Hormigón al vacío

Figura 1. Hormigón al vacío. https://www.solitec.eu/2021/11/11/il-vacuum-concrete-una-tecnica-ancora-valida/

El hormigón al vacío (vacuum concrete, en inglés) es una técnica ideada por Billner en Estados Unidos en 1935, aunque no se empezó a utilizar en Europa hasta los años cincuenta del siglo pasado. Esta técnica busca mejorar la resistencia y durabilidad del material, y consiste en eliminar el exceso de agua de hidratación del cemento mediante presión de vacío antes de que comience el fraguado del hormigón. Esta acción conlleva una notable disminución en la relación agua/cemento (a/c) efectiva, lo que supone una mejora significativa en el rendimiento del hormigón. Aunque la reacción química entre el cemento y el agua requiere una relación a/c inferior a 0,38 para lograr una resistencia óptima, la relación empleada suele ser mayor para mejorar su manejabilidad, y esa agua adicional sirve para lubricar los componentes del hormigón fresco. Este exceso de agua crea poros capilares en el hormigón que aumentan su permeabilidad y reducen su resistencia.

La tecnología del hormigón al vacío resuelve este dilema, ya que permite mantener la trabajabilidad y conseguir una alta resistencia. Utiliza una bomba de vacío para aspirar el exceso de agua después de colocar y compactar el hormigón, lo cual puede suponer extraer entre el 10 % y el 25 % del agua y aumentar la resistencia a compresión entre un 20 % y un 40 %. Las resistencias a los 7 días con vacío son aproximadamente las mismas que las obtenidas a los 21 días. Esta técnica es efectiva para diversas aplicaciones, como suelos industriales, aparcamientos y losas de puentes. Tras aplicar el vacío, es posible caminar sobre la losa sin dejar rastro alguno, lo que elimina la necesidad de esperar períodos de tiempo. Los componentes clave incluyen una bomba aspiradora, un separador de agua, una almohadilla de filtración y un vibrador de placa de solera, que trabajan en conjunto para controlar la cantidad de agua eliminada y garantizar la calidad del hormigón resultante.

El efecto del vacío no se limita únicamente a la eliminación del exceso de agua, sino que también contribuye a llenar posibles huecos mediante la presión atmosférica. El vacío se logra mediante una bomba capaz de generar una depresión de entre 0,7 y 0,8 atmósferas. La duración de la aplicación del vacío varía en función de la consistencia inicial y el espesor del hormigón empleado. En la práctica, para elementos delgados como losas, muros o tuberías, el tiempo de aplicación del vacío suele ser de 10 a 20 minutos, mientras que para elementos de mayor grosor puede extenderse hasta 40 minutos. La temperatura mínima requerida para este proceso con hormigón es de 10 °C. Sin embargo, no todos los tipos de hormigón son adecuados para el vacío. Existe el riesgo de bloqueo superficial, que se refiere a la congestión de finos en la superficie que puede impedir el desarrollo del proceso. Por esta razón, el contenido máximo de cemento se limita a 350 kg/m³.

En este procedimiento, el hormigón se vierte en encofrados con una cara perforada y el exceso de agua se extrae por succión a través de las perforaciones mediante una bomba de vacío. Los encofrados especiales empleados en este proceso consisten en una cámara delgada de baja altura cuya superficie en contacto con el hormigón es permeable, ya sea mediante una rejilla metálica o un tejido de caucho perforado. Las otras caras de la cámara son impermeables, con excepción de unas aberturas estratégicamente ubicadas a través de las cuales se genera el vacío en su interior. Estas aberturas, por lo general, se encuentran en la cara inferior del encofrado. Este método proporciona al hormigón una notable cohesión, lo que facilita un desencofrado rápido.

Figura 2. Deshidratación al vacío del hormigón. https://industrysurfer.com/blog-industrial/construccion/hormigon-al-vacio-tecnologia-equipamiento-ventajas/

En una masa de hormigón recién vertida en un encofrado, existe cierto nivel de presión, derivado de la carga del hormigón fresco por encima del nivel considerado y de la presión atmosférica. Esta presión se divide en dos componentes: una presión intergranular, que es sostenida por el armazón o esqueleto formado por los áridos, y una presión intersticial, que es sostenida por el líquido que ocupa los espacios vacíos, es decir, el agua en la que están suspendidas las partículas de cemento.

El principio del tratamiento consiste en eliminar o, al menos, reducir significativamente la presión intersticial al comunicar la matriz fluida del hormigón fresco, a través de un filtro, con una fuente de vacío. Sin embargo, es importante destacar que la presión total en el hormigón no se ve alterada, dado que la aplicación del vacío no afecta ni a la masa de hormigón sobre el nivel considerado ni a la presión atmosférica externa.

En estas circunstancias, la primera componente, es decir, la presión intergranular, experimenta un aumento repentino, lo que provoca que el armazón rígido se vea obligado a soportar lo que previamente sostenía el líquido. Como resultado, el esqueleto se compacta en busca de un nuevo equilibrio, reduciendo así sus espacios intersticiales y expulsando el exceso de agua, que se desplaza entre los granos hacia el filtro. Esta contracción persiste hasta que los áridos alcanzan la máxima compacidad compatible con su granulometría, momento en el cual cesa la compactación. En el caso de un recipiente, se observa cómo desciende algunos centímetros la superficie libre del hormigón durante este proceso de contracción.

El hormigón al vacío ofrece una serie de ventajas significativas, como un aumento de su resistencia final, la posibilidad de retirar los encofrados de los muros de forma más temprana, así como la combinación de trabajabilidad y resistencia gracias a la deshidratación mediante vacío. Además, presenta una alta durabilidad y densidad, junto con una reducción notable en la permeabilidad y en el tiempo requerido para el acabado final. También se observa un aumento del 20 % en la resistencia de adherencia, lo que facilita su aplicación en trabajos de repavimentación y reparación. Asimismo, al reducirse el agua, se reduce notablemente la retracción, lo que permite separar las juntas hasta 20 m en pavimentos. Sin embargo, estas ventajas vienen acompañadas de algunos inconvenientes, como el consumo de energía y la necesidad de equipos específicos, lo que conlleva un coste inicial elevado y la necesidad de contar con mano de obra especializada. Además, la porosidad del hormigón puede permitir la filtración de agua, aceite y grasa, lo que podría debilitar la estructura con el tiempo.

Como se puede observar en la Figura 3, el beneficio de la deshidratación del hormigón es más acusado en la capa superior que en la inferior. Por encima de 150 mm de profundidad, el efecto de este procedimiento es poco significativo. Por tanto, en lo que respecta a la mejora de la resistencia, la reducción de poros y el aumento de la durabilidad, esta mejora es particularmente evidente en las áreas donde más se necesita. De hecho, este procedimiento permite aumentar la capa superficial de las soleras de hormigón, que puede, en algunos casos, competir con capas de rodadura.

Figura 3. Efecto de la deshidratación por vacío del hormigón. https://theconstructor.org/concrete/vacuum-concrete-techniques-equipments-advantages/6867/

El siguiente vídeo os puede resultar de interés.

Os dejo a continuación un artículo interesante sobre los primeros años de esta técnica en Colombia.

Pincha aquí para descargar

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Secuencia del curado del hormigón y duración de las diferentes etapas

https://www.yura.com.pe/blog/curado-concreto-primera-parte/

Tradicionalmente, se ha considerado el curado como un proceso que tiene lugar después de colocar y acabar el hormigón. Sin embargo, es esencial comprender que el curado debe iniciarse en el momento en que la superficie del hormigón empieza a secarse. Esto sucede cuando el agua de exudación se evapora más rápido de lo que puede ascender a la superficie. Estas condiciones pueden ocurrir incluso antes de completar el acabado del hormigón, lo que permite distinguir diversas fases del proceso de curado. La norma ACI 308 R señala que, debido a las distintas etapas que atraviesa el hormigón desde su elaboración hasta que la estructura adquiere las propiedades de diseño, es necesario distinguir tres fases de curado a lo largo del tiempo: curado inicial, curado intermedio y curado final.

Curado inicial

El curado inicial abarca el periodo desde la colocación hasta el acabado del hormigón y busca evitar la pérdida de humedad en la superficie. Si el acabado se realiza justo después de que desaparezca el agua de exudación, no es necesario implementar medidas de curado inicial. Sin embargo, suele ser imprescindible cuando el secado de la superficie comienza antes del fraguado, o incluso antes de que se complete el acabado. Hay que considerar que la velocidad de evaporación del agua es máxima justo antes del fraguado del cemento, pues posteriormente el agua se desplaza por difusión en el interior del hormigón, un proceso muy lento. Por lo tanto, resulta de suma importancia evitar el secado durante las primeras horas posteriores a la colocación del hormigón.

El curado inicial previene la fisuración debida a la retracción plástica en hormigones con muy poca exudación o que no exuden. Un ejemplo son los hormigones que contienen cementos finos u otros materiales cementantes finos, como el humo de sílice, las cenizas volantes o la escoria. También se incluyen en esta categoría los hormigones con una baja relación agua-cemento, con alto contenido de aire o con aditivos reductores de agua. Además, se recomienda su aplicación en ambientes con alta evaporación de la superficie del hormigón, como en condiciones de calor intenso.

Se pueden emplear diversos métodos que no dañen ni deformen la superficie del hormigón fresco, como la nebulización, el uso de reductores de evaporación o la modificación del entorno mediante sombras, barreras de viento o cerramientos. En caso de que el proceso de acabado involucre varias operaciones que se extiendan en el tiempo, es fundamental mantener las medidas de curado iniciales o volver a aplicarlas hasta que el acabado esté completo.

El curado inicial debe llevarse a cabo justo después de que desaparezca el brillo del agua de exudación, lo cual puede ocurrir tras el nivelado y, en algunos casos, incluso antes del alisado. Es importante eliminar el exceso de agua procedente del rociado de neblina o de los reductores de evaporación, o bien permitir que se evapore antes de finalizar el acabado de la superficie.

Curado intermedio

El curado intermedio es necesario cuando la superficie del hormigón se ha acabado antes de que se complete el proceso de fraguado. Esto puede ocurrir cuando se alcanza rápidamente la textura superficial, cuando hay retraso en el fraguado o en ambos casos.

Si se ha realizado un curado inicial, el curado intermedio puede mantener la nebulización continua o la aplicación de retardadores de evaporación. En caso contrario, los métodos empleados no deben dañar la superficie del hormigón, ya que aún no ha alcanzado su fraguado final y no es capaz de resistir el daño mecánico. Por lo tanto, el agua debe aplicarse con suavidad.

Después de la última pasada de acabado, se pueden aplicar compuestos de curado mediante aspersores. Estos compuestos tienen la ventaja de poder aplicarse antes de que el hormigón haya completado su fraguado y, a menudo, se aceptan como método final de curado. Si, justo después del acabado, se cubre la superficie del hormigón con arpillera, por ejemplo, para reducir su resistencia a las sales fundentes; esto puede afectar a su calidad. Por ello, es preferible cubrir suavemente la superficie con láminas de plástico tras el acabado y reemplazarlas por arpillera una vez que el hormigón haya alcanzado su fraguado final.

Curado final

El curado final comprende los procedimientos aplicados después del acabado y una vez que el hormigón ha fraguado y ha comenzado a desarrollar resistencia. Es crucial no demorar las medidas de curado una vez completado el acabado, ya que puede ocasionar una pérdida significativa de agua por evaporación, especialmente cuando la textura del acabado da lugar a una amplia superficie expuesta, como ocurre con el cepillado o el ranurado. El curado final puede efectuarse mediante la extensión de los métodos utilizados en el curado inicial o intermedio, o mediante la aplicación de otros métodos, como la aspersión, el uso de arpilleras u otros materiales absorbentes humedecidos o el riego con manguera, entre otros.

Una vez examinadas las tres acciones que conforman el proceso de curado, se comprende la importancia de planificar meticulosamente el curado de una estructura significativa, así como la relatividad de la afirmación «el mejor curador es el agua». La elección del método de curado adecuado, entre las numerosas opciones disponibles, dependerá, como se ha señalado, de la rapidez con la que se esté secando la superficie del hormigón, de si ya se han producido los fraguados inicial y final, y de si las operaciones de acabado han concluido o no. Esto implica la necesidad de conocer aproximadamente el tiempo de curado del hormigón en cuestión, considerando las condiciones climáticas específicas de la obra.

Os dejo un documento de Sika sobre el curado del hormigón.

Pincha aquí para descargar

Referencias:

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

MENZEL, C.A. (1954). Causes and Prevention of Crack Development in Plastic Concrete. Proceedings of the Portland Cement Association, Vol. 130:136.

LERCH, W. (1957). Plastic shrinkage. ACI Journal, 53(8):797-802.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Hormigoneras transportadoras o camiones hormigonera

Figura 1. Camión hormigonera. https://commons.wikimedia.org/wiki/File:Cami%C3%B3n-hormigonera_Mercedes-Benz_2224.jpg

El hormigón producido en una planta de hormigón se transporta a las obras de construcción donde se utilizará en camiones hormigonera (Figura 1). Estos vehículos, aunque están diseñados para agitar, se utilizan con mucha frecuencia como mezcladores. Consisten principalmente en una cuba cilindro-cónica construida con chapa de alta resistencia al desgaste y de gran capacidad (de 6 a 10 m³), cuyo eje está inclinado aproximadamente 15º respecto a la horizontal. Estos camiones tienen dos modos de rotación: uno para cargar y mezclar, y otro opuesto para descargar. La mayoría de las autohormigoneras se utilizan en centrales de venta de hormigón.

El principio de amasado es similar al de las mezcladoras de tambor horizontal con inversión de marcha. En el interior de la cuba hay dos hileras de espirales helicoidales de acero con piezas de desgaste fijadas a la pared. El material entra en la cuba a través de una tolva situada en la parte superior de la boca y sale por la parte inferior, cayendo primero en una tolva y luego en una canaleta de distribución plegable y orientable para el transporte.

La cuba está montada sobre un chasis general que se sitúa en la plataforma del camión. Los componentes giratorios incluyen una banda zunchada en la parte superior que se apoya en dos rodillos y un eje en la parte inferior de la cuba que gira en un cojinete montado en un contrafuerte del chasis.

Figura 2. Detalle de las espiras de un camión hormigonera

La cuba presenta dos capacidades operativas distintas (eje 8/6,6):

  • En su función de agitador, se utiliza para recibir el hormigón previamente mezclado en la central y agitarlo durante el transporte, con una capacidad mayor de 8 m³.
  • En su papel de mezcladora, recibe la mezcla seca de la central de dosificación y la amasa durante el transporte, con una capacidad menor de 6,6 m³.

El volumen del tambor o cuba debe ser mayor, con una relación aproximada de 10 m³/8 m³/6,6 m³.

Para las operaciones de amasado o simplemente de agitación, la cuba gira en dirección que desplaza los productos hacia el fondo de la misma. La rotación en sentido contrario garantiza un vaciado total. Es habitual contar con dos velocidades para el proceso de amasado y una para el de descarga:

  • La primera velocidad, más lenta, se emplea para agitar el material durante el transporte, cuando ya está amasado, ya sea porque se ha cargado hormigón mezclado en la central o porque se ha amasado durante parte del trayecto un material previamente cargado sin amasar.
  • La segunda velocidad, más rápida, se utiliza durante la carga de la hormigonera, que debe realizarse lo más rápido posible. También se emplea para el amasado en el caso de que se haya cargado dosificación sin amasar.
Tabla. Velocidades de rotación de la cuba para distintas operaciones

Los sistemas utilizados para mover la cuba son los siguientes:

  • Motor auxiliar, generalmente diésel, independiente del camión, lo que conlleva las siguientes ventajas:
    • Mayor durabilidad del motor del camión.
    • En caso de que el camión se averíe, la hormigonera puede seguir funcionando sin que el hormigón fragüe.
  • Utiliza el mismo motor que el camión. La caja de cambios cuenta con una salida lateral a la que se acopla una transmisión hidráulica que acciona el tambor. El inconveniente es que requiere camiones con una potencia considerablemente mayor, pero las ventajas son las siguientes:
    • Se utiliza un solo motor diésel, lo que implica un menor consumo de combustible.
    • Se reducen los costes y es necesario realizar menos reparaciones y compras de repuestos.
Figura 3. Partes de un camión hormigonera

El sistema de agua está compuesto por los siguientes elementos:

  • Depósito de agua con una capacidad de 500 a 700 litros, en función de la capacidad requerida. Cuando no se realiza el mezclado en la central, el agua de amasado se añade al final del trayecto, unos minutos antes del vaciado. Esta práctica optimiza las ventajas del conjunto formado por las centrales y las hormigoneras.
  • Bomba de agua de tipo centrífugo.
  • Contador de agua y tuberías de distribución.

En cuanto al fraguado del cemento, este depende de la temperatura ambiente y de su calidad. Sin embargo, suele comenzar aproximadamente a los 20 minutos en climas cálidos y a los 40 minutos en invierno.

La norma C94-71 de la American Society for Testing and Materials (ASTM) establece un tiempo máximo de transporte de hormigón de 90 minutos cuando se utiliza un camión con agitador, y de 45 minutos cuando se transporta en camiones basculantes sin agitador. Por otro lado, el Código Estructural recomienda que, en condiciones normales, el intervalo de tiempo entre la adición del agua de amasado al cemento y a los áridos, y la colocación del hormigón, no debe exceder de una hora y media.

En la práctica, cuando las distancias a recorrer superan los 90 minutos, se opta por transportar mezclas secas y añadir agua al final del trayecto. Sin embargo, esta solución compromete la correcta dosificación del agua en la central.

Os dejo algunos vídeos sobre esta máquina.

Os dejo también la NTP 93: Camión hormigonera, que es una guía de buenas prácticas para el manejo seguro de la máquina.

Pincha aquí para descargar

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València. 189 pp.

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Curado al vapor del hormigón e índice de madurez

Figura 1. Ejemplo de proceso de curado al vapor

El uso de vapor es uno de los métodos más eficaces para el curado del hormigón, ya que acelera considerablemente su endurecimiento. Este tipo de curado se emplea casi exclusivamente en la prefabricación. En el proceso de curado al vapor, y en general en cualquier método que involucre calor húmedo, se aplica el concepto de maduración del hormigón. La maduración es el resultado de la temperatura, en grados centígrados, a la que se expone la pieza, multiplicada por el tiempo de exposición, si este es constante. En el caso de una temperatura variable, se calcula la integral de la curva temperatura-tiempo (Figura 2). Se acepta que, para un mismo tipo de hormigón y dentro de ciertos límites, el curado es igualmente eficaz si la maduración también lo es. Es decir, diferentes combinaciones de temperaturas y tiempos producirán resultados similares siempre que el producto de estos, o la suma de sus productos, se mantenga constante.

Figura 2. Evolución de la temperatura con el tiempo (Carino y Lew, 2001)

En función del tipo de elemento, el curado al vapor puede realizarse a baja o alta presión. El método a baja presión se lleva a cabo típicamente a presión atmosférica y se emplea en estructuras encerradas construidas en el lugar o en grandes unidades prefabricadas de hormigón. Por otro lado, el curado con vapor a alta presión se realiza en autoclaves y se aplica a pequeñas unidades prefabricadas.

El proceso de curado al vapor comienza una vez transcurrida la etapa de prefraguado, elevando gradualmente la temperatura hasta alcanzar un límite establecido. Esta temperatura se mantiene durante un período determinado, tras el cual se reduce de forma continua hasta igualar la temperatura ambiente. Es importante evitar que el hormigón sufra cambios térmicos bruscos durante este proceso.

Cada tipo de cemento presenta una curva de curado ideal, que puede determinarse experimentalmente para conocer las velocidades óptimas de variación de temperatura, el valor de la temperatura límite y el tiempo de permanencia en esta última. En términos generales, la duración del prefraguado oscila entre 2 y 5 horas; la velocidad de calentamiento y enfriamiento no debe exceder 20 °C por hora, y la temperatura límite óptima se sitúa entre 55 °C y 75 °C, sin superar los 80 °C. Se recomienda que el primer periodo del proceso de curado al vapor no sea inferior a 4 horas cuando la temperatura ambiente es de 20 °C, pudiendo reducirse conforme aumenta dicha temperatura (Figura 1).

Es importante mantener una presión de vapor uniforme a lo largo de la pieza, asegurándose de que el recinto de curado permanezca saturado de humedad. Además, el curado con vapor requiere un control meticuloso, ya que si se aplica de forma descuidada pueden producirse cambios de volumen excesivos que afecten a la resistencia inicial del hormigón.

El curado al vapor ofrece diversas ventajas significativas en comparación con otros métodos convencionales. Entre las principales ventajas cabe destacar las siguientes:

  • Endurecimiento rápido en climas fríos: Es especialmente útil en climas fríos, ya que favorece un endurecimiento rápido del hormigón, lo que facilita la construcción en estas condiciones.
  • Alta resistencia inicial: Permite obtener una alta resistencia inicial en el hormigón, un aspecto fundamental para la fabricación de unidades prefabricadas y pretensadas.
  • Aumento de la velocidad de construcción: Al acelerar el endurecimiento del hormigón, el curado al vapor puede incrementar significativamente la velocidad de construcción, lo que se traduce en una mayor eficiencia y productividad.
  • Rapidez en comparación con otros métodos de curado: Es más rápido que los métodos convencionales, lo que acorta los tiempos de construcción y permite una mayor rotación de proyectos.

A pesar de sus ventajas, el curado al vapor también presenta algunas desventajas que deben tenerse en cuenta:

  • Limitaciones en superficies grandes: Puede no ser eficiente en superficies extensas, lo que podría requerir la implementación de métodos de curado alternativos.
  • Se necesitan trabajadores cualificados: El proceso de curado al vapor exige la presencia de personal capacitado y experimentado para garantizar resultados óptimos y evitar problemas como cambios volumétricos excesivos.
  • Costo inicial más elevado: El equipo y los materiales necesarios para el curado al vapor suelen tener un coste inicial más alto que los métodos de curado convencionales, lo que puede ser una consideración importante en proyectos con limitaciones presupuestarias.

Os dejo algunos vídeos al respecto del curado al vapor y del método de madurez del hormigón.

A continuación os dejo un documento de Hilti donde se explica el método de madurez del hormigón.

Pincha aquí para descargar

Referencias:

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

CARINO, N.J.; LEW, H.S. (2001) El método de la madurez: From Theory to Application. Proceedings of the 2001 Structures Congress & Exposition, Washington, D.C., American Society of Civil Engineers, Reston, Virginia, Peter C. Chang, Editor, 2001, 19 p.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Necesidad del curado del hormigón

Figura 1. Curado del hormigón. https://ingeniero-de-caminos.com/curado-del-hormigon/

El término “curado”, según la DRAE, significa endurecido, seco, fortalecido o curtido. En el ámbito del hormigón, se refiere a las acciones tomadas para facilitar la hidratación del cemento. Esto implica prevenir la pérdida de humedad del hormigón por evaporación y, si es necesario, proporcionar humedad adicional. Además, se busca mantener una temperatura favorable durante el fraguado y los primeros días de endurecimiento.

Si el hormigón se dejara secar al aire, su resistencia podría disminuir hasta en un 40 %, al tiempo que aumentaría la porosidad y la probabilidad de fisuras debido a la retracción. Los métodos empleados en el proceso de curado deben ser suficientes para evitar la desecación del hormigón, promover un adecuado endurecimiento, prevenir la fisuración debido a la contracción térmica y hacer que el hormigón sea resistente a las heladas prematuras.

Durante la hidratación del cemento, los granos se cubren con un gel de cemento, un producto de la reacción que forma una red que une los granos de cemento anhidro. El agua necesaria para la hidratación del cemento Portland es igual a 0,45 veces la masa de cemento hidratado. Esta cantidad se divide entre el agua químicamente combinada (equivalente a 0,25 veces la masa de cemento) y el agua adsorbida en las superficies y espacios de la estructura del gel (0,20 veces la masa de cemento).

Es importante señalar que la hidratación solo ocurre en un entorno casi saturado de agua. Por lo tanto, es necesario agregar agua adicional (durante el proceso de curado) para mantener saturados los poros capilares de la pasta. De esta manera, el cemento continuará hidratándose hasta que todo el espacio disponible se llene con los productos de la reacción o hasta que se complete la hidratación de todo el cemento.

El desarrollo de la resistencia y durabilidad del hormigón radica en el relleno de los poros entre las partículas de cemento con los productos de la hidratación. Esto se consigue partiendo de un volumen inicial de poros muy reducido, lo que se logra con una baja relación agua/cemento (a/c) y con un curado húmedo que permita hidratar una cantidad significativa de cemento.

Si el agua de amasado supera considerablemente la cantidad necesaria para la hidratación, es crucial garantizar que no se evapore durante el proceso de curado. En casos donde la proporción inicial de agua es menor, será necesario un curado adicional con agua para mantener la hidratación. Por ello, en hormigones con una relación a/c igual o superior a 0,50, el uso de una membrana impermeable, sin necesidad de agregar agua externa, puede ser un método efectivo de curado.

En el hormigón con baja relación a/c, ocurre el fenómeno de la autodesecación, que implica el secado interno del hormigón debido al consumo de agua durante la hidratación. Este problema suele estar asociado con mezclas de a/c iguales o inferiores a 0,45, para las cuales se requiere un curado húmedo. No obstante, con valores de a/c tan bajos, la permeabilidad de la pasta suele ser tan reducida que el agua aplicada externamente no penetra más allá de la capa superficial, la única que se beneficia del proceso de curado.

Figura 2. Curado mediante láminas para evitar la desecación. https://deepex.net/curado-del-hormigon/

El curado es una etapa fundamental en la producción de elementos de hormigón, ya que tiene una gran influencia en la resistencia y en el resto de las características del producto final. Carecer de un adecuado proceso de curado puede resultar especialmente perjudicial para la durabilidad de la estructura, puesto que esta depende en gran medida de la impermeabilidad de las capas exteriores del hormigón, que son las más sensibles a un curado defectuoso.

Es esencial tener en cuenta que el interior de las piezas (a menos que sean extremadamente delgadas) retiene la humedad durante periodos prolongados y es menos vulnerable a los efectos de un curado deficiente que las capas superficiales. En consecuencia, si el hormigón no recibe un adecuado proceso de curado, la capa de recubrimiento de las armaduras se verá afectada, volviéndose porosa y permeable, lo que significativamente acortará la vida útil de la estructura.

Por lo general, los métodos que suministran agua son más eficaces que aquellos que buscan evitar su evaporación. La duración y la intensidad del proceso de curado dependen principalmente de la temperatura y la humedad ambientales, así como de la acción del viento y la exposición directa al sol. Otros factores importantes son el tipo y la cantidad de cemento, la relación a/c y, especialmente, las condiciones de exposición de la estructura en servicio. A medida que estas condiciones sean más adversas, se requerirá un período de curado más prolongado.

En un artículo anterior, expusimos el uso del nomograma de Menzel para evitar el agrietamiento plástico durante el fraguado del hormigón. Otro artículo de interés es el relativo a la terminación, texturado y curado del pavimento de hormigón.

Figura 3. Nomograma de Menzel.

Os dejo algunos vídeos que os pueden ser de interés.

Referencias:

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

MENZEL, C.A. (1954). Causes and Prevention of Crack Development in Plastic Concrete. Proceedings of the Portland Cement Association, Vol. 130:136.

LERCH, W. (1957). Plastic shrinkage. ACI Journal, 53(8):797-802.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Toma de decisiones sobre infraestructuras viarias sostenibles: NSGA-II con operadores de reparación para optimización multiobjetivo

Acaban de publicarnos un artículo en Mathematics, revista indexada en el primer decil del JCR. El trabajo trata sobre la toma de decisiones en infraestructuras viales sostenibles. Para ello se utiliza una variante personalizada de la técnica NSGA-II con operadores de reparación para una optimización multiobjetivo. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El documento propone un enfoque novedoso que combina la optimización multiobjetivo (MOO) con técnicas de toma de decisiones basadas en criterios múltiples (MCDM) para el diseño y la selección de estructuras modulares prefabricadas de hormigón armado (RCPMF) en infraestructuras viales, con un enfoque en la sostenibilidad. El estudio evalúa la eficacia de tres operadores de reparación a la hora de optimizar los objetivos económicos, ambientales y sociales, y utiliza algoritmos personalizados y un análisis del ciclo de vida (LCA) para una evaluación precisa. Los resultados muestran que el operador de reparaciones basado en estadísticas ofrece soluciones con un menor impacto en todas las dimensiones y demuestra una variabilidad mínima, lo que lo convierte en el más adecuado para cumplir con los requisitos de diseño del RCPMF.

Las contribuciones más importantes de este trabajo son las siguientes:

  • El documento presenta un enfoque novedoso que combina la optimización multiobjetivo (MOO) con técnicas de toma de decisiones basadas en criterios múltiples (MCDM) para el diseño y la selección de estructuras modulares prefabricadas de hormigón armado (RCPMF) en infraestructuras viales, con un enfoque en la sostenibilidad.
  • El estudio evalúa la eficacia de tres operadores de reparación (basados en estadísticas, aleatorios y de proximidad) a la hora de optimizar los objetivos económicos, ambientales y sociales.
  • El artículo presenta una versión personalizada del algoritmo NSGA-II (NSGA-II) de clasificación no dominada, complementada con un análisis detallado del ciclo de vida (LCA), para facilitar la evaluación precisa de las funciones objetivas.
  • El artículo demuestra el uso de dos técnicas de MCDM, a saber, la ponderación aditiva simple (SAW) y (FUCA), para puntuar y clasificar las soluciones MOO.
  • La investigación proporciona una estrategia clara y metódica para integrar el MOO y el MCDM, formando un marco coherente para la implementación práctica en contextos de ingeniería complejos.
  • El estudio destaca la importancia de tener en cuenta los principios de sostenibilidad desde la fase de diseño y de emplear las técnicas de MOO para encontrar soluciones equilibradas y óptimas en la ingeniería civil.

Abstract:

Integrating sustainability principles into the structural design and decision-making processes for transportation infrastructure, particularly concerning reinforced concrete precast modular frames (RCPMF), is recognized as crucial for ensuring environmentally responsible, economically feasible, and socially beneficial outcomes. In this study, this challenge is addressed, with the significance of sustainable development in modern engineering practices being underscored. A novel approach, which combines multi-objective optimization (MOO) with multi-criteria decision-making (MCDM) techniques, is proposed, tailored specifically for the design and selection of RCPMF. The effectiveness of three repair operators—statistical-based, random, and proximity based—in optimizing economic, environmental, and social objectives is evaluated. Precise evaluation of objective functions is facilitated by a customized Non-dominated Sorting Genetic Algorithm II (NSGA-II) algorithm, complemented by a detailed life cycle analysis (LCA). The utilization of simple additive weighting (SAW) and fair un choix adéquat (FUCA) methods for the scoring and ranking of the MOO solutions has revealed that notable excellence in meeting the RCPMF design requirements is exhibited by the statistical-based repair operator, which offers solutions with lower impacts across all dimensions and demonstrates minimal variability. MCDM techniques produced similar rankings, with slight score variations and a significant correlation of 0.9816, showcasing their consistent evaluation capacity despite distinct operational methodologies.

Keywords:

Multi-objective optimization; multi-criteria decision-making; modular structure; life cycle sustainability; NSGA-II; simple additive weighting; fair un choix adéquat.

Reference:

RUIZ-VÉLEZ, A.; GARCÍA, J.; ALCALÁ, J.; YEPES, V. (2024). Sustainable Road Infrastructure Decision-Making: Custom NSGA-II with Repair Operators for Multi-objective Optimization. Mathematics, 12(5):730. DOI:10.3390/math12050730

Os paso el artículo para su descarga, pues se ha publicado en abierto:

Pincha aquí para descargar

Special Issue: “Energy Efficiency and Innovative Material Application in Sustainable Buildings”

Sustainability (ISSN: 2071-1050) is an international, peer-reviewed, open-access journal on environmental, cultural, economic, and social sustainability of human beings, published semimonthly online by MDPI.

Impact Factor: 3.9 (2022); 5-Year Impact Factor: 4.0 (2022)
Deadline for manuscript submissions: 31 October 2024

Special Issue Editors

Construction Engineering Department, Universitat Politècnica de València, 46022 Valencia, Spain
Interests: multi-objective optimization; structure optimization; lifecycle assessment; social sustainability of infrastructures; reliability-based maintenance optimization; optimization and decision-making under uncertainty
Special Issues, Collections and Topics in MDPI journals
Prof. Lorena Yepes-Bellver E-Mail Website
Guest Editor
Mechanics of Continuous Media and Theory of Structures Department, Universitat Politècnica de València, 46022 Valencia, Spain
Interests: multi-objective optimization; structure optimization; lifecycle assessment; social sustainability of infrastructures; metamodels

Special Issue Information

Dear Colleagues:

The Special Issue “Energy Efficiency and Innovative Material Application in Sustainable Buildings” focuses on advancing energy-efficient practices and novel materials in construction, crucial for global sustainability. Buildings account for significant energy use and carbon emissions, necessitating innovations to enhance efficiency and reduce environmental impact. This Special Issue aims to facilitate interdisciplinary dialogue and to highlight cutting-edge research in sustainable architecture and engineering. Aligned with the journal’s scope, it seeks to inspire professionals while promoting sustainable design and construction excellence. Key themes include energy-efficient design, innovative materials, intelligent building technologies, lifecycle assessment, and case studies illustrating best practices. Through these avenues, this Special Issue aims to contribute to a more sustainable and resilient built environment, addressing critical challenges and fostering progress towards a greener future.

In this Special Issue, original research articles and reviews are welcome. Research areas may include (but are not limited to) the following:

  • Energy-Efficient Building Design and Retrofitting;
  • Nanotechnology Applications for Energy-Efficient Building Materials;
  • Integration of Renewable Energy Systems in Urban Buildings;
  • Sustainable Concrete Solutions for Green Construction;
  • Emerging Trends in Energy-Efficient HVAC Systems;
  • Smart Building Systems and Technologies ;
  • Circular Economy Approaches in Building Material Management;
  • The Role of Artificial Intelligence in Optimizing Building Energy Performance;
  • Innovations in Daylighting and Natural Ventilation Strategies;
  • Net-Zero Energy Building Case Studies: Lessons Learned and Future Directions;
  • Case Studies and Best Practices;
  • Regenerative Design in Architecture and Construction.

We look forward to receiving your contributions.

Prof. Dr. Víctor Yepes

Prof. Lorena Yepes-Bellver

Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sustainability is an international peer-reviewed open-access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open-access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI’s English editing service prior to publication or during author revisions.

Keywords

  • energy efficiency
  • innovative materials
  • sustainable buildings
  • smart buildings
  • green construction
  • circular economy

Encofrados flexibles modulares

Figura 1. Encofrado flexible para muros. Fuente: https://www.infoconstruccion.es/productos/20141103/syflex-el-encofrado-flexible-para-muros-rectos-y-curvos

En la actualidad, se demanda un mayor nivel de exigencia en las formas del hormigón. En este contexto, el encofrado con curvaturas suele plantear un fuerte desafío. La utilización de sistemas de encofrado convencionales para estas tareas resulta laboriosa, costosa y poco adaptable. La manipulación de los voluminosos y pesados tableros de madera consume tiempo y obstaculiza el progreso de los trabajos; por otro lado, el empleo de encofrados especiales implica un coste elevado.

El sistema de encofrado modular flexible ofrece una solución de manejo sencillo, ya que su peso equivale solo a un tercio del de un encofrado de madera similar. Además, se puede montar en poco tiempo y sin necesidad de equipos elevadores. Este sistema permite encofrar rectas, curvaturas y ángulos con un esfuerzo mínimo, y además es reutilizable en múltiples ocasiones (Figura 1).

El sistema de encofrados flexibles y modulares se diseña para estructuras de hormigón con formas curvas u orgánicas. Estos encofrados se componen de paneles de un textil plástico que incluye filamentos de PVC y poliéster o fibra de vidrio, junto con una estructura interna articulada de PVC. El proceso de instalación y uso es sencillo: solo se necesitan insertar los puntos de anclaje o “puntos guía” en los paneles siguiendo la geometría deseada. Son soluciones prácticas, pues son resistentes y reutilizables. Además, contribuye a reducir el desperdicio de materiales generado por la creación de encofrados personalizados para estructuras de hormigón especiales.

Figura 2. Encofrado flexible. Fuente: https://www.isoplam.es/es/encofrado-flexible.php

En el vídeo siguiente se puede ver, paso a paso, la instalación de un encofrado flexible.

A continuación dejo un folleto explicativo de este sistema.

Pincha aquí para descargar

Referencias:

AFECI (2021). Guía sobre encofrados y cimbras. 3ª edición, Asociación de fabricantes de encofrados y cimbras, 76 pp.

ANDECE (2020). Guía técnica. Elementos prefabricados de hormigón para obras de ingeniería civil, 86 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

PEURIFOY, R.L. (1967). Encofrados para estructuras de hormigón. McGraw-Hill y Ediciones Castillo, Madrid, 344 pp.

RICOUARD, M.J. (1980). Encofrados. Cálculo y aplicaciones en edificación y obras civiles. Editores Técnicos Asociados, S.A. Barcelona, 312 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 408 pp. Ref. 477. ISBN: 978-84-1396-238-2

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Encofrados flexibles textiles

Figura 1. Casa Pascual de Juan en La Moraleja, (Madrid), obra de Miguel Fisac. Fuente: https://arquitecturaviva.com/obras/casa-pascual-de-juan-en-la-moraleja-madrid

En los encofrados flexibles, el hormigón se confina mediante una combinación de elementos rígidos de soporte y una membrana que únicamente resiste tracciones. Mediante la fijación de un material textil sobre un soporte de madera, el hormigón vertido adopta la forma preestablecida por el material. Así, al recibir el hormigón fresco, la membrana la contiene y adopta una forma gravitacional.

En este contexto, lo particular de esta tecnología radica en el uso de una tela que puede resistir el hormigón hasta que este complete su curado. En la actualidad, en el mercado de la construcción, se encuentran disponibles los geotextiles, los cuales poseen alta resistencia y coste competitivo, convirtiéndolos en una opción para emplearse como encofrados flexibles. Estos textiles se distinguen además por su ligereza y su reducido volumen, lo que los hace adecuados emplearse en proyectos que requieran largos desplazamientos.

Al reemplazar los tradicionales encofrados prismáticos con un material flexible compuesto por láminas textiles de alta resistencia y bajo costo, es posible aprovechar la fluidez del hormigón para construir formas altamente optimizadas y de interés arquitectónico.

A partir de finales de la década de 1960, Miguel Fisac empleó los encofrados flexibles sujetos con elementos que alteran su superficie, moldea el hormigón, el cual al fraguar adquiere una apariencia lisa con una textura singular. Esta técnica encuentra aplicación especialmente en las fachadas de numerosos edificios. El material, que evoluciona en formas y acabados con el tiempo, se convierte desde entonces en un elemento distintivo y destacado que define su identidad arquitectónica. Este tipo de encofrado proporciona al hormigón una apariencia redondeada y suave, evocando la sensación de un material aún fluido.

Los encofrados textiles permiten obtener estructuras que requieren hasta un 40% menos de hormigón que una sección prismática equivalente, lo que representa un ahorro notable en términos de sostenibilidad. Existen áreas prometedoras para futuros desarrollos, tales como modelos informáticos de cálculo, el uso de textiles avanzados como encofrados colaborativos, el pretensado y la implementación de estructuras aligeradas con huecos.

En el vídeo que podéis ver a continuación vemos una forma innovadora de usar este tipo de encofrados.

Os dejo a continuación un par de documentos de interés sobre este tipo de encofrados.

Pincha aquí para descargar

Pincha aquí para descargar

Referencias:

AFECI (2021). Guía sobre encofrados y cimbras. 3ª edición, Asociación de fabricantes de encofrados y cimbras, 76 pp.

ANDECE (2020). Guía técnica. Elementos prefabricados de hormigón para obras de ingeniería civil, 86 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

PEURIFOY, R.L. (1967). Encofrados para estructuras de hormigón. McGraw-Hill y Ediciones Castillo, Madrid, 344 pp.

RICOUARD, M.J. (1980). Encofrados. Cálculo y aplicaciones en edificación y obras civiles. Editores Técnicos Asociados, S.A. Barcelona, 312 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 408 pp. Ref. 477. ISBN: 978-84-1396-238-2

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Encofrados para forjados de viguetas y losas de edificación

Figura 1. Encofrado de viga plana. Fuente: https://enriquealario.com/ejecucion-de-forjados-unidireccionales/

Los tramos de forjados, ubicados entre vigas o muros, pueden encofrarse con madera según el sistema tradicional, lo que genera una plataforma plana sobre la cual se pueden disponer todos los elementos constitutivos del forjado (como viguetas y bovedillas), permitiendo trabajar con total seguridad y evitar caídas.

Los forjados se hormigonan simultáneamente con las vigas que los sostienen. Dado que el proceso de encofrado de ambos componentes es laborioso, en las estructuras de edificación en España, donde las luces de vigas no son muy amplias (entre 4 y 6 m), se ha optado por el uso de vigas planas de hormigón. Estas vigas tienen el mismo espesor que el forjado, poseen más armadura y son más anchas que las vigas de cuelgue, pero el ahorro en el encofrado al prescindir de costeros compensa estas diferencias. De esta manera, la plataforma proporciona el soporte para las vigas y el forjado. En el caso de losas macizas de hormigón, el encofrado también conforma una plataforma plana.

Si el forjado consiste en viguetas prefabricadas y bovedillas, es posible encofrar únicamente las vigas (Figura 1). Posteriormente, se instalan las viguetas (apoyadas en sus dos extremos sobre los encofrados de las vigas), las bovedillas y las armaduras, y luego se procede a hormigonar todo el conjunto simultáneamente. Las viguetas, que tienen cierta capacidad portante, pueden requerir una o dos sopandas intermedias, dependiendo de la luz que se deba cubrir, para soportar el peso del hormigón fresco y demás cargas constructivas sobre ellas.

Para prevenir la posibilidad de que los operarios caigan accidentalmente al pisar una bovedilla y esta se rompa, es necesario colocar redes horizontales entre los encofrados de las vigas, las cuales se anclan a los puntales (Figura 2).

Figura 2. Sistema de red de seguridad bajo forjado. Fuente: https://proteccionescolectivas.lineaprevencion.com/protecciones-colectivas/sistemas-de-redes-de-seguridad/red-bajo-forjado-sistema-a

Se está abandonando este método debido a los costos asociados con la instalación de las redes entre los puntales, además de que los modernos sistemas de encofrado para forjados y losas ofrecen un montaje rápido y una plataforma de trabajo más segura y cómoda. Estos sistemas incluyen puntales metálicos telescópicos, portasopandas y sopandas metálicas, así como tableros. Permiten encofrar grandes áreas horizontales de manera rápida y completa, evitando huecos, por lo que a menudo se les conoce como encofrados completos, continuos o cuajados (Figura 3). Estos sistemas continuos varían dependiendo de si se trata de encofrar forjados con viguetas prefabricadas, losas macizas o forjados reticulares.

Figura 3. Sistema de encofrado continuo para forjados. Fuente: https://www.construmatica.com/construpedia/Archivo:Puntal_A3_Alsina.jpg

El montaje del sistema empieza junto a un muro o un pilar ya hormigonados, los cuales proporcionan la estabilidad lateral requerida. Se instalan las portasopandas sobre puntales, aproximadamente cada 2 m. Entre los puntales y las sopandas, se colocan las portasopandas en dirección transversal, como se muestra en la Figura 4. Estas portasopandas están diseñadas para delimitar la separación entre las sopandas, disponiendo de guías en su cara superior a diferentes distancias para encajarlas correctamente.

Figura 4. Montaje del sistema de encofrado continuo para forjados. Fuente: https://www.construmatica.com/construpedia/Archivo:Alumecano2.jpg

La separación entre las sopandas puede ser cada metro si se utilizan tableros de 1 o 2 m de longitud (si se coloca una sopanda en el centro). Es la separación habitual para encofrar losas macizas de menos de 25 cm de canto y forjados unidireccionales. La separación es cada 66 cm si se utilizan tableros de 2 m y se colocan dos sopandas intermedias. Es la distancia necesaria para encofrar losas macizas de más de 25 cm de canto por su considerable peso propio.

La separación entre las sopandas puede ser de un metro si se emplean tableros de 1 m de longitud, o bien de 2 m si se posiciona una sopanda en el centro. Es la distancia usual para encofrar losas macizas con un espesor de menos de 25 cm y forjados unidireccionales. Por otro lado, la separación es de 67 cm con tableros de 2 m, instalando dos sopandas intermedias. Este caso es habitual para losas macizas con un espesor superior a 25 cm. En la Figura 5 se pueden observar ambos casos.

Figura 5. Separación entre sopandas. Fuente: http://www.baygar.com/pdf/1392056978_kSAX.pdf

Las sopandas pueden ser de tres tipos:

  • Principales: Se disponen a intervalos de 1 o 2 m, perpendiculares a las vigas. Suelen tener una sección en T invertida, para que los extremos de los tableros descansen sobre las alas laterales, alineadas con la parte central de la sopanda, que entra en contacto con el hormigón para servir de apoyo a las vigas o la losa.
  • Intermedias: Se sitúan entre las sopandas principales, debajo de los tableros de 2 m, con el objetivo de dividir su extensión entre los apoyos a la mitad o a la tercera parte.
  • Transversales: Se utilizan en el encofrado de un forjado unidireccional, colocándolas entre los tableros y en dirección perpendicular a las viguetas, para reforzarlas en uno o varios puntos a lo largo de su vano.

Los sistemas de encofrado difieren entre fabricantes. Es importante examinar el diseño de las piezas para recuperar la mayor cantidad de material de encofrado lo más pronto posible sin comprometer la estabilidad del forjado, la losa o las vigas prematuramente. A partir del tercer día tras el hormigonado, se pueden retirar los tableros. Esto se logra recuperando las portasopandas, las sopandas intermedias y sus respectivos puntales.

Para encofrar losas de hormigón visto y evitar las marcas de las juntas entre los elementos en la cara inferior, es común utilizar tableros fenólicos dispuestos de forma contigua y sujetados sobre sopandas de madera, vigas trianguladas o de doble T. Este método también requiere el uso de portasopandas.

Cuando la altura para apuntalar el encofrado supera la que alcanzan los puntales telescópicos (5 o 6 m), se recurre a cimbras. Por razones de seguridad, ya no se emplean dos o tres niveles de puntales arriostrados horizontalmente con tablones intercalados entre ellos, práctica conocida como contra-andamio. La prohibición de los contraandamios o el doble apuntalamiento se menciona explícitamente en la NTP 719. Aunque esta norma no es obligatoria, proviene de una institución de gran prestigio.

A continuación os dejo algunos vídeos respecto a este sistema. Observad que, en algunos casos, hay deficiencias de seguridad en los operarios que están trabajando.

Os dejo también un manual de montaje para el uso. Espero que os sea de interés.

Pincha aquí para descargar

Referencias:

AFECI (2021). Guía sobre encofrados y cimbras. 3ª edición, Asociación de fabricantes de encofrados y cimbras, 76 pp.

ANDECE (2020). Guía técnica. Elementos prefabricados de hormigón para obras de ingeniería civil, 86 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

MEDINA, E. (2014). Construcción de estructuras de hormigón armado en edificación. 3ª edición, Biblioteca Técnica Universitaria, Bellisco Ediciones, Madrid, 502 pp.

PEURIFOY, R.L. (1967). Encofrados para estructuras de hormigón. McGraw-Hill y Ediciones Castillo, Madrid, 344 pp.

RICOUARD, M.J. (1980). Encofrados. Cálculo y aplicaciones en edificación y obras civiles. Editores Técnicos Asociados, S.A. Barcelona, 312 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 408 pp. Ref. 477. ISBN: 978-84-1396-238-2

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.