Las estructuras auxiliares son instalaciones temporales utilizadas para ayudar o complementar la construcción o el mantenimiento de elementos estructurales en una construcción durante la fase de obras. Estas estructuras incluyen andamios, encofrados, entibaciones, entre otros. Dentro de este grupo se encuentra el apeo, que consiste en un sistema de equilibrio de fuerzas compuesto por los elementos de apeo y los propios de la estructura que se está apuntalando.
El apeo se refiere al sistema estructural implementado en una construcción existente para complementar o reemplazar una estructura de manera provisional mientras se realizan obras de reparación o demolición en dicha construcción. Se distingue entre los sistemas de refuerzo y los sistemas de apeo, pues los elementos estructurales empleados en el refuerzo se integran permanentemente en la estructura reforzada. El refuerzo se considera una solución definitiva para un edificio dañado, debiendo garantizar tanto la estabilidad estructural como la funcionalidad. Sin embargo, algunos elementos tradicionales de apeo pueden convertir el sistema de apeo en una solución de refuerzo.
Un sistema de apeo debe asegurar la estabilidad y, en algunos casos, la funcionalidad de una construcción dañada mientras se implementa una solución definitiva a sus deficiencias. La acción a tomar estará condicionada por el destino final que se planee para la estructura, ya sea reparación, reconstrucción o demolición. El plan de apeo puede requerir varias etapas de ejecución, incluyendo una fase de emergencia, a corto plazo y a largo plazo. No obstante, en un artículo anterior se comentó las sutiles diferencias que, en ocasiones, existen entre los propios apeos y los apuntalamientos si se atiende a la urgencia en su uso.
En algunos casos, el objetivo del apeo puede limitarse a garantizar la seguridad de los trabajadores encargados de llevar a cabo un apeo más permanente, o bien como una medida provisional mientras se implementa un sistema de apeo más complejo que requiere más tiempo tanto para su ejecución como para el suministro de los elementos necesarios.
Un sistema de apeo complementario aborda las deficiencias de seguridad que puede presentar una estructura deteriorada, permitiendo que siga cumpliendo su función. Este sistema se compone de elementos de apeo adicionales y de los propios de la estructura apuntalada. Su objetivo es garantizar su seguridad, pero no se utiliza para reemplazar sus elementos estructurales. No constituye un sistema estructural independiente, sino que se integra, al igual que el refuerzo, dentro de la propia estructura.
Por el contrario, un sistema de apeo supletorio se presenta como una estructura alternativa. Al entrar en carga, permite abordar la sustitución de aquellos elementos de la estructura afectados por daños. Esto implica ejecutar diversas operaciones auxiliares, como la realización de perforaciones en elementos verticales y horizontales, con el fin de otorgar a los apeos continuidad e identidad como una estructura autónoma. Este enfoque provoca un aumento de los costos en comparación con los apeos complementarios.
Os dejo algunos vídeos explicativos, que espero sean de vuestro interés.
Referencias:
ESPASANDÍN, J.; GARCÍA, J.I. (2002). Apeos y refuerzos alternativos. Manual de cálculo y construcción. Editorial Munilla-Lería, Madrid.
Para garantizar un montaje, uso y desmontaje adecuado de las cimbras, es fundamental cumplir con las instrucciones establecidas en el manual de instrucciones proporcionado por el fabricante o proveedor, al igual que con cualquier otro medio auxiliar. Además del manual de instrucciones, es importante tener en consideración otros documentos obligatorios y relevantes relacionados con la seguridad y la salud. Esto implica revisar el plan de seguridad y salud, el proyecto de la cimbra y contar con procedimientos por escrito que describan la secuencia correcta de montaje y desmontaje. En todo momento, es esencial verificar que la cimbra sea adecuada para el proyecto en ejecución, que las alturas sean correctas y que las condiciones del terreno sean apropiadas. Además, es fundamental asegurarse de contar con todos los equipos de seguridad necesarios.
En el montaje y desmontaje de sistemas de cimbra, así como en los sistemas de andamios, es crucial distinguir entre un sistema de cimbra con módulos de torres preconformados y otro sin torres modulares. En ambos casos, se debe planificar y llevar a cabo los procedimientos de montaje y desmontaje siguiendo la siguiente metodología: emplear plataformas horizontales de montaje y colocar los módulos de torres en posición horizontal a nivel del suelo, luego elevarlos y ubicarlos en su posición final, manteniendo la longitud completa (altura) del tramo correspondiente. Es esencial tener en cuenta que la implementación segura de estos procedimientos puede requerir el uso de sistemas anticaídas, en cuyo caso se proporcionarán instrucciones específicas en el manual del producto.
Durante la utilización, es importante seguir las siguientes medidas de seguridad: acceder a la zona de trabajo utilizando las áreas designadas específicamente para ese propósito, suspender las labores en caso de condiciones climáticas adversas como lluvia, nieve o vientos superiores a 65 km/h, evitar trabajar sobre plataformas sin protección o en niveles distintos, y no utilizar andamios de borriquetas u otros elementos auxiliares para alcanzar alturas en los niveles de trabajo.
Al proyectar las zonas de trabajo y circulación en una cimbra, es necesario considerar los siguientes parámetros de diseño:
En general, estas áreas deben tener un ancho mínimo de 60 cm en proyección horizontal, sin interrupciones a nivel del suelo. Además, deben presentar una resistencia y estabilidad suficientes para garantizar que el trabajo correspondiente se pueda realizar con la máxima seguridad.
Las zonas de trabajo deben construirse utilizando elementos metálicos u otros materiales resistentes. Asimismo, estas áreas deben incluir mecanismos de bloqueo para evitar movimientos involuntarios.
En el caso de que las zonas de trabajo estén compuestas por módulos estandarizados, es indispensable indicar de manera visible e indeleble la carga máxima permitida.
En los bordes, donde la caída sea mayor a 2 m, se debe instalar una barandilla metálica con una altura mínima de 90 cm, una barra intermedia y un rodapié de al menos 15 cm de altura, a menos que existan justificaciones razonables. La instalación de una barandilla puede no ser necesaria en bordes situados a menos de 20 cm de una pared o cualquier otro obstáculo que impida la caída. El diseño de la barandilla debe cumplir con las normas de seguridad vigentes.
Las superficies de trabajo deben ser principalmente horizontales. Solo se permite una inclinación de no más de 15º cuando sea necesario trabajar con cimbras inclinadas, siempre que la superficie sea lo suficientemente rugosa que impidan que tanto las personas como los materiales se deslicen.
Se debe procurar definir una zona de “gálibo” con una altura libre mínima de 190 cm y un ancho de 60 cm, sin obstrucciones, excepto en circunstancias específicas, que permita un paso sin problemas. Los elementos que se encuentren dentro de esta zona deben estar pintados con colores vivos y distintivos, y deben estar desprovistos de bordes cortantes, barras salientes y cualquier elemento que pueda representar un riesgo de lesiones al trabajar con cimbras.
Para garantizar la protección individual, es imperativo emplear los equipos de protección individual mencionados en el Plan de Seguridad y Salud de la obra. A modo orientativo, deben tenerse en cuenta las siguientes consideraciones:
Cada trabajador debe tomar medidas para salvaguardar su propia seguridad personal.
Es necesario usar ropa adecuada, como botas de seguridad con ataduras sin cordones sueltos y con protección para el tobillo. La ropa debe ser cómoda, ajustada, pero no holgada, resistente a rasgaduras y sin salientes o huecos que puedan representar un peligro de engancharse. Además, las mangas y las perneras deben tener bandas elásticas en los bordes para garantizar un ajuste adecuado. Se debe proporcionar ropa y calzado impermeables a cada trabajador según sea necesario.
El casco y los guantes son elementos obligatorios del equipo de seguridad. El casco adecuado es aquel que carece de visera y con barbuquejo, mientras que los guantes empleados deben adaptarse a la tarea específica en cuestión.
Cuando se trabaja más allá de la zona encofrada, plataformas de trabajo, pasillos u otras áreas protegidas, se debe utilizar un arnés de seguridad compuesto por un braguero con cabo de amarre y mosquetón. Preferiblemente, el arnés debe ser del tipo paracaidista y poseer un absorbedor de energía en el cordón de amarre.
Solo se deben llevar las herramientas esenciales necesarias para la tarea en cuestión, garantizando que las manos permanezcan libres.Es preferible llevar estas herramientas en un cinturón de herramientas o dispositivo similar, teniendo cuidado de proteger las manos contra posibles caídas o tropiezos.
En situaciones donde exista riesgo de proyección de partículas, polvo u otros materiales, se deben usar gafas de seguridad, pantallas de protección y mascarillas si es necesario.
Es fundamental poseer un conocimiento completo de las características específicas de la tarea y de cómo ejecutarla, tal como se describe en el Anejo de Operación.
Una vez suministrada la cimbra en la obra, se realizará un examen exhaustivo de los siguientes puntos y, según sea necesario, se tomarán las medidas correctivas apropiadas:
El personal con amplia experiencia o capacitación especializada se encargará del montaje de estas estructuras y poseerá un conocimiento completo de los peligros asociados con tales tareas.
Se implementarán medidas de protección durante las fases de montaje, uso y desmontaje para evitar la caída de personas u objetos, y el área se delimitará para prohibir la presencia o el paso de personas.
Todos los elementos de seguridad, como suelos y barandillas, deben fijarse de forma segura a la estructura de la cimbra, de tal manera que no puedan desprenderse, extraviarse, caerse o aflojarse inadvertidamente.
Todas las maniobras se ejecutarán de conformidad con las ubicaciones indicadas en el Anejo de Operación, empleando las herramientas necesarias y el personal designado, a menos que se determine una metodología alternativa en el sitio que no ponga en peligro la seguridad. Este enfoque alternativo debe recibir la aprobación del coordinador de seguridad y salud, así como de los proveedores de la cimbra, y se incorporará al anejo antes mencionado.
Las superficies de agarre, como los pasamanos, las asas, los cables, las cuerdas y las cadenas, deben estar desprovistas de astillas, bordes afilados o soldaduras que puedan provocar cortes.
En la cimbra se dispondrá de un botiquín para proporcionar primeros auxilios en caso de heridas cortantes, traumatismos, torceduras o fracturas, y se establecerá una comunicación por radio o teléfono con la enfermería u oficinas para solicitar asistencia médica.
Antes de comenzar el trabajo, los proveedores proporcionarán la información del Anejo de Operación, que incluirá la documentación del personal y las instrucciones del equipo.Además, se diseñará un plan de acción en caso de emergencia.
Referencias:
Fundación Agustín de Betancourt (2011). Sistemas de encofrado: análisis de soluciones técnicas y recomendaciones de buenas prácticas preventivas. Comunidad de Madrid, 130 pp. Enlace
Fernández, R.; Honrado, C. (2010). Estudio de las condiciones de trabajo en encofrado, hormigonado y desencofrado. Junta de Castilla y León, 68 pp. Enlace
OSALAN (2007). Guía práctica de encofrados. Instituto Vasco de Seguridad y Salud Laborales, 200 pp. Enlace
INSHT. Instituto Nacional de Seguridad e Higiene en el Trabajo. Colección de Legislación en materia de Prevención de Riesgos Laborales. Enlace
REAL DECRETO 2177/2004, de 12 de noviembre, por el que se modifica el Real Decreto 1215/1997, de 18 de julio, por el que se establecen las disposiciones mínimas de seguridad y salud para la utilización por los trabajadores de los equipos de trabajo, en materia de trabajos temporales en altura. BOE nº 274 13-11-2004. Enlace
Los encofrados deslizantes son una técnica de construcción de gran interés, especialmente cuando nos encontramos ante el desafío de estructuras altamente esbeltas, como pilares de puentes, chimeneas industriales, silos o torres solares. Este procedimiento se basa en el uso de un encofrado rígido que se desplaza verticalmente a un ritmo controlado de 5 a 20 cm/h. El proceso comienza con la colocación del hormigón en el encofrado en capas sucesivas. A medida que el hormigón se endurece, el encofrado se eleva gradualmente mediante dispositivos de elevación, como gatos hidráulicos, impulsado por un sistema hidráulico. Sobre esta técnica ya escribimos un artículo anterior. Ahora vamos a dar unas recomendaciones relacionadas con los aspectos constructivos de la técnica.
Se lleva a cabo un deslizamiento continuo durante las 24 horas del día para evitar la formación de juntas frías. Por tanto, es crucial garantizar un suministro constante de materiales como hormigón y acero, así como electricidad y acceso a la obra. Es de vital importancia garantizar que el hormigón presente características uniformes, pues cualquier variación en su dosificación puede ocasionar arrastres en la superficie y defectos que requerirán reparación. Además, los cambios en las condiciones climáticas pueden afectar al tiempo de fraguado, por lo que es necesario controlar la consistencia y dosificación del hormigón, junto con el control de la resistencia. Otro factor relevante es asegurar un suministro continuo de hormigón, ajustado a la frecuencia y cantidad necesarias de acuerdo con el ritmo de elevación del encofrado.
En cuanto al proceso constructivo, se recomienda llevar a cabo el hormigonado, la colocación de armaduras y el montaje de puertas, ventanas y placas de manera progresiva a medida que el encofrado se eleva desde una plataforma de trabajo ubicada al nivel del borde superior en ambas caras. Se emplean plataformas adicionales para el control y revisión de la superficie. El peso de estas plataformas y del encofrado deslizante se carga mediante los gatos en los tubos de trepa, los cuales permanecen en el hormigón hasta que se complete el deslizamiento. Luego, se retiran junto con la camisa exterior elevada con el encofrado, creando un espacio fraguado debajo donde se alojan los tubos a lo largo de toda la altura.
Con el fin de prevenir posibles accidentes por caídas de objetos, es necesario delimitar una zona alrededor del área de construcción, a una distancia equivalente a la cuarta parte de la altura de los trabajos, medida desde el borde exterior de la obra. Se recomienda contar con un especialista en encofrado deslizante en la obra para garantizar un manejo adecuado y una respuesta eficiente ante situaciones complejas.
Dadas las condiciones particulares de cada obra y la necesidad de trabajar de forma continua durante 24 horas, se deben implementar medidas adicionales de seguridad, como señalización de advertencia, iluminación nocturna y redes de protección. Asimismo, resulta fundamental prestar especial atención a la nivelación de la superficie de apoyo del encofrado durante el montaje y llevar a cabo un replanteo inicial preciso. Para lograr un rendimiento óptimo, se requiere un equipo con experiencia en el sistema para minimizar los tiempos de inactividad entre las distintas actividades.
En cuanto al control de la verticalidad, es importante realizar un seguimiento periódico de la nivelación de los gatos y realizar los ajustes necesarios de forma manual. Esto contribuirá significativamente a prevenir desplomes. Además, se debe verificar la verticalidad de la obra una vez finalizada, utilizando plomadas de gravedad, plomadas ópticas o plomadas láser. Asimismo, se debe evitar la rotación en planta de la sección transversal mediante la disposición de perfiles longitudinales lo suficientemente rígidos.
Un documental extenso sobre este sistema de encofrados deslizantes lo podéis ver aquí.
Referencias:
DINESCU, T.; SANDUR, A.; RADULESCU, C. (1973). Los encofrados deslizantes. 1ª edición. Espasa-Calpe, S.A. Pozuelo de Alarcón, 496 pp.
RICOUARD, M.J. (1980). Encofrados. Cálculo y aplicaciones en edificación y obras civiles. Editores Técnicos Asociados, S.A. Barcelona, 312 pp.
La cimbra se define como un elemento estructural utilizado para sostener el hormigón durante su fraguado y adquisición de resistencia suficiente para soportar su propio peso, así como cargas temporales en situaciones provisionales, como el apuntalamiento de estructuras en condiciones transitorias. Para ello, antes de emplear cualquier tipo de cimbra en una obra, es necesario contar con un proyecto firmado por un técnico especializado en estructuras, indicando claramente su nombre, apellidos y titulación.
En el contexto de España, la Orden Circular 3/2006 establece las medidas de seguridad a adoptar en el uso de instalaciones y medios auxiliares de obra. Según esta normativa, es obligatorio que el proyecto específico completo de la cimbra sea redactado por un técnico titulado competente, con al menos 5 años de experiencia probada en estructuras, respaldada por un curriculum vitae firmado. Además, dicho proyecto debe ser visado por el colegio profesional correspondiente. Este documento debe incluirse como anejo en el Plan de Seguridad y Salud.
De acuerdo con la Orden FOM 3818/2007, que establece instrucciones complementarias para el empleo de elementos auxiliares en la construcción de puentes de carretera, el jefe de obra de la empresa contratista asume la responsabilidad de garantizar que el uso de los medios auxiliares durante la ejecución de la obra se realice de acuerdo con lo indicado en el proyecto y sus manuales correspondientes. Además, debe establecer los volúmenes y rendimientos que pueden lograrse en cada unidad, teniendo en cuenta las características del elemento auxiliar, de manera que se cumplan en todo momento las condiciones de seguridad estipuladas en el proyecto. Asimismo, es obligatorio que el contratista adjudicatario de la obra redacte un proyecto específico completo para la utilización de cualquier tipo de medio auxiliar en la construcción de un puente, el cual deberá ser visado por el Colegio Profesional correspondiente.
El alcance de la documentación del proyecto puede variar dependiendo de la complejidad o estandarización de la cimbra. Para ello se clasifican las cimbras en diferentes grupos o clases. Sin embargo, es importante destacar que los criterios de dimensionamiento, detalles y bases de cálculo utilizados para dimensionar cualquier tipo de cimbra no deben diferir de los que se aplican a otras estructuras metálicas según la normativa vigente.
El proyecto debe incluir, al menos, la siguiente información:
Una memoria descriptiva donde se detallen las instrucciones para el montaje y uso de las piezas. Esta descripción debe contener todos los datos necesarios para utilizar correctamente los materiales en todas las etapas del trabajo. También se deben indicar las posibles interferencias con el entorno, como líneas eléctricas u otros servicios, y cómo resolverlas. Además, se deben proporcionar recomendaciones para el montaje y desmontaje de la cimbra. En esta memoria descriptiva se deben incluir también los criterios de aceptación y rechazo de los materiales, como deformaciones o corrosión, así como las tolerancias permitidas para el montaje, los desplomes y las excentricidades. Es posible que parte de estas condiciones estén especificadas en un Pliego de Prescripciones Técnicas.
Los planos deben definir la disposición de los diferentes elementos de la cimbra. En caso de usar material estándar, es necesario adjuntar documentación gráfica correspondiente.
Se debe proporcionar un anejo de cálculo que justifique los elementos dispuestos. Se considerarán todas las hipótesis de cálculo más desfavorables previsibles durante el hormigonado y el movimiento de la cimbra, con el cálculo de las flechas de la cimbra en situación de hormigonado y las reacciones en apoyos. En el caso de utilizar material estándar, se puede realizar la justificación a través de ensayos, incluyendo la documentación de dichos ensayos, las condiciones en las que se llevaron a cabo y las especificaciones de uso que se deduzcan.
En el caso de cimbras autolanzables, lanzadores, u otros dispositivos similares, puede ser necesario proceder a una prueba de carga para validar el diseño y la fabricación, o para obtener datos precisos sobre las deformaciones. En el proyecto se deben indicar las diferentes posiciones de la prueba, así como las magnitudes de las deformaciones. También se debe incluir una historia cronológica de la utilización de la cimbra, con el resumen de las distintas reutilizaciones que ha tenido, especificando las características de los viaductos realizados (número de ellos, longitud, luces de los vanos y su número, secciones, pendientes, radios en planta, etc.).
Se deben establecer los requerimientos geotécnicos, especificando las presiones admisibles que el terreno debe soportar. Un técnico competente debe verificar que estas presiones sean adecuadas para el terreno en cuestión.
Os dejo a continuación una nota de servicio del Ministerio de Fomento sobre las instrucciones para la utilización de cimbras autolanzables (móviles) en la construcción de puentes de carretera.
También os paso la Circular Nº 3/2006 sobre medidas a adoptar en materia de seguridad en el uso de instalaciones y medios auxiliares en obra, del Ministerio de Fomento.
Asimismo, os paso la Orden FOM/3818/2007, de 10 de diciembre, por la que se dictan instrucciones complementarias para la utilización de elementos auxiliares de obra en la construcción de puentes de carretera.
Es vital garantizar la seguridad de los trabajadores encargados del montaje, uso, maniobras y desmontaje de las cimbras. Esto implica proporcionarles recursos adecuados y superficies de trabajo seguras para prevenir accidentes graves, como colisiones o caídas desde alturas peligrosas. Para lograrlo, se deben tomar medidas en cuatro áreas clave: proporcionar recursos adecuados, fomentar una mentalidad proactiva, asegurar la integridad estructural de los elementos y minimizar las consecuencias de fallos o errores. Además, todas las operaciones deben ser supervisadas por el proveedor de la estructura y la persona encargada de su ejecución, independientemente de la presencia del coordinador de seguridad y salud en la obra. Esto asegura un cumplimiento adecuado de las normas de seguridad y prevención de riesgos.
Para cada proyecto de cimbra, es obligatorio incorporar un “Anejo de Operación” redactado por el autor del proyecto de la cimbra. Este anejo debe presentarse al responsable de seguridad y salud de la obra, y debe describir explícitamente las operaciones que se ejecutarán durante su utilización, así como la manera de llevarlas a cabo. Es importante destacar que este anejo no debe oponerse a las disposiciones que se establecen en el Estudio de Seguridad y Salud y el consiguiente Plan de Seguridad y Salud de la obra, sino que debe cumplirlas. En particular, se deben incluir los siguientes aspectos:
El proceso de montaje y desmontaje requiere incluir los medios auxiliares requeridos, el peso y la ubicación de los elementos a colocar, la posición del personal para la unión o separación de los elementos sucesivos y cómo acceden a las respectivas posiciones, las herramientas necesarias y su transporte, los medios de seguridad requeridos y la forma en que deben utilizarse para garantizar la seguridad de los operarios. También se debe indicar en qué zonas está prohibida la presencia de operarios durante el desmontaje. En ciertos casos, puede ser necesario establecer puntos de agarre para facilitar el desmontaje de las piezas.
Para garantizar una ejecución satisfactoria del cimbrado y descimbrado: Es necesario proporcionar instrucciones claras sobre el posicionamiento de la cimbra, incluyendo la accesibilidad a los elementos de maniobra y unión, la secuencia de operaciones, la asignación del personal, y los medios y herramientas indispensables. En relación con el descimbrado, además de las instrucciones antes mencionadas, se deben detallar los procedimientos de desmontaje del encofrado y la ubicación precisa de los materiales retirados.
Se debe indicar la ubicación permitida para el personal durante las diferentes operaciones como el ferrallado, hormigonado o pretensado, las áreas designadas para el acopio y su capacidad de carga y la distribución precisa de cargas para evitar desequilibrios. Además, se debe especificar, la ubicación de pasillos de circulación, los puntos de conexión para los cables de seguridad y vías de paso entre niveles. Es esencial incluir precauciones que garanticen la seguridad de los trabajadores que no están familiarizados con el manejo de la cimbra.
En el caso de cimbras estandarizadas, es obligatorio que el fabricante proporcione una “Guía de Operación” que abarque todas las aplicaciones posibles. En tal caso, basta con presentar esta guía junto con un informe sucinto que pueda adaptarse al caso específico, en lugar de un anejo detallado.
En el caso de utilizar componentes de la cimbra suministrados por la obra, como pasillos y barreras, es importante incluirlos en el anejo junto con los suministrados por el fabricante, diferenciando claramente su origen. Para todos estos elementos, se deben especificar las características necesarias, incluidas, entre otras, la resistencia, el método de sujeción y la geometría.
Os dejo a continuación un par de documentos sobre normas constructivas de cimbras montadas con elementos prefabricados.
La temperatura del hormigón es un factor crítico, especialmente en climas fríos, donde se debe evitar su congelación durante todas las etapas del proceso. La temperatura de amasado depende del grosor mínimo de las piezas que se van a hormigonar, de la temperatura del aire y de la pérdida de temperatura durante el transporte hasta el lugar de trabajo. A medida que aumenta el volumen de la sección hormigonada, la pérdida de calor se vuelve más lenta y el calor generado durante la hidratación adquiere más importancia. Por lo tanto, se recomienda una temperatura más baja para la masa de hormigón que se va a colocar y también una temperatura de salida más baja en el amasado. En el caso de estructuras de gran volumen, es crucial limitar la temperatura del hormigón para evitar problemas de fisuración.
Es importante tener en cuenta que las pérdidas de calor aumentan en proporción a la diferencia de temperaturas. Por lo tanto, elevar la temperatura del hormigón por encima de los valores recomendados no garantiza una protección proporcional contra la congelación, sino que puede generar efectos no deseados, como un mayor consumo de agua, una rápida disminución de la consistencia, un fraguado acelerado o un incremento de la retracción térmica.
También es relevante considerar que las superficies expuestas del hormigón pueden experimentar una rápida pérdida de humedad debido a que, al estar en contacto con el aire frío, calientan el aire circundante, lo que disminuye la humedad relativa y provoca la evaporación del agua superficial. Por tanto, se recomienda que la temperatura del hormigón durante su colocación sea lo más baja posible, tal y como se comentó anteriormente. A partir de la temperatura de colocación y de la pérdida de temperatura durante el transporte hasta el lugar de trabajo, se puede determinar la temperatura de amasado del hormigón.
La temperatura de amasado del hormigón se puede lograr calentando los distintos materiales que lo componen. El cálculo de la temperatura de la mezcla se obtiene a partir del balance térmico de los diferentes materiales, ya que la cantidad total de calor de los materiales antes y después del amasado es la misma, siendo la única incógnita la temperatura final. No se debe olvidar el calor latente de fusión del hielo en caso de que el agua de los áridos esté congelada.
A continuación os dejo un problema resuelto que, espero, os sea de interés.
AENOR (2022). UNE 83151-1 IN Hormigonado en condiciones climáticas especiales. Parte 1: Hormigonado en tiempo frío. Madrid, 27 pp.
MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València. 189 pp.
El estribo cerrado es uno de los tipos más comunes de estribos utilizados en puentes. Consiste en un muro frontal, que constituye la estructura principal del estribo, aletas laterales (con o sin muro lateral), un murete guarda y una losa de transición. En la Figura 1 se puede ver el esquema de su sección transversal. El muro frontal se encarga de recibir la carga del tablero a través de los apoyos, los cuales permiten que el tablero se mueva de forma independiente a los movimientos ocasionados por las tierras circundantes. Además, el estribo cerrado se apoya en el terreno natural, en lugar de hacerlo sobre el terraplén, lo que ayuda a reducir los asientos a largo plazo. Esto es especialmente beneficioso para evitar asentamientos que podrían afectar al tablero si este fuera hiperestático.
El diseño de la parte superior del estribo se determina según el tipo de carga y los movimientos del tablero. Por otro lado, la parte inferior está influenciada por las acciones del tablero y el empuje de las tierras, especialmente cuando el estribo es alto. En el caso de puentes ferroviarios, donde el empuje horizontal en la parte superior debido al frenado es significativo, el diseño de la parte inferior del estribo, incluyendo la variación de los espesores, el tamaño del cimiento, entre otros aspectos, también se ve afectado por este efecto. En los viaductos destinados a trenes de alta velocidad, es común utilizar anclajes tipo Gewi o cables de pretensado para sujetar el tablero a uno de los estribos. Este estribo se denomina estribo fijo, mientras que la junta de dilatación se ubica en el estribo opuesto.
El cierre lateral del estribo depende de si hay posibilidad de derrame de tierras por delante de él. En el caso poco frecuente de estribos cerrados donde se pueda producir derrame, se soluciona colocando una pequeña aleta triangular perpendicular al muro frontal del estribo. La altura y longitud de la aleta dependerán del grosor del tablero y la inclinación del derrame del terraplén. En el caso más frecuente, donde no hay derrame de tierras por delante del estribo, existen dos soluciones posibles. La primera es extender muros en continuación del muro frontal, conocidos como “aletas en prolongación”. La segunda es disponer muros adyacentes al propio muro frontal y perpendiculares a este, conocidos como “muros en vuelta”. En este último caso, dependiendo de la altura del estribo y la inclinación de las tierras, puede ser necesario construir verdaderos muros de contención para contener el terraplén.
Este tipo de estribo permite no verter tierras por delante de él, lo cual es especialmente útil cuando se desea evitar invadir la vía inferior. En caso de que haya edificaciones cercanas, se puede extender lateralmente el estribo mediante la construcción de un muro en vuelta, que puede prolongarse según sea necesario. Estos muros en vuelta pueden tener un ángulo de 90º con el estribo (Figura 2), siguiendo la disposición del vial en caso de que el estribo se desvíe, o pueden formar un ángulo (generalmente de 30º) siguiendo la inclinación del terraplén.
En el caso de estribos de gran altura, generalmente a partir de unos 8 m, existen dos opciones alternativas en lugar de mantener un espesor constante, que suele ser significativo y solo necesario en los últimos metros inferiores, donde el cortante y el momento flector son más altos. La primera opción es establecer un espesor variable, en la cual se suele cambiar el espesor cada 4 m, que coincide con la altura típica de las capas de hormigonado. La segunda opción es utilizar un muro frontal nervado con rigidizadores verticales. En este caso, el muro frontal transmite el empuje de las tierras a través de la flexión horizontal a los nervios, y estos, a su vez, lo transmiten verticalmente a la cimentación.
La impermeabilización es un elemento esencial en un estribo, tanto para garantizar su funcionalidad como para reducir los empujes del trasdós. Por esta razón, todos los estribos deben contar con una capa de material filtrante en el trasdós, así como con un tubo de drenaje en el fondo que permita la evacuación de las aguas acumuladas detrás del muro frontal hacia el exterior.
Los asientos que ocurren en el terraplén de acceso son más significativos que los que se producen en el muro. En los puentes de carretera, se evita el resalto abrupto que se generaría en la unión entre ambos elementos mediante el uso de una losa de transición. Esta losa se apoya en las tierras de un lado y en el muro del otro, proporcionando una transición suave entre ambos extremos. El tamaño de esta losa dependerá de la diferencia de asientos entre el muro y el terraplén, así como de la altura y calidad del terraplén. Por lo general, una losa de transición de 4 a 5 m de longitud suele ser suficiente (Manterola, 2006).
Os dejo un pequeño vídeo donde se explican los estribos de los puentes, incluido el estribo cerrado. Espero que os sea de interés.
Referencias:
ARENAS, J.J.; APARICIO, A.C. (1984). Estribos de puente de tramo recto. Santander: Universidad de Cantabria.
DIRECCIÓN GENERAL DE CARRETERAS (1994). Manual para el proyecto y ejecución de estructuras de suelo reforzado. Ministerio de Obras Públicas, Transportes y Medio Ambiente.
JURADO, C. (2016). Puentes (I). Evolución, tipología, normativa, cálculo. 2ª edición, Madrid.
MANTEROLA, J. (2006). Puentes II.Apuntes para su diseño, cálculo y construcción. Colección Escuelas. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.
Hoy, martes 13 de junio de 2023, al momento de escribir estas palabras, me he enterado con pesar del fallecimiento de Florentino Regalado Tesoro.
Con su partida, no solo hemos perdido a un destacado ingeniero, sino también a un ser humano excepcional y querido amigo. Aunque de manera apresurada y sin poder abarcar todo lo que quisiera, no puedo evitar dedicar unas breves líneas en su memoria. Pido disculpas por lo mucho que me dejo en el tintero, pero seguro que me sabréis perdonar.
Florentino nació en Cáceres en 1950, en el seno de una humilde familia vinculada a unas tierras de la Marquesa de Camarena, cerca de Trujillo. Tras finalizar sus estudios de ingeniero de caminos, canales y puertos en Santander, se vino a Alicante para reunirse con su hermano Ricardo.
Alguno de vosotros podéis conocerlo por haber sido el fundador de la empresa CYPE, otros por su faceta docente, por sus innumerables proyectos. Su huella se extiende por toda la provincia de Alicante, con miles de proyectos destacados en edificios de gran altura, centros comerciales, hospitales, puentes y más. Pero yo lo tengo que recordar en sus últimos años como una gran persona. Una pequeña reseña la podéis ver en el periódico Información de Alicante, un periódico donde solía escribir sobre múltiples temas, porque como me dijo un día: “quien no escribe en Información, no es nadie en Alicante”: https://www.informacion.es/alicante/2020/12/12/alicante-cabeza-26233920.html
La última vez que estuve con él personalmente fue en el VIII Congreso de la Asociación Española de Ingeniería Estructural, ACHE, que tuvo lugar en Santander el año pasado. Este congreso se tuvo que retrasar varias veces debido a la pandemia y fue un punto de reencuentro para muchos de nosotros. Aproveché para preguntarle todo aquello de lo que tenía curiosidad. Su sentido común era abrumador y su experiencia en estructuras, desbordante. A modo de ejemplo, le insinué que hoy en día, abordar el cálculo de un rascacielos supone un trabajo de modelización matemática importante que, hace apenas 30 años, era absolutamente impensable. Y la pregunta era clara: ¿cómo calculábais los rascacielos de Benidorm? Claro, quería saber cómo a finales de los 80 se podía abordar el proyecto de la estructura de un edificio como el Gran Hotel Bali de Benidorm, de 186 metros de altura y 53 plantas. Su respuesta fue de lo más inteligente: “con un par de números en una servilleta, pe ele dos partido por ocho (sic)”. Lo que me quería decir es que lo relevante es la experiencia y la comprobación conceptual con grandes números y que, luego, ya vendrían los modelos matemáticos para afinar los resultados. Ingeniería pura. Hablando en ese mismo momento sobre el desastre del terremoto de Lorca, me dio una lección en dos minutos de lo que realmente era importante en un cálculo estructural en un sismo: los detalles constructivos. También hablamos de la salud, de la familia, y de todo tipo de temas. El último día del congreso me despedí de él. Estaba alegre, se iba con su familia a su tierra natal. Luego pude ver algunas fotografías que compartió. Fue la última vez que tuve la ocasión de verle en persona.
Florentino era un apasionado del “patrimonio construido”. Hace unos años ya me contó su preocupación por dejar un montón de escritos sobre este tema que había elaborado a lo largo de su vida y que no sabía bien a quién dejar. Me dejó una fracción pequeña de sus legajos en formato digital. Afortunadamente, no se ha perdido la totalidad de sus escritos, pues me consta que el Colegio de Ingenieros de Caminos ha recibido dicho legado, que hay que ordenar, clasificar y, en su momento, hacer visible.
También fue Florentino una voz independiente y libre que, sin problema alguno, compartía con cualquier interlocutor. Las redes sociales nos han permitido, a través de un grupo de WhatsApp de los ingenieros de caminos de Alicante, conocer sus ideas, sus puntos de vista y sus debates de todo tipo. Eso sí, siempre respetuoso con las ideas de los demás. Esta misma mañana, sin conocer la fatal noticia, algún compañero le preguntaba su opinión sobre el manifiesto de la Asociación de Ingenieros de Caminos, Canales y Puertos y de la Ingeniería Civil sobre la normativa sísmica. No llegamos a tiempo.
Voy a poner un par de anécdotas personales en ese tipo de debates que, como veréis, rezumaban sentido común por todos sus poros. El último intercambio de mensajes ocurrió el 1 de junio pasado. Hacía partícipe a mis compañeros del Premio a la Excelencia Docente que había recibido del Consejo Social de la Universidad Politécnica de Valencia. Florentino me dijo: “Lástima no haberte conocido siendo estudiante”, a lo cual le contesté: “Florentino, lástima no haber coincidido contigo profesionalmente para haber aprendido lo mucho que sabes”. Son unas palabras que valen mucho más que cualquier premio, pues vienen de alguien a quien admiro mucho.
Pero no siempre coincidíamos en nuestras opiniones. Especialmente en el ámbito de las nuevas tecnologías y de la inteligencia artificial. A una noticia recogida en la prensa sobre nuestras investigaciones en optimización de estructuras con algoritmos heurísticos, Florentino me dijo lo siguiente (el lenguaje es coloquial, escrito en WhatsApp, pero sin omitir ni cambiar nada): “Víctor no acabo de explicarme cuando más sabemos, más algoritmos, más normas, más laboratorios, más de todo, mucho más costosas resultan las estructuras. LAS ECONOMÍAS SON UN MITO. Una torre en Benidorm, podía llevarse entre 25 y 30 kg de acero m2. En la actualidad ha subido como poco a los 40. Y si te descuidas puedes fabricar un Titanic. ¿Qué puñetas está pasando?”. Mi respuesta: “Florentino, un ingeniero en su vida, puede calcular 1000 estructuras. Un algoritmo inteligente revisa más de un millón en media hora. Los ahorros existen, no es un mito. El tema es que ahora las consultoras no están aprovechando las ventajas de la investigación de vanguardia. Pero en poco tiempo lo harán”. Sin embargo, no acababa de estar de acuerdo Florentino conmigo y me replicaba: “Lamento discrepar de ti, pero si para la inteligencia natural es un mito absoluto (nadie podrá darnos lo que no tiene), ya me dirás en qué consiste una construcción inteligente, frente a una construcción bien parida y bien construida. Estamos dejándonos arrastrar por un lenguaje que yo ya no entiendo su significado”. Y para zanjar el tema, y terminar de forma elegante este pequeño debate, yo le contesté: “Florentino, estoy encantado de discutir este tipo de temas en un foro como este, de técnicos. A veces se nos olvida lo que somos con otros temas. Los algoritmos no son inteligencia. Son estrategias que utilizan la fuerza bruta del ordenador para hacernos fácil el trabajo. Ingenieros como Florentino son imprescindibles para dar sentido común a lo que se investiga. La experiencia es un grado”. Ya no me pudo rebatir más, ya notábamos todos que sus fuerzas estaban mermando. ¡Maldita enfermedad!
Para acabar esta pequeña reseña personal, me he bajado a la primera planta para rebuscar entre las tesis doctorales defendidas en el Departamento de Ingeniería de la Construcción de la Universidad Politécnica de Valencia. He encontrado los dos tomos de su tesis doctoral: “Investigación y revisión crítica del conocimiento y uso de los forjados reticulares en España, con propuestas de nuevos criterios para su diseño, análisis y construcción”, dirigida por el catedrático Juan José Moragues Terrades, y defendida en el año 2001. Como podéis ver, una tesis presentada ya en la madurez profesional de Florentino. Era otra época, donde el grado de doctor solo se buscaba en el ámbito académico, y donde la publicación de artículos en revistas científicas internacionales no dejaba de ser una anécdota frente a la valía profesional. En mi caso, aunque 14 años más joven, leí la tesis también tarde, en 2002, un año después, tras casi dos décadas de experiencia profesional en empresas constructoras y en la administración pública. Pero algo ya empezaba a cambiar, tanto en nuestra universidad como en la profesión.
Para los que tengáis curiosidad, os dejo el breve resumen de su tesis doctoral, tal y como lo escribió:
“Partiendo de la realidad española del uso de los forjados reticulares, la tesis pretende sistematizar los criterios que se emplean y la razón y ser de los mismos, analizándolos arquitectónica, mecánica y constructivamente a la luz de las principales normas del mundo. Basándonos en nuestra experiencia, ensayos e investigaciones, de tipo numérico realizados sobre esta tipología de forjados, se establece, en nuestra opinión, toda una filosofía operativa que racionaliza y sistematiza el uso de los mismos, reflejando plenamente su comportamiento físico real al margen de consideraciones teóricas y escasamente representativas”.
Os dejo un par de entrevistas, también un par de conferencias donde podéis profundizar algo más en su visión personal de la ingeniería. Descansa en paz, Florentino. Te echaremos mucho de menos.
El puente pórtico se caracteriza por ser un sistema estructural en el que el dintel trabaja en conjunto con las pilas, presentándose como un caso intermedio entre un puente arco y un puente viga. Estos puentes son reconocidos por su belleza estética. Al igual que los puentes de vigas, constan de un tablero y pilas, estando el tablero está sujeto a flexión. Sin embargo, a diferencia de los puentes de vigas, las pilas generan empujes horizontales significativos en los cimientos, lo que requiere un terreno resistente para minimizar los desplazamientos horizontales. En caso de que el terreno no cumpla con los requisitos adecuados, como en el caso de un terreno blando, las pilas pueden abrirse, colapsar o reducirse el empuje horizontal, lo que hace que la ley de momentos se asemeje nuevamente a la de una viga con dos apoyos.
El objetivo principal al emplear el sistema de aporticado es reducir los momentos flectores generados en el puente mediante el empotramiento parcial proporcionado por la rigidez de las pilas. Como resultado de esta configuración, se originan momentos negativos en la unión entre los pilares y el dintel. Al reducir los momentos máximos en el dintel, se pueden construir puentes con luces más amplias. No obstante, la unión rígida del tablero con los estribos o las pilas para formar pórticos plantea desafíos en términos de las fuerzas axiales generadas por las cargas térmicas y las reacciones horizontales que el sistema del pórtico ejerce sobre las cimentaciones.
Con el fin de evitar el desplazamiento horizontal de la base de las pilas, es esencial contar con un terreno capaz de soportar las reacciones horizontales. Este requisito implica que el dintel del puente esté sometido a compresión. Esta respuesta estructural se conoce comúnmente como efecto pórtico, que presenta ligeras diferencias respecto al efecto arco, donde todo el puente en arco se somete a compresión.
Existen diferentes tipologías básicas de puentes pórtico, que se describen a continuación:
Pórtico de dos o tres vanos con pilares verticales y apoyos deslizantes en los estribos. Este tipo de estructura se utiliza cuando se requiere un gálibo muy estricto. Las pilas pueden dividirse en dos elementos en forma de V, lo que logra un resultado estético agradable y mayor esbeltez en el vano (Figura 3).
Pórtico en forma de “pi” de tres vanos con pilares inclinados y apoyos deslizantes en los estribos. Esta solución es típica para la construcción de pasos superiores de autopistas.
Pilas altas y flexibles, desde las cuales parten dos dinteles construidos mediante voladizos simétricos. Estos dinteles se unen en el centro de los vanos para formar pórticos. Normalmente, se emplean apoyos deslizantes en los estribos.
La inclinación de las pilas en un puente pórtico cumple dos funciones principales. En primer lugar, reduce la longitud del vano central del dintel y, al mismo tiempo, introduce una importante componente axial en esa sección. Además, busca un mejor empotramiento en el vano central, lo cual se compensa mediante la continuidad de los vanos laterales del dintel. Cuando las pilas están inclinadas, la respuesta estructural se asemeja a la de un puente en arco con un tablero conectado al arco sin montantes intermedios. En realidad, la forma en que estas dos estructuras soportan las cargas es muy similar, y la distinción entre ellas es en gran medida arbitraria.
Por otro lado, si las pilas del puente pórtico son altas y esbeltas en comparación con la longitud del vano central, se reduce el empotramiento entre las pilas y el dintel. En este caso, el tablero funciona más como una viga continua apoyada en las pilas. En esta configuración, el efecto pórtico se reduce considerablemente, lo que implica una pérdida de la eficacia buscada en la estructura.
Si la unión entre las pilas y el dintel es de articulación simple, la deformación del tablero bajo cargas verticales será similar a la de una viga simplemente apoyada. En cambio, si la unión es empotrada, la deformación seguirá el patrón indicado en la Figura 4, y esto dependerá de si el terreno ejerce o no empujes horizontales.
En el caso de un puente pórtico biarticulado, la deformación se asemeja a la de una viga continua con tres vanos. El vano central corresponde a la longitud del pórtico, mientras que las luces de los vanos laterales representan la altura de las pilas. Se puede visualizar como si se hubiera dividido el pórtico en una viga recta apoyada en los puntos de unión entre la viga y el pilar, y en los extremos, sometida a la carga presente en el vano central. En este tipo de puente, se producen interacciones constantes entre el suelo y la estructura, similar a los puentes en arco. A medida que el puente disminuye de tamaño, estas interacciones se vuelven más significativas.
Referencias:
JURADO, C. (2016). Puentes (I). Evolución, tipología, normativa, cálculo. 2ª edición, Madrid.
MANTEROLA, J. (2006). Puentes II.Apuntes para su diseño, cálculo y construcción. Colección Escuelas. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.
El sistema de construcción de puentes colgantes tiene un impacto significativo en su estructura. Las fases principales en la ejecución de un puente colgante pasa por la construcción de las torres y contrapesos, el montaje de los cables principales y la ejecución del tablero.
Lo habitual es que el proceso constructivo comience con la ejecución de los anclajes y las torres. Los anclajes implican trabajos importantes de movimiento de tierras. Las torres o mástiles pueden ser de acero o de hormigón, presentando el desafío de la construcción en altura. En el caso del acero, se emplean técnicas bien desarrolladas de unión, como soldadura y tornillos de alta resistencia. Las torres de acero se montan por módulos prefabricados que se elevan mediante grúas trepadoras ancladas a la propia torre. En el caso del hormigón, se utilizan encofrados trepadores o deslizantes. En cualquier caso, se deben considerar los medios necesarios para elevar cargas de peso considerable a grandes alturas. Las grúas pueden ir creciendo a medida que las torres se elevan, estando ancladas a ellas.
Cuando los cables se anclan externamente, los contrapesos se vuelven indispensables y constituyen un elemento fundamental en la ejecución de la estructura. Los contrapesos requieren una precisa colocación de las piezas metálicas que servirán de anclaje al cable. En el caso de los puentes colgantes autoanclados, los cables principales se anclan al tablero, lo que elimina la necesidad de contrapesos. Por tanto, el tablero se convierte en el primer elemento a construir. Sin embargo, esta configuración conlleva la pérdida de una de las principales ventajas de la construcción de puentes colgantes, que es la capacidad de construir el tablero por etapas, sin importar la ubicación del puente.
Una vez ejecutadas las torres y los anclajes, es necesario proceder al montaje del cable principal, el cual constituye el elemento fundamental de la estructura resistente del puente colgante. El montaje de los cables principales es la fase más compleja, pues implica superar el vano existente entre las dos torres, lo que requiere tenderlo en el vacío. Se comienza lanzando unos cables guía, que son los primeros en abarcar la luz del puente y alcanzar los puntos de anclaje. En la mayoría de los puentes colgantes ubicados en áreas navegables, es posible pasar estos cables iniciales utilizando un remolcador. En la actualidad, este proceso ya no representa un problema gracias al uso de helicópteros e incluso drones.
A partir del cable inicial, se instalan las pasarelas que se emplean para devanar los alambres del cable, ya sea mediante alambres individuales “in situ” (air spinning) o por cordones. Durante esta etapa, el viento representa el desafío más significativo, ya que puede ocasionar grandes desplazamientos laterales en la polea móvil. En algunas ocasiones, esto ha llevado a detener el proceso de montaje del puente, generando retrasos significativos en la construcción. Finalmente, se compacta el cable principal de manera discontinua por bandas de presión o de forma continua mediante recubrimiento de alambre.
En cuanto al montaje del tablero, se suele realizar por voladizos sucesivos, avanzando simétricamente desde una torre hacia el centro del vano y hacia los extremos. También es posible llevar las dovelas a su posición definitiva mediante flotación y elevarlas desde los cables principales con cabrestantes, colgándolas en su ubicación final con las péndolas.
Una vez se han montado los cables principales, adoptando la curva catenaria correspondiente a su propio peso, se procede al montaje del tablero. El proceso de montaje del tablero se suele realizar por voladizos sucesivos, avanzando simétricamente desde una torre hacia el centro del vano y hacia los extremos. Este método requiere el uso de grúas ubicadas sobre el tablero ya construido, capaces de elevar piezas de diferentes tamaños. También es posible llevar las dovelas estancas que se transportan flotando hasta su posición y se elevan elevarlas desde los cables principales con cabrestantes, colgándolas en su ubicación final con las péndolas. Este sistema de montaje resulta más económico que el anterior y, en este caso, la secuencia de montaje se ejecuta desde el centro del vano hacia las torres, de manera simétrica.
JURADO, C. (2016). Puentes (I). Evolución, tipología, normativa, cálculo. 2ª edición, Madrid.
MANTEROLA, J. (2006). Puentes II.Apuntes para su diseño, cálculo y construcción. Colección Escuelas. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.