Trascendencia del proyecto de investigación HYDELIFE en su ámbito temático

Instituto de Ciencia y Tecnología del Hormigón (ICITECH)

En un artículo anterior detallamos los antecedentes y la motivación del proyecto de investigación HYDELIFE. Ahora vamos a explicar la relevancia de la propuesta, que se centra tanto en la utilización de una metodología emergente y novedosa en el ámbito de las estructuras, como es la hibridación de las metaheurísticas con la inteligencia artificial, en especial con el aprendizaje profundo (Deep Learning, DL), como en el objeto de estudio, que es la construcción industrializada modular, tanto en edificación, como en puentes mixtos de hormigón y acero y en estructuras híbridas de acero. Justificamos a continuación la importancia de esta propuesta.

La Inteligencia Artificial (IA) se ha usado en estas últimas décadas de forma intensiva en las investigaciones relacionadas con la ingeniería civil, especialmente en el ámbito de las estructuras y las infraestructuras (Taffese et al., 2017). Sin embargo, los métodos más recientes como el reconocimiento de patrones (Pattern Recognition, PR), el aprendizaje automático (Machine Learning, ML) y el aprendizaje profundo (DL) son métodos emergentes en este ámbito de la ingeniería (Salehi et al., 2018). Éstas técnicas emergentes tienen la capacidad de aprender complicadas interrelaciones entre los parámetros y las variables, y así permiten resolver una diversidad de problemas que son difíciles, o no son posibles, de resolver con los métodos tradicionales. Son capaces de descubrir información oculta, no trivial, sobre el rendimiento de una estructura al aprender la influencia de diversos mecanismos de daño o degradación y los datos recogidos de los sensores. Además, ML y DL tienen una elevada potencialidad en el dominio de la mecánica computacional, como, por ejemplo, para optimizar los procesos en el método de elementos finitos para mejorar la eficiencia de los cálculos.

La optimización de las estructuras constituye un campo científico donde se ha trabajado intensamente en las últimas décadas (Afzal et al., 2020). Debido a que los problemas reales requieren un número elevado de variables, la resolución exacta del problema de optimización asociado es inabordable. Se trata de problemas NP-hard, de elevada complejidad computacional, que requiere de metaheurísticas para llegar a soluciones satisfactorias en tiempos de cálculo razonables. La idea es aprovechar la inmensa cantidad de datos generados por el elevado número de iteraciones que requiere la optimización estructural mediante metaheurísticas. Es el campo ideal para la inteligencia artificial, pues permite extraer información para acelerar y afinar la búsqueda de la solución óptima. Un ejemplo de este tipo es nuestro trabajo (García-Segura et al., 2017a) de optimización multiobjetivo de puentes cajón, donde una red neuronal aprendía de los datos intermedios de la búsqueda y luego predecía con una extraordinaria exactitud el cálculo del puente, sin necesidad de calcularlo. Ello permitía reducir considerablemente el tiempo final de computación. Sin embargo, este tipo de aplicación es muy sencilla, pues solo ha reducido el tiempo de cálculo (cada comprobación completa de un puente por el método de los elementos finitos es mucho más lenta que una predicción con una red neuronal). HYDELIFE trata de dar un paso más allá. Se pretende que la metaheurística sea capaz de aprender de los datos recogidos utilizando la inteligencia artificial para ser mucho más efectiva, y no solo más rápida.

Concretando, la propuesta se centra en el aprendizaje profundo (DL) que, dentro del ML, utiliza algoritmos más sofisticados, construidos a partir del principio de las redes neuronales. El foco metodológico del proyecto es la exploración de la integración específica del DL en las metaheurísticas con el objeto de mejorar la calidad de las soluciones o los tiempos de convergencia cuando se trata de optimizar estructuras. Nuestro grupo ha tenido ocasión de comprobar la eficacia de este hibridaje en estructuras sencillas, como son los muros de contrafuertes (García et al., 2020a, 2020b; Yepes et al., 2020). Además, hemos lanzado al respecto un número especial en la revista Mathematics (indexada en el primer decil del JCR) denominado “Deep learning and hybrid-metaheuristics: novel engineering applications“ (https://www.mdpi.com/journal/mathematics/special_issues/Deep_Learning_Hybrid-Metaheuristics_Novel_Engineering_Applications).

Modern methods of construction. https://www.lancashirebusinessview.co.uk/latest-news-and-features/let-s-talk-modern-methods-of-construction

En cuanto al objeto del proyecto, la construcción industrializada modular, tanto en edificación, como en puentes mixtos de hormigón y acero y en estructuras híbridas de acero, su justificación deriva de su importancia creciente y los huecos en la investigación encontrados. En efecto, la construcción modular y la prefabricación son técnicas ya veteranas desde que en 1936 Eugène Freyssinet construyera el primer puente de hormigón pretensado del mundo, en el que las vigas y tableros eran prefabricados. Sin embargo, la auténtica revolución que supone la IA, las tecnologías BIM y los retos de la sostenibilidad están cambiando radicalmente este concepto y lo está llevando a una nueva dimensión. La reciente norma UNE 127050:2020 trata de los sistemas constructivos industrializados para edificios construidos a partir de elementos prefabricados de hormigón, así como de los requisitos de comportamiento, fabricación, instalación y verificación. Los métodos modernos de construcción (Modern Methods of Construction, MMC), o como algunos llaman “construcción inteligente”, constituyen alternativas a la construcción tradicional. Es un término que cubre una amplia gama de tecnologías basada en la fabricación modular, ya sea “in situ” o “off-site”, que está revolucionando la forma de construir de forma más rápida, rentable y eficiente. Un ejemplo no muy lejano ha sido la construcción de dos hospitales de campaña en Wuhan (China) en solo 12 días debido a la crisis sanitaria. Países como Suecia y Japón lideran la construcción MMC. En Suecia, casi la mitad de las viviendas de nueva construcción utilizan este método, llegando al 80% en el caso de viviendas unifamiliares. Japón, es el país donde se construye mayor número de viviendas nuevas con este método, aunque no llegan al 20% del total. La construcción MMC permite un ahorro de tiempo de hasta el 50%, permite el uso de materiales sostenibles, reduciéndose el desperdicio. La construcción en fábrica permite tolerancias estrictas, la reducción de los errores, promueve la seguridad, no estando los materiales a la intemperie durante la construcción. Además, permite el uso de materiales durables, que mejoran el aislamiento acústico, la protección contra incendios y la eficiencia energética. Sin embargo, en algunos países el uso de las MMC presenta costes más elevados que la construcción tradicional. Otras barreras son la falta de mano de obra especializada, la escasez de suministros o la regulación existente (Rahman, 2014). Con todo, la actual crisis del Covid-19 puede acelerar los cambios necesarios. De todos modos, los métodos MMC constituyen un producto diferente al del mercado de la construcción tradicional. La construcción modular, al tratarse de un producto alternativo, en lugar de competir, complementará el mercado tradicional. El objetivo es aumentar la productividad de los recursos disponibles mejorando la calidad, la eficiencia empresarial, la satisfacción del cliente, el rendimiento ambiental, el índice de sostenibilidad y el control de los plazos de entrega. Nuestro grupo de investigación (Sánchez-Garrido y Yepes, 2020) ha empezado a aplicar técnicas analíticas de toma de decisiones multicriterio (MCDM) y análisis del ciclo de vida, comparando la construcción tradicional de una vivienda unifamiliar con dos alternativas basadas en MMC. Propusimos un índice de sostenibilidad, que incluye atributos tangibles e intangibles, así como factores de incertidumbre y riesgos, que permite a los promotores priorizar soluciones que aseguren la sostenibilidad económica, social y medioambiental. HYDELIFE pretende profundizar en esta vía con la optimización multiobjetivo híbrida de este tipo de construcción modular.


Constructalia – ArcelorMittal. Puente mixto Wirkowice: El primer puente de carretera en Europa con vigas de acero autopatinable Arcorox® 460 – Constructalia

Otro de los huecos detectados por nuestro grupo en este ámbito son los puentes mixtos (Martínez-Muñoz et al., 2020). El análisis del estado del arte indica que la investigación se ha centrado en el diseño preliminar de puentes con un enfoque principalmente económico (Yepes et al., 2019) sin abordar la optimización multiobjetivo social y ambiental de su ciclo de vida completo que permitan aplicar técnicas de decisión desde el diseño. mientras que a nivel mundial la preocupación se dirige a la búsqueda de soluciones sostenibles. También se ha detectado un vacío en los puentes ejecutados con vigas armadas híbridas. En este tipo de estructuras se utilizan diferentes límites elásticos de acero en las chapas de alas y alma para disminuir el espesor de las chapas de mayor límite elástico, lo cual supone una reducción de peso por unidad de longitud de la sección transversal (Chacón, 2014). Sin embargo, la reducción del espesor puede acarrear la disminución de la capacidad de la sección ante otros fenómenos, como es el caso de la inestabilidad. Se debe garantizar un buen comportamiento de las vigas a cortante, estudiando su inestabilidad, a cargas concentradas y a pandeo lateral. Por tanto, nos encontramos ante un caso de optimización de gran interés donde, además, no se ha abordado hasta ahora su optimización completa a lo largo de su ciclo de vida. Asimismo, en nuestro equipo de investigación se ha desarrollado una patente sobre vigas en cajón mixtas (Alcalá y Navarro, 2020) que permiten resolver el problema de las vigas descolgadas en forjados de elementos prefabricados y que consiste en un cajón metálico que formará parte de un sistema de forjados slim-floor. HYDELIFE aplicará la metodología híbrida antes descrita para cubrir este vacío en el ámbito de la investigación de las estructuras.

Proyecto de Investigación:

  • Optimización híbrida del ciclo de vida de puentes y estructuras mixtas y modulares de alta eficiencia social y medioambiental bajo presupuestos restrictivos. (HYDELIFE). [Hybrid life cycle optimization of bridges and mixed and modular structures with high social and environmental efficiency under restrictive budgets]. PID2020-117056RB-I00. Financiado por el Ministerio de Ciencia e Innovación con fondos FEDER. Investigador Principal: Víctor Yepes.

Referencias:

AFZAL, M.; LIU, Y.H.; CHENG, J.C.P.; GAN, V.J.L. (2020). Reinforced concrete structural design optimization: A critical review. J. Clean. Prod., 260:120623.

ALCALÁ, J.; NAVARRO, F. (2020). Viga en cajón mixta acero-hormigón. Patente P202030530, 4 junio 2020.

CHACÓN, R. (2014). Vigas armadas híbridas de acero. Estado del conocimiento. Revista Ciencia e Ingeniería, 35(2):95-102.

GARCÍA, J.; YEPES, V.; MARTÍ, J.V. (2020a). A hybrid k-means cuckoo search algorithm applied to the counterfort retaining walls problem. Mathematics, 8(4), 555.

GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2020b). The buttressed walls problem: An application of a hybrid clustering particle swarm optimization algorithm. Mathematics, 8(6), 862.

GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017a). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Struct. Multidiscip. Optim., 56(1):139-150.

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2020). Steel-concrete composite bridges: design, life cycle assessment, maintenance and decision making. Adv. Civ. Eng., 2020, 8823370.

RAHMAN, M.M. (2014). Barriers of implementing modern methods of construction. J. Manage. Eng., 30(1):69-77.

SALEHI, H.; BURGUEÑO, R. (2018). Emerging artificial intelligence methods in structural engineering. Eng. Struct., 171:170-189.

SÁNCHEZ-GARRIDO, A.J.; YEPES, V. (2020). Multi-criteria assessment of alternative sustainable structures for a self-promoted, single-family home. J. Clean. Prod., 258: 120556.

TAFFESE, W.Z.; SISTONEN, E. (2017). Machine learning for durability and service-life assessment of reinforced concrete structures: Recent advances and future directions. Autom. Constr., 77:1-14.

YEPES, V.; DASÍ-GIL, M.; MARTÍNEZ-MUÑOZ, D.; LÓPEZ-DESFILÍS, V.J.; MARTÍ, J.V. (2019). Heuristic techniques for the design of steel-concrete composite pedestrian bridges. App. Sci., 9(16), 3253.

YEPES, V.; MARTÍ, J.V.; GARCÍA, J. (2020). Black hole algorithm for sustainable design of counterfort retaining walls. Sustainability, 12(7), 2767.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Antecedentes y motivación del proyecto de investigación HYDELIFE (2021-2023)

Laboratorio de materiales del Instituto de Ciencia y Tecnología del Hormigón (ICITECH)

El proyecto HYDELIFE aborda directamente el reto de la sostenibilidad social y medioambiental de las estructuras a lo largo de su ciclo de vida, desde el proyecto hasta la demolición. Para ello se propone una metodología híbrida emergente entre el aprendizaje profundo (Deep Learning, DL) procedente de la inteligencia artificial (IA), metamodelos y metaheurísticas de optimización multiobjetivo y técnicas de toma de decisión multicriterio. El foco del proyecto se centra en el diseño robusto y resiliente aplicado a la construcción industrializada modular, tanto en edificación, como en puentes mixtos de hormigón y acero y en estructuras híbridas de acero. El proyecto se apoya en los avances realizados en los proyectos de investigación anteriores (HORSOST, BRIDLIFE y DIMALIFE), donde se desarrollaron metodologías que se aplicaron a puentes e infraestructuras viarias, pero con una propuesta metodológica y un foco de atención innovador respecto a los anteriores. El proyecto se orienta hacia el objetivo 9 de desarrollo sostenible (ODS): construir infraestructuras resilientes, promover la industrialización sostenible y fomentar la innovación. También se alinea con la Estrategia Nacional de Inteligencia Artificial-ENIA (Gobierno de España, 2020). A continuación, se justifica la propuesta en función de los antecedentes y el estado actual.

La sostenibilidad económica y el desarrollo social de la mayoría de los países dependen, entre otros, del comportamiento fiable y duradero de sus infraestructuras (Frangopol, 2011). La construcción y el mantenimiento de las infraestructuras influyen en la actividad económica, el crecimiento y el empleo. Sin embargo, estas actividades impactan significativamente en el medio ambiente, presentan efectos irreversibles y pueden comprometer el futuro de la sociedad. El gran reto, por tanto, será disponer de infraestructuras capaces de maximizar su beneficio social sin comprometer su sostenibilidad (Aguado et al., 2012).

Por otra parte, el envejecimiento de las infraestructuras, la mayor demanda en su desempeño (aumento de tráfico, por ejemplo) o los riesgos naturales extremos como los terremotos, huracanes o inundaciones afectan al rendimiento previsto de estas infraestructuras (Biondini y Frangopol, 2016). Esto constituye una auténtica bomba de relojería (Thurlby, 2013) que, junto al reto de la reducción de los impactos ambientales, son razones más que suficientes para mejorar el mantenimiento de nuestros puentes. Hoy día los gestores de las infraestructuras tienen ante sí un reto importante consistente en mantenerlas en un estado aceptable con presupuestos muy limitados. Si a ello añadimos la profunda crisis financiera y sanitaria que ha afectado la economía de nuestro país y que ha provocado el declive de la actividad constructora, el panorama se complica. Las infraestructuras que se crearon con una financiación a largo plazo presentan actualmente déficits de conservación y es posible que las generaciones futuras tengan que hacer un esfuerzo adicional para actualizar los requisitos de seguridad y funcionalidad a su nivel de servicio previsto. Esta situación puede provocar una alarma social puntual, sobre todo con la interrupción de grandes vías de comunicación debidas a un excesivo deterioro. Un estudio sobre “Necesidades de Inversión en Conservación 2019-2020” de la Asociación Española de Carreteras, centrado en los firmes y la señalización, estima que el deterioro del patrimonio viario presenta un déficit acumulado de 7.500 millones de euros. Sin embargo, este problema es común a otros países desarrollados. En el año 2019, 47000 puentes del total de los puentes en Estados Unidos, (más del 20% del total) presentan deficiencias estructurales (American Road & Transportation Builders Association, 2019); en Reino Unido, más de 3000 puentes estaban por debajo de los estándares y requerían reparación (RAC Foundation, 2019). Además, el problema pasa a ser grave cuando una parte significativa del parque de infraestructuras se encuentra cercano al final de su vida útil. Y lo que aún es peor, cuando existen riesgos de alto impacto y de baja probabilidad que pueden afectar gravemente a las infraestructuras. Estos son buenos argumentos para aumentar la vida útil de los puentes. Se trata de una verdadera crisis en las infraestructuras. El reto social consistirá en aplicar unos presupuestos muy restrictivos que minimicen los impactos ambientales y los riesgos a las personas, y que la gestión sea socialmente sostenible dentro de una política de conservación del patrimonio, incluyendo la dimensión de género. Por lo tanto, nos encontramos antes un problema de optimización muy complejo, con muchas restricciones y sometido a grandes incertidumbres, lo cual representa un reto científico importante, pues no se presta fácilmente a la exploración con los instrumentos analíticos y de previsión tradicionales.

Proyecto de Investigación:

  • Optimización híbrida del ciclo de vida de puentes y estructuras mixtas y modulares de alta eficiencia social y medioambiental bajo presupuestos restrictivos. (HYDELIFE). [Hybrid life cycle optimization of bridges and mixed and modular structures with high social and environmental efficiency under restrictive budgets]. PID2020-117056RB-I00. Financiado por el Ministerio de Ciencia e Innovación con fondos FEDER. Investigador Principal: Víctor Yepes.

Referencias:

  • AGUADO, A. et al. (2012). Sustainability Assessment of Concrete Structures within the Spanish Structural Concrete Code. J Constr Eng Manage ASCE, 138(2):268-276.
  • AMERICAN ROAD & TRANSPORTATION BUILDERS ASSOCIATION (2019). 2019 Bridge Report. https://artbabridgereport.org/
  • BIONDINI, F., FRANGOPOL, D. M. (2016). Life-Cycle of Deteriorating Structural Systems under Uncertainty: Review. J Struct Eng ASCE, 142(9), F4016001.
  • FRANGOPOL, D. M. (2011). Life-cycle performance, management, and optimisation of structural systems under uncertainty: accomplishments and challenges. Struct Infrast Eng, 7(6), 389-413.
  • GOBIERNO DE ESPAÑA (2020). Estrategia Nacional de Inteligencia Artificial. https://www.lamoncloa.gob.es/presidente/actividades/Documents/2020/021220-ENIA.pdf
  • RAC Foundation. (2019). Bridge maintenance table – GB local authorities. https://www.racfoundation.org/media-centre/bridge-maintenance-backlog-grows
  • THURLBY, R. (2013). Managing the asset time bomb: a system dynamics approach. Proc. Inst. Civ. Eng. – Forensic Engineering, 166(3):134-142.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El factor de impacto de las revistas JCR del año 2020

Acaba junio y es justo ahora cuando se pueden consultar los factores de impacto de las revistas científicas indexadas en el Journal of Citation Reports (JCR). Los índices de impacto son un instrumento para comparar y evaluar la importancia relativa de una revista determinada dentro de un mismo campo científico en función del promedio de citas que reciben los artículos por ella publicados durante un periodo determinado. Estos indicadores son de especial importancia en el ámbito científico, pues aunque tiene sus detractores (leer, por ejemplo: ¿A quién no interesa que se use el índice h para evaluar la calidad de los investigadores científicos?), permite evaluar con un indicador objetivo cierto aspecto de la calidad científica de la revista donde un investigador publica sus artículos.

Tal y como pongo en la figura, Forrest Gump definía con claridad la sorpresa que más de un investigador, editor o lector se lleva todos los años cuando ve que su querida revista del alma sube o baja del primer cuartil al segundo cuartil, o viceversa. Es muy desagradable publicar en una revista que normalmente tiene un impacto alto y que, al año siguiente, te lleves una sorpresa mayúscula y baje de cuartil. Pero bueno, estas son las reglas de juego.

Por mi parte, os voy a poner algunas de las revistas en la que he publicado y que están en los dos primeros cuartiles. Más aún, alguna de las que están en el primer decil. No están todas las que son, pero son todas las que están. Si os fijáis, el cuartil a veces no corresponde con el impacto, pues depende del área de conocimiento. Os paso la lista de mis revistas favoritas de mayor impacto.

REVISTAS JCR. DATOS 2020 Impacto Percentil  Cuartil
COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING 11.775 0.01 D1
AUTOMATION IN CONSTRUCTION 5.669 0.01 D1
JOURNAL OF CLEANER PRODUCTION 9.297 0.07 D1
MATHEMATICS 2,258 0.07 D1
JOURNAL OF COMPUTING IN CIVIL ENGINEERING 4.640 0.13 Q1
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION 4.542 0.13 Q1
COMPUTERS & STRUCTURES 4.578 0.14 Q1
ENGINEERING STRUCTURES 4.471 0.15 Q1
ADVANCES IN ENGINEERING SOFTWARE 4.141 0.15 Q1
ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING 4.369 0.17 Q1
JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMENT 3.951 0.20 Q1
COMPUTERS AND CONCRETE 3.948 0.21 Q1
STRUCTURAL ENGINEERING AND MECHANICS 3.524 0.26 Q2
ENVIRONMENTAL IMPACT ASSESSMENT REVIEW 4.549 0.27 Q2
JOURNAL OF STRUCTURAL ENGINEERING 3.312 0.32 Q2
INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT 4.141 0.34 Q2
STRUCTURE AND INFRASTRUCTURE ENGINEERING 3.087 0.36 Q2
APPLIED SCIENCES-BASEL 2.679 0.38 Q2
JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT 2.957 0.41 Q2
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 3.390 0.43 Q2
SUSTAINABILITY 3.251 0.45 Q2

Además, las revistas donde soy editor asociado o bien pertenezco al Comité Editorial, también van mejorando sus factores de impacto:

Mathematics (D1-SCI Journal)

Structural Engineering and Mechanics (Q2-SCI Journal)

Structure & Infrastructure Engineering (Q2-SCI Journal)

Sustainability (Q2-SCI Journal)

Advances in Concrete Construction (Q2-SCI Journal)

Advances in Civil Engineering (Q3-SCI Journal)

Revista de la Construcción (Q4-SCI Journal)

 

Trabajo Final de Grado en Ingeniería Civil de una pasarela ciclopeatonal

En el día de hoy, 29 de junio de 2021, Víctor José Yepes Bellver ha defendido su Proyecto Final de Grado, de forma presencial, como culminación de sus estudios del Grado en Ingeniería Civil, en la Escuela Técnica Superior en Ingeniería de Caminos, Canales y Puertos de Valencia.

El título del TFG fue «Diseño estructural de pasarela ciclopeatonal en el Anillo Verde Metropolitano Sur de Valencia sobre la línea Valencia-Villanueva de Castellón de FGV. PK 1,5 de la carretera CV-407. Término municipal de Valencia«. Este TFG fue dirigido por el profesor Julián Alcalá González. La calificación fue de Sobresaliente, 9. ¡Enhorabuena al nuevo ingeniero y a su director!

 

 

Dos trillones de átomos y las infraestructuras sostenibles

Va siendo habitual mi labor de divulgación en medios de comunicación, sobre todo de la radio. Este es el caso de Radio Nacional de España, donde David Sierra conduce un programa de divulgación científica denominado “Dos trillones de átomos”. Es tremendamente interesante, aunque se emite los domingos de 4:00 a 5:00 horas en la madrugada

En este programa, en el que me realizaron una entrevista sobre las infraestructuras sostenibles, hablamos de muchas más cosas: la «dureza de los estudios de ingeniería de caminos», la errónea visión de la construcción como «cultura del ladrillo», la «internacionalización de las empresas constructoras españolas», la «inteligencia artificial», los «gemelos híbridos», etc. Espero que os guste mi propuesta de considerar la ingeniería como «cultura del bienestar». Os dejo el podcast por si os interesa.

Cursos de ingeniería en línea: un formato ágil y eficiente de actualizarse

En estos tiempos de pandemia, en los que las formas de comunicarse y de impartir docencia han cambiado profundamente, los cursos en línea han irrumpido con fuerza. Pueden ser cursos síncronos, como los que hemos ofrecido en las universidades, o asíncronos, donde el estudiante avanza en función de su disponibilidad de tiempo. En este último caso, siempre hay videoconferencias u otras fórmulas para que el estudiante pueda comunicarse con el profesor.

También han aparecido otras fórmulas con fuerza. Son los webminarios o las conferencias por streaming que se realizan a través de muchos medios. Sin embargo, tras ver algunas de estas conferencias, tengo serias dudas al respecto. En la mayoría de los casos, se trata de ventas de productos de forma más o menos camuflada, ya que están patrocinados por múltiples empresas. En otros casos, los ponentes tienen un nivel bajo o discutible, con claros errores de concepto. No olvidemos que la democratización de la comunicación en redes sociales provoca una acumulación de información sin filtrar. Como diría mi buen amigo Miguel Ángel del Val Melús, catedrático de Caminos y Aeropuertos de la Universidad Politécnica de Madrid, es preferible leer un buen libro técnico a asistir a la mayoría de webminarios que inundan las redes sociales.

También he tenido la experiencia de recibir múltiples invitaciones, especialmente de Iberoamérica, para participar en conferencias, webminarios y presentaciones de todo tipo. He participado, siempre de forma altruista, en alguna de ellas. No obstante, es imposible aceptar la inmensa mayoría de las invitaciones por falta material de tiempo. He descubierto que en estos países suele ser habitual que los estudiantes se organicen en lo que llaman «capítulos estudiantiles» y sean ellos, y no los profesores, los que se encargan de reclutar a posibles ponentes, sea cual sea su especialidad. En otros casos suelen ser Colegios Profesionales los que se ponen en contacto conmigo. A todos ellos les agradezco sus invitaciones, pero he de disculparme públicamente por el hecho de aceptar solo una fracción muy pequeña de ellas, por razones de agenda.

En cuanto a los cursos de ingeniería en línea, distinguiría dos tipos fundamentales. Los primeros, llamados MOOC, (acrónimo en inglés de Massive Online Open Courses) son cursos online masivos y abiertos. Normalmente, están respaldados por universidades de prestigio y son impartidos por profesores universitarios. Mi plataforma preferida es la llamada edX, en la que participan universidades y organizaciones como el MIT (Instituto Tecnológico de Massachusetts), la Universidad de Harvard, el Tecnológico de Monterrey, IBM, el Banco Interamericano de Desarrollo y nuestra Universitat Politècnica de València. Estos cursos son totalmente gratuitos, aunque existe la opción de obtener un certificado oficial y verificado por un precio muy reducido, de alrededor de 40 euros. La opción de obtener un certificado permite acceder a la evaluación del curso y, en caso de superarlo, obtenerlo.

El segundo tipo de curso es el organizado por alguna empresa especializada en enseñanza a distancia. Estos cursos suelen incluir una mayor presencia del profesor a través de videoconferencias o foros de consulta directa. En mi caso, he realizado tres cursos con la empresa Ingeoexpert. He de decir que estoy totalmente satisfecho con la gestión y la profesionalidad de estos cursos, muchos de ellos avalados por profesores de universidades de prestigio. Estos cursos tienen distintas ediciones a lo largo del año y suelen ofrecer becas a estudiantes y descuentos especiales a empresas.

A modo de ejemplo, os paso dos cursos MOOC que tengo en marcha. Estos cursos se repiten indefinidamente, por lo que un estudiante puede empezar cuando quiera.

Introducción a los encofrados y las cimbras en obra civil y edificación

Este es un curso básico de construcción de obras civiles y de edificación con encofrados y cimbras organizado y avalado por la Universitat Politècnica de València. En este curso aprenderás las distintas tipologías y aplicabilidad de los encofrados y las cimbras utilizados en obras de ingeniería civil, de edificación y en la industria del prefabricado. Se incide especialmente en la comprensión del empuje del hormigón fresco sobre los encofrados, en los aspectos relacionados con la seguridad en los trabajos de cimbrado, descimbrado, encofrado y desencofrado. Se estudia con detalle el cimbrado y descimbrado de plantas sucesivas en edificación y se abordan los encofrados y cimbras empleados en puentes, túneles, estructuras en altura, edificios, entre otros: encofrados telescópicos, trepantes, deslizantes, encofrados túnel, cimbras autolanzables, cimbras autoportantes, etc.

El contenido del curso está organizado en 4 módulos, cada uno con 4 secuencias de aprendizaje que permiten, con una dedicación menor a una hora diaria, aprender los aspectos básicos de los encofrados y las cimbras. Cada semana se trabaja un módulo, teniendo el curso una duración estimada de un mes.

La inscripción la puedes realizar en el siguiente enlace: https://www.edx.org/es/course/introduccion-a-los-encofrados-y-las-cimbras-en-obr?

Introducción a los procedimientos de construcción para la mejora de terrenos en obra civil y edificación

Este es un curso básico de procedimientos constructivos necesarios para la mejora de terrenos en obras civiles y de edificación. En este curso aprenderás las distintas técnicas de mejora del terreno utilizadas habitualmente en obras de ingeniería civil y de edificación. Se incide especialmente en la maquinaria necesaria, en los procedimientos constructivos, en la aplicabilidad a los distintos tipos de suelos, en aspectos económicos, medioambientales y de seguridad en los trabajos. A lo largo del curso se abordarán aspectos como la precarga, las columnas de grava, las inclusiones en el terreno, los pilotes de desplazamiento, la compactación dinámica, la compactación mecánica de suelos, las inyecciones del terreno, la estabilización de suelos, la mezcla profunda, los anclajes, el control del nivel freático, entre otros temas.

El contenido del curso está organizado en 8 módulos, cada uno con 4 secuencias de aprendizaje que permiten, con una dedicación menor a una hora diaria, aprender los aspectos básicos de las técnicas de mejora del terreno. Cada semana se trabaja un módulo, teniendo el curso una duración estimada de dos meses (8 semanas).

La inscripción la puedes realizar en el siguiente enlace: https://www.edx.org/es/course/introduccion-a-los-procedimientos-de-construccion-para-la-mejora-de-terrenos-en-obra-civil-y-edificacion

En cuanto a los cursos que he preparado para Ingeoexpert, son los siguientes:

Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación

El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 50 horas de dedicación del estudiante. Toda la información la puedes encontrar en esta página: https://ingeoexpert.com/cursos/curso-de-procedimientos-de-construccion-de-cimentaciones-y-estructuras-de-contencion-en-obra-civil-y-edificacion/?v=04c19fa1e772

Procedimientos de contención y control del agua subterránea en obras de ingeniería civil y edificación

El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 75 horas de dedicación del estudiante. Toda la información la puedes encontrar en esta página: https://ingeoexpert.com/cursos/curso-de-procedimientos-de-contencion-y-control-del-agua-subterranea-en-obras/?fbclid=IwAR0d1Ga2q6tuY_AfplyREj4TIOjMztLSRsy6aykXT-X4X903Mc8ERBw6TyY

Compactación superficial y profunda de suelos en obras de ingeniería civil y edificación

Este es un curso básico de técnicas y equipos de compactación superficial y profunda de suelos en obras civiles y de edificación. El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 75 horas de dedicación del estudiante. Toda la información la puedes encontrar en esta página: https://ingeoexpert.com/cursos/curso-de-compactacion-superficial-y-profunda-de-suelos-en-obras-de-ingenieria-civil-y-edificacion/

Supongo que en los próximos meses me centraré en nuevos cursos similares a éstos y a la redacción de los correspondientes libros de texto. De ello ya os daré detalles en su momento.

Agradecimiento a mis 20.000 seguidores de Twitter en el día de nuestro patrono Santo Domingo de la Calzada

Hoy 12 de mayo se celebra el día del patrono de los ingenieros de caminos, canales y puertos, los ingenieros civiles y de los ingenieros de obras públicas, Santo Domingo de la Calzada. Coincide con el día en que mi cuenta de Twitter (@vyepesp) ha alcanzado los 20.000 seguidores. Este hito me obliga a agradecer profundamente a todos ellos su amor e interés por los temas que comento, que siempre están ligados a la ingeniería civil, la edificación y la construcción.

Por tanto, ¡muchísimas gracias a todos vosotros! Mantener este blog y las cuentas en redes sociales supone bastante esfuerzo que es recompensado sabiendo que estáis todos ahí para darme ánimos.

¡Un abrazo muy grande!

Os dejo algunos tuits de muestra. Saludos.

https://twitter.com/vyepesp/status/1390564517038415878

 

El escaso reconocimiento de la revisión de artículos científicos

Como editor, autor y revisor en varias revistas científicas indexadas, constato una avalancha imparable de envíos de artículos científicos que se ha desbordado en estos últimos meses. No se puede afirmar categóricamente que esto se deba al confinamiento obligatorio de muchos colegas a causa de la pandemia. Es posible que muchos hayan encontrado un hueco para escribir y enviar ahora los artículos.

Me temo que la explicación es mucho más profunda y se debe a la presión existente por publicar como sea, lo cual nos lleva a una cierta inflación que, sin duda, no es buena para el desarrollo y la transmisión del conocimiento científico. Sea la explicación esta o cualquier otra, lo cierto es que se constata un aumento exponencial en el número de artículos remitidos a las revistas.

La consecuencia es inmediata. Aumenta el trabajo de los editores y se necesita un número creciente de revisores cualificados que permitan filtrar los trabajos mínimamente. Como la solución no es sencilla, lo que ocurre es que se rechazan muchos manuscritos a los autores sin siquiera pasar el filtro de la revisión. Como editor, me he visto obligado a devolver una gran cantidad de trabajos que, en numerosas ocasiones, no presentan novedades relevantes, son segundas partes de artículos anteriores publicados, la metodología no es transparente, los datos manejados son confusos o inexistentes, y es muy difícil que un investigador independiente reproduzca los resultados. No son infrecuentes las ocasiones en que ni siquiera se formula la pregunta de investigación ni se discuten los resultados con los obtenidos por otros investigadores. En no pocas ocasiones, las referencias citadas están en un idioma de difícil comprensión internacional (chino, ruso, árabe, etc.) o se basan en páginas web que aparecen y desaparecen por arte de magia (he visto varias veces citar la Wikipedia). También es habitual que haya un alto porcentaje de autoplagio cuando se pasa el documento por un detector de plagios. Por último, suele ocurrir que la redacción en inglés es muy mala, sin una revisión previa por parte de un nativo especialista en publicaciones científicas. Esta falta de estilo es injusta para aquellos trabajos serios que mejorarían, sin duda, tras un debate enriquecedor con revisores de calidad.

Si la investigación es buena, un defecto en el estilo del artículo científico se puede subsanar con una revisión profunda y proactiva a cargo de un revisor experimentado. Si esto ocurre, todos salimos beneficiados. El trabajo es claro y se despejan las dudas del lector. Muchos autores, yo entre ellos, agradecemos enormemente una revisión en profundidad de nuestros trabajos científicos.

Como revisor, he visto en los últimos meses una avalancha de peticiones por parte de las revistas científicas para revisar muchos artículos. Normalmente, recibo entre una y dos peticiones casi todos los días. Al principio intentaba atender el mayor número posible, pero un trabajo riguroso requiere muchas horas dedicadas a esta tarea. Horas que, salvo alguna excepción, no se remuneran. Desgraciadamente, solo un porcentaje pequeño de artículos son realmente buenos y permiten aprender y disfrutar del trabajo bien hecho. Todo lo anterior lleva a tener que renunciar a un alto porcentaje de las invitaciones recibidas.

Entonces, ¿qué ocurre con la revisión? Si en un campo determinado faltan revisores altamente cualificados, hay que buscarlos donde los haya. Por ello, algunos artículos, incluso de revistas de gran impacto, cuentan con la participación de científicos jóvenes o con experiencia en otros campos. El resultado puede ser de lo más variopinto. Puede haber críticas poco argumentadas que no aporten beneficios a la mejora del artículo o revisiones donde no haya críticas, que se limiten a señalar cuestiones menores y poco significativas. Este tipo de revisiones suelen verse en editoriales que ofrecen descuentos económicos si se revisan muchos artículos para publicarlos de forma abierta.

Por tanto, si se quiere hacer una revisión de artículos científicos con profundidad, se deben aceptar pocas invitaciones y seleccionar mucho los temas y las revistas. Es un trabajo al que se dedican muchas horas y que, por lo general, no recibe el reconocimiento que merece. Bueno, salvo en alguna ocasión. A continuación, dejo un reconocimiento que recibí hace unos días y que fue una auténtica sorpresa.

 

 

 

Premio a la mejor tesis doctoral en decisión multicriterio para Ignacio Javier Navarro Martínez

Ignacio J. Navarro junto con el tribunal (Salvador Ivorra, Juan José del Coz y Julián Alcalá) y los directores de tesis (Víctor Yepes y José V. Martí), tras terminar la defensa de su tesis doctoral, el 22 de noviembre de 2019

El Grupo de Trabajo en Decisión Multicriterio (GTDM) de la Sociedad Española de Estadística e Investigación Operativa (SEIO) convoca los Premios a las Mejores Tesis Doctorales en Decisión Multicriterio, que se conceden a las tres mejores tesis doctorales realizadas en el área de la toma de decisiones multicriterio para estimular la investigación e innovación científica y divulgar trabajos científicos de elevada calidad en esta disciplina.

El Grupo Español de Decisión Multicriterio, se constituyó en Madrid en noviembre de 1997 con una vocación claramente multidisciplinar y aglutinadora de todo el panorama español de Decisión Multicriterio. Además, en 1999 se creó un Grupo de Trabajo en Decisión Multicriterio (http://mcdm.seio.es/) dentro de la Sociedad Española de Estadística e Investigación Operativa (SEIO).

En la actualidad el Grupo lo componen alrededor de 180 investigadores de más de una veintena de Universidades españolas, pertenecientes a muy diversas áreas de conocimiento (Estadística e Investigación Operativa, Economía Aplicada, Métodos Cuantitativos para la Economía y Empresa, Ciencias de la Computación e Inteligencia Artificial, Ingeniería de Proyectos, Organización de Empresas, Economía Agraria, etc.).

Me es grato comunicaros que tribunal de la Segunda Edición de los Premios a las mejores Tesis Doctorales en Decisión Multicriterio ha resuelto la concesión de los mismos. Las tesis doctorales premiadas son las siguientes:

PRIMER PREMIO

Título: Life cycle assessment applied to the sustainable design of prestressed bridges in coastal environments
Autor: Ignacio Javier Navarro Martínez
Directores: Víctor Yepes Piqueras y José V. Martí Albiñana
Universidad: Universidad Politécnica de Valencia
Año: 2019

SEGUNDO PREMIO “EX AEQUO”

Título: Building composite indicators from a multicriteria approach: an empirical application for the performance appraisal and efficiency of the Spanish Public Higher Education System
Autora: Samira El Gibari Ben Said
Directores: Trinidad Gómez Núñez y Francisco Ruiz de la Rúa
Universidad: Universidad de Málaga
Año: 2020

Título: Ordinal treatment of ordered qualitative scales: analysis, methods and applications
Autora: Raquel González del Pozo
Director: José Luis García Lapresta
Universidad: Universidad de Valladolid
Año: 2020

En la próxima reunión del Grupo Español de Decisión Multicriterio en Julio en San Sebastián habrá una sesión especial en la que se presentarán las tres tesis premiadas y se hará entrega de los diplomas.

Cabe destacar que Ignacio Javier recibió recientemente el Premio al Ingeniero Joven 2020, otorgado por la Junta Rectora de la Demarcación de la Comunidad Valenciana del Colegio de Ingenieros de Caminos, Canales y Puertos.

Os paso a continuación la relación de artículos científicos indexados que han sido fruto de la tesis doctoral de Ignacio J. Navarro, y otras que han sido desarrolladas tras la defensa de su tesis.

Referencias:

  1. SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2021). Neutrosophic multi-criteria evaluation of sustainable alternatives for the structure of single-family homesEnvironmental Impact Assessment Review, 89:106572. DOI:10.1016/j.eiar.2021.106572
  2. NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2021). Neutrosophic completion technique for incomplete higher-order AHP comparison matrices. Mathematics, 9(5):496. DOI:10.3390/math9050496
  3. NAVARRO, I.J.; PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; REMPLING, R.; YEPES, V. (2020). Life cycle sustainability assessment for multi-criteria decision making in bridge design: A review. Journal of Civil Engineering and Management, 26(7):690-704. DOI:10.3846/jcem.2020.13598
  4. PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; GARCÍA-SEGURA, T.; NAVARRO, I.J.; YEPES, V. (2020). Environmental and social impact assessment of optimized post-tensioned concrete road bridges. Sustainability, 12(10), 4265. DOI:10.3390/su12104265
  5. NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2020). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights. Structure and Infrastructure Engineering, 16(7): 949-967. DOI:10.1080/15732479.2019.1676791
  6. NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2019). A review of multi-criteria assessment techniques applied to sustainable infrastructures design. Advances in Civil Engineering, 2019: 6134803. DOI:10.1155/2019/6134803
  7. NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2019). Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective. Environmental Impact Assessment Review, 74:23-34. DOI:10.1016/j.eiar.2018.10.001
  8. NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2018). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 196: 698-713. DOI:10.1016/j.jclepro.2018.06.110
  9. NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environmental Impact Assessment Review, 72:50-63. DOI:10.1016/j.eiar.2018.05.003
  10. NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3):845. DOI:10.3390/su10030845

Curso gratuito online masivo: Introducción a los procedimientos de construcción para la mejora de terrenos en obra civil y edificación

Compactación dinámica (cortesía de Menard)
Compactación dinámica (cortesía de Menard)

Acerca de este curso MOOC de la UPV

Este es un curso básico de procedimientos constructivos necesarios para la mejora de terrenos en obras civiles y de edificación. Es un curso que no requiere conocimientos especiales y está diseñado para que sea útil a un amplio abanico de profesionales con o sin experiencia, estudiantes de cualquier rama de la construcción, ya sea universitaria o de formación profesional. Además, el aprendizaje se ha escalonado de modo que el estudiante puede profundizar en aquellos aspectos que más les sea de interés mediante documentación complementaria y enlaces de internet a vídeos, catálogos, etc.

En este curso aprenderás las distintas técnicas de mejora del terreno utilizadas habitualmente en obras de ingeniería civil y de edificación. Se índice especialmente en la maquinaria necesaria, en los procedimientos constructivos, en la aplicabilidad a los distintos tipos de suelos, en aspectos económicos, medioambientales y de seguridad en los trabajos. A lo largo del curso se abordarán aspectos como la precarga, las columnas de grava, las inclusiones en el terreno, los pilotes de desplazamiento, la compactación dinámica, la compactación mecánica de suelos, las inyecciones del terreno, la estabilización de suelos, la mezcla profunda, los anclajes, el control del nivel freático, entre otros temas.

El contenido del curso está organizado en 8 módulos, cada uno con 4 secuencias de aprendizaje que permiten, con una dedicación menor a una hora diaria, aprender los aspectos básicos de las técnicas de mejora del terreno. Cada semana se trabaja un módulo, teniendo el curso una duración estimada de dos meses (8 semanas).

El inicio del curso es el 25 de mayo de 2021. La inscripción la puedes realizar en el siguiente enlace: https://www.edx.org/es/course/introduccion-a-los-procedimientos-de-construccion-para-la-mejora-de-terrenos-en-obra-civil-y-edificacion

Lo que aprenderás

Al finalizar el curso, los objetivos de aprendizaje básicos son los siguientes:

  • Comprender la utilidad y las limitaciones de las distintas técnicas de mejora del terreno empleadas en la construcción de obras civiles y de edificación.
  • Evaluar y seleccionar el mejor procedimiento constructivo y maquinaria necesaria para la mejora del terreno en unas condiciones determinadas, considerando la economía y la seguridad.

Programa del curso

  1. Clasificaciones de las técnicas de mejora y refuerzo del terreno
  2. Sustitución del terreno como técnica de mejora
  3. La precarga como técnica para la mejora de terrenos.
  4. Drenes verticales como técnica de mejora de terrenos
  5. Consolidación por vacío de suelos
  6. Columnas de grava
  7. Columna de grava ejecutada por medios convencionales
  8. Columna de grava mediante vibrodesplazamiento
  9. Columna de grava mediante vibrosustitución
  10. Columnas de grava compactada
  11. Pilotes de arena compactada
  12. Columnas encapsuladas con geotextil
  13. Refuerzo del terreno mediante inclusiones rígidas
  14. Concepto de pilotes y clasificaciones
  15. Pilotes de compactación
  16. Columnas de hormigón vibrado
  17. Columnas de módulo controlado
  18. Columnas de cal y de cal-cemento
  19. Columna de grava inyectada
  20. Pilotes de desplazamiento
  21. Pilotes de madera
  22. Pilotes metálicos
  23. Pilotes metálicos hincados
  24. Pilotes de hormigón armado hincados
  25. Pilotes prefabricados de hormigón pretensado
  26. Pilote de desplazamiento con azuche
  27. Sistema “Franki” de ejecución de pilotes de desplazamiento
  28. Hinca de pilotes con mazas de caída libre
  29. Hinca por vibración de pilotes
  30. Hinca silenciosa de pilotes
  31. Pilotes de extracción
  32. Pilotes perforados con barrena continua
  33. STARSOL: Pilotes con hélice continua mejorada
  34. Micropilotes
  35. Mejora del terreno mediante vibrocompactación
  36. Mejora de terreno mediante Terra-Probe
  37. Método vibroalas para mejora de suelos no cohesivos
  38. Compactación por resonancia de suelos
  39. Compactación dinámica
  40. Compactación dinámica rápida
  41. Sustitución dinámica
  42. Compactación con explosivos
  43. Compactación por impulso eléctrico
  44. Compactación por hidrovoladura
  45. Compactación mecánica de suelos
  46. Curva de compactación de un suelo
  47. Selección de un equipo de compactación
  48. Los tramos de prueba en la compactación de suelos
  49. Recomendaciones de trabajo en la compactación
  50. Técnicas de inyección del terreno
  51. Procedimientos empleados en la inyección de terrenos
  52. Materiales empleados en la inyección de terrenos
  53. Tipos de lechadas y aplicabilidad de los materiales de inyección de terrenos
  54. Inyección de lechadas inestables
  55. Inyección de lechadas estables
  56. Inyección de lechadas químicas
  57. Inyecciones de alta presión: Jet grouting
  58. Inyecciones de compactación
  59. Inyecciones de hidrofracturación
  60. Mezcla profunda de suelos
  61. Springsol: mejora de terrenos mediante columnas de suelo-cemento
  62. Pantallas realizadas por mezcla profunda de suelos (Deep Soil Mixing Walls)
  63. Pantallas de suelo-cemento con hidrofresa (Cutter Soil Mixing)
  64. Pantallas plásticas de bentonita-cemento
  65. Pantallas de suelo-bentonita
  66. Pantalla de lodo autoendurecible armado
  67. Pantallas delgadas de lodo ejecutadas mediante vibración de perfiles
  68. Pantallas de geomembranas
  69. Muros de tierra mecánicamente estabilizada: Tierra Armada
  70. Suelo reforzado con geosintéticos
  71. Soil nailing o suelo claveteado
  72. La técnica del bulonaje
  73. Concepto y clasificación de los anclajes
  74. Zonas de un anclaje
  75. Ejecución de un anclaje
  76. Seguridad en la ejecución de los anclajes
  77. La estabilización de suelos
  78. Estabilización de suelos con cal
  79. Estabilización de suelos con cemento
  80. Estabilización de suelos con ligantes bituminosos
  81. Estabilización de suelos con cloruros
  82. Grava-cemento
  83. Grava-emulsión
  84. Grava-escoria
  85. Mejora de terrenos por calentamiento
  86. Congelación de suelos
  87. Métodos biológicos como técnica de mejora de terrenos
  88. El problema del agua en las excavaciones
  89. Clasificación de las técnicas de control del agua en excavaciones
  90. Selección del sistema de control del nivel freático
  91. Drenaje de excavaciones mediante bombeos superficiales y sumideros
  92. Drenaje de excavaciones mediante zanjas perimetrales
  93. Drenaje horizontal con pozos radiales
  94. Drenaje de excavaciones mediante pozos filtrantes profundos
  95. Control del nivel freático mediante lanzas de drenaje (wellpoints)
  96. Electroósmosis como técnica de drenaje del terreno

Conozca al profesor

Víctor Yepes Piqueras

Catedrático de Universidad. Doctor Ingeniero de Caminos, Canales y Puertos. Universitat Politècnica de València

Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente «cum laude». Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València. Consejero del Colegio de Ingenieros de Caminos, Canales y Puertos. Su experiencia profesional se ha desarrollado fundamentalmente en Dragados y Construcciones S.A. (1989-1992) como jefe de obra y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 6 proyectos de investigación competitivos. Ha publicado más de un centenar artículos en revistas indexadas en el JCR. Autor de 10 libros, 22 apuntes docentes y más de 250 comunicaciones a congresos. Ha dirigido 14 tesis doctorales, con 6 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos.