Vigas híbridas de acero: la apuesta sostenible que transforma costos y rendimiento en la construcción

Un artículo reciente publicado en el Journal of Constructional Steel Research, liderado por los investigadores Agustín Terreros-Bedoya, Iván Negrín, Ignacio Payá-Zaforteza y Víctor Yepes de la Universitat Politècnica de València, explora en profundidad el uso de vigas híbridas de acero como una alternativa innovadora y sostenible a las vigas tradicionales de acero homogéneo.

Estas vigas híbridas, que combinan diferentes tipos de acero de distintas resistencias en sus componentes (alas y alma), han demostrado tener un gran potencial para optimizar el uso de materiales en la construcción, mejorar la eficiencia estructural y reducir costes y el impacto ambiental.

El trabajo se enmarca dentro de los proyectos de investigación HYDELIFE y RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Vigas híbridas: concepto y ventajas

El estudio parte de la necesidad de encontrar soluciones estructurales que no solo cumplan con altos estándares de rendimiento, sino que también sean sostenibles. En una viga híbrida, el acero de alta resistencia se utiliza en las alas, donde se requiere mayor capacidad de resistencia a esfuerzos, mientras que el alma se construye con un acero de resistencia media, lo que reduce el peso y el coste del material sin comprometer su resistencia general. Este diseño permite que la viga absorba cargas significativas y redistribuya los esfuerzos de forma más eficiente que una viga homogénea, con lo que se logra una estructura más liviana y económica.

Metodología y análisis

La investigación analiza 128 publicaciones previas sobre el tema, utilizando un análisis de correspondencia simple para identificar patrones y relaciones entre variables de diseño, como la resistencia de las alas y el alma, las condiciones de carga y los métodos de cálculo. Mediante esta metodología, los autores logran sistematizar el conocimiento existente sobre el tema y destacan los enfoques de diseño más eficaces. Este análisis también identificó los «ratios híbridos» ideales, es decir, la proporción óptima entre la resistencia del acero en el alma y en las alas para maximizar el rendimiento de la viga. Un hallazgo clave es que los ratios híbridos entre 1,3 y 1,6 suelen proporcionar un equilibrio óptimo entre resistencia y economía de material.

Sostenibilidad y beneficios económicos

Además del rendimiento estructural, el estudio subraya las ventajas ambientales de las vigas híbridas. Al reducir el peso de las estructuras, disminuyen los costes de transporte, instalación y consumo de materiales, lo cual se traduce en una reducción significativa de las emisiones de CO₂. Los investigadores destacan que esta estrategia de construcción está en consonancia con los objetivos de la Unión Europea de reducir la huella de carbono de la industria de la construcción y lograr la neutralidad climática para 2050. Desde el punto de vista económico, la reducción de peso y material también representa unos costes de fabricación y montaje menores, lo que incrementa la viabilidad de estas soluciones en proyectos a gran escala.

Desafíos y áreas futuras de investigación

El estudio identifica varios desafíos que deben abordarse para implementar las vigas híbridas de manera efectiva en proyectos reales. Uno de los retos más importantes es la limitada cantidad de estudios experimentales en condiciones de carga combinada (flexión y cortante) y de pandeo, que son comunes en estructuras complejas como puentes y edificios de gran altura. Los autores recomiendan llevar a cabo investigaciones adicionales para desarrollar métodos de diseño que integren estas variables y permitan un mejor rendimiento bajo cargas extremas.

Otra área prometedora es la implementación de algoritmos de optimización y técnicas de inteligencia artificial para mejorar el diseño y el análisis de estas vigas. Estos métodos pueden ayudar a identificar configuraciones de material y geometría que maximicen la eficiencia estructural y minimicen el impacto ambiental. También sugieren explorar la combinación de acero de alta resistencia con otros materiales, como el hormigón, para crear estructuras híbridas aún más optimizadas.

Implicaciones para la industria de la construcción

Este estudio contribuye significativamente al conocimiento de las vigas híbridas de acero, ya que propone un marco de referencia que puede transformar la forma en que se diseñan y construyen las infraestructuras. A medida que se intensifica la presión para construir de forma más eficiente y respetuosa con el medioambiente, las vigas híbridas se perfilan como una solución viable que permite aprovechar al máximo las propiedades de los materiales, a la vez que se reducen los costes y la huella de carbono de las construcciones. Por tanto, la investigación de Terreros-Bedoya y su equipo proporciona una base sólida para que ingenieros y constructores consideren esta tecnología en futuros proyectos, impulsando un desarrollo urbano más sostenible y económico.

Referencia:

TERREROS-BEDOYA, A.; NEGRÍN, I.; PAYÁ-ZAFORTEZA, I.; YEPES, V. (2023). Hybrid steel girders: review, advantages and new horizons in research and applications. Journal of Constructional Steel Research, 207:107976. DOI:10.1016/j.jcsr.2023.107976.

Dejo a continuación el artículo completo, pues está publicado en abierto.

Descargar (PDF, 4.42MB)

Optimización de los costes de fabricación de vigas híbridas de chapa de acero soldadas

Acaban de publicarnos un artículo en la revista Advances in Civil Engineering (revista indexada en el JCR) donde se optimizan las vigas de acero híbridas para minimizar los costos de fabricación. El estudio se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El objetivo del artículo es optimizar las vigas de acero híbridas transversal-longitudinalmente (TLH) para minimizar los costos de fabricación, basándose en investigaciones anteriores sobre vigas híbridas transversalmente. Explora la ubicación de los puntos de transición en las vigas TLH para maximizar las ventajas de la configuración mecánica, y ofrece recomendaciones para establecer transiciones y configuraciones de acero en función de los niveles de tensión y las longitudes de los elementos.

La metodología implica definir estudios de casos, modelar estructuras híbridas transversales y longitudinalmente, formular un problema de optimización para explorar las configuraciones de TLH y establecer restricciones de diseño. El estudio utiliza técnicas de optimización para determinar el número y las posiciones óptimos de los puntos de transición a lo largo del elemento, así como las configuraciones de los materiales para los diferentes tramos de vigas TLH.

Las conclusiones más importantes de este trabajo son las siguientes:

  • El estudio muestra los beneficios económicos de las vigas de acero híbridas transversal-longitudinalmente (TLH) en comparación con los diseños homogéneos tradicionales y optimizados, y muestra una reducción de costos de fabricación de más del 50%.
  • Se ha descubierto que las configuraciones TLH son más eficaces para elementos de mayor envergadura, con recomendaciones específicas para los puntos de transición y las configuraciones de materiales en función de los niveles de tensión.
  • La metodología propuesta ofrece un enfoque de diseño sostenible al optimizar los elementos del TLH para mejorar los índices económicos y las consideraciones ambientales, lo que allana el camino para futuras investigaciones sobre el comportamiento estructural, el análisis conjunto y la implementación más amplia de criterios de sostenibilidad.

Abstract:

I-section girders with different types of steel in the flanges and web (fyf > fyw, respectively) are known as transverse hybrid girders. These have proven to be more economical than their homogeneous counterparts. However, the use of hybrid configurations in the longitudinal direction of the element has yet to be studied. This paper uses optimization techniques to explore the possibility of constructing transverse and longitudinally hybrid (TLH) steel girders. The optimization objective is to minimize the manufacturing cost, including seven activities besides the material cost. The geometrically double symmetric I-girder design subjected to a uniform transverse load is performed using Eurocode 3 specifications. Nine case studies are implemented, varying the element span (L) and the applied load. The results show that establishing various configurations along the length of the element is beneficial. The optimum number of transition points is six, meaning the girder will have four configurations, i.e., one central and three others symmetrically distributed toward each half of the element. The optimum position for the first transition would be at (L/2), the second at (L/2), and the third at (L/2). The optimum extreme configuration is usually homogeneous (fyf = fyw = 235 MPa). The others increase the steel quality in the plates, maintaining hybrid arrangements to reach the central one that usually remains with S700 steel for the flanges and S355 for the web. The study shows that TLH configurations are more effective for elements with larger spans. By applying the formulated design recommendations in a different case study, the manufacturing cost dropped by over 50% compared to the traditionally designed element and by more than 10% relative to the optimized element with a homogeneous configuration. The study’s limitations and encouraging results suggest future lines of research in this area.

Reference:

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2024). Optimized Transverse-Longitudinal Hybrid Construction for Sustainable Design of Welded Steel Plate Girders. Advances in Civil Engineering, 2024:5561712. DOI:10.1155/2024/5561712.

Como la publicación está en abierto, os la dejo para su descarga.

Descargar (PDF, 3.33MB)

Optimización del diseño de vigas híbridas de acero

Acaban de publicarnos un artículo en el Journal of Constructional Steel Research, revista indexada en el JCR. Este artículo implementa la optimización del diseño estructural para mejorar los índices económicos de las vigas híbridas de acero soldadas. El problema de optimización está formulado de manera que permita el uso de configuraciones híbridas, es decir, diferentes tipos de acero en el alma y en las alas. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Las contribuciones de este trabajo son las siguientes:

  • El artículo propone una metodología para la optimización del diseño estructural de vigas híbridas de acero soldadas con el fin de mejorar sus índices económicos.
  • El problema de optimización se formula para permitir el uso de configuraciones híbridas, que pueden incluir diferentes tipos de acero en las almas y en las alas.
  • El documento incluye once calidades de acero como variables de optimización, y el costo de fabricación se formula como una función objetivo, que incluye otras siete actividades, como la soldadura o la pintura.
  • Los resultados muestran que el diseño optimizado proporciona soluciones hasta un 50% más económicas que los métodos de diseño tradicionales.
  • El documento sugiere ciertos conceptos que destacan las propiedades mecánicas para comparar las soluciones óptimas para cada estudio de caso, que pueden servir como recomendaciones de diseño para proyectos futuros que incluyan este elemento estructural.
  • El artículo establece líneas de investigación futuras sobre este tema, basándose en los vacíos de la investigación y en los prometedores resultados obtenidos.

Abstract:

This paper implements structural design optimization to improve the economic indexes of welded steel plate girders. The optimization problem is formulated in a way that allows the use of hybrid configurations, i.e., different types of steel in the flanges and web. Besides the cross-sectional dimensions, eleven steel grades are included as optimization variables. In addition to weight and material cost, the manufacturing cost is formulated as an optimization objective, which includes seven other activities, such as welding or painting. The geometrically double symmetric I-girder design subjected to a uniform transverse load is carried out through the Eurocode 3 rules. Nine case studies are implemented by varying the girder span and load values. The results show significant differences depending on the optimization objective, especially between weight and cost optimization. On the other hand, optimization-assisted design provides solutions up to 50% more economical than traditional design methods. Hybrid-optimized configurations can also improve these indexes by about 10% compared to their homogeneous counterpart, demonstrating the applicability of this novel practice. Certain concepts highlighting mechanical properties are proposed to compare the optimal solutions for each case study. These concepts can serve as design recommendations for future projects that include this structural element. Finally, based on the research gaps and the promising results obtained, future lines of research on this topic are established.

Keywords:

Hybrid steel girder; Structural optimization; Hybrid ratio; Biogeography-based optimization

Reference:

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Design optimization of welded steel plate girders configured as a hybrid structure. Journal of Constructional Steel Research, 211:108131. DOI:10.1016/j.jcsr.2023.108131

Al tratarse de un artículo publicado en abierto, os dejo el mismo para su descarga. Espero que os sea de interés.

Descargar (PDF, 4.16MB)

Características de la construcción mixta de hormigón y acero

El Puente Juan Bravo en Madrid. http://www.dobooku.com/2017/10/el-puente-juan-bravo-en-madrid/

Una pieza mixta esencialmente consta de tres elementos principales:

        • Sección de hormigón: puede contener o no armadura pasiva y/o activa.
        • Sección metálica.
        • Elementos de conexión, también conocidos como conectores.

Gracias a la colaboración entre el hormigón y el acero, la sección mixta experimenta una deformación conjunta, controlando así cualquier deslizamiento relativo entre ambos materiales mediante los conectores.

Todas aquellas acciones diferenciales entre hormigón y acero generan esfuerzos internos y de corte en la interfase que pueden ser significativos y que hay que considerar en proyecto. Algunos de los factores a considerar son la retracción del hormigón, la fluencia, los efectos térmicos, la acción del pretensado, entre otros. Es fundamental analizar y comprobar la estructura frente a los estados límites de servicio.

Desde un punto de vista estructural, la construcción mixta presenta las siguientes características principales:

  • Reducción del espesor en dinteles, especialmente notable en luces más amplias. Esto se debe a la mayor rigidez y resistencia última proporcionada por la sección parcial de hormigón en comparación con una solución completamente metálica. Además, la zona traccionada también es más rígida en comparación con soluciones de hormigón armado y pretensado. En el caso de edificios, esto implica una menor altura de los pisos, lo que se traduce en ahorro de materiales y de instalaciones.
  • Mayor esbeltez de los soportes, lo que incrementa el espacio libre y mejora las condiciones estéticas de la estructura.
  • El aumento de rigidez mejora la capacidad de deformación y respuesta de la estructura frente a cargas dinámicas.

Desde el punto de vista constructivo, las estructuras mixtas ofrece una amplia variedad de tipologías, basadas en los materiales que la componen. Estos tipos constructivos pueden adaptarse según las necesidades prácticas de la ejecución. Algunas opciones a considerar son las siguientes:

  • Secciones de hormigón: se pueden utilizar secciones de hormigón in situ o prefabricadas, que pueden ser de hormigón en masa, armado o pretensado. También es posible emplear hormigón ligero.
  • Secciones metálicas: se pueden emplear perfiles, chapas o tubos metálicos. Estas secciones pueden ser atornilladas o soldadas, y pueden presentarse en formas de alma llena, en celosía o aligeradas. También es posible el uso de secciones metálicas pretensadas. Dichas secciones metálicas pueden estar completamente expuestas o parcial o totalmente empotradas en el hormigón.
  • Conexiones: las conexiones entre los elementos pueden ser parciales o totales. Además, pueden realizarse antes o después del endurecimiento del hormigón, así como antes o después del pretensado del hormigón o del acero.

En la construcción mixta, el proceso constructivo adquiere una importancia destacada, tanto desde el punto de vista analítico-estructural como desde la perspectiva económica. Esto se debe a la existencia de una amplia variedad de cargas previas a las sobrecargas de uso, lo que implica consideraciones adicionales tanto en el análisis estructural como en el aspecto económico.

En las referencias os podéis descargar, gratuitamente, un estado del arte reciente sobre este tipo de estructuras mixtas aplicadas a puentes. Creo que os puede resultar de utilidad. También os dejo un par de vídeos introductorios a las estructuras mixtas que espero os sean de interés.

Referencias:

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2020). Steel-concrete composite bridges: design, life cycle assessment, maintenance and decision making. Advances in Civil Engineering, 2020:8823370. DOI:10.1155/2020/8823370

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Ventajas y nuevos horizontes de las estructuras armadas híbridas de acero

Acaban de publicarnos un artículo en el Journal of Constructional Steel Research, revista indexada en el JCR. Este artículo proporciona una revisión exhaustiva del estado actual del conocimiento sobre las vigas de acero híbridas, que son una alternativa innovadora y sostenible a los elementos de acero homogéneos tradicionales. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Las vigas de acero híbridas son una excelente alternativa a los elementos de acero homogéneos tradicionales, pues pueden utilizar al máximo su capacidad para hacer frente a los esfuerzos de flexión y cortante. La investigación en este campo ha ido en aumento y se han desarrollado varios métodos de diseño eficientes. Sin embargo, todavía hay algunas lagunas en la investigación que deben abordarse, como su consideración en diferentes estándares y su aplicación en estructuras de vigas complejas.

Las contribuciones de este artículo son las siguientes:

  1. Proporcionar una revisión exhaustiva del estado actual del conocimiento sobre las vigas de acero híbridas.
  2. Identificar los métodos de diseño y las proporciones híbridas recomendadas para lograr el mejor rendimiento.
  3. Analizar 128 publicaciones y extraer información sobre cinco variables categóricas que reflejan la situación actual de los elementos híbridos.
  4. Realizar un análisis estadístico basado en un análisis de correspondencia simple para identificar las relaciones subyacentes entre las variables.
  5. Destacar las investigaciones más relevantes hasta la fecha y proponiendo varias líneas de investigación prometedoras para abordar las brechas de investigación en este campo.

Abstract:

Although it is still common practice to use homogeneous steel girders (same yield strength in the flanges and web), implementing hybrid configurations seems to be an excellent alternative to improve the performance and sustainability of this type of structural element. Therefore, this paper comprehensively reviews the current knowledge of hybrid steel girders. The objective is to improve our understanding of this innovative and sustainable alternative to traditional homogeneous steel elements, focusing on updating the theoretical basis for future design projects. The study analyzes 128 publications, from which information is extracted on five categorical variables, reflecting the current situation of hybrid elements. In addition to studying each variable separately and highlighting the most relevant research to date, a more in-depth statistical analysis is performed. It is based on simple correspondence analysis, which allows for identifying the underlying relationships among the variables. Results summarize the design methods implemented to calculate these structures. Furthermore, the recommended hybrid ratios to achieve the best performance are presented. However, it is found that there are gaps in the research. Consequently, several promising lines of investigation are proposed.

Keywords:

State-of-the-art; Hybrid girder; Hybrid ratio; Yield strength; High-strength steel

Reference:

TERREROS-BEDOYA, A.; NEGRÍN, I.; PAYÁ-ZAFORTEZA, I.; YEPES, V. (2023). Hybrid steel girders: review, advantages and new horizons in research and applications. Journal of Constructional Steel Research, 207:107976. DOI:10.1016/j.jcsr.2023.107976.

Al tratarse de un artículo publicado en abierto, os dejo el mismo para su descarga. Espero que os sea de interés.

Descargar (PDF, 4.22MB)

Programas de puntos de inspección del Código Estructural (Excel)

En una de las entradas de mi blog de las que hablaba del Programa de Puntos de Inspección del Código Estructural (PPIs), se decía que el Ministerio de Transportes, Movilidad y Agenda Urbana incluiría un enlace donde se puede acceder a unas tablas editables para la elaboración de los PPIs. Se trata de una tabla Excel editable donde aparecen las unidades de inspección y frecuencia de comprobación por lote de control de ejecución, tanto para el acero como para el hormigón. Ya los tenéis en el siguiente enlace:

Comparativa entre el Código Estructural (CE) y la Instrucción de Hormigón Estructural (EHE-08)

Os paso a continuación un documento, en abierto, que, aunque breve, resulta muy interesante. Realiza una comparativa entre el Código Estructural y la Instrucción de Hormigón Estructural (EHE-08). Este documento se ha realizado bajo la supervisión del Instituto de Ciencias de la Construcción Eduardo Torroja (IETcc) perteneciente al Consejo Superior de Investigaciones Científicas (CSIC) y la Dirección General de Agenda Urbana y Arquitectura del Ministerio de Transportes, Movilidad y Agenda Urbana.

Además, uno de los coautores, junto con Alejandro Calle García, es mi amigo Juan Carlos Arroyo Portero, profesor de estructuras de la Universidad Politécnica de Madrid y autor, entre otros, de los libros “Números gordos en el proyecto de estructuras” y “Montoya-esencial. Hormigón armado“. Recomendables ambos dos.

El enlace a este documento lo podéis encontrar aquí: https://www.codigotecnico.org/Guias/AvanceGuiaCE.html?fbclid=IwAR1Bbq_egzA-2fDmnbA3Ocj213eizqsKA2q1CEU6jcgLGDbIs2_vcQNa5ww&fs=e&s=cl

Descargar (PDF, 4.31MB)

 

Las unidades de inspección según el Código Estructural

El concepto de “lote de inspección” no ha cambiado con el reciente Código Estructural. El Artículo 17.1 lo define el “como conjunto de actividades, correspondientes a un mismo proceso de ejecución, que es sometido a control para la recepción de un lote de ejecución“. Pero sí que se desarrolla con mayor detalle, con novedades que interesa conocer.

Recordemos que el plan de control de calidad del proyecto define los correspondientes lotes de control y unidades de inspección (Art. 19), describiendo para cada caso las comprobaciones a realizar y los criterios a seguir en el caso de no conformidad. La programación del autocontrol también determinará los lotes de ejecución, las unidades de inspección y las frecuencias de comprobación.

Esquema de la relación entre unidades de inspección y procesos de ejecución

Sin embargo, hay novedades importantes que debemos resaltar respecto a la derogada Instrucción de Hormigón Estructural EHE-08. Vamos a comentarlas con algún detalle:

  • El Artículo 63.2 del Código Estructural es el que se ocupa de las unidades de inspección. Se vuelve a definir el concepto, pero introduce alguna contradicción que conviene resaltar. Lo primero es que el tamaño máximo de la unidad lo define la tabla 63.2, pero lo que llama la atención es que ahora se indica que “puede implicar a diferentes lotes de ejecución“.
  • Se desvanece en el Código la mención a que el tamaño máximo de la unidad de inspección debía de poder comprobarse en una visita de obra. No obstante, parece que el articulado pretende reflejar la parte de un proceso o actividad que, con carácter general, puede verificarse en una visita.
  • La inspección de estas unidades, tal y como indica el plan de obra, no solo la desarrollará la dirección facultativa, o en su caso, la entidad de control, sino que el propio constructor también tiene obligación de hacerla en función de su programación del autocontrol.
  • Lo más llamativo es el detalle en la definición de las unidades de inspección. Se definen en función del proceso de ejecución o actividad (tabla 63.2.a), o del tipo de elemento (tabla 63.2.b). La anterior EHE-08 disponía únicamente de la tabla 92.5 donde se definía el tamaño máximo de la unidad de inspección en función de los procesos y actividades de ejecución, al igual que la tabla 63.2.a, pero con menor detalle. Los comentarios de la EHE-08 nos advertían que la tabla 92.5 era orientativa, cosa que ahora no ocurre en las tablas correspondientes del Artículo 63.2 del Código Estructural.
  • Desaparece del Código la prerrogativa que tenía la dirección facultativa de duplicar los tamaños máximos de la unidad de inspección. Era el caso de obras de ingeniería de pequeña importancia, así como en obras de edificación sin especial complejidad estructural (formadas por vigas, pilares y forjados convencionales no pretensados, con luces de hasta 6,00 m y un número de niveles de forjado no superior a siete). Como se puede ver, el Código no distingue entre obras pequeñas o grandes, simples o complejas.
  • Por último, el actual Código define las frecuencias de comprobación para los lotes de ejecución y las unidades de inspección. Se ha desarrollado el Anejo 15 para las estructuras de hormigón, y el Anejo 17 para las de acero, ambos con carácter orientativo.

En este vídeo que os he grabado se explican las unidades de inspección. Espero que os sea de interés.

Os dejo a continuación la transcripción del artículo 63.2 del Código Estructural para su consulta.

63.2 Unidades de inspección.

A los efectos de este Código, se entiende por unidad de inspección el conjunto de actividades asociadas a un determinado proceso de ejecución, cuyo tamaño máximo viene definido por lo indicado en la tabla 63.2 y que puede implicar a diferentes lotes de ejecución.

Para cada lote de ejecución, el programa de control identificará cada uno de los procesos de ejecución que deben llevarse a cabo en función del tipo de elemento y sus características.

Para cada lote de ejecución y para cada uno de los procesos, el programa de control definirá las unidades de inspección sobre las que se desarrollará el control de la conformidad de la ejecución.

En función de los desarrollos de procesos y actividades previstos en el plan de obra, en cada inspección a la obra desarrollada por el constructor, por la dirección facultativa o, en su caso, por la entidad de control, podrá comprobarse un determinado número de unidades de inspección, las cuales, pueden corresponder a uno o más lotes de ejecución.

Para la definición de las posibles unidades de inspección en cada lote de ejecución, el programa de control identificará la totalidad de los procesos y actividades susceptibles de ser inspeccionadas, de acuerdo con lo previsto en este Código.

Las unidades de inspección se definirán en función del proceso de ejecución o actividad, o del tipo de elemento al que corresponden, según se indica en las tablas 63.2.a y 63.2.b.

Una vez definidos los lotes de ejecución y las unidades de inspección, se debe definir para cada unidad de inspección las frecuencias de comprobación. De forma orientativa, el Anejo 15 define las frecuencias de comprobación para las unidades de inspección de la ejecución de estructuras de hormigón.

Resulta interesante recoger los comentarios que realiza el Código de este apartado:

“La identificación de un tamaño máximo de la unidad de la inspección que hace el articulado pretende reflejar la parte de un proceso o actividad que, con carácter general, puede ser comprobable en una visita a la obra de la dirección facultativa o, en su caso, de la entidad de control.

Por otra parte, el número de posibles unidades de inspección depende en gran medida de los medios disponibles en cada obra. A título de ejemplo, en el caso del vertido del hormigón, el volumen de obra ejecutado en una jornada vendrá condicionada por los medios habilitados por el constructor, número de bombas, capacidad de la central, personal disponible, etc.

La tabla 63.2.a tiene como finalidad definir unos valores orientativos que pudieran servir como referencia inicial. No obstante,en función del tipo de obra (edificación, puentes, etc.), de las características de la misma y coherentemente con la necesidad de adaptación que establece el Artículo 19, los valores de dicha tabla podrían ser objeto de modificación en el correspondiente programa de control aprobado por la dirección facultativa.

Para cada actividad de obra se deberán definir la totalidad de los procesos de ejecución implicados y que están recogidos en las tablas 63.2a y 63.2b. Por proceso deberá estar indicado el tamaño de la  unidad de inspección que aplique en cada caso, así como la frecuencia de comprobación de las mismas. Para establecer las frecuencias se han incluido en el Anejo 15 diferentes tablas según el nivel y tipo de control establecido. Estas frecuencias deberán adaptarse a las particularidades de cada proyecto y forma de ejecución.

De forma práctica, es recomendable planificar estas operaciones de control por actividad (cimentación, muros, pilares, losas, etc.), en un “Programa de Puntos de Inspección” donde se incluyan por ejemplo:

      • Las operaciones a controlar
      • Las unidades de inspección máximas
      • Los procedimientos o normas que regulan las verificaciones de la conformidad de cada inspección, así como las especificaciones de aceptación.
      • La ubicación y la frecuencia o intensidad de las inspecciones.
      • La forma de documentar los resultados
      • La persona responsable de la inspección.
      • Los puntos de espera o parada a respetar en cada proceso.
      • Cualquier comentario u observación aclaratoria.

En la página web del Ministerio de Transportes, Movilidad y Agenda Urbana se incluye un enlace donde se puede acceder a unas tablas editables para la elaboración de los Programas de Puntos de Inspección”.

También os dejo, para su consulta, el Anejo 15, frecuencias de comprobación de las unidades de inspección en la ejecución de estructuras de hormigón. Como novedad destaca la opción simplificada dentro del nivel de control normal, para el control de los procesos de ejecución. Esta opción se puede emplear en obras de edificación sin especial complejidad estructural (formadas por vigas, pilares y forjados convencionales no pretensados, con luces de hasta 6,00 metros y un número de niveles de forjado no superior a diez). Esta opción facilita una programación del control más sencilla. En efecto, no es necesario determinar el número de unidades de inspección para cada proceso de ejecución, sino que directamente se obtienen las comprobaciones mínimas que hay que realizar en cada proceso de ejecución por tipo de elemento para la aceptación de cada lote.

Descargar (PDF, 195KB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

División de las estructuras de hormigón en lotes de ejecución según el Código Estructural

Uno de los conceptos que no ha cambiado en ámbito del control de la calidad de las estructuras es lo que se entiende por lote de ejecución. En el Artículo 17.1 del Código Estructural, se define como la parte de la obra cuya ejecución se somete a aceptación en su conjunto. Sin embargo, existen diferencias entre lo expresado por el Código y lo que anteriormente estaba estipulado en la derogada Instrucción de Hormigón Estructural EHE-08.

  • El cambio más evidente se encuentra en la actual tabla 63.1 que define el tamaño máximo de los lotes de ejecución. A diferencia de la anterior tabla 92.4 de la EHE-08, ha desaparecido la clasificación por tipo de obra. Tampoco aparece la división entre elementos de cimentación, elementos horizontales y otros elementos. La vigente tabla 63.1 establece el número de elementos o dimensión del lote de ejecución atendiendo exclusivamente al tipo de elemento.
  • Además, hay cambios significativos que conviene tener en cuenta. A modo de ejemplo, en el caso de elementos de cimentación de edificios, la EHE-08 establecía lotes de ejecución correspondientes a 250 m2 de superficie y 50 m en el caso de pantallas. En el Código, para el mismo caso, se mantienen los 250 m2 de superficie, pero se añade que no se deben rebasar 10 elementos. Además, los 50 m de las pantallas se encuadran dentro del tipo de elemento denominado “pilares y muros portantes de edificación”. También se incluye la jornada de trabajo como criterio para determinar el tamaño del lote, cosa que no ocurría en el anterior articulado. Otro ejemplo, sin querer ser exhaustivo, es que desaparece el lote de ejecución de 200 m3 de pilas de puente. En cualquier caso, hay que cumplir con la condición más restrictiva para definir el lote de ejecución.
  • Otra de las novedades importantes es que el Código explicita que, en el caso de no encontrarse alguno de los elementos de la tabla 63.1, entonces será el pliego de prescripciones técnicas particulares del proyecto el que deberá definir el tamaño máximo del lote de ejecución. Volvemos a ver la importancia que otorga el Código al proyecto de ejecución.
  • Asimismo hay un matiz que estimamos de importancia. No se permite rebasar el tamaño del lote indicado en las tablas correspondientes, ni con la normativa anterior ni con la actual. Sin embargo, en los comentarios de la EHE-08 se daba una salida airosa al caso de que no se pudiera ajustar el lote exactamente a los límites establecidos. En dicho caso la nueva dimensión del lote debería estar justificada en el programa de control, que recordemos, debe estar aprobado por la dirección facultativa. Este comentario es razonable y debería tenerse en cuenta también en el nuevo Código.

He grabado un vídeo explicativo de la programación del control de ejecución en las estructuras de hormigón, donde se habla de los lotes de ejecución, pero también de las unidades de inspección. Espero que os sea de interés.

Os dejo a continuación la transcripción del artículo 63.1 del Código Estructural para su consulta.

Artículo 63.1 Lotes de ejecución.

El Programa de control aprobado por la dirección facultativa contemplará una división de la obra en lotes de ejecución, coherentes con el desarrollo previsto en el plan de obra para la ejecución de la misma y conformes con los siguientes criterios:

a) se corresponderán con partes sucesivas en el proceso de ejecución de la obra,

b) no se mezclarán elementos de tipología estructural distinta, que pertenezcan a filas diferentes en la tabla 63.1,

c) el tamaño del lote no será superior al indicado, en función del tipo de elementos, en la tabla 63.1.

Tabla 63.1 Tamaño máximo de los lotes de ejecución

En el caso de otros elementos diferentes de los indicados en la tabla 63.1, el pliego de prescripciones técnicas particulares del proyecto establecerá los criterios necesarios para definir el tamaño máximo del lote de ejecución.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Tratamiento de los residuos según el Código Estructural

https://www.rdsanjuan.com/servicios/demolicion/

Como ya es conocido, el Real Decreto 470/2021, de 29 de junio, fue el que aprobó el vigente Código Estructural. Independientemente de la pertinencia de aprobar esta norma nacional en un momento donde deberíamos converger rápidamente hacia los Eurocódigos, lo cierto es que permite integrar en un solo documento los aspectos relacionados con el hormigón estructural, el acero y las estructuras mixtas. Además, posibilita conocer hacia dónde van las tendencias en este ámbito. No obstante, son necesarias más de 300 normas UNE para complementar el contenido del nuevo código en lo referente a la conformidad de los productos y procesos regulados en el mismo.

En un artículo anterior hablé del término “deconstrucción” y su empleo dentro del Código Estructural. Dejando al margen el acierto en el uso de determinadas palabras, lo cierto es que algo nuevo se respira en el ambiente en relación con el ciclo de vida de las estructuras, en especial cuando tratamos del final de la vida útil. En este caso, uno de los aspectos que se resalta en el nuevo código es el tratamiento de los residuos, tanto al final de la vida de la estructura como en su utilización como material reciclado. Repasemos, pues, el tratamiento que da el Código Estructural a los residuos. Por cierto, que un residuo de construcción y demolición es cualquier sustancia u objeto que, cumpliendo la definición de “residuo” de la Ley 10/1998, de 21 de abril, se genere en una obra de construcción o demolición.

En el artículo 5, referido a los requisitos de las estructura, y en particular en lo referente a la exigencia de calidad medioambiental de la ejecución, se exige tanto en proyecto, en ejecución y en las tareas de intervención sobre las estructuras existentes, la reducción en la generación de residuos.

En cuanto al uso de materiales en el hormigón, el artículo 30.8 referido a los áridos reciclados establece los requisitos para la utilización del árido reciclado procedente de los residuos del hormigón. Además, el artículo 32, sobre las adiciones, se refiere a las cenizas volantes como residuos sólidos.

Pero quizás lo más interesante a este respecto viene con los artículos referidos a la demolición y deconstrucción de las estructuras. Así, el Capítulo 16 se refiere a las estructuras de hormigón, y establece que en el proyecto de demolición de estas estructuras se deben definir los procedimientos de gestión de los residuos, las medidas previstas para la separación de los residuos generados y la retirada de posibles residuos peligrosos. Se añade la obligatoriedad de gestionar los residuos de forma eficiente durante el proceso de demolición. Lo novedoso es que el artículo 78 contempla medidas adicionales para lo que se viene en llamar “deconstrucción de estructuras de hormigón”. No se establece en el código cuándo es obligatorio proceder a la deconstrucción frente a la demolición, pues solo habla de esas medidas adicionales que diferencian ambos procesos, y que pasan por la reutilización y reciclado de la estructura existente. Para ello las medidas adicionales se basan en identificar los elementos reutilizables, los residuos generados y elaborar dos documentos: el Estudio de Gestión de Residuos, que contenga los destinos previstos para los residuos generados, y el Plan de Gestión de Residuos, orientado al reciclado. Además, esta deconstrucción solo la puede realizar una empresa con certificación medioambiental de conformidad con la norma UNE-EN ISO 14001.

El Capítulo 26 trata la demolición y deconstrucción de las estructuras de acero de forma similar a las de hormigón. Y del mismo modo, el Capítulo 36 lo hace con las estructuras mixtas hormigón-acero. Hubiera bastado un solo capítulo referido a la demolición y deconstrucción de las estructuras para no repetir tres veces prácticamente lo mismo.

En este contexto, por tanto, se podrían hacer los siguientes comentarios respecto al tratamiento de los residuos por parte del Código Estructural. Otra cosa es que la legislación o las normas de carácter voluntario definan con mayor claridad alguno de estos aspectos.

  1. El proyecto constructivo de una estructura debe de justificar la reducción en la generación de residuos, no se define cómo ni dónde. La exigencia se amplía a la ejecución a la intervención de las estructuras, pero la indefinición es la misma.
  2. El Código Estructural no aclara cuándo es obligatoria la deconstrucción frente a la demolición de una estructura. Pero, con los requisitos medioambientales actuales, ¿cabe hablar de una demolición que no contemple el reciclado y la gestión de los residuos? No es razonable, por tanto, distinguir el proceso de la demolición del de la deconstrucción. Hubiera bastado en el Código Estructural exigir a la demolición los requisitos adicionales citados.
  3. Se hace necesario un proyecto de demolición, aunque no se habla de un proyecto de deconstrucción.
  4. La reutilización de residuos procedentes de estructuras queda circunscrito en este código al árido reciclado. La reutilización, por tanto, queda indefinida fuera de este ámbito.
  5. Se exigen dos documentos diferentes, el Estudio de Gestión de Residuos y el Plan de Gestión de Residuos, cuyo contenido y estructura no se definen en el código (hay que acudir a otra legislación vigente).
  6. La deconstrucción la puede realizar solo una empresa con certificado ISO 14001. ¿Cualquier empresa, independientemente de su experiencia o capacidad para realizar demoliciones estructurales? No olvidemos que la deconstrucción es una demolición con unos requisitos adicionales.

La conclusión sobre el documento es bastante clara. Aunque se apuntan direcciones estratégicas respecto al ciclo de vida de las estructuras, la parte final queda algo desdibujada. No hay más remedio que acudir a otra normativa o legislación para aplicar con cierto rigor lo que establece el Código Estructural. Véase el Real Decreto 105/2008, de 1 de febrero, por el que se regula la producción y gestión de los residuos de construcción y demolición.

Aquí tenéis un vídeo sobre la demolición de estructuras en el Código Estructural. Organizado por el CITOP de Aragón.

Os dejo aquí un webminar que se desarrolló hace poco sobre el nuevo Código Estructural, organizado por el Colegio Oficial de Aparejadores y Arquitectos Técnicos de Madrid.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.