estratégicamente los corredores ferroviarios y desbloquear el suelo para vivienda asequible”

¿Cómo valora el estado actual de las infraestructuras en España (transporte, energía, digitalización, logística)? ¿Cuáles son, a su juicio, los principales retos de país en los próximos 5‑10 años?

La valoración del estado actual de las infraestructuras españolas indica que el notable patrimonio de ingeniería civil presenta síntomas claros de desequilibrio, ya que el modelo se ha centrado excesivamente en la construcción de nuevas infraestructuras de muy alta capacidad, dejando en un segundo plano la conservación preventiva y correctiva de la red existente. En el ámbito viario, los firmes están deteriorados y los sistemas de contención y señalización están obsoletos. En el sector ferroviario, el éxito de la alta velocidad contrasta con la situación de la red convencional y de cercanías, que necesita atención debido a la falta de renovación de los sistemas de seguridad y de las catenarias, lo que provoca incidencias. Además, el hecho de que el ancho de vía sea diferente al de Europa sigue suponiendo un desafío para el transporte de mercancías. El reto más significativo es, por un lado, abordar la vivienda como un problema social y estructural prioritario a nivel nacional, dado el creciente difícil acceso de la población joven y de rentas medias. Por otro lado, la vulnerabilidad ante la emergencia climática, especialmente en lo referente a la gestión del agua, es crítica, por lo que existe una urgencia en materia de defensa contra inundaciones. Gran parte de los sistemas de drenaje se diseñaron basándose en series estadísticas que han quedado obsoletas, y no se está invirtiendo lo suficiente en modernizar las infraestructuras hidráulicas para soportar nuevos caudales punta.

¿Qué segmentos infraestructurales ofrecen mayor potencial de crecimiento para el sector de la construcción y la ingeniería? ¿Y cuáles están quedando fuera del foco?

La inversión se centra en una transición estructural que se está desplazando de la expansión territorial a la intensificación, la digitalización y la resiliencia. El principal motor de crecimiento es la transición energética, ya que la integración masiva de las energías renovables exige un ambicioso programa de refuerzo, digitalización y almacenamiento de la red eléctrica a gran escala. La necesidad de dotar al sistema de baterías industriales y de sistemas de bombeo reversible supone la aparición de un nuevo y gran nicho de mercado. El desarrollo urgente de vivienda asequible y social también se perfila como un segmento clave para el crecimiento del sector. La crisis hídrica convierte la reingeniería hidráulica en un sector estratégico, ya que la oportunidad radica en crear una nueva oferta hídrica mediante desaladoras y sistemas de tratamiento avanzado para la reutilización de aguas residuales, junto con la renovación de las redes de distribución para reducir las pérdidas por fugas. La ingeniería logística crecerá en la dotación de terminales intermodales y en la adaptación de las líneas de transporte al ancho de vía estándar europeo. No obstante, la priorización de grandes proyectos deja en un segundo plano segmentos cruciales para la cohesión. El mantenimiento de las carreteras de titularidad autonómica y provincial es un problema pendiente, al igual que la renovación de los sistemas de señalización del ferrocarril de cercanías. La falta de atención a las pequeñas obras de defensa hidráulica a nivel local (drenajes, encauzamientos) también es crítica.

El déficit de conservación lastra la red existente: señales obsoletas, firmes deteriorados y falta de mantenimiento.

¿Cómo evalúa la coordinación entre administraciones, sector privado y financiación (incluyendo fondos europeos)? ¿Qué mecanismos están funcionando y cuáles habría que reforzar?

La coordinación administrativa presenta una diferencia entre la solidez de la planificación de alto nivel y la lentitud de la fase de materialización. Aunque existe un consenso técnico adecuado y el sector privado ha demostrado su capacidad de ejecución, la principal fricción se debe a la fragmentación administrativa a nivel local y a la superposición de competencias en la financiación del mantenimiento de las redes. Esta situación provoca cuellos de botella en los trámites de expropiación y licencias. La llegada de los fondos europeos de recuperación ha supuesto una inyección de capital necesaria y ha dotado a la inversión de una clara orientación hacia la descarbonización. No obstante, ha puesto de manifiesto la necesidad de reforzar la capacidad administrativa para absorber y licitar el volumen de capital. El mayor riesgo económico es que esta financiación sustituya a la inversión ordinaria en conservación en lugar de complementarla. Para garantizar la sostenibilidad, es necesario establecer mecanismos que separen la gestión técnica del ciclo político. La propuesta más proactiva consiste en crear una Agencia Técnica de Proyectos Estratégicos que tenga autonomía para ejecutar obras de impacto nacional de forma ágil. En cuanto a la financiación, es fundamental sustituir el modelo presupuestario anual por contratos-programa plurianuales y de carácter finalista para la conservación.

Más allá de los discursos, ¿cómo se está incorporando la sostenibilidad en el diseño, ejecución y explotación de infraestructuras? ¿Podría compartir un caso inspirador o representativo?

La sostenibilidad ha dejado de ser un mero postulado ético para convertirse en un requisito técnico y normativo que rediseña el ciclo de vida de las infraestructuras. La ingeniería actual integra este concepto desde la fase de planificación, exigiendo el análisis del ciclo de vida de los activos para cuantificar y minimizar la huella de carbono de los materiales. Esto se traduce en una preferencia técnica por el uso de hormigones y asfaltos con un alto porcentaje de material reciclado y por la implementación de soluciones basadas en la naturaleza. Durante la ejecución, la sostenibilidad se centra en la economía circular mediante la obligación contractual de reutilizar y reciclar in situ los materiales de demolición. Durante la fase de explotación, la sostenibilidad se vincula a la eficiencia: la digitalización mediante sensores permite un mantenimiento predictivo que alarga la vida útil de los activos. Un ejemplo representativo de esta integración es la reingeniería hídrica en zonas con estrés hídrico. Se han desarrollado sistemas de regeneración de aguas residuales con tratamientos terciarios avanzados que permiten cerrar el ciclo del agua y producir un recurso predecible. Este proceso, que requiere mucha energía, se gestiona de forma sostenible al generarse energía a partir de biogás o energía solar.

La transición energética y la ingeniería del agua abren nuevos nichos clave para el sector.

Las infraestructuras ya no son solo estructuras físicas: mantenimiento predictivo, digital twins, infraestructura como servicio… ¿Cuál es su visión sobre esta transformación? ¿Qué proyectos le parecen referentes?

La ingeniería de infraestructuras ha superado la fase de la mera estructura física para transformarse en un sistema dinámico de información y servicio. El enfoque ha cambiado del coste de construcción a la eficiencia operativa a largo plazo. Esta revolución se basa en tres pilares: la monitorización masiva de activos para el mantenimiento predictivo, la creación del gemelo digital, que simula el comportamiento de la infraestructura ante escenarios de estrés, y la adopción del concepto de infraestructura como servicio, que fomenta la colaboración público-privada para construir sistemas duraderos. El gemelo digital es la herramienta clave, ya que permite realizar ensayos virtuales de resiliencia y ampliación sin afectar al activo físico. España está a la vanguardia en la aplicación práctica de esta tecnología. Un ejemplo destacado es la gestión de los túneles de la red de carreteras de alta capacidad, donde la iluminación y la ventilación se ajustan dinámicamente en tiempo real. Otro caso inspirador es el del sector ferroviario, donde el modelado virtual se utiliza para gestionar activos críticos, como la catenaria y los puentes, y simular el impacto físico para anticiparse a la probabilidad de fallo.

En un entorno de alta inversión pública y necesidad de eficiencia, ¿cómo se está calculando y midiendo el ROI en infraestructuras? ¿Podría compartir ejemplos reales o estimaciones? ¿Qué factores lo están condicionando más?

La medición de la rentabilidad de la inversión pública se centra en el retorno social de la inversión, desvinculándose del retorno financiero privado. El cálculo se realiza mediante el análisis coste-beneficio socioeconómico, cuyo principal indicador es el valor actual neto social (VAN social). El mantenimiento preventivo es el segmento con mayor y más estable rentabilidad social; los informes técnicos demuestran que por cada euro invertido en conservación oportuna se evitan entre cuatro y cinco euros en costes de reparación o reconstrucción futura. En contraste, la alta velocidad ferroviaria genera una Tasa Interna de Retorno Social significativa (a menudo superior al 8 %), pero su rentabilidad financiera es insuficiente. La precisión del cálculo se ve comprometida por la sobreestimación recurrente de las previsiones de demanda en las fases iniciales de muchos proyectos. Otros factores críticos son la dificultad para valorar monetariamente las externalidades blandas y los retrasos en la ejecución de la obra, ya que estos elevan el coste final y reducen la rentabilidad esperada.

A raíz de las últimas iniciativas de Bruselas (como el plan para conectar capitales europeas por alta velocidad), ¿qué papel debería jugar España en el nuevo mapa europeo? ¿Estamos preparados o en riesgo de quedar fuera?

El impulso de Bruselas para consolidar la Red Transeuropea de Transporte otorga a España un doble papel estratégico: eje principal de conexión de alta velocidad para viajeros y plataforma logística clave para canalizar el tráfico de mercancías. Sin embargo, a pesar de tener una de las redes de alta velocidad más extensas, España corre el riesgo de quedar menos integrada en el mapa logístico por una barrera técnica: el uso mayoritario del ancho de vía ibérico. Esta diferencia limita la competitividad del transporte de mercancías por ferrocarril. Si no se completa la adecuación al ancho de vía internacional de los corredores Mediterráneo y Atlántico antes de las fechas límite, existe el riesgo de que las mercancías elijan rutas alternativas. Para evitar una menor integración, es necesario reingenierizar los procesos de licitación pública para agilizar la ejecución de la inversión y centrarla en finalizar estos corredores clave y crear los nodos logísticos interiores.

Pensando en todos los modos —carretera, ferrocarril, puertos, aeropuertos, redes logísticas y digitales—, ¿qué ejes o áreas infraestructurales deberían ser prioritarios para mejorar la competitividad y cohesión territorial en España?

La inversión estratégica para mejorar la competitividad y la cohesión territorial debe resolver los cuellos de botella y priorizar la seguridad. El primer eje ineludible se centra en la intermodalidad y la logística de mercancías. Es de máxima prioridad estratégica completar la adaptación de los corredores mediterráneo y atlántico al ancho de vía internacional. El segundo gran eje es la vivienda, cuya provisión masiva y asequible es crucial para la cohesión social y para facilitar la movilidad laboral en zonas de alta demanda. El tercer eje fundamental es la seguridad y el abastecimiento hídrico. La respuesta a la sequía estructural pasa por invertir en infraestructuras que no dependan de las precipitaciones, como la regeneración de aguas residuales mediante un tratamiento avanzado y la ampliación de las plantas desaladoras. También es crucial invertir en obras de defensa y drenaje en cuencas fluviales para proteger a las poblaciones de las avenidas extremas. El cuarto eje se centra en la cohesión a través de la calidad del servicio. Es fundamental saldar el grave déficit de conservación acumulado en la red de carreteras de titularidad autonómica y provincial, que son vitales para la vertebración de la España rural. En cuanto a la prioridad digital, el objetivo es cerrar la brecha y garantizar la cobertura universal de banda ancha ultrarrápida en todos los municipios.

La sostenibilidad ya no es discurso: se mide, se diseña y se exige en todas las fases del ciclo de vida.

El aumento de costes de materiales, la tramitación lenta o la falta de personal cualificado afectan a las infraestructuras. ¿Qué medidas urgentes propondría para desbloquear estos frenos?

La alta inversión pública se ve obstaculizada por tres frenos principales: la volatilidad de los costes, la complejidad administrativa y la necesidad de reforzar el talento. La medida más urgente para hacer frente a la volatilidad de los precios es implementar un sistema de revisión contractual objetivo, automático y no discrecional. Esta medida debe complementarse con la posibilidad de que la Administración adquiera con antelación materiales estratégicos para proyectos clave. Para combatir la lentitud en la tramitación, es imperativo crear Unidades de Gestión de Proyectos Estratégicos que actúen como ventanilla única y coordinen los plazos de licencias y expropiaciones entre las distintas administraciones. Por último, para abordar la falta de personal cualificado, la Administración debe ofrecer condiciones salariales y de progresión profesional más competitivas. Es crucial que la normativa de contratación pública flexibilice la valoración y permita que la calidad técnica y la experiencia del equipo pesen más que el precio en los concursos de servicios de ingeniería.

Si pudiera proponer tres decisiones inmediatas que mejoren las infraestructuras españolas a corto y medio plazo, ¿cuáles serían y por qué?

La mejora de las infraestructuras españolas a corto y medio plazo requiere tomar cuatro decisiones de alto impacto ineludibles. La primera es la reingeniería del modelo de financiación del mantenimiento. Hay que establecer un sistema de contratos programa plurianuales para la conservación de la red de carreteras de alta capacidad y de ferrocarril. La segunda decisión ineludible se centra en la ejecución estratégica y la interoperabilidad. Es urgente crear una unidad ejecutora especializada y con autonomía técnica que se encargue de gestionar de manera integral y acelerada los corredores ferroviarios Mediterráneo y Atlántico. Esta medida resolvería el cuello de botella técnico del ancho de vía y garantizaría el cumplimiento de los plazos exigidos por la Unión Europea para 2030. La tercera decisión debe abordar la gestión eficiente del suelo y la construcción de viviendas asequibles, simplificando los trámites urbanísticos y movilizando suelo público de manera inmediata para aumentar el parque de viviendas sociales. Por último, la cuarta decisión debe resolver los frenos de la gestión: la volatilidad de los costes y la falta de talento. Es imprescindible revisar automáticamente los precios de los contratos de obra pública. De forma complementaria, es necesario modificar la normativa de contratación pública para que, en los servicios de ingeniería, la calidad técnica y la experiencia del equipo humano pesen más que el precio ofertado.

Digital twins, mantenimiento predictivo e infraestructuras como servicio: el futuro ya está en marcha.

Os dejo una conversación donde se habla de estos temas.

En este vídeo se resumen algunas de las ideas principales sobre las infraestructuras en España.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Descifrando la construcción moderna: una guía clave para entender la jerga de la industria

1. Introducción: ¿Por qué hay tanta confusión?

El campo de la innovación en la construcción está lleno de siglas y términos que pueden resultar abrumadores para cualquiera que se inicie en este mundo. Acrónimos como MMC, IC, OSC y conceptos como prefabricación o construcción modular se utilizan a menudo de manera inconsistente, lo que crea una barrera de confusión para quienes se inician en este campo.

El propósito de este artículo es actuar como un decodificador, no solo por rigor académico, sino porque la capacidad de la industria para resolver desafíos urgentes, como la crisis de la vivienda, la productividad estancada y la descarbonización del entorno construido, depende de una comprensión común y una estrategia coherente.

La situación actual es como si hubiera un conjunto de etiquetas superpuestas para describir un mismo ecosistema: unas describen el clima (el enfoque general), otras las especies de árboles (los sistemas técnicos) y otras el suelo en el que crecen (las tecnologías habilitadoras). Sin un mapa que las organice, es fácil perderse.

En esta guía, basada en el trabajo de Paul D. Kremer, desglosaremos esta jerga compleja, empezando por los tres términos más amplios y confusos, que actúan como grandes «paraguas» conceptuales.

2. Los grandes «paraguas»: aclarando MMC, IC y OSC/OSM.

Los términos más confusos son aquellos que buscan describir enfoques generales para modernizar la construcción. Aunque a menudo se usan como sinónimos, representan ideas fundamentalmente distintas.

  • Métodos Modernos de Construcción (MMC): es un «término paraguas» amplio, principalmente impulsado por políticas gubernamentales, que carece de una definición técnica estable y coherente. La investigación es clara al respecto y señala que el MMC funciona «en gran medida como un paraguas impulsado por políticas con poca o ninguna frontera técnica coherente». En la práctica, su significado varía según el contexto. En algunos documentos, MMC puede referirse a sistemas modulares volumétricos, a herramientas digitales de gestión o a un conjunto de estrategias para mejorar la productividad. Es un término retórico útil para las políticas públicas, pero analíticamente débil por su ambigüedad.

 

  • Construcción industrializada (CI): es el paradigma más coherente y estable de los tres. Consiste en aplicar la lógica de la fabricación al proceso constructivo. No se trata simplemente de construir en una fábrica, sino de reconfigurar todo el sistema de producción. Sus características principales son:
    • Repetibilidad y normalización: trata la construcción como un sistema de producción orquestado, con componentes y procesos estandarizados, en lugar de una serie de prototipos únicos.
    • Logística coordinada: enfatiza la planificación de la producción y las operaciones de la cadena de suministro totalmente integradas, similar a la de una línea de ensamblaje de automóviles.
    • Enfoque en el proceso: se centra en cómo se organiza la construcción (el flujo de trabajo, la estandarización, la eficiencia) y no solo en dónde ocurre (en la obra o en una fábrica).

 

  • Construcción/fabricación en taller (OSC/OSM): (del inglés, Off-Site Construction/Manufacturing) se refiere a la ubicación. Su función principal es indicar que una parte o la totalidad del proceso de construcción se traslada de la obra a un entorno controlado, como una fábrica. Sin embargo, el término no especifica nada sobre el sistema de producción subyacente. La investigación en este campo suele centrarse en las interfaces entre la fábrica y la obra, las restricciones de transporte y la secuencia de instalación, pero rara vez aborda los principios de fabricación o la integración digital que definen un sistema de producción completo.

Síntesis comparativa

Para visualizar mejor las diferencias, aquí tienes una tabla comparativa:

Característica Métodos modernos de construcción (MMC) Construcción industrializada (IC) Construcción en taller (OSC/OSM)
Concepto clave Un «paraguas» de políticas que agrupa diversas innovaciones. Una filosofía de producción basada en la lógica de la fabricación. Un descriptor que indica la ubicación de la producción (fábrica vs. obra).
Enfoque principal Modernización de la industria en un sentido amplio y flexible. Eficiencia del proceso, repetibilidad y cadena de suministro integrada. El traslado de actividades fuera de la obra para mejorar el control y la calidad.
Analogía simple Una etiqueta de «comida saludable» (puede significar muchas cosas). La «cocina de un chef» (un sistema organizado con procesos definidos). «Comida para llevar» (hecha en otro lugar, sin importar cómo se cocinó).

Ahora que hemos aclarado estos conceptos generales, podemos explorar los tipos de sistemas técnicos más específicos que suelen estar englobados por estos «paraguas».

3. Los «ladrillos»: tipos de sistemas técnicos.

A diferencia de los «paraguas» conceptuales, términos como prefabricado, modular y panelizado se refieren a arquetipos técnicos específicos o «subdominios». Son los verdaderos «ladrillos» con los que se construye.

  1. Sistemas modulares volumétricos: se trata de módulos tridimensionales (3D) altamente prefabricados en fábrica, como habitaciones completas, módulos de baño o de cocina. Estos «bloques» se transportan a la obra y se ensamblan rápidamente. Su principal ventaja es la rapidez de instalación, que reduce drásticamente el tiempo de construcción.
  2. Sistemas panelizados: son componentes bidimensionales (2D), como paredes, losas de piso o paneles de techo, fabricados con alta precisión en una fábrica. Estos paneles se ensamblan en la obra para conformar la estructura del edificio. Un ejemplo prominente son los sistemas de madera de ingeniería (Mass Timber), como el CLT (Cross-Laminated Timber), que demuestran un gran potencial para la construcción rápida y la reducción de emisiones de carbono. Ofrecen una gran flexibilidad de configuración y diseño, ya que los paneles pueden combinarse de múltiples maneras.
  3. Sistemas híbridos: son una mezcla inteligente de componentes prefabricados (modulares o panelizados) y de construcción tradicional in situ. Por ejemplo, se puede construir un podio de hormigón en la obra y luego montar módulos prefabricados encima. A menudo superan a los sistemas totalmente modulares o totalmente in situ en términos de coste y viabilidad, especialmente en entornos urbanos complejos con restricciones de espacio.
  4. Prefabricación (como término general): es importante señalar que el término «prefabricación» es amplio y abarca tanto los sistemas modulares como los panelizados. Simplemente significa que los componentes del edificio se fabrican en un lugar distinto de su ubicación final antes de ser instalados.

Estos sistemas técnicos no funcionan de manera aislada, sino que dependen de un conjunto de tecnologías y metodologías transversales que garantizan su eficiencia y coherencia.

4. Los «habilitadores»: las tecnologías que lo unen todo.

Independientemente del sistema constructivo utilizado (modular, panelizado o híbrido), hay dos «habilitadores» transversales fundamentales para que la construcción moderna funcione de manera integrada y eficiente: la DfMA y la digitalización.

Diseño para la fabricación y el ensamblaje (DfMA): El DfMA no es un método de construcción, sino un «sistema operativo de diseño». Se trata de una metodología que obliga a considerar la fabricación y el ensamblaje desde las primeras etapas del diseño, en lugar de resolverlos sobre la marcha. Sus funciones clave son las siguientes:

  • Alinear el diseño con la realidad: asegura que el diseño arquitectónico sea compatible con las limitaciones y capacidades de la fabricación desde el principio.
  • Considerar la logística como diseño: incorpora variables como las tolerancias de fabricación, la secuencia de transporte y la logística de ensamblaje como parte integral del proceso de diseño.
  • Actuar como núcleo conector: funciona como el nexo que conecta el concepto arquitectónico con la producción industrializada, garantizando que lo que se diseña se pueda fabricar y ensamblar eficientemente.

Digitalización: es la «infraestructura de información» que coordina todo el proceso, desde el diseño hasta el ensamblaje final. Proporciona las herramientas necesarias para gestionar la complejidad de la construcción industrializada. Entre las herramientas clave se encuentran el modelado de información para la construcción (BIM), los gemelos digitales, el modelado paramétrico, los configuradores de diseño, la simulación de procesos y la robótica. Todas ellas conforman la infraestructura de información que coordina los entornos de fábrica y de obra. Con todas estas piezas —los paraguas, los ladrillos y los habilitadores— sobre la mesa, es posible entender un nuevo marco que busca unificarlo todo de manera coherente.

5. Uniendo las piezas: el marco de la neoconstrucción.

Para resolver la fragmentación y la ambigüedad conceptual que hemos analizado, la investigación propone un nuevo término integrador: «neoconstrucción». Este marco no pretende sustituir los términos existentes, sino organizarlos en una estructura lógica.

La neoconstrucción se define como un paradigma de construcción sociotécnica, coordinado digitalmente, industrializado y circular, que integra principios de fabricación, modelos organizativos orientados a plataformas y flujos de trabajo de diseño a producción, dirigidos por DfMA, para entregar sistemas del entorno construido configurables y de alto rendimiento.

Esta densa definición se puede desglosar en cinco componentes esenciales que forman el núcleo del marco:

  1. Integración digital: coordinación basada en modelos (BIM), sistemas de configuración paramétricos y herramientas de soporte a la decisión digital, que constituyen la columna vertebral de la información que conecta el diseño, la producción y la logística.
  2. Producción industrializada: flujos de producción estructurados, estandarización y logística coordinada que conforman la lógica subyacente al paradigma de «construcción como fabricación».
  3. Gobernanza de plataforma: uso de plataformas de productos, definición de interfaces y de ecosistemas de cadena de suministro integrados para permitir la escalabilidad, la consistencia y la coordinación del ecosistema.
  4. Lógicas de diseño a producción (DfMA): integración de la «fabricabilidad», tolerancias, reglas de ensamblaje y principios de diseño circular (DfMA) para garantizar que el diseño se alinee con la realidad de la fabricación y la logística.
  5. Circularidad y rendimiento de por vida: principios de diseño para el desmontaje, la reutilización, la adaptabilidad y la recuperación de materiales para alinear el marco con los imperativos de sostenibilidad y el valor a largo plazo.

Este marco organiza de manera coherente los términos anteriores, posicionando la construcción industrializada (CI) como la «columna vertebral de la producción» y el DfMA como el «sistema operativo de diseño». Esta claridad conceptual no es solo un ejercicio académico, sino que es fundamental para el futuro de una industria que necesita innovar de manera estructurada y escalable.

6. Conclusión: de la confusión a la claridad.

Entender la jerga de la construcción moderna no es tarea imposible. Al organizar los términos en una jerarquía lógica, podemos pasar de la confusión a la claridad.

A continuación, se presenta un resumen de las distinciones clave:

  • MMC: es un término de política, amplio y retórico, no una categoría técnica.
  • IC: es una filosofía de producción centrada en la lógica de la fabricación.
  • OSC: es un descriptor de ubicación que indica dónde se realiza el trabajo.
  • Modular/panelizado: se trata de productos técnicos, los «ladrillos» del sistema.
  • DfMA y digitalización: son los habilitadores transversales, el «sistema operativo» y la «infraestructura de información» que lo unen todo.

Para cualquier estudiante o profesional del sector, dominar esta jerarquía proporciona una base sólida para navegar por la innovación en la construcción. La clave está en ir más allá de los términos de moda y centrarse en la lógica subyacente que realmente impulsa el cambio: una mentalidad de fabricación, un diseño integrado y una coordinación digital impecable. Solo con esta claridad conceptual, la industria podrá afrontar de manera sistemática sus grandes retos en materia de productividad, sostenibilidad y resiliencia.

En esta conversación podéis escuchar aspectos interesantes sobre este tema:

Aquí tenéis un vídeo que resume lo más interesante.

En este documento también os dejo las ideas principales del trabajo de Kremer (2025).

Pincha aquí para descargar

Referencia:

Kremer, P.D. (2025). Defining Modern Methods of Construction: Resolving Conceptual Ambiguity Through the Neo-Construction Framework (preprint)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Inteligencia artificial y eficiencia en el diseño de edificios

La inteligencia artificial (IA) está transformando de manera radical el diseño arquitectónico y la edificación. En la actualidad, el sector de la construcción se enfrenta a tres tendencias clave: la industrialización, la sostenibilidad y la transformación digital e inteligente. La convergencia de estos factores genera numerosas oportunidades, pero también desafíos significativos.

Los proyectos contemporáneos son cada vez más grandes y complejos, y están sujetos a requisitos ambientales más estrictos, lo que aumenta la presión sobre los equipos de diseño en términos de procesamiento de información, tiempo y recursos. En este contexto, la IA no solo optimiza los procesos, sino que también mejora la eficiencia de los métodos tradicionales de diseño.

A continuación, analizamos cómo la IA puede impulsar la eficiencia del diseño, fomentar la innovación y contribuir a la sostenibilidad de los proyectos. La tecnología ya está presente en todas las etapas del ciclo de vida del edificio, desde el análisis predictivo y la supervisión de la construcción hasta el mantenimiento de las instalaciones.

La digitalización ha transformado profundamente la forma en que concebimos, proyectamos y gestionamos las infraestructuras. Tras la aparición del diseño asistido por ordenador (CAD) y el modelado de información para la construcción (BIM), la inteligencia artificial (IA) se presenta como el siguiente gran avance tecnológico. A diferencia de otras herramientas, la IA no solo automatiza tareas, sino que también aprende, genera propuestas y ayuda a tomar decisiones complejas de manera óptima. Como señalan Li, Chen, Yu y Yang (2025), la IA se está consolidando como una herramienta fundamental para aumentar la eficiencia en el diseño arquitectónico e integrar criterios de sostenibilidad, industrialización y digitalización en toda la cadena de valor.

La IA se puede definir como un conjunto de técnicas informáticas que buscan reproducir procesos propios de la inteligencia humana, como el razonamiento, el aprendizaje o el reconocimiento de patrones. Entre sus ramas se incluyen el aprendizaje automático (machine learning o ML), basado en algoritmos que identifican patrones en grandes volúmenes de datos; las redes neuronales artificiales, que imitan el funcionamiento del cerebro y permiten resolver problemas complejos, como la predicción energética (Chen et al., 2023); los algoritmos genéticos, que simulan procesos evolutivos para hallar soluciones óptimas en problemas con múltiples variables, y la IA generativa, capaz de crear contenidos originales, como imágenes o planos, a partir de descripciones textuales. Este último enfoque, también conocido como AIGC (contenido generado por IA), ha popularizado herramientas como Stable Diffusion o Midjourney (Li et al., 2025).

En el sector de la construcción confluyen tres grandes tendencias: la industrialización, vinculada a la modularización y la prefabricación de componentes; el desarrollo sostenible, que impulsa diseños energéticamente eficientes y con menor impacto ambiental; y la digitalización inteligente, en la que la IA desempeña un papel protagonista (Asif, Naeem y Khalid, 2024). Estas tres dinámicas están interrelacionadas: sin tecnologías de análisis avanzado, como la IA, sería mucho más difícil cumplir los objetivos de sostenibilidad o gestionar procesos constructivos industrializados.

Tendencias de la construcción

Las aplicaciones de la IA se extienden a lo largo de todo el ciclo de vida del edificio. En las primeras fases de diseño, los algoritmos generan en segundos múltiples alternativas de distribución, optimizando la orientación, la iluminación natural o la ventilación. El diseño paramétrico asistido por IA permite explorar variaciones infinitas ajustando solo unos pocos parámetros (Li et al., 2025). Durante la fase de proyecto, los sistemas basados en procesamiento del lenguaje natural pueden interpretar normativas y detectar incumplimientos de forma automática, lo que reduce la probabilidad de modificaciones en obra (Xu et al., 2024). Además, las técnicas de simulación permiten prever el comportamiento estructural, acústico o energético de un edificio antes de su construcción, lo que proporciona seguridad y precisión en la toma de decisiones.

Avances de la IA en el diseño arquitectónico

En el sector de la construcción, la IA se combina con sensores y análisis de datos en tiempo real para optimizar la producción y la logística. En la construcción industrializada, los algoritmos ajustan la fabricación de elementos prefabricados, optimizan los cortes y los ensamblajes, y mejoran la gestión de las obras (Li et al., 2025). Al mismo tiempo, la monitorización inteligente permite anticiparse a las desviaciones, planificar los recursos con mayor eficiencia e incrementar la seguridad en entornos complejos.

Optimización del ciclo de vida del edificio con IA

Uno de los campos más avanzados es la predicción y optimización del consumo energético. Algoritmos como las redes neuronales, las máquinas de soporte vectorial o los métodos evolutivos permiten modelizar con gran precisión el comportamiento energético, incluso en las fases preliminares (Chen et al., 2023). Gracias a estas técnicas, es posible seleccionar soluciones constructivas más sostenibles, diseñar envolventes eficientes e integrar energías renovables en el proyecto. Como señalan Ding et al. (2018), estas herramientas facilitan el cumplimiento de los sistemas de evaluación ambiental y apoyan la transición hacia edificios de energía casi nula.

Las ventajas de la IA son evidentes: aumenta la eficiencia, reduce los errores y permite generar múltiples alternativas en mucho menos tiempo (Li et al., 2025). También optimiza los aspectos energéticos y estructurales, lo que hace que los proyectos sean más fiables y competitivos. La automatización de tareas repetitivas agiliza la creación de planos y documentos, mientras que los profesionales pueden dedicarse a tareas creativas. Además, las herramientas de gestión de proyectos con IA ayudan a organizar mejor los recursos y los plazos. Gracias a su capacidad para analizar grandes volúmenes de datos, fomentan la innovación, diversifican los métodos de diseño y facilitan la selección de materiales y el rendimiento energético.

Beneficios de la IA en el diseño

Sin embargo, la IA también plantea importantes desafíos. Su eficacia depende de la calidad de los datos; sin información fiable, los algoritmos pierden precisión. Además, integrarla con plataformas como CAD o BIM sigue siendo complicado (Xu et al., 2024). A esto se suman cuestiones éticas y legales, como la propiedad intelectual de los diseños generados por IA, la opacidad en la toma de decisiones y el riesgo de que los diseñadores pierdan cierto control. En algunos lugares, como EE. UU., se han revocado derechos de autor sobre obras generadas por IA, lo que refleja la incertidumbre legal existente.

Otros retos son la homogeneización del diseño si todos usan herramientas similares, la reticencia de algunos profesionales a adoptar soluciones de IA por dudas sobre la personalización y la fiabilidad, y los altos costes y la limitada disponibilidad de hardware y software especializados. Aún así, la IA sigue siendo una herramienta poderosa que, si se utiliza correctamente, puede transformar la eficiencia, la creatividad y la sostenibilidad en el sector de la construcción, abriendo un futuro lleno de oportunidades.

Desafíos de la adopción de la IA en el diseño

Ya existen ejemplos prácticos que muestran el potencial de estas tecnologías. Herramientas como Stable Diffusion o FUGenerator pueden generar imágenes y maquetas a partir de descripciones en lenguaje natural y actúan como asistentes que multiplican la productividad del proyectista (Li et al., 2025). Estas plataformas no sustituyen la creatividad humana, pero ofrecen un apoyo decisivo en la fase de ideación.

Bucle interactivo de inferencia de diseño arquitectónico de FUGenerator (Li et al., 2025)

La IA se está convirtiendo en un pilar fundamental de la construcción, integrándose cada vez más con tecnologías como la realidad aumentada (RA), la realidad virtual (RV), la realidad mixta (RM) y los gemelos digitales. Gracias a esta combinación, no solo es posible visualizar cómo será un edificio, sino también anticipar su comportamiento estructural, energético o acústico antes de su construcción (Xu et al., 2024). Esto permite a los diseñadores y a los clientes evaluar las propuestas en las primeras etapas, lo que mejora la calidad del diseño y la experiencia del usuario.

La IA del futuro será más inteligente y adaptable, capaz de predecir con gran precisión los resultados del diseño y ofrecer soluciones personalizadas. Su impacto no se limita al diseño arquitectónico: la gestión de la construcción se beneficiará de la robótica asistida, lo que aumentará la seguridad y la eficiencia en tareas complejas o de alto riesgo; la operación de los edificios podrá monitorizar su rendimiento, anticipar las necesidades de mantenimiento y prolongar su vida útil, lo que reducirá los costes, y el análisis de mercado aprovechará el big data para prever la demanda y los precios de los materiales, lo que optimizará la cadena de suministro.

En ingeniería civil, la integración de la IA y las tecnologías avanzadas permite tomar decisiones más fundamentadas, minimizar riesgos y entregar proyectos más seguros y sostenibles (Xu et al., 2024). Así, la construcción del futuro se perfila como un proceso más eficiente, innovador y conectado, en el que la tecnología y la planificación estratégica trabajan juntas para lograr resultados óptimos.

En conclusión, la IA no pretende sustituir a los ingenieros y arquitectos, sino ampliar sus capacidades, como ya hicieron el CAD o el BIM (Asif et al., 2024; Li et al., 2025). Automatiza tareas repetitivas, agiliza el diseño, facilita la toma de decisiones basada en datos y ayuda a elegir materiales, mejorar la eficiencia energética y estructural e inspirar soluciones creativas. Su impacto trasciende el diseño y se extiende a la planificación, la supervisión de la construcción y la gestión del ciclo de vida del edificio. No obstante, su adopción plantea desafíos como los altos costes, la escasez de software disponible y la necesidad de contar con datos de calidad y algoritmos robustos. Si se depende en exceso de la IA, los diseños podrían homogeneizarse, por lo que es fundamental definir claramente los roles entre los arquitectos y la IA. Si se utiliza correctamente, la IA puede potenciar la creatividad, la eficiencia y la sostenibilidad, y ofrecer un futuro más innovador y dinámico para la construcción.

Os dejo un vídeo que resume las ideas más importantes.

Referencias:

Glosario de términos clave

  • Inteligencia Artificial (IA): Una disciplina científica y tecnológica de vanguardia que simula el aprendizaje y la innovación humanos para extender el alcance de la aplicación de la tecnología.
  • Inteligencia Artificial Generativa (GAI): Un subconjunto de la IA que utiliza el aprendizaje automático y las capacidades de procesamiento del lenguaje natural para que las computadoras simulen la creatividad y el juicio humanos, produciendo automáticamente contenido que cumple con los requisitos.
  • Diseño Paramétrico: Un método de diseño en el que se utilizan algoritmos para definir la relación entre los elementos de diseño, permitiendo la generación de diversas variaciones de diseño mediante el ajuste de parámetros.
  • Diseño Asistido por IA: Métodos en los que las herramientas de IA ayudan a los diseñadores a optimizar diseños, analizar datos, resolver problemas y explorar conceptos creativos.
  • Colaboración Hombre-Máquina: Un enfoque en el que humanos y máquinas trabajan juntos en tareas complejas, con la IA apoyando la innovación humana y el intercambio de información eficiente.
  • Redes Neuronales Artificiales (RNA o ANN): Un tipo de algoritmo de IA, modelado a partir del cerebro humano, que se utiliza para modelar relaciones complejas entre entradas y salidas, a menudo empleadas en la predicción del consumo de energía de los edificios.
  • Aprendizaje Profundo (Deep Learning): Un subcampo del aprendizaje automático que utiliza redes neuronales con múltiples capas (redes neuronales profundas o DNN) para aprender representaciones de datos con múltiples niveles de abstracción.
  • Redes Neuronales Profundas (DNN): Redes neuronales con numerosas capas ocultas que permiten que el modelo aprenda patrones más complejos en los datos, mejorando la precisión en tareas como la predicción del consumo de energía.
  • Máquinas de Vectores de Soporte (SVM): Un algoritmo de aprendizaje supervisado utilizado para tareas de clasificación y regresión, especialmente eficaz con conjuntos de datos pequeños y para identificar relaciones no lineales.
  • Procesamiento del Lenguaje Natural (PLN o NLP): Un campo de la IA que se ocupa de la interacción entre las computadoras y el lenguaje humano, permitiendo a los sistemas interpretar y generar lenguaje humano.
  • Modelado de Información de Construcción (BIM): Una metodología para la gestión de la información de construcción a lo largo de su ciclo de vida, utilizada con la IA para mejorar las simulaciones de rendimiento del edificio.
  • Algoritmos Genéticos (GA): Una clase de algoritmos de optimización inspirados en el proceso de selección natural, utilizados para encontrar soluciones óptimas en tareas de diseño complejas.
  • Adaptación de Bajo Rango (LoRA): Un método de ajuste de bajo rango para modelos de lenguaje grandes, que permite modificar el comportamiento de los modelos añadiendo y entrenando nuevas capas de red sin alterar los parámetros del modelo original.
  • Stable Diffusion: Una herramienta avanzada de IA para generar imágenes a partir de descripciones de texto o dibujos de referencia, que a menudo utiliza el modelo LoRA para estilos específicos.
  • Inception Score (IS) y Fréchet Inception Distance (FID): Métricas cuantitativas utilizadas para evaluar la calidad y diversidad de las imágenes generadas por modelos de IA, con IS evaluando la calidad y FID la similitud de la distribución entre imágenes reales y generadas.
  • FUGenerator: Una plataforma que integra varios modelos de IA (como Diffusion Model, GAN, CLIP) para respaldar múltiples escenarios de aplicación de diseño arquitectónico, desde la descripción semántica hasta la generación de bocetos y el control.
  • Industrialización (en construcción): Énfasis en métodos de construcción modulares y automatizados para mejorar la eficiencia y estandarización.
  • Desarrollo Ecológico (en construcción): Enfoque en la conservación de energía durante el ciclo de vida, el uso de materiales sostenibles y la reducción del impacto ambiental.
  • Transformación Digital-Inteligente (en construcción): Integración de sistemas de digitalización e inteligencia, aprovechando tecnologías como la GAI para optimizar procesos y mejorar la creación de valor.
  • Problema Mal Definido (Ill-defined problem): Problemas de diseño, comunes en arquitectura, que tienen propósitos y medios iniciales poco claros.
  • Problema Malicioso (Wicked problem): Problemas de diseño caracterizados por interconexiones y objetivos poco claros, que requieren enfoques de resolución complejos.
  • Integración del Internet de las Cosas (IoT): La interconexión de dispositivos físicos con sensores, software y otras tecnologías para permitir la recopilación y el intercambio de datos, crucial para los sistemas de control de edificios inteligentes

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La revolución de la digitalización en la ingeniería civil

En una entrada anterior que denominé «La ingeniería de caminos en el siglo XXI, ¿quo vadis?«, puse de manifiesto la incertidumbre que suponía la desaparición de la titulación de ingeniero de caminos, canales y puertos con motivo de la reestructuración de las enseñanzas universitarias en grado y máster. Las preguntas que dejaban en el aire adquirían un tinte dramático cuando se contextualizaban en una situación de profunda crisis económica, especialmente fuerte en el sector de la construcción.

Otra reflexión sobre el futuro de la profesión la dejé en la entrada «¿Qué entendemos por «Smart Construction»? ¿Una nueva moda?«. Allí dejé constancia de las modas que igual que aparecen, desaparecen, pero que suponen cambios sustanciales en una profesión como la de ingeniero civil. Allí expresé mi esperanza de que el término de “construcción inteligente” tuviera algo más de recorrido y pudiera suponer un punto de inflexión en nuestro sector. Este término presenta, como no podía ser de otra forma, numerosas interpretaciones y tantas más aplicaciones. Es un concepto que se asocia al diseño digital, a las tecnologías de la información y de la comunicación, la inteligencia artificial, al BIM, al Lean Construction, la prefabricación, los drones, la robotización y automatización, a la innovación y a la sostenibilidad, entre otros muchos conceptos. Entre estos conceptos, uno que me interesa especialmente es la asociación con el de los nuevos métodos constructivos (término que incluye nuevos productos y nuevos procedimientos constructivos). Su objetivo es mejorar la eficiencia del negocio, la calidad, la satisfacción del cliente, el desempeño medioambiental, la sostenibilidad y la previsibilidad de los plazos de entrega. Por lo tanto, los métodos modernos de construcción son algo más que un enfoque particular en el producto. Involucran a la gente a buscar mejoras, a través de mejores procesos, en la entrega y ejecución de la construcción.

Al hilo de estas reflexiones, me ha gustado especialmente el vídeo ganador del concurso de la Asociación de Ingenieros de Caminos, Canales y Puertos, ingeniería en 200 segundos, que presenta Juan Antonio Martínez Ortega, y que trata del impacto de la digitalización en la ingeniería civil. Atento al «diablillo de Laplace«. ¡Enhorabuena para Juan Antonio!