Algunas cimentaciones en torres y edificios icónicos colombianos

Edificio Avianca. Bogotá, Colombia (1969).

De Felipe Restrepo Acosta – Trabajo propio, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=11935221

El Edificio Avianca, un rascacielos de oficinas en Bogotá, Colombia, se ubica en la Calle 16 con Carrera Séptima, al norte del Parque Santander. Inaugurado en 1969, sigue en funcionamiento y alcanza 160,94 m de altura en 41 pisos.

Su diseño de estilo internacional destaca por sus amplios ventanales continuos. Su proyecto y construcción fueron adjudicados a Esguerra Sáenz, Urdaneta, Samper y Cía., Ricaurte Carrizosa Prieto y al italiano Domenico Parma. El diseño se completó en 1963 y la construcción se llevó a cabo entre 1966 y 1969 sobre el antiguo Hotel Regina. Inaugurado a finales de 1969, fue construido para Avianca y, en ese momento, era el edificio más alto de Bogotá y de toda Sudamérica.

El 23 de julio de 1973, un incendio comenzó en el piso 14, donde se almacenaban materiales inflamables. Los trabajadores intentaron apagarlo, pero las mangueras de los bomberos solo alcanzaban el piso 12. El fuego se extendió al piso 37 y muchas personas tuvieron que subir por las escaleras. Algunos, en pánico, saltaron al vacío, mientras otros eran rescatados en la azotea por helicópteros. Hubo cuatro muertos y sesenta y tres heridos, pero el edificio no sufrió daños graves.

Debido a las desfavorables condiciones geotécnicas que caracterizan gran parte del suelo de Bogotá, a la estabilidad de las estructuras cercanas y a la necesidad de construir cuatro niveles de sótano, se optó por el uso de pozos de cimentación (caissons) por primera vez en Colombia, cuyo propósito fue preservar la integridad del terreno adyacente y sus cimentaciones. Estos pozos, de forma circular, se ubicaron en la periferia y alcanzaron una profundidad de 35 m.

https://historiapolicianacionaldecolombia.blogspot.com/2017/03/heroes-anonimos-del-incendio-al.html

Dentro de los pozos se levantaron columnas estructurales que permitieron verter anillos de hormigón como parte de los forjados del sótano. La ejecución de estos forjados se llevó a cabo mediante un procedimiento descendente en el que el terreno actuó como encofrado provisional, lo que permitió excavar bajo el forjado ejecutado progresivamente. Esta técnica no solo facilitó la construcción, sino que también favoreció un equilibrio mecánico entre el volumen de tierra excavada y el peso progresivo de la torre en construcción, optimizando así la estabilidad estructural en entornos donde la naturaleza del subsuelo exige cimentaciones flotantes. Cuando se alcanzó el piso 26, se construyó simultáneamente una losa postensada de cimentación de 2 m de altura.

Edificio Coltejer. Medellín, Colombia (1972).

De laloking97 [2] – flickr.com [1], CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=3135455

El Edificio Coltejer, también conocido como Centro Coltejer, es un icono de Medellín (Colombia). Su construcción comenzó en 1968 y finalizó en 1972, en el terreno del antiguo Teatro Junín y el Hotel Europa. Hasta 1977 fue el edificio más alto del país, título que le arrebató el Centro de Comercio Internacional, el edificio más alto de América Latina en aquel momento.

Popularmente, se creyó que su diseño puntiagudo y las grandes ventanas de sus fachadas occidental y oriental, en el piso 34, evocaban una lanzadera textil, en honor a la industria local. Sin embargo, en 2007, el arquitecto Raúl Fajardo explicó que esta forma respondió a la solicitud del gerente de la textilera, Rodrigo Uribe Echavarría, de darle un remate distintivo. No obstante, su silueta sigue simbolizando el desarrollo textil de Medellín y su empresa Coltejer.

El edificio más alto de la ciudad, con 175 m, 36 plantas y 3 sótanos, se encuentra sobre un terreno compuesto por varias capas blandas en la superficie. A partir de los 6 m de profundidad, se encuentra un conglomerado de serpentina y anfibolita en una matriz de arcilla fuertemente cementada. Este tipo de suelo permitió determinar la cimentación adecuada, que consiste en una losa de 2 m de espesor a una profundidad de 13,6 m, lo que ayuda a reducir los asentamientos diferenciales. Para excavar por debajo de los 6 m de profundidad se utilizó dinamita, a pesar de que el estudio de suelos no detectó la presencia de roca basal. La torre fue diseñada para resistir un terremoto de magnitud 7,5 en la escala de Richter.

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Algunas cimentaciones en torres y rascacielos icónicos asiáticos

Taipéi 101. Taipéi, Taiwán (2004).

De Alton.arts de Wikipedia en inglés, CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=3525962

El Taipei 101 es un rascacielos en Taipéi (Taiwán) con 106 plantas, 101 sobre el suelo y 5 subterráneas. Fue el edificio más alto del mundo entre 2003 y 2010, con una altura de 508 m, cuando fue superado por el Burj Khalifa. Es también uno de los rascacielos ecológicos más altos del mundo.

Diseñado por C.Y. Lee & Partners, la construcción principal estuvo a cargo de KTRT Joint Venture y Kumagai Gumi, mientras que Samsung C&T se encargó del interiorismo. Comenzado en 1999 y terminado en 2004, su coste fue de unos 1.760 millones de dólares. Su diseño, inspirado en elementos chinos y basado en feng shui, busca proteger a los inquilinos de influencias negativas. El edificio cuenta con muros de vidrio azul verdoso que bloquean el calor externo en un 50%, y su iluminación cambia para celebrar eventos.

Puede soportar terremotos de hasta 7 grados en la escala de Richter y vientos superiores a 450 km/h. Su capacidad de absorción de movimiento se debe a un amortiguador de masa, una bola dorada de acero de 680 toneladas en la planta 92, suspendida con tensores y sujeta con bombas hidráulicas. Este amortiguador, el más grande y pesado del mundo, contrarresta el movimiento del edificio, estabilizándolo al absorber la energía de las vibraciones. Está dividido en 8 segmentos de 8 plantas y es el único visible para el público. Además, 8 grandes columnas de hormigón armado y acero lo sujetan hasta el piso 26, mientras otras 32 columnas llegan hasta la planta 62. Las esquinas chaflanadas reducen la fuerza del viento, y una malla de acero forma un cinturón que estrecha la base hasta el piso 34.

Las megacolumnas descansan sobre una placa sólida cuyo espesor varía entre 3,0 y 4,7 m, con un volumen total de 28.100 m³ de hormigón de 41 MPa. Dada la alta sismicidad de la zona y la considerable altura del edificio, se desarrolló una cimentación compuesta por 380 pilotes clavados a 80 m en el suelo, que se extienden hasta 30 m en el lecho de roca. Cada pilote tiene 1,5 m de diámetro y puede soportar una carga de 1000 a 1320 toneladas. La estructura ya ha soportado un seísmo de 6,8 en la escala de Richter.

Torres Petronas. Kuala Lumpur, Malasia (1998).

De Morio – Trabajo propio, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9974688

Las Torres Petronas, en Kuala Lumpur, Malasia, fueron los edificios más altos del mundo entre 1998 y 2003, hasta ser superados por el Taipei 101. Actualmente, son las torres gemelas más altas. Con 452 metros de altura y 88 pisos de hormigón, acero y vidrio, son un símbolo de Kuala Lumpur y Malasia.

Diseñadas por el arquitecto argentino César Pelli y finalizadas en 1998, las Torres Petronas tienen 88 pisos de hormigón, acero, aluminio y vidrio. Su diseño, inspirado en el arte islámico, rinde homenaje a la herencia musulmana de Malasia. La base, originalmente en forma de Estrella de Salomón, presenta un diseño geométrico islámico con dos cuadrados entrelazados y salientes lóbulos de refuerzo, creando una estrella de ocho puntas con círculos en cada intersección. La construcción comenzó en 1992.

Las Torres Petronas son dos rascacielos gemelos de 452 m de altura y 88 plantas. La estructura está compuesta por un núcleo y pilares de hormigón. Se descartó la estructura metálica debido a la falta de disposición de los constructores malayos para trabajar con acero y la necesidad de minimizar las vibraciones en las partes superiores de las torres.

Antes de comenzar la construcción, fue necesario cambiar el emplazamiento de los edificios 60 m para encontrar un suelo adecuado sobre el que pudieran asentarse los pilotes de 120 m de profundidad, que llegaban hasta la roca firme, permitiendo así crear una losa de hormigón que imitara una base sólida. Durante la cimentación, las lluvias constantes provocaron dificultades, por lo que fue necesario cubrir la zona con una gran carpa, similar a una «sombrilla», que equivalía a 57 carpas de circo.

Burj Khalifa, Dubái, Emiratos Árabes Unidos (2010).

De Alex Azabache –  https://commons.wikimedia.org/w/index.php?curid=95952113

El Burj Khalifa es un rascacielos neofuturista en Dubái, Emiratos Árabes Unidos. Con 829,8 m de altura total y 828 m hasta el tejado, es la estructura más alta del mundo desde 2009, superando al Taipei 101.

El diseño se inspira en la arquitectura islámica, como la Gran Mezquita de Samarra. Su planta en Y optimiza el espacio residencial y hotelero. Un núcleo central y alas soportan la altura, albergando los transportes verticales, excepto las escaleras de evacuación. El revestimiento resiste el calor de Dubái. Tiene 57 ascensores y 8 escaleras mecánicas.

Skidmore, Owings & Merrill diseñó la torre, con Adrian Smith como arquitecto y Bill Baker como ingeniero. Hyder Consulting supervisó la ingeniería, NORR Group la arquitectura, y Samsung C&T fue el contratista principal junto a BESIX y Arabtec.

La construcción comenzó el 12 de enero de 2004 y el exterior se completó el 1 de octubre de 2009. Se inauguró el 4 de enero de 2010 como parte del desarrollo de 2 km² en el centro de Dubái, cerca del distrito comercial. Los primeros 586 m están construidos con hormigón armado y la parte superior es de acero. Se inauguró en 2010 como parte del desarrollo Downtown Dubai, diseñado como pieza central de un proyecto de uso mixto.

La cimentación de este edificio es la mayor jamás construida. Se basa en estudios geotécnicos y sísmicos: una losa de hormigón armado de 110.000 toneladas, de 3,7 m de grosor y 12.500 m³, soporta la estructura. A su vez, esta losa descansa sobre 192 pilotes de 1,5 m de diámetro, colocados a una profundidad de 50 m. Estos pilotes están distribuidos en forma de Y, y se conectan a la losa de cimentación.

Cursos:

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Algunas cimentaciones en torres y rascacielos icónicos norteamericanos

Empire State Building, Nueva York, Estados Unidos (1930).

De Sam Valadi -https://commons.wikimedia.org/w/index.php?curid=62752443

Este icónico rascacielos neoyorquino ostentó el título de edificio más alto del mundo desde 1931 hasta 1971. Tras el colapso del World Trade Center en 2001, volvió a ser el más alto de la ciudad hasta que fue superado por el One World Trade Center en 2012. Con sus 443 m de altura, es uno de los rascacielos más emblemáticos y el tercero más alto de la ciudad de Nueva York.

Fue diseñado por William F. Lamb, de la firma Shreve, Lamb y Harmon, quienes crearon los planos en dos semanas basándose en diseños previos como el edificio Reynolds y la torre Carew. En tan solo un año y 45 días, más de 3400 trabajadores levantaron el que sería el edificio más alto del mundo durante 40 años. Era el primer edificio con más de 100 pisos. Tiene 6500 ventanas, 73 ascensores y 1860 escalones hasta el piso 102. Su estructura, que pesa aproximadamente 350 000 toneladas, está cimentada a una profundidad de solo 16,7 m, ya que a esa profundidad se encuentra el estrato portante de Manhattan.

La construcción comenzó con la demolición del Hotel Waldorf-Astoria en octubre de 1929, en plena Depresión. Los trabajos de excavación comenzaron el 22 de enero de 1930, antes incluso de la demolición total del hotel. La excavación, en la que operarios trabajaban en turnos de doce horas las 24 horas del día, se completó casi en su totalidad en marzo. En marzo se completó la cimentación y se empezaron a colocar los anclajes de la estructura, colocándose las primeras vigas a principios de abril de 1930.

Se instalaron 210 pilotes en el lecho de roca de granito de Manhattan para soportar las 365.000 toneladas del rascacielos. La cimentación está compuesta por un bastidor de acero con paneles de piedra caliza y el interior está reforzado con hormigón armado. La empresa Starrett Bros. & Eken se encargó de su construcción.

Torre Latinoamericana. Ciudad de México, México (1956).

De Pablasso –  https://commons.wikimedia.org/w/index.php?curid=20418028

La Torre Latinoamericana es un rascacielos ubicado en el centro histórico de la Ciudad de México, en la esquina de la avenida Francisco I. Madero y el Eje Central Lázaro Cárdenas. Con 44 pisos y 182 m de altura (incluida la antena), es uno de los edificios más emblemáticos de la ciudad.

Diseñada por el arquitecto Augusto H. Álvarez, fue el edificio más alto de la ciudad desde su inauguración hasta 1972. Fue el primer rascacielos diseñado para resistir terremotos y, aunque Brasil construyó el primer rascacielos de Latinoamérica, esta torre fue pionera en una zona de alto riesgo sísmico, por lo que sirvió como experimento para futuros edificios.

La construcción de la torre comenzó en febrero de 1948. Leonardo Zeevaert llevó a cabo un programa de investigación del subsuelo para evaluar la vulnerabilidad sísmica y garantizar un buen aislamiento sísmico. El programa incluyó sondeos a 50 m, la instalación de piezómetros a varias profundidades y bancos de nivel.

Tras el estudio, Zeevaert diseñó una cimentación innovadora para hacer frente al terreno fangoso de la ciudad. Se colocaron 361 pilotes a 33 m de profundidad y se construyó una cimentación de hormigón que permite al edificio «flotar» en el subsuelo, independientemente de los pilotes. Esta tecnología mexicana fue la primera de su tipo y sigue utilizándose en zonas sísmicas de alto riesgo.

Esta torre se asienta sobre un terreno con arcillas húmedas en su capa más superficial. A una profundidad de 33 m se localiza un estrato de arena sobre el que se apoyan los 361 pilotes de hormigón que conforman su cimentación. Su estructura fue diseñada como una cimentación flotante, lo que le ha permitido resistir las severas pruebas de la naturaleza, en particular los terremotos de 1957 y 1985, con magnitudes de 7,7 y 8,1 en la escala de Richter, respectivamente.

Torre CN. Toronto, Canadá (1976).

De Wladyslaw, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=11830474

La CN Tower, ubicada en Toronto, es una torre de radiodifusión autoportante de 553,3 m, la más alta de América. Fue la torre más alta del mundo desde 1975 hasta 2007, cuando fue superada por el Burj Khalifa. Su observatorio, ubicado a 447 m de altura, es uno de los más altos del mundo.

La construcción de la torre comenzó el 6 de febrero de 1973 y finalizó el 20 de septiembre de 1976, siendo realizada por la compañía Canadian National Railway, que buscaba solucionar los problemas de comunicación causados por los rascacielos que iban surgiendo en el centro de la ciudad.

La torre está formada por un pilar hueco principal de forma hexagonal. Está compuesta por tres brazos dispuestos a 120 grados de diferencia entre sí. Los primeros 457 m de la torre se construyeron con hormigón postensado y con encofrados deslizantes. Para ello, se emplearon más de 7500 m³ de hormigón. Se utilizaron 45 gatos hidráulicos sujetos a cables que colgaban de una corona de acero anclada temporalmente en la parte superior de la torre. Doce soportes gigantes de acero y madera fueron elevados lentamente hasta su posición final. Posteriormente, estos soportes se utilizarían para crear las bases sobre las que se apoyaría la planta principal.

En cuanto a la cimentación, fue necesario retirar 62.000 toneladas de tierra y pizarra en una superficie triangular. Se excavó un pozo a 15 m de profundidad y, posteriormente, se vertieron 7.000 m³ de hormigón, se instalaron 46 toneladas de acero de refuerzo y 36 toneladas de cables de acero, con los que se formó una losa de 6,7 m de espesor que sostiene toda la estructura. Para evitar problemas relacionados con la generación de calor, se utilizaron mezclas de cemento de los tipos IV y I.

Torre Mayor. México D.F., México (2003).

De Diego Delso, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=30801312

La Torre Mayor, ubicada en Paseo de la Reforma 505, en la Ciudad de México, fue desarrollada por Paul Reichmann. Con 225 m de altura y 55 pisos, cuenta con cuatro niveles de estacionamiento subterráneo y nueve sobre la calle, con más de dos mil plazas disponibles. Cuenta con 29 ascensores, 84.135 m² de oficinas, sistemas mecánicos y de telecomunicaciones, y unidades de aire acondicionado en cada planta. Cada planta tiene entre 1,700 y 1,825 m² sin columnas, con una altura de 4,50 m por piso. Para su construcción, se realizó un estudio sísmico y se instalaron 98 amortiguadores sísmicos.

Fue el edificio más alto de América Latina desde su inauguración en 2003 hasta 2010, cuando fue superado por el Ocean Two en Panamá, y más tarde por la Torre Obispado en Monterrey.

La Torre Mayor, con 55 pisos, 4 sótanos subterráneos y 230 m de altura, se encuentra en una zona cercana a las áreas de mayor sismicidad, según las determinaciones del Gobierno Federal. De marzo de 1998 a enero de 1999 se realizó la cimentación de la Torre. Su cimentación combina losas y 252 pilotes de hormigón armado de hasta 1,50 m de diámetro y una profundidad de 40 m.

La torre está equipada con un sistema de 98 amortiguadores sísmicos que ayudan a disipar la energía sísmica y a reducir las fuerzas que podrían afectarla. La estructura fue diseñada para resistir un terremoto de 8,5 en la escala de Richter.

Cursos:

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Algunas cimentaciones en torres y rascacielos icónicos europeos

Torre de Smeaton. Devon, Inglaterra (1759).

Faro de Eddystone, de John Smeaton

La Torre Smeaton es un faro y monumento al ingeniero civil John Smeaton. Su estructura, un avance en el diseño de faros, estuvo en uso desde 1759 hasta 1877, cuando la erosión de la cornisa obligó a reemplazarla. La torre fue desmantelada y reconstruida en Plymouth Hoe (Devon), donde se encuentra actualmente.

Las rocas Eddystone forman parte de un arrecife de granito rojo que queda sumergido durante la marea alta, lo que supone un peligro para la navegación. Por esta razón, se construyó un faro a 14 km al sur de Plymouth Sound (Inglaterra).

Antes de esta torre, Smeaton había construido dos faros de madera que no resistieron el paso del tiempo. Tras analizar lo que falló en los anteriores, optó por la piedra, ya que es muy resistente frente al viento, el agua y el fuego. Para fijar la estructura a la base rocosa, talló seis plataformas en la roca y las rellenó con sillares de granito con forma de cola de milano, lo que aseguró su estabilidad.

Utilizó un mortero a base de cal calcinada para lograr una construcción monolítica, reforzada con pernos de roble y tacos de mármol. La torre está compuesta por 1493 bloques de piedra, mientras que su interior está construido con piedra caliza extraída de la isla de Portland. Redescubrió el uso de la cal hidráulica, un tipo de hormigón utilizado en la época romana que permitía fraguar el material bajo el agua.

En 1877 se comprobó que las rocas sobre las que se erguía se estaban erosionando. Cada vez que una gran ola lo golpeaba, el faro temblaba de lado a lado. La Torre de Smeaton dejó de funcionar en febrero de 1882, cuando se instaló una luz temporal en su sucesora, la Torre de Douglass, que se estaba construyendo en una roca cercana. Ese mismo año, la parte superior de la torre fue desmantelada y reconstruida como monumento en Plymouth Hoe, donde reemplazó a un obelisco triangular construido por Trinity House a principios del siglo XIX. El monumento fue inaugurado al público el 24 de septiembre de 1884 por el alcalde de Plymouth. Los cimientos y una sección de la antigua torre permanecen en las rocas de Eddystone, cerca del faro actual. Como los cimientos eran demasiado fuertes para desmantelar, se dejaron en su lugar.

Turning Torso. Malmö, Suecia (2005).

De Mirko Junge –  https://commons.wikimedia.org/w/index.php?curid=20283310

Turning Torso es un rascacielos residencial neofuturista en Malmö, Suecia, y el segundo más alto del país, superado en 2022 por la Karlatornet. Fue construido por HSB Suecia y es considerado el primer rascacielos retorcido del mundo.

Diseñado por Santiago Calatrava, se inauguró el 27 de agosto de 2005. Con 190 metros de altura y 54 plantas, alberga 147 apartamentos residenciales. Este edificio, inspirado en el torso humano, tiene 190 m de altura y cuenta con 54 plantas destinadas a uso mixto, incluyendo residencias y oficinas. La cimentación se realizó directamente sobre un estrato de roca caliza.

La excavación de la cimentación principal de la torre se realizó con tablestacas metálicas que marcaban el perímetro, introducidas 15 m en el terreno y 3 m en el lecho rocoso mediante vibradores. Se inyectó hormigón fuera de las tablestacas para reforzar la estructura y evitar filtraciones de agua. Tras la excavación, se hormigonó una losa de cimentación de 30 m de diámetro y 7 m de espesor, y se construyeron dos plantas de sótano con salas técnicas y acceso al aparcamiento. Se utilizaron 5100 m³ de hormigón, que se vertieron en 3 días y noches. La cimentación se completó en junio de 2002.

La cimentación del cordón principal de la celosía exterior soporta cargas de compresión y tracción en función del viento. Para garantizar su durabilidad, se minimizan los efectos de las cargas alternantes mediante pilotes cuadrados prefabricados que llegan al estrato rocoso y anclajes postesados que también lo alcanzan, garantizando que su longitud de anclaje sea inferior a la de los pilotes. La fuerza de pretensado de los anclajes supera la tracción máxima, por lo que los pilotes se mantienen en compresión. Las cargas alternantes solo modifican la compresión de los pilotes y la tracción de los anclajes sin invertir las fuerzas, con una variación de tracción en los anclajes del 2-3 %, lo que elimina el riesgo de fatiga. En resumen, la cimentación actúa como un conjunto postesado de hormigón, con alta rigidez, resistencia y durabilidad.

Torre Agbar. Barcelona, España (2005).

De Diliff – Trabajo propio, CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=1556533

La Torre Glòries, antes Torre Agbar, es un rascacielos de Barcelona situado en la avenida Diagonal, junto a la plaza de las Glorias. Con 34 plantas y 144 metros de altura, fue el tercer edificio más alto de la ciudad en su apertura en 2005. El edificio tiene 50.693 m², de los cuales 30.000 m² son oficinas. Inaugurado oficialmente el 16 de septiembre de 2005, costó 130 millones de euros.

La torre fue diseñada por Jean Nouvel en colaboración con b720 Fermín Vázquez Arquitectos. Su diseño se inspiró en símbolos de la cultura catalana, como los campanarios de la Sagrada Familia de Gaudí y el hotel Attraction, proyecto de Gaudí rediseñado en 1956 por Joan Matamala. Además, la parte norte de la torre se orientó para ofrecer la mejor vista posible de la Sagrada Familia. También se inspiró en los pináculos de la montaña de Montserrat, símbolo de Cataluña.

El peso de esta estructura, que mide 145 m de altura, tiene 34 pisos y 4 sótanos, es considerablemente menor que la presión ascendente que ejerce sobre ella. Por este motivo, se diseñó una losa de subpresión anclada al terreno mediante módulos de pantallas que funcionan por fricción negativa para equilibrar dicha subpresión. La losa tiene un espesor de 80 cm.

Esta losa descansa sobre un lecho de grava drenante de 40 cm de espesor que facilita el drenaje hacia cuatro pozos. Estos pozos están diseñados para evitar que, en caso de un aumento del nivel freático, la subpresión supere los límites admisibles para la cimentación. La losa está diseñada para soportar una presión ascendente de hasta 8 t/m².

Debido a que el peso muerto de la construcción es menor que la presión ascendente, se ha diseñado una losa de subpresión anclada al terreno con módulos de pantalla debajo de cada pilar, que equilibra la subpresión mediante fricción negativa. Esta solución permite una losa de 80 cm de espesor, lo que alivia el comportamiento de las estructuras de contención, ya que las pantallas son más cortas y alcanzan mayor estabilidad. La losa descansa sobre gravas drenantes de 40 cm de espesor que facilitan el drenaje del agua hacia cuatro pozos surgentes que evitan el aumento de la subpresión ante las subidas del nivel freático.

Cursos:

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Cimentaciones en tres puentes icónicos

Puente Pumarejo. Barranquilla (Colombia), 1974.

El puente Pumarejo, inaugurado en 1974 y fuera de servicio en 2019, cruza el río Magdalena, a 20 km de su desembocadura en el mar Caribe, entre Barranquilla y Sitionuevo, Magdalena. Conecta Barranquilla con la isla de Salamanca y la ruta hacia Ciénaga. Aunque oficialmente recibió el nombre de «Laureano Gómez», siempre fue conocido como el puente de Alberto Pumarejo, su principal impulsor.

De Jdvillalobos – File:Puente Pumarejo 001.JPG, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=27668196

Inicialmente, se pensó en ubicar el puente frente a la Zona Franca de Barranquilla, con una altura de 40 m, pero este diseño aumentaba el coste en 40 millones de pesos. Por ello, la administración de Lleras Restrepo (1966-1970) optó por un puente con un gálibo de 15 m. El proyecto fue obra del ingeniero Riccardo Morandi. La construcción empleó técnicas avanzadas de la época, como losas prefabricadas, pilotes de hasta 30 m de profundidad y grandes vigas pretensadas de hasta 120 t.

Este puente fue el más largo de Colombia hasta la inauguración del puente Roncador en 2020. Mide 1489 m de largo, divididos en tres secciones: 319 m en el acceso a Barranquilla, 282 m en el tramo atirantado y 887 m hacia Palermo. Con las vías de acceso, la longitud total fue de 3383 m. Los pilotes de hormigón armado tienen una profundidad de 30 m y un diámetro promedio de 1,80 m. El puente se apoya en 56 columnas y 29 tramos de vigas prefabricadas, con luces de hasta 140 m. Las pilas varían entre 2,5 y 5 m de diámetro y el ancho de la calzada es de 12,5 m, con una altura máxima de 16 m sobre el canal de navegación.

El ingeniero civil italiano Riccardo Morandi diseñó varias estructuras icónicas, como los puentes Américo Vespucio en Florencia (1957), General Rafael Urdaneta en Maracaibo (1962) y Wadi el Kif en Libia (1971). Lamentablemente, el 14 de agosto se derrumbó el puente Morandi en Génova, también diseñado por él, y dejó 39 muertos y al menos 11 edificios evacuados.

Puente de Akashi Kaikyo (Japón), 1998.

El Gran Puente del Estrecho de Akashi Kaikyō conecta Kōbe con la isla de Awaji y cruza uno de los estrechos más transitados del mundo, con más de 1000 embarcaciones al día. También conocido como Pearl Bridge, tiene una longitud total de 3911 m y está compuesto por tres vanos, siendo el central de 1991 m. Inaugurado el 5 de abril de 1998, se convirtió en el puente más largo del mundo de su tipo, superando al puente Humber del Reino Unido, con un tramo central de 1410 m. Fue diseñado por el ingeniero Satoshi Kashima y construido por Matsuo Bridge Co. El puente está sostenido por dos cables, considerados los más resistentes y pesados del mundo.

De Tysto – Self-published work by Tysto, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=477955

Durante la instalación de las torres y cables principales, ocurrió el Gran Terremoto de Hanshin (1995), que separó las torres casi un metro. Los cables del puente están hechos de 37,000 alambres de acero ultrarresistente, cuya longitud total daría siete vueltas y media a la Tierra si se colocaran en línea recta.

Se encuentra en una zona donde los tifones pueden alcanzar velocidades de hasta 290 km/h. Además, está ubicado en una región con gran actividad sísmica y, bajo su estructura, transitan diariamente cientos de embarcaciones.

Para la cimentación de las torres, se emplearon dos cajones circulares prefabricados de acero de 70 m de altura. El mayor tiene un diámetro de 80 m y el otro 78 m. Se utilizó el método de cajón descendente debido a la gran profundidad y las corrientes marinas. Se rellenaron con hormigón especial para endurecer con agua de mar. Cada anclaje requiere aproximadamente 350.000 toneladas de hormigón.

Los cimientos profundos de los anclajes se construyeron sobre tierras recuperadas mediante nuevas tecnologías. Estaban diseñados para resistir fuertes terremotos y se utilizó un método sísmico innovador y un hormigón especial, una mezcla de cementos resistentes al agua y la erosión. La capacidad de estos cimientos permitió que resistieran el fuerte terremoto del 17 de enero de 1995, con solo un desplazamiento de 1 m en las torres, lo cual es mínimo si se considera la magnitud del movimiento.

Viaducto de Millau (Francia), 2004.

El viaducto de Millau es un puente que cruza el valle del Tarn, en Aveyron (Francia), y soporta un tramo de la autopista A75, que conecta las causses Rouge y du Larzac. El viaducto es una estructura metálica atirantada de 2460 m de longitud, ligeramente curva, con un radio de 2000 m y una pendiente del 3,025 %. Está compuesto por ocho vanos atirantados: dos laterales de 204 m y seis centrales de 342 m, por lo que el viento puede superar los 200 km/h.

De Stefan Krause, Germany – Fotografía propia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=8990774

Esta importante conexión nacional e internacional conecta Clermont-Ferrand con Béziers. Su construcción requirió trece años de estudios técnicos y financieros, iniciados en 1987, y se inauguró el 16 de diciembre de 2004, tres años después de colocar la primera piedra. Con un coste de 320 millones de euros, fue financiado por Eiffage mediante una concesión de 78 años, incluidos tres de construcción. A finales de la década de 2010, el viaducto registraba más de 4,5 millones de vehículos al año.

El viaducto de Millau fue diseñado por el ingeniero francés Michel Virlogeux, con la asesoría estética del arquitecto británico Norman Foster. Al proyectarse respetando la orografía, el viaducto necesitó siete grandes pilas huecas de hormigón de entre 50 y 60 cm de espesor. Sus alturas varían entre 78 y 245 m y están separadas entre sí por una distancia de 342 m. El hormigón B60, innovador en ese momento y con criterios de calidad excepcionales, fue el material principal utilizado para construir este viaducto.

Esta estructura cuenta con algunas de las pilas más altas del mundo. Bajo cada una de ellas hay pozos de cimentación con diámetros de entre 4 y 5 m y profundidades de entre 9 y 18 m, cubiertos por una losa de reparto de entre 3 y 5 m de espesor. El hormigonado de los encepados (hasta 2100 m³) se realizó en una sola fase con bomba.

Cursos:

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Análisis de deformaciones en cimentaciones profundas en suelo blando

Acaban de publicar nuestro artículo en la revista del primer decil del JCR Journal of Building Enginering. El artículo aborda el desafío técnico y científico que supone analizar las características de deformación en excavaciones profundas en suelos blandos. Estas excavaciones, que están aumentando en escala y complejidad, plantean problemas de estabilidad debido a las propiedades inherentes de los suelos blandos, como su alta compresibilidad, alta sensibilidad, baja permeabilidad y baja resistencia. Además, la interacción entre el agua y el suelo durante la excavación puede causar consolidación por filtración, alteraciones en el campo de tensiones y riesgos significativos para las estructuras circundantes.

Actualmente, los métodos predominantes, como el análisis por elementos finitos y la monitorización experimental, presentan limitaciones a la hora de evaluar la precisión y los efectos espaciales en grandes escalas. Este estudio propone una mejora mediante la modelación tridimensional no lineal que incorpora un modelo de interfaz deslizante. El estudio analiza el proyecto XSS-03-10D, para lo que se utilizan mediciones in situ y simulaciones numéricas con las que estudiar la evolución temporal y espacial de la deformación de los sistemas de soporte y los asentamientos superficiales.

La pregunta principal que guía este trabajo es la siguiente: ¿cómo influye la interacción entre el sistema de soporte y el suelo circundante en la estabilidad y seguridad de las excavaciones profundas en suelos blandos y qué tan efectivas son las herramientas de modelación tridimensional para predecir estos comportamientos?

Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València. Colaboramos con investigadores de la Hunan University of Science and Engineering, de China. A continuación, explicamos brevemente el contenido del artículo que podéis descargar gratuitamente.

Metodología

La metodología empleada en este estudio combina el control exhaustivo en campo con avanzadas simulaciones numéricas para evaluar las características de deformación de las excavaciones profundas. En primer lugar, se realizó un análisis detallado de las condiciones geotécnicas del terreno, incluyendo pruebas de laboratorio y muestreo de suelos en diferentes capas. Gracias a estas pruebas, se identificaron propiedades clave del suelo, como el contenido de humedad, la densidad, la cohesión y el ángulo de fricción interna, que son esenciales para los cálculos posteriores.

Posteriormente, se diseñó un modelo tridimensional no lineal en el programa informático ABAQUS que incorporó las propiedades específicas del suelo y un modelo de interfaz deslizante para simular las interacciones entre el sistema de soporte y el terreno. Este modelo se estructuró en dos capas principales de excavación: la primera, desde la superficie hasta los -7550 m, está compuesta principalmente por relleno y lodo; y la segunda, desde los -7550 m hasta los -10750 m, está formada principalmente por lodo blando.

El modelo numérico se calibró mediante la comparación con datos reales obtenidos de 197 puntos de control distribuidos en el yacimiento. Estos puntos incluían sensores para medir desplazamientos horizontales y verticales, la presión del suelo y las fuerzas axiales en los sistemas de soporte. Además, se integraron sistemas de alerta temprana que permitieron identificar zonas críticas en tiempo real y ajustar las estrategias de soporte en consecuencia.

El análisis se dividió en varias etapas:

  1. Modelación inicial: Se definieron los parámetros básicos del suelo y los límites del modelo. Se realizaron simulaciones preliminares para establecer un marco de referencia.
  2. Simulación del proceso de excavación: Se aplicaron cargas incrementales para replicar el proceso de excavación por capas, teniendo en cuenta los cambios en la presión del suelo y las interacciones dinámicas entre los sistemas de soporte y el terreno.
  3. Validación de resultados: Los resultados del modelo se compararon con los datos de supervisión in situ. Esto incluyó la evaluación de desplazamientos, deformaciones y fuerzas internas, y la realización de ajustes iterativos en el modelo para mejorar la precisión.
  4. Análisis de escenarios críticos: Se exploraron escenarios de fallo potenciales y se identificaron las zonas más vulnerables dentro del sistema de soporte y del terreno circundante.

Esta combinación de monitorización de campo y simulación numérica no solo permitió validar la precisión del modelo tridimensional, sino también obtener una visión integral de los patrones espaciotemporales de deformación.

Aportaciones relevantes

En primer lugar, este trabajo presenta un modelo tridimensional de elementos finitos que combina elasticidad y plasticidad no lineales y que está adaptado para capturar las características específicas de los suelos blandos. Este enfoque supera las limitaciones de los modelos constitutivos tradicionales al integrar datos de campo y parámetros geotécnicos.

En segundo lugar, el estudio identifica los factores clave que afectan a la estabilidad de las excavaciones profundas, como la presión lateral del suelo, los efectos de consolidación y la interacción entre el terreno y la estructura. La comparación entre los datos medidos y los simulados demostró una alta correlación, lo que confirma la precisión del modelo y su aplicabilidad práctica.

Además, el artículo destaca la importancia de realizar un seguimiento continuo y de integrar sistemas de alerta temprana para mitigar riesgos durante la construcción. Este enfoque tiene un impacto directo en la sostenibilidad de los proyectos de infraestructura, ya que reduce el riesgo de fallos estructurales y minimiza el impacto ambiental.

Otra contribución relevante es la identificación de patrones espaciotemporales en la deformación de los sistemas de soporte, lo que permite diseñar estrategias de mitigación más eficaces. Por último, el enfoque metodológico presentado puede adaptarse a otros tipos de proyectos de infraestructura, lo que amplía su aplicabilidad en el campo de la ingeniería civil.

Discusión de resultados

Los resultados del estudio muestran que la deformación de los sistemas de soporte y los asentamientos del suelo presentan patrones espaciotemporales complejos. Durante la excavación por capas, se observó que el sistema de soporte experimentaba un incremento progresivo de las fuerzas axiales, alcanzando valores cercanos a los límites de seguridad en zonas específicas. Estas áreas coinciden con zonas de transición entre diferentes propiedades del suelo y regiones con interacciones más intensas entre el agua y el suelo.

El análisis numérico reveló que el modelo tridimensional es más preciso a la hora de predecir deformaciones y fallos que los métodos tradicionales. Por ejemplo, las simulaciones anticiparon asentamientos y desplazamientos horizontales que coincidieron con los valores observados in situ, lo que proporciona una herramienta fiable para la toma de decisiones durante la construcción.

En cuanto a los desplazamientos horizontales, los datos de control mostraron que los puntos ubicados cerca de áreas de transición de suelos blandos presentaron los mayores valores de deformación. Esto subraya la importancia de diseñar sistemas de soporte que se puedan adaptar dinámicamente a las características específicas del terreno. Por otro lado, los asentamientos superficiales fueron más pronunciados en zonas adyacentes a cuerpos de agua, lo que sugiere que el nivel freático es crucial para la estabilidad de las excavaciones.

Desde el punto de vista del comportamiento estructural, las fuerzas axiales en los soportes interiores aumentaron de forma progresiva durante la excavación, alcanzando valores cercanos a los límites de diseño. Esto demuestra la necesidad de implementar estrategias de refuerzo adicionales en las fases críticas de la construcción. Los resultados también evidenciaron la presencia de efectos de acoplamiento entre el suelo y las estructuras circundantes, un aspecto que podría abordarse en futuros estudios para mejorar la precisión de los modelos predictivos.

Además, se observó que la interacción entre el sistema de soporte y el suelo puede verse significativamente influenciada por factores externos, como las condiciones climáticas y las variaciones en el nivel freático. Estas interacciones tienen implicaciones directas para la estabilidad del sistema, por lo que se deben utilizar estrategias de monitorización adaptativas. Finalmente, los patrones de deformación identificados durante el análisis ponen de manifiesto la importancia de realizar ajustes dinámicos en el diseño y el monitoreo según las condiciones cambiantes en tiempo real.

Futuras líneas de investigación

A partir de los resultados de este estudio, se identifican varias áreas prometedoras para la investigación futura. Una de ellas es mejorar los modelos constitutivos del suelo para tener en cuenta mejor los efectos de la interacción multidimensional entre agua, suelo y estructuras. Esto podría incluir la incorporación de modelos viscoelásticos para simular el comportamiento a largo plazo de los suelos blandos.

Otra línea de interés es el desarrollo de herramientas de simulación que integren datos en tiempo real procedentes de sensores distribuidos en el lugar de la obra. Esto permitiría realizar ajustes instantáneos en las estrategias de construcción, mejorando la seguridad y reduciendo los costes asociados a fallos inesperados.

Además, el estudio destaca la necesidad de investigar la influencia de eventos extremos, como terremotos o lluvias torrenciales, en la estabilidad de excavaciones profundas. Las simulaciones que integran estos escenarios podrían proporcionar datos valiosos para diseñar sistemas de soporte más resilientes.

Finalmente, la investigación sobre métodos sostenibles de construcción en suelos blandos podría beneficiarse de estudios centrados en el uso de materiales de refuerzo ecológicos y en la optimización de diseños que reduzcan la huella de carbono. Estas iniciativas contribuirían al avance de la ingeniería civil hacia un enfoque más respetuoso con el medio ambiente.

Conclusión

El trabajo ofrece un análisis exhaustivo y un marco metodológico innovador para abordar los desafíos de las excavaciones profundas en suelos blandos. Al combinar la supervisión in situ con simulaciones numéricas avanzadas, el estudio asienta las bases para mejorar las prácticas de diseño y construcción.

El uso de modelos tridimensionales no lineales ha demostrado ser una herramienta muy eficaz para predecir comportamientos complejos de deformación y diseñar estrategias de mitigación más efectivas. Esto tiene implicaciones significativas para proyectos de infraestructura en entornos similares, ya que ofrece una guía clara para mejorar la estabilidad y sostenibilidad de estas obras.

En la práctica, los hallazgos refuerzan la importancia del seguimiento continuo y la adaptación dinámica de las estrategias de soporte según las condiciones en tiempo real. Estas prácticas no solo aumentan la seguridad, sino que también reducen los costes y el impacto ambiental asociados a los fallos estructurales.

Finalmente, el estudio sentará las bases para futuras investigaciones que exploren enfoques aún más integrados, sostenibles y resilientes, y permitirá que la ingeniería civil continúe evolucionando frente a los desafíos que presentan los entornos geotécnicos complejos. Además, los resultados invitan a adoptar un enfoque interdisciplinario que combine herramientas tecnológicas avanzadas y principios de sostenibilidad para optimizar tanto los resultados estructurales como el impacto ambiental de las construcciones en suelos blandos.

Referencia:

LI, Y.J.; ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2025). Research on spatial deformation monitoring and numerical coupling of deep foundation pit in soft soil. Journal of Building Engineering, 99:111636. DOI:10.1016/j.jobe.2024.111636

El artículo completo se puede descargar hasta el 14 de febrero de 2025 de forma gratuita en el siguiente enlace: https://authors.elsevier.com/c/1kKko8MyS9AR4g

Diseño optimizado de edificios de pórticos de hormigón armado frente al colapso progresivo mediante metamodelos

El diseño estructural de los edificios plantea importantes retos para garantizar su seguridad y sostenibilidad. El colapso progresivo, provocado por eventos extremos como terremotos o explosiones, puede ocasionar daños catastróficos. Para reducir este riesgo, se propone una metodología de diseño apoyada en metamodelos que combina optimización estructural y criterios de seguridad, y que tiene en cuenta elementos que a menudo se pasan por alto, como los forjados, las pantallas de arriostramiento y la interacción suelo-estructura (SSI, por sus siglas en inglés).

El trabajo se enmarca dentro del proyecto de investigación RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València. También es fruto de la colaboración con investigadores de Brasil y Cuba.

Metodología

Descripción del problema

Se estudiaron cinco edificios de pórticos de hormigón armado con diferentes configuraciones de plantas y luces. Las estructuras incluyen vigas, columnas, forjados y pantallas de arriostramiento. Además, se incorporó el diseño optimizado de cimentaciones, considerando la interacción con el suelo mediante modelos de elasticidad lineal. Las dimensiones de los elementos estructurales se ajustaron siguiendo las normas internacionales de diseño y se consideraron distintas combinaciones de carga para evaluar escenarios críticos.

Se realizaron simulaciones numéricas avanzadas que tuvieron en cuenta escenarios de carga extremos, incluyendo la pérdida de columnas críticas en diversas posiciones. En el análisis se tuvieron en cuenta factores de seguridad, límites de servicio y fallos estructurales para determinar los diseños óptimos. También se tuvieron en cuenta criterios de sostenibilidad y se midieron las emisiones de CO₂ asociadas a cada solución.

Optimización basada en un diseño robusto frente al colapso progresivo (ObRDPC)

La metodología ObRDPC se centra en minimizar las emisiones de CO₂ como función objetivo, garantizando simultáneamente la robustez estructural mediante restricciones de seguridad. Para evaluar el colapso progresivo y simular la pérdida de columnas críticas, así como analizar la redistribución de cargas, se empleó el método de camino alternativo (AP). La metodología incluye la verificación de estados límite últimos y de servicio, lo que garantiza el cumplimiento de los requisitos normativos.

El proceso de optimización incluye la definición precisa de las variables de diseño, como las dimensiones de las vigas, columnas y cimentaciones, así como el tipo de hormigón utilizado. Para maximizar la eficiencia estructural y minimizar los costos ambientales, se aplican técnicas de programación matemática.

Modelización de forjados y pantallas de arriostramiento

  • Forjados: se modelaron como elementos tipo placa de 12 cm de espesor y se conectaron a las vigas mediante nodos rígidos para asegurar la continuidad estructural. Se realizó una discretización adecuada para representar su comportamiento realista ante cargas verticales y horizontales. El análisis incluyó el comportamiento a flexión, los efectos de cargas concentradas y la interacción con los elementos perimetrales. Se consideraron diferentes configuraciones de refuerzo para maximizar la resistencia y minimizar las deformaciones.
  • Pantallas de arriostramiento: representadas mediante diagonales equivalentes elásticas, según las especificaciones normativas. Se definieron sus propiedades mecánicas mediante modelos experimentales previos, incluyendo el módulo de elasticidad y la resistencia a compresión. Se estudiaron distintos tipos de mampostería y su influencia en la resistencia general. Las pantallas de arriostramiento también se evaluaron como elementos activos en la redistribución de cargas después de eventos que provocan la pérdida de soporte, lo que mejora la estabilidad global del sistema estructural.

Interacción suelo-estructura (SSI)

Se consideró el asentamiento diferencial de las cimentaciones mediante coeficientes de rigidez calculados según modelos elásticos. El suelo se modeló como un medio elástico semiespacial. En el análisis se incluyó la interacción entre la superestructura y el terreno para capturar los efectos de asentamientos desiguales y su impacto en el estado de esfuerzos y deformaciones.

En el análisis se tuvieron en cuenta diferentes tipos de suelos, desde arcillas de baja resistencia hasta suelos granulares compactados. Se realizaron estudios paramétricos para evaluar la sensibilidad del sistema a variaciones en la rigidez del terreno y el módulo de elasticidad del hormigón.

Cinco estudios de casos que consideran la modelización de cimientos, forjados y pantallas de arriostramiento.

Optimización asistida por metamodelos

Se utilizaron técnicas avanzadas de optimización asistida por metamodelos para reducir la carga computacional. El proceso incluyó un muestreo inicial mediante muestreo hipercúbico latino para cubrir eficientemente el espacio de diseño, seguido de la construcción del metamodelo a través de técnicas de interpolación Kriging para aproximar las respuestas estructurales, evaluando múltiples configuraciones para garantizar la precisión. Posteriormente, se aplicó una optimización global utilizando algoritmos evolutivos, como la Biogeography-based Optimization (BBO), para explorar soluciones factibles y un método iterativo para refinar las soluciones y garantizar su viabilidad en condiciones críticas.

Resultados

Impacto de forjados y pantallas de arriostramiento

La inclusión de forjados y pantallas de arriostramiento mejoró significativamente la redistribución de cargas y la resistencia al colapso progresivo. El análisis mostró una reducción del 11 % en el impacto ambiental para diseños resistentes al colapso, en comparación con modelos que solo consideran vigas y columnas.

Se observó una mejora notable en la capacidad de redistribución de cargas después de la pérdida de columnas críticas. Las pantallas de arriostramiento actuaron como elementos resistentes adicionales, mitigando fallos en los elementos primarios y reduciendo los desplazamientos globales.

Comparación de enfoques de diseño

Se observó que aumentar el número de niveles incrementa la robustez estructural debido a la mayor redundancia de elementos. Sin embargo, el incremento de la longitud de las luces de las vigas reduce esta capacidad, por lo que es necesario utilizar secciones más robustas y aplicar mayores refuerzos.

Los modelos con luces de 8 m presentaron un aumento del 50 % en las emisiones de CO₂ cuando no se incluyeron forjados ni pantallas de arriostramiento. Al incorporarlos, se consiguió reducir este incremento a la mitad.

Recomendaciones prácticas para el diseño estructural

  1. Incluir forjados y pantallas de arriostramiento: Su integración mejora significativamente la resistencia al colapso progresivo, particularmente en edificios con luces amplias.
  2. Optimizar secciones estructurales: Diseñar secciones de vigas y columnas equilibrando rigidez y eficiencia económica.
  3. Evaluar diferentes tipos de cimentaciones: Incorporar análisis de interacción suelo-estructura para definir bases óptimas.
  4. Aplicar análisis paramétricos: Evaluar la sensibilidad de los diseños a variaciones en la resistencia del hormigón y las condiciones geotécnicas.
  5. Considerar combinaciones de carga extremas: Simular múltiples fallos para garantizar diseños robustos y seguros.

Conclusión

La optimización basada en un diseño robusto frente al colapso progresivo (ObRDPC) permite diseñar estructuras resistentes al colapso progresivo con menor impacto medioambiental. El uso de metamodelos y la consideración de forjados, pantallas de arriostramiento y la interacción suelo-estructura mejoran significativamente la seguridad estructural y la sostenibilidad del diseño. Se recomienda ampliar esta investigación a otros tipos de estructuras y condiciones geotécnicas complejas para validar y perfeccionar la metodología propuesta.

Referencia:

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Metamodel-assisted design optimization of robust-to-progressive-collapse RC frame buildings considering the impact of floor slabs, infill walls, and SSI implementation. Engineering Structures, 325:119487. DOI:10.1016/j.engstruct.2024.119487

El artículo os lo podéis descargar gratuitamente, hasta el 1 de febrero de 2025, en el siguiente enlace: https://authors.elsevier.com/c/1kFtRW4G4f7uC

Qué es una campaña geotécnica y su relevancia en proyectos de ingeniería

Una campaña geotécnica consiste en un conjunto de actividades y estudios técnicos destinados a caracterizar el subsuelo, identificar las propiedades geológicas y geotécnicas relevantes, detectar posibles problemas y garantizar la viabilidad técnica y la seguridad de las obras. Incluye prospecciones (sondeos, calicatas, ensayos), análisis de materiales y condiciones del terreno, que sirven de apoyo a la toma de decisiones en el diseño y construcción. Estas campañas son fundamentales para garantizar la viabilidad técnica, la seguridad y la sostenibilidad de los proyectos, y también para minimizar riesgos y optimizar costes.

En este artículo, profundizaremos en qué consiste una campaña geotécnica, cómo se lleva a cabo y por qué es relevante ejecutarla correctamente en cualquier proyecto de construcción.

El terreno como protagonista en la ingeniería

El terreno es un elemento crucial en cualquier obra. Un conocimiento inadecuado de sus características puede derivar en problemas como asentamientos diferenciales, deslizamientos, licuefacción o incluso colapsos estructurales. Por ello, las campañas geotécnicas son cruciales para diseñar cimentaciones y estructuras adaptadas a las condiciones específicas de cada emplazamiento.

Estas investigaciones se sustentan en tres pilares esenciales:

  1. Experiencia técnica: es indispensable contar con especialistas capaces de identificar las propiedades del terreno, evaluar riesgos y diseñar soluciones personalizadas.
  2. Calidad de ejecución: desde el alcance del estudio hasta la supervisión de campo, cada etapa debe garantizar la precisión de los resultados.
  3. Normativa y seguridad: el cumplimiento de marcos regulatorios, como el Código Técnico de la Edificación (CTE) y la Guía de Cimentaciones en Obras de Carretera, garantiza que las soluciones sean técnicamente adecuadas y cumplan con los estándares establecidos.

Objetivos y beneficios de las campañas geotécnicas

El objetivo principal de una campaña geotécnica es caracterizar el terreno para poder diseñar soluciones constructivas seguras y eficientes. Entre sus ventajas más destacadas se encuentran:

  • Garantía de seguridad: la identificación de riesgos geotécnicos evita desastres que puedan afectar a personas y estructuras.
  • Optimización de costes: aunque a menudo se perciben como un coste adicional, estas campañas permiten prevenir gastos futuros en reparaciones o rediseños.
  • Diseño adaptado: permite elegir los métodos constructivos más adecuados en función de las características del suelo y de las cargas de la estructura.
  • Mitigación de impactos ambientales y legales: al considerar el entorno y posibles restricciones, se minimizan conflictos y se garantiza la sostenibilidad del proyecto.

Etapas de una campaña geotécnica

1. Recopilación de información previa

Antes de llevar a cabo estudios de campo, es crucial recopilar datos relevantes sobre la zona. Esto incluye:

  • Planos topográficos: proporcionan una visión detallada del terreno.
  • Mapas geológicos: permiten identificar características estratigráficas y litológicas.
  • Historial de uso del terreno: puede revelar posibles riesgos, como rellenos no compactados o estructuras enterradas.
  • Normativa aplicable: por ejemplo, el Eurocódigo 7 sobre diseño geotécnico.

2. Reconocimientos de campo

Los reconocimientos de campo son el núcleo de una campaña geotécnica. Algunas de las técnicas más comunes son:

  • Sondeos mecánicos: Perforaciones para extraer muestras y analizar la estratigrafía del terreno.
  • Ensayos de penetración (SPT, CPT): Evalúan la resistencia del terreno mediante penetraciones controladas.
  • Calicatas y rozas: Excavaciones superficiales para observar directamente las capas del suelo.
  • Ensayos geofísicos: Métodos no invasivos, como sísmica de refracción, para obtener una visión global del subsuelo.
  • Estudios hidrogeológicos: Determinan la posición y características del agua subterránea, que influye en la estabilidad y resistencia del suelo.

Profundidades recomendadas:

  • Para cimentaciones superficiales, al menos 1,5 veces el ancho proyectado de la cimentación.
  • Para cimentaciones profundas (pilotes): a una profundidad mínima de 6 metros por debajo de la punta del pilote.

3. Análisis en laboratorio

Las muestras recolectadas se someten a análisis detallados para determinar:

  • Granulometría y plasticidad: identificación del tipo de suelo y su comportamiento bajo carga.
  • Resistencia y deformabilidad: ensayos triaxiales y edométricos.
  • Permeabilidad: evaluación de la capacidad del terreno para drenar agua.

4. Interpretación y diseño geotécnico

Con los datos recopilados, los ingenieros crean modelos y realizan cálculos para encontrar soluciones óptimas para las cimentaciones y las estructuras. Este proceso incluye:

— Selección del modelo de cálculo adecuado.
— Definición de parámetros de seguridad según la normativa.
— Ajustes según observaciones durante la ejecución.

Importancia de una correcta planificación

  • Construcción de un puente: En un cauce fluvial, por ejemplo, se pueden detectar suelos aluviales inestables, por lo que será necesario diseñar pilotes profundos para evitar asentamientos diferenciales. Por este motivo, se diseñaron pilotes profundos para evitar asentamientos diferenciales.
  • Proyecto de viviendas: Un caso en el que una zona había sido un vertedero, los estudios geotécnicos identifican rellenos inadecuados. La solución puede ser retirar los rellenos inadecuados y compactar el terreno con materiales adecuados.

Desafíos comunes:

  • Limitaciones presupuestarias: reducir la intensidad de los estudios puede ocasionar problemas graves durante la construcción.
  • Condiciones complejas: la heterogeneidad del terreno o la ubicación en zonas sísmicas requieren investigaciones más exhaustivas.
  • Falta de datos previos: la ausencia de estudios anteriores puede complicar la fase inicial de planificación.

Herramientas y normativas clave

  • Software especializado: Programas como Plaxis o GeoStudio permiten modelar comportamientos del terreno y simular condiciones críticas.
  • Normativa aplicable:
    • Código Técnico de la Edificación (CTE): Proporciona directrices para reconocer y mitigar riesgos.
    • Guía de Cimentaciones en Obras de Carretera: Define protocolos para infraestructuras viales.

Conclusión

Las campañas geotécnicas son mucho más que un paso previo en la construcción: son la base sobre la que se asienta la seguridad, la viabilidad y la sostenibilidad de cualquier proyecto. Al identificar riesgos, garantizar diseños óptimos y cumplir con normativas, estas investigaciones se convierten en una inversión estratégica que previene problemas futuros.

En un entorno cada vez más desafiante para la ingeniería, realizar campañas geotécnicas no solo es una práctica recomendada, sino esencial para asegurar el éxito de cualquier obra.

A continuación dejamos un documento que proporciona recomendaciones técnicas detalladas sobre la campaña geotécnica en proyectos de infraestructura vial para la Dirección General de Carreteras, con el objetivo de establecer criterios uniformes y seguros para la investigación del subsuelo durante las diferentes etapas de desarrollo de un proyecto.

Descargar (PDF, 589KB)

Os dejo también un vídeo al respecto. Espero que os sea de interés.

 

Efectos de las inundaciones en las estructuras de las edificaciones

Figura 1. Efectos de la DANA en Valencia. https://www.diariodesevilla.es/sociedad/catastrofe-inundaciones-valencia-directo_10_2002684877.html

Para comprender los efectos de las inundaciones en las estructuras de las edificaciones y cómo responder ante ellas, es fundamental entender tanto los factores que incrementan la vulnerabilidad de los edificios como las acciones preventivas y correctivas necesarias. Las inundaciones pueden afectar seriamente a las estructuras, dependiendo de la magnitud de las aguas, su salinidad, la saturación del suelo y la calidad de los materiales y prácticas constructivas empleados. La identificación de estos daños requiere evaluaciones técnicas detalladas y precisas. Este conocimiento es útil tanto para los propietarios, los técnicos y el personal de emergencias que deben tomar decisiones rápidas y bien fundamentadas en situaciones críticas.

1. Efectos de las inundaciones en la estructura de las edificaciones

Las inundaciones suponen una amenaza significativa para la integridad de los edificios y pueden afectar a la estructura de diversas maneras. Estos no siempre son visibles de inmediato y pueden empeorar con el tiempo si no se toman medidas correctivas. En las zonas propensas a las inundaciones, los edificios pueden sufrir diversos daños estructurales, como:

  • Socavación y fallos en la cimentación: La erosión causada por la corriente de agua disminuye la estabilidad de los cimientos. Cuando una inundación causa socavones cerca de una edificación, esto afecta directamente a la capacidad portante de los cimientos, ya que se pierde el soporte horizontal y lateral del suelo. Esto puede causar inclinaciones en las estructuras, grietas en los muros y, en casos extremos, el colapso parcial o total del edificio.
  • Erosión del suelo y pérdida de capacidad portante: La capacidad del suelo para soportar cargas se ve reducida debido a la erosión, lo que puede llevar al fallo de la cimentación.
  • Saturación del suelo: La acumulación de agua provoca saturación, lo que aumenta el riesgo de deslizamientos, derrumbes y avalanchas y afecta a la estabilidad del conjunto de cimentación y estructura. El suelo que rodea los cimientos de una edificación, al saturarse con agua, pierde densidad y estabilidad. Este fenómeno es especialmente crítico en áreas cercanas a cuerpos de agua (ríos, lagos o mares), donde el agua puede hacer que el suelo pierda su capacidad de soporte. Esto puede provocar fenómenos como deslizamientos, derrumbes y licuefacción. En casos graves, el terreno bajo la edificación se comporta casi como un líquido, perdiendo su capacidad para soportar el peso de la estructura y poniendo en riesgo su estabilidad.
  • Pérdida de soporte lateral y horizontal: Al disminuir la capacidad portante del suelo, la estructura pierde los soportes laterales y horizontales, lo que compromete su estabilidad y capacidad de carga.
  • Deterioro de los muros exteriores: Cuando el nivel de las inundaciones supera el metro de altura, la descompensación de presiones puede provocar fallos en los muros exteriores..
  • Inestabilidad estructural por impacto de escombros: Los escombros arrastrados por el agua, combinados con la presión hidrostática o hidrodinámica, pueden impactar en elementos estructurales y causar inestabilidad.
  • Aparición de grietas en muros, losas y columnas: Dependerá de la magnitud de la inundación y podría ocasionar daños que van desde reparables hasta irreparables.
  • Daños por capilaridad y humedad en las paredes: El fenómeno de capilaridad permite que el agua suba a través de los materiales porosos de los muros, debilitándolos progresivamente. Este problema es más frecuente en estructuras construidas directamente sobre el suelo sin barreras de impermeabilización o sobrecimientos. El agua absorbida por capilaridad puede afectar a la durabilidad y la resistencia de los materiales, provocando grietas y desprendimientos del revestimiento.
  • Deterioro de materiales de construcción: La exposición al agua contaminada o salina provoca corrosión en los materiales, especialmente en elementos metálicos no protegidos, galvanizados o inoxidables.
Figura 2. Presión hidrostática.

Para reducir estos riesgos, las nuevas construcciones en zonas de inundación deben ser diseñadas y construidas con especificaciones a prueba de inundaciones. Estas mejoras en la resistencia estructural no solo reducen el riesgo de fallos, sino que también disminuyen significativamente la probabilidad de víctimas en escenarios de inundación.

2. Problemática: daños y consecuencias

  • Daños estructurales: Las inundaciones generan múltiples efectos en la estabilidad de los edificios, afectando su integridad estructural. Entre estos daños destacan:
    • Presión hidrostática: La acumulación de agua en el perímetro de la edificación ejerce presión horizontal sobre los muros, proporcional al calado de la inundación. Este tipo de presión puede levantar los suelos o cimentación cuando el agua se acumula de un solo lado del edificio. En casos donde el agua ingresa al edificio, esta presión se neutraliza, pero introduce una carga gravitatoria que afecta elementos horizontales como forjados y soleras, pudiendo conducir al colapso de la estructura.
    • Presión hidrodinámica: El flujo de agua de un río desbordado puede alcanzar velocidades considerables y generar impactos en los muros, los cuales deben ser diseñados para soportar estas cargas dinámicas.
    • Impactos de objetos arrastrados: El agua arrastra escombros, vehículos y mobiliario urbano que impactan contra la edificación, generando daños considerables en sus elementos​.
    • Durabilidad y corrosión: El agua, especialmente si contiene minerales y sales, puede corroer el acero de refuerzo en estructuras de hormigón, debilitando su capacidad de carga. En materiales como la madera, la humedad reduce significativamente su resistencia estructural. Estos daños son más difíciles de detectar cuando los elementos están cubiertos o enterrados.
    • Erosión del material y del terreno: La exposición prolongada al agua, especialmente si el flujo es constante, puede erosionar materiales como ladrillo y bloque, deteriorando el mortero de unión y comprometiendo la estabilidad del edificio. El terreno también se ve afectado, sobre todo en su capacidad de soporte, agravando el riesgo de asentamientos diferenciales en la cimentación​.
  • Daños constructivos y estéticos: Las inundaciones afectan no solo a los elementos estructurales, sino también a los acabados y componentes funcionales de los edificios:
    • Daños en cerramientos y tabiques: Los paramentos exteriores e interiores pueden experimentar corrosión en elementos metálicos, pérdida de adhesión en revestimientos y daños en aplacados​.
    • Pérdida de estabilidad en fachadas y tabiques: Los impactos de objetos arrastrados por el agua o la reducción en las propiedades de los materiales debido a la humedad pueden hacer que las fachadas o tabiques colapsen​.
    • Daños en pavimentos: La prolongada presencia de agua produce abombamientos y deformaciones en los suelos, especialmente en los pavimentos de madera, causando el levantado de los materiales de agarre​.
    • Desperfectos estéticos: La humedad genera manchas y decoloración en superficies, mientras que los impactos pueden provocar la rotura de elementos ornamentales​.
    • Disfunción de instalaciones: Las instalaciones eléctricas, redes de saneamiento, sistemas de agua potable y equipos de ventilación y climatización pueden colapsar o fallar debido a la exposición a la humedad y obstrucción por residuos, lo cual compromete la funcionalidad del edificio​.
  • Daños al contenido: El ingreso de agua en el interior de un edificio provoca, inevitablemente, daños en su contenido, desde pérdidas materiales como aparatos electrónicos, mobiliario y documentos, hasta daños económicos significativos en edificaciones comerciales e industriales. Además, los edificios que almacenan bienes sensibles, como bibliotecas o museos, pueden sufrir daños irreparables en sus colecciones culturales o documentales.
  • Daños funcionales: Las inundaciones pueden afectar gravemente al funcionamiento de los edificios, especialmente en instalaciones críticas como hospitales o estaciones de bomberos, donde cualquier interrupción implica riesgos adicionales. Esto incluye la interrupción de servicios esenciales que comprometen la capacidad de respuesta en situaciones de crisis, la inactividad prolongada en edificaciones comerciales o industriales que ocasiona pérdidas económicas y la obstrucción de vías de acceso y evacuación, lo que dificulta las operaciones de emergencia y la seguridad de los ocupantes.
  • Daños relacionados con el entorno: Además de los daños directos a la estructura, las inundaciones pueden afectar a la parcela circundante y a los elementos del entorno inmediato, provocando erosión y desgaste en áreas sin edificación, como jardines o zonas comunes, donde se acumulan sedimentos y residuos que deterioran el terreno, el mobiliario y la vegetación. Asimismo, elementos del entorno, como vehículos o vegetación arrastrada, pueden afectar a la edificación y provocar asientos diferenciales por los desplazamientos del terreno. Finalmente, los residuos y contaminantes de instalaciones industriales o agrícolas arrastrados por el agua pueden afectar tanto al entorno natural como a la propia edificación.
  • Daños a largo plazo: Además de los daños inmediatos, las inundaciones pueden causar problemas que se manifiestan con el tiempo, como la corrosión en elementos estructurales debido a la humedad residual en materiales como el hormigón, lo que debilita las armaduras de acero y compromete la estructura gradualmente; también pueden surgir problemas de humedad persistente en áreas de difícil acceso, como los forjados sanitarios, donde el agua estancada crea condiciones favorables para el crecimiento de hongos y otros problemas fitosanitarios.

Estos puntos resaltan la complejidad de los efectos de una inundación en las edificaciones y su entorno, subrayando la importancia de contar con medidas preventivas y de rehabilitación efectivas para mitigar las consecuencias.

3. Identificación de los posibles daños en edificaciones debido a inundaciones

Este capítulo detalla los daños que pueden producirse en una edificación cuando ocurre una inundación. Abarca la identificación de puntos vulnerables, la inspección de elementos de valor, y la evaluación de daños en función del nivel de agua.

  • Identificación e inventario de puntos débiles: La ubicación y el riesgo del edificio son determinantes para identificar sus puntos débiles y reducir la vulnerabilidad ante las inundaciones. Los principales puntos de entrada del agua en las construcciones son los defectos en el mortero de ladrillo o mampostería, que facilitan la infiltración; las grietas en fachadas y juntas estructurales, especialmente en las uniones entre materiales diferentes, como paredes y losas; las ventanas y puertas, donde las fallas en el sellado y el contacto de los marcos permiten filtraciones; y las escaleras y entradas a sótanos, que al estar en niveles inferiores favorecen la acumulación de agua.
  • Comprobación de estabilidad estructural: Es crucial evaluar la capacidad de resistencia de los elementos estructurales a las fuerzas del agua, ya que las presiones desiguales pueden dañar paredes y pisos. La diferencia en la rapidez de entrada y salida del agua entre el exterior y el interior del edificio puede generar presión adicional, ocasionando daños estructurales importantes en muros y suelos.
  • Inspección de los elementos de valor del edificio: Realizar un inventario de los elementos importantes en el edificio permite diagnosticar daños potenciales y planificar su aseguramiento. Estos elementos se clasifican en: seres vivos (personas, mascotas y animales en actividades agropecuarias), continente (que abarca la estructura y el equipamiento, como cimientos, muros, sistemas de electricidad, agua y ventilación) y contenido (que varía según el uso del edificio e incluye mobiliario, documentos y materiales peligrosos).
  • Diagnóstico de daños en función de la altura del agua: El nivel del agua en el edificio influye directamente en el grado de daño. Ejemplos de daños según el nivel son:
    • 0 a 0,3 m (debajo del nivel de la planta baja): Posibles erosiones en cimientos, corrosión en elementos metálicos, acumulación de limo, y formación de moho.
    • 0,3 a 0,5 m: Saturación de revestimientos de paredes y suelos, problemas de humedad, y daños en puertas internas y externas.
    • Más de 0,5 m: Daños estructurales graves debido a la presión del agua, corrosión y fallos generalizados en sistemas eléctricos y sanitarios.

Estos daños muestran la importancia de realizar un diagnóstico exhaustivo para implementar medidas de mitigación eficientes, que garanticen la seguridad estructural del edificio y la protección de sus ocupantes y contenido.

Figura 3. Inventario de puntos de entrada del agua de inundación. Fuente: Preparing for Flood, Interim guidance for improving the flood resistance of domestic and small business properties. Office of the Deputy Prime Minister. 2003. Environment Agency – UK.

4. Factores de vulnerabilidad que agravan los daños por inundaciones

Las características constructivas y de mantenimiento de una edificación influyen en su vulnerabilidad frente a las inundaciones. Algunos factores clave incluyen:

  • Ausencia de sobrecimiento e impermeabilización: El sobrecimiento es una barrera de 30-50 cm de altura que se coloca en la base de los muros, y su función es proteger contra la humedad que asciende del suelo. La ausencia de este elemento en una construcción permite que el agua entre en contacto directo con las paredes, lo que facilita la absorción de agua por capilaridad. Además del sobrecimiento, la impermeabilización de cimientos y muros de la planta baja es vital para prevenir que el agua dañe las estructuras.
  • Calidad de los materiales: Cada material de construcción reacciona de manera distinta a la exposición prolongada al agua. La calidad del cemento, la arena y otros materiales utilizados en la construcción de los bloques y los cimientos influye en la resistencia de la edificación frente a las inundaciones. Los materiales de baja calidad se desintegran más rápidamente cuando entran en contacto con el agua. En áreas con edificaciones antiguas de tapial, por ejemplo, estos tienden a disolverse tras un contacto prolongado con el agua, provocando la descomposición de la estructura. El bahareque, compuesto tradicionalmente por madera, cañas y barro, presenta baja resistencia a la humedad y se deteriora rápidamente, con desprendimientos de revestimiento y deformaciones en la estructura de madera o caña, lo que puede causar inclinaciones o incluso el desplome de las viviendas. En el caso de la mampostería, aunque aparenta ser resistente, los bloques de cemento, por su porosidad y la falta de cocción de algunos materiales, son vulnerables al agua. La humedad puede deteriorar las primeras hiladas, debilitar la base y provocar el desplome parcial o total de la estructura, especialmente en zonas donde los bloques son de baja calidad o con una proporción insuficiente de cemento.
  • Errores en la construcción: En algunas construcciones, se cometen errores técnicos que comprometen la estabilidad de la estructura, especialmente en zonas inundables. Por ejemplo, el uso incorrecto de aparejos en mampostería o la falta de conocimientos técnicos en la ejecución de los cimientos puede resultar en problemas estructurales graves cuando la edificación enfrenta una inundación.

5. Medidas preventivas para minimizar daños en situaciones de inundación

La implementación de medidas preventivas ayuda a minimizar el impacto de las inundaciones en las edificaciones. Estas son algunas acciones recomendadas:

  • Inspección y mantenimiento regulares: Es crucial que las edificaciones en zonas propensas a inundaciones reciban mantenimiento constante y revisiones estructurales periódicas. Las inspecciones técnicas pueden identificar signos de desgaste o debilidades estructurales antes de que se conviertan en problemas graves. Esto incluye revisar cimientos, paredes y elementos de soporte clave.
  • Empleo de materiales resistentes al agua: Al construir o rehabilitar una vivienda en una zona propensa a las inundaciones, se recomienda usar materiales menos porosos y resistentes al agua. Asimismo, en áreas vulnerables, se recomienda aplicar revestimientos y pinturas impermeables en paredes y cimientos para evitar la absorción de humedad.
  • Adecuación del terreno y del sistema de drenaje: El sistema de drenaje del terreno circundante a una edificación es fundamental para evitar que el agua se acumule y afecte a los cimientos. En zonas propensas a las inundaciones, es importante crear canales de drenaje y pendientes que faciliten la salida del agua hacia áreas de menor riesgo.

6. Recomendaciones de emergencia para responder a inundaciones en edificaciones

En caso de inundación, estas son algunas recomendaciones prácticas para garantizar la seguridad de las personas y proteger, en la medida de lo posible, la estructura del edificio:

  • Inspección inmediata de daños: Una vez que el nivel del agua haya descendido, es fundamental realizar una inspección detallada del edificio para identificar daños visibles y ocultos. Los técnicos deben evaluar los cimientos y la estabilidad de las paredes para identificar signos de debilitamiento estructural que puedan suponer un riesgo.
  • Secado y limpieza de estructuras: Es crucial crucial eliminar el agua acumulada y permitir que las estructuras afectadas se sequen. El secado evita que la humedad siga dañando los materiales de construcción. Además, se debe limpiar la suciedad y los restos dejados por la inundación, ya que estos pueden acelerar el deterioro de los materiales.
  • Refuerzo y reparación de cimientos y paredes: Si las inspecciones revelan daños en los cimientos o paredes, es necesario realizar refuerzos inmediatos para evitar colapsos. Los cimientos debilitados pueden reforzarse con elementos estructurales adicionales y las paredes pueden requerir tratamientos impermeabilizantes o refuerzos de mampostería.

Conclusión

Entender los efectos de las inundaciones en las edificaciones es fundamental para aplicar medidas de prevención y reparación efectivas. Estos eventos pueden causar daños severos en la estructura, la estabilidad y el contenido de los edificios, lo que subraya la necesidad de realizar un diagnóstico preciso y de llevar a cabo acciones correctivas. La identificación de las áreas vulnerables, junto con el uso de materiales adecuados y sistemas de drenaje eficientes, es esencial para reducir los riesgos. Asimismo, el mantenimiento regular y una respuesta rápida ante las inundaciones son cruciales para proteger tanto la seguridad de los ocupantes como la integridad del edificio. La implementación de técnicas constructivas apropiadas mejora la resistencia de las estructuras frente a estos desastres.

A continuación, dejo algunos documentos que creo que pueden ser de interés.

Descargar (PDF, 24.19MB)

Descargar (PDF, 50.33MB)

Descargar (PDF, 1.26MB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Técnica innovadora optimiza estructuras de hormigón y reduce emisiones de CO₂ al considerar la interacción suelo-estructura

El artículo científico, titulado «Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction» y publicado recientemente en Engineering Structures, una de las revistas de mayor impacto en ingeniería civil, aborda un desafío clave en la ingeniería estructural: cómo optimizar el diseño de estructuras de hormigón armado para minimizar su impacto ambiental, con especial atención a la reducción de las emisiones de CO₂.

Esta investigación es el resultado de una colaboración internacional realizada en el marco de los proyectos HYDELIFE y RESILIFE, cuyo investigador principal es Víctor Yepes, y es fruto de una colaboración internacional entre investigadores de Cuba, Brasil y España.

Contexto de la investigación

La optimización estructural ha sido ampliamente explorada en las últimas décadas debido a la creciente necesidad de reducir los costes de construcción y el uso de materiales, todo ello mientras se minimiza el impacto ambiental. En el caso de las estructuras de hormigón armado, que son esenciales en la construcción de edificios y obras de infraestructura, optimizar su diseño conlleva implicaciones significativas en cuanto al ahorro de recursos y la reducción de las emisiones de CO₂.

Los problemas de optimización estructural pueden resolverse mediante métodos exactos, como la programación matemática, o mediante métodos heurísticos que imitan procesos naturales (como la evolución genética o el comportamiento de enjambres). Aunque los métodos heurísticos son más eficientes para problemas complejos y no lineales, como los que involucran grandes estructuras tridimensionales, requieren un alto coste computacional. Para abordar este problema, los autores proponen el uso de metamodelos, que son modelos simplificados que permiten realizar simulaciones con un consumo computacional mucho menor sin sacrificar demasiada precisión. En este estudio, se utiliza un metamodelo basado en Kriging, una técnica que permite aproximar el comportamiento de estructuras complejas.

Además, el estudio introduce una novedad crucial: la inclusión de la interacción suelo-estructura (SSI, por sus siglas en inglés) durante el modelado. Esta interacción, que muchas veces se ignora en los modelos tradicionales, afecta significativamente al comportamiento de la superestructura (el marco de hormigón). Ignorarla puede dar lugar a diseños menos precisos que no tienen en cuenta los asentamientos diferenciales del suelo, lo que puede provocar tensiones adicionales y un mayor deterioro de las estructuras con el tiempo.

Metodología

La investigación emplea un enfoque combinado de optimización heurística convencional y una estrategia basada en Kriging para optimizar marcos espaciales de hormigón armado. El objetivo es reducir las emisiones de CO₂ de las estructuras optimizadas, en línea con los esfuerzos para disminuir el impacto ambiental del sector de la construcción. El estudio incluye tres estudios de caso, cada uno con diferentes configuraciones estructurales (variando la longitud de los vanos y el número de niveles de las estructuras) para generalizar los resultados.

El elemento clave en esta investigación es la inclusión de la interacción suelo-estructura, que afecta al comportamiento global del sistema. Los autores utilizan un modelo de Winkler, que representa el suelo como un conjunto de resortes con rigidez variable en función de las características del suelo, y lo implementan en dos tipos de suelos: uno cohesivo y otro granular. Esta diferenciación es importante porque cada tipo de suelo responde de manera distinta a las cargas, lo que provoca asentamientos que, en última instancia, influyen en las tensiones de la superestructura. La plataforma CSi-SAP2000 se utilizó como motor de cálculo, mientras que el análisis geotécnico y estructural se integró mediante MATLAB.

Resultados

Uno de los hallazgos más destacados del estudio es que la inclusión de la interacción suelo-estructura modifica significativamente los diseños estructurales. En general, las estructuras diseñadas teniendo en cuenta la interacción suelo-estructura requieren más material (mayores cantidades de hormigón y acero), lo que refleja el aumento de tensiones debido a los asentamientos diferenciales. Por ejemplo, en comparación con un modelo con soportes rígidos ideales, las estructuras que consideran la inclusión de la interacción suelo-estructura muestran un aumento del 12,03 % en las emisiones de CO₂ en suelos cohesivos y hasta un 18,81 % en suelos friccionales.

Los elementos estructurales más afectados por la interacción suelo-estructura son las columnas. Esto se debe a que los asentamientos diferenciales incrementan los momentos flectores en las columnas, lo que requiere un refuerzo adicional y secciones más grandes para resistir las nuevas tensiones. En algunos casos, las emisiones de CO₂ asociadas a las columnas aumentaron más del 60 % al considerar la interacción con el suelo. Los resultados son especialmente marcados en suelos granulares, donde los asentamientos diferenciales son más pronunciados.

Además, la metodología basada en metamodelos, asistida por la técnica de Kriging, demostró ser eficaz para lograr optimizaciones con un alto grado de precisión (hasta un 98,24 % en suelos cohesivos y un 98,10 % en suelos granulares), todo ello reduciendo el tiempo de cálculo en aproximadamente un 90 % en comparación con los métodos heurísticos convencionales.

Implicaciones

Este estudio tiene importantes implicaciones prácticas para el diseño de estructuras de hormigón armado. La inclusión de la interacción suelo-estructura permite obtener diseños más robustos y precisos, lo que reduce el riesgo de fallos prematuros y la necesidad de costosos trabajos de mantenimiento a largo plazo. Los modelos que no tienen en cuenta la interacción suelo-estructura pueden dar como resultado estructuras que inicialmente parecen eficientes, pero que con el tiempo se deterioran más rápidamente debido a las tensiones adicionales no previstas. Por tanto, incluir esta interacción desde el inicio del diseño mejora significativamente la durabilidad y la fiabilidad de las estructuras.

Desde el punto de vista ambiental, el uso de metamodelos para optimizar estructuras de hormigón supone un importante avance. Al reducir el material necesario y mejorar la eficiencia estructural, se contribuye a la reducción de las emisiones de CO₂, un objetivo clave en la lucha contra el cambio climático. Además, la metodología propuesta ofrece un enfoque más sostenible al disminuir los recursos computacionales necesarios para realizar simulaciones complejas.

En conclusión, la inclusión de la interacción suelo-estructura y el uso de metamodelos basados en Kriging suponen una contribución innovadora al campo de la ingeniería estructural. Esta investigación no solo proporciona mejores resultados de diseño, sino que también tiene el potencial de reducir el impacto ambiental de las estructuras de hormigón armado, lo que hace que el sector de la construcción sea más sostenible y eficiente.

Referencia:

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction. Engineering Structures, 293:116657. DOI:10.1016/j.engstruct.2023.116657

Este artículo está publicado en abierto, por lo que puedes descargar aquí mismo:

Descargar (PDF, 8.18MB)