Efectos de las inundaciones en las estructuras de las edificaciones

Figura 1. Efectos de la DANA en Valencia. https://www.diariodesevilla.es/sociedad/catastrofe-inundaciones-valencia-directo_10_2002684877.html

Para comprender los efectos de las inundaciones en las estructuras de las edificaciones y cómo responder ante ellas, es fundamental entender tanto los factores que incrementan la vulnerabilidad de los edificios como las acciones preventivas y correctivas necesarias. Las inundaciones pueden afectar seriamente a las estructuras, dependiendo de la magnitud de las aguas, su salinidad, la saturación del suelo y la calidad de los materiales y prácticas constructivas empleados. La identificación de estos daños requiere evaluaciones técnicas detalladas y precisas. Este conocimiento es útil tanto para los propietarios, los técnicos y el personal de emergencias que deben tomar decisiones rápidas y bien fundamentadas en situaciones críticas.

1. Efectos de las inundaciones en la estructura de las edificaciones

Las inundaciones suponen una amenaza significativa para la integridad de los edificios y pueden afectar a la estructura de diversas maneras. Estos no siempre son visibles de inmediato y pueden empeorar con el tiempo si no se toman medidas correctivas. En las zonas propensas a las inundaciones, los edificios pueden sufrir diversos daños estructurales, como:

  • Socavación y fallos en la cimentación: La erosión causada por la corriente de agua disminuye la estabilidad de los cimientos. Cuando una inundación causa socavones cerca de una edificación, esto afecta directamente a la capacidad portante de los cimientos, ya que se pierde el soporte horizontal y lateral del suelo. Esto puede causar inclinaciones en las estructuras, grietas en los muros y, en casos extremos, el colapso parcial o total del edificio.
  • Erosión del suelo y pérdida de capacidad portante: La capacidad del suelo para soportar cargas se ve reducida debido a la erosión, lo que puede llevar al fallo de la cimentación.
  • Saturación del suelo: La acumulación de agua provoca saturación, lo que aumenta el riesgo de deslizamientos, derrumbes y avalanchas y afecta a la estabilidad del conjunto de cimentación y estructura. El suelo que rodea los cimientos de una edificación, al saturarse con agua, pierde densidad y estabilidad. Este fenómeno es especialmente crítico en áreas cercanas a cuerpos de agua (ríos, lagos o mares), donde el agua puede hacer que el suelo pierda su capacidad de soporte. Esto puede provocar fenómenos como deslizamientos, derrumbes y licuefacción. En casos graves, el terreno bajo la edificación se comporta casi como un líquido, perdiendo su capacidad para soportar el peso de la estructura y poniendo en riesgo su estabilidad.
  • Pérdida de soporte lateral y horizontal: Al disminuir la capacidad portante del suelo, la estructura pierde los soportes laterales y horizontales, lo que compromete su estabilidad y capacidad de carga.
  • Deterioro de los muros exteriores: Cuando el nivel de las inundaciones supera el metro de altura, la descompensación de presiones puede provocar fallos en los muros exteriores..
  • Inestabilidad estructural por impacto de escombros: Los escombros arrastrados por el agua, combinados con la presión hidrostática o hidrodinámica, pueden impactar en elementos estructurales y causar inestabilidad.
  • Aparición de grietas en muros, losas y columnas: Dependerá de la magnitud de la inundación y podría ocasionar daños que van desde reparables hasta irreparables.
  • Daños por capilaridad y humedad en las paredes: El fenómeno de capilaridad permite que el agua suba a través de los materiales porosos de los muros, debilitándolos progresivamente. Este problema es más frecuente en estructuras construidas directamente sobre el suelo sin barreras de impermeabilización o sobrecimientos. El agua absorbida por capilaridad puede afectar a la durabilidad y la resistencia de los materiales, provocando grietas y desprendimientos del revestimiento.
  • Deterioro de materiales de construcción: La exposición al agua contaminada o salina provoca corrosión en los materiales, especialmente en elementos metálicos no protegidos, galvanizados o inoxidables.
Figura 2. Presión hidrostática.

Para reducir estos riesgos, las nuevas construcciones en zonas de inundación deben ser diseñadas y construidas con especificaciones a prueba de inundaciones. Estas mejoras en la resistencia estructural no solo reducen el riesgo de fallos, sino que también disminuyen significativamente la probabilidad de víctimas en escenarios de inundación.

2. Problemática: daños y consecuencias

  • Daños estructurales: Las inundaciones generan múltiples efectos en la estabilidad de los edificios, afectando su integridad estructural. Entre estos daños destacan:
    • Presión hidrostática: La acumulación de agua en el perímetro de la edificación ejerce presión horizontal sobre los muros, proporcional al calado de la inundación. Este tipo de presión puede levantar los suelos o cimentación cuando el agua se acumula de un solo lado del edificio. En casos donde el agua ingresa al edificio, esta presión se neutraliza, pero introduce una carga gravitatoria que afecta elementos horizontales como forjados y soleras, pudiendo conducir al colapso de la estructura.
    • Presión hidrodinámica: El flujo de agua de un río desbordado puede alcanzar velocidades considerables y generar impactos en los muros, los cuales deben ser diseñados para soportar estas cargas dinámicas.
    • Impactos de objetos arrastrados: El agua arrastra escombros, vehículos y mobiliario urbano que impactan contra la edificación, generando daños considerables en sus elementos​.
    • Durabilidad y corrosión: El agua, especialmente si contiene minerales y sales, puede corroer el acero de refuerzo en estructuras de hormigón, debilitando su capacidad de carga. En materiales como la madera, la humedad reduce significativamente su resistencia estructural. Estos daños son más difíciles de detectar cuando los elementos están cubiertos o enterrados.
    • Erosión del material y del terreno: La exposición prolongada al agua, especialmente si el flujo es constante, puede erosionar materiales como ladrillo y bloque, deteriorando el mortero de unión y comprometiendo la estabilidad del edificio. El terreno también se ve afectado, sobre todo en su capacidad de soporte, agravando el riesgo de asentamientos diferenciales en la cimentación​.
  • Daños constructivos y estéticos: Las inundaciones afectan no solo a los elementos estructurales, sino también a los acabados y componentes funcionales de los edificios:
    • Daños en cerramientos y tabiques: Los paramentos exteriores e interiores pueden experimentar corrosión en elementos metálicos, pérdida de adhesión en revestimientos y daños en aplacados​.
    • Pérdida de estabilidad en fachadas y tabiques: Los impactos de objetos arrastrados por el agua o la reducción en las propiedades de los materiales debido a la humedad pueden hacer que las fachadas o tabiques colapsen​.
    • Daños en pavimentos: La prolongada presencia de agua produce abombamientos y deformaciones en los suelos, especialmente en los pavimentos de madera, causando el levantado de los materiales de agarre​.
    • Desperfectos estéticos: La humedad genera manchas y decoloración en superficies, mientras que los impactos pueden provocar la rotura de elementos ornamentales​.
    • Disfunción de instalaciones: Las instalaciones eléctricas, redes de saneamiento, sistemas de agua potable y equipos de ventilación y climatización pueden colapsar o fallar debido a la exposición a la humedad y obstrucción por residuos, lo cual compromete la funcionalidad del edificio​.
  • Daños al contenido: El ingreso de agua en el interior de un edificio provoca, inevitablemente, daños en su contenido, desde pérdidas materiales como aparatos electrónicos, mobiliario y documentos, hasta daños económicos significativos en edificaciones comerciales e industriales. Además, los edificios que almacenan bienes sensibles, como bibliotecas o museos, pueden sufrir daños irreparables en sus colecciones culturales o documentales.
  • Daños funcionales: Las inundaciones pueden afectar gravemente al funcionamiento de los edificios, especialmente en instalaciones críticas como hospitales o estaciones de bomberos, donde cualquier interrupción implica riesgos adicionales. Esto incluye la interrupción de servicios esenciales que comprometen la capacidad de respuesta en situaciones de crisis, la inactividad prolongada en edificaciones comerciales o industriales que ocasiona pérdidas económicas y la obstrucción de vías de acceso y evacuación, lo que dificulta las operaciones de emergencia y la seguridad de los ocupantes.
  • Daños relacionados con el entorno: Además de los daños directos a la estructura, las inundaciones pueden afectar a la parcela circundante y a los elementos del entorno inmediato, provocando erosión y desgaste en áreas sin edificación, como jardines o zonas comunes, donde se acumulan sedimentos y residuos que deterioran el terreno, el mobiliario y la vegetación. Asimismo, elementos del entorno, como vehículos o vegetación arrastrada, pueden afectar a la edificación y provocar asientos diferenciales por los desplazamientos del terreno. Finalmente, los residuos y contaminantes de instalaciones industriales o agrícolas arrastrados por el agua pueden afectar tanto al entorno natural como a la propia edificación.
  • Daños a largo plazo: Además de los daños inmediatos, las inundaciones pueden causar problemas que se manifiestan con el tiempo, como la corrosión en elementos estructurales debido a la humedad residual en materiales como el hormigón, lo que debilita las armaduras de acero y compromete la estructura gradualmente; también pueden surgir problemas de humedad persistente en áreas de difícil acceso, como los forjados sanitarios, donde el agua estancada crea condiciones favorables para el crecimiento de hongos y otros problemas fitosanitarios.

Estos puntos resaltan la complejidad de los efectos de una inundación en las edificaciones y su entorno, subrayando la importancia de contar con medidas preventivas y de rehabilitación efectivas para mitigar las consecuencias.

3. Identificación de los posibles daños en edificaciones debido a inundaciones

Este capítulo detalla los daños que pueden producirse en una edificación cuando ocurre una inundación. Abarca la identificación de puntos vulnerables, la inspección de elementos de valor, y la evaluación de daños en función del nivel de agua.

  • Identificación e inventario de puntos débiles: La ubicación y el riesgo del edificio son determinantes para identificar sus puntos débiles y reducir la vulnerabilidad ante las inundaciones. Los principales puntos de entrada del agua en las construcciones son los defectos en el mortero de ladrillo o mampostería, que facilitan la infiltración; las grietas en fachadas y juntas estructurales, especialmente en las uniones entre materiales diferentes, como paredes y losas; las ventanas y puertas, donde las fallas en el sellado y el contacto de los marcos permiten filtraciones; y las escaleras y entradas a sótanos, que al estar en niveles inferiores favorecen la acumulación de agua.
  • Comprobación de estabilidad estructural: Es crucial evaluar la capacidad de resistencia de los elementos estructurales a las fuerzas del agua, ya que las presiones desiguales pueden dañar paredes y pisos. La diferencia en la rapidez de entrada y salida del agua entre el exterior y el interior del edificio puede generar presión adicional, ocasionando daños estructurales importantes en muros y suelos.
  • Inspección de los elementos de valor del edificio: Realizar un inventario de los elementos importantes en el edificio permite diagnosticar daños potenciales y planificar su aseguramiento. Estos elementos se clasifican en: seres vivos (personas, mascotas y animales en actividades agropecuarias), continente (que abarca la estructura y el equipamiento, como cimientos, muros, sistemas de electricidad, agua y ventilación) y contenido (que varía según el uso del edificio e incluye mobiliario, documentos y materiales peligrosos).
  • Diagnóstico de daños en función de la altura del agua: El nivel del agua en el edificio influye directamente en el grado de daño. Ejemplos de daños según el nivel son:
    • 0 a 0,3 m (debajo del nivel de la planta baja): Posibles erosiones en cimientos, corrosión en elementos metálicos, acumulación de limo, y formación de moho.
    • 0,3 a 0,5 m: Saturación de revestimientos de paredes y suelos, problemas de humedad, y daños en puertas internas y externas.
    • Más de 0,5 m: Daños estructurales graves debido a la presión del agua, corrosión y fallos generalizados en sistemas eléctricos y sanitarios.

Estos daños muestran la importancia de realizar un diagnóstico exhaustivo para implementar medidas de mitigación eficientes, que garanticen la seguridad estructural del edificio y la protección de sus ocupantes y contenido.

Figura 3. Inventario de puntos de entrada del agua de inundación. Fuente: Preparing for Flood, Interim guidance for improving the flood resistance of domestic and small business properties. Office of the Deputy Prime Minister. 2003. Environment Agency – UK.

4. Factores de vulnerabilidad que agravan los daños por inundaciones

Las características constructivas y de mantenimiento de una edificación influyen en su vulnerabilidad frente a las inundaciones. Algunos factores clave incluyen:

  • Ausencia de sobrecimiento e impermeabilización: El sobrecimiento es una barrera de 30-50 cm de altura que se coloca en la base de los muros, y su función es proteger contra la humedad que asciende del suelo. La ausencia de este elemento en una construcción permite que el agua entre en contacto directo con las paredes, lo que facilita la absorción de agua por capilaridad. Además del sobrecimiento, la impermeabilización de cimientos y muros de la planta baja es vital para prevenir que el agua dañe las estructuras.
  • Calidad de los materiales: Cada material de construcción reacciona de manera distinta a la exposición prolongada al agua. La calidad del cemento, la arena y otros materiales utilizados en la construcción de los bloques y los cimientos influye en la resistencia de la edificación frente a las inundaciones. Los materiales de baja calidad se desintegran más rápidamente cuando entran en contacto con el agua. En áreas con edificaciones antiguas de tapial, por ejemplo, estos tienden a disolverse tras un contacto prolongado con el agua, provocando la descomposición de la estructura. El bahareque, compuesto tradicionalmente por madera, cañas y barro, presenta baja resistencia a la humedad y se deteriora rápidamente, con desprendimientos de revestimiento y deformaciones en la estructura de madera o caña, lo que puede causar inclinaciones o incluso el desplome de las viviendas. En el caso de la mampostería, aunque aparenta ser resistente, los bloques de cemento, por su porosidad y la falta de cocción de algunos materiales, son vulnerables al agua. La humedad puede deteriorar las primeras hiladas, debilitar la base y provocar el desplome parcial o total de la estructura, especialmente en zonas donde los bloques son de baja calidad o con una proporción insuficiente de cemento.
  • Errores en la construcción: En algunas construcciones, se cometen errores técnicos que comprometen la estabilidad de la estructura, especialmente en zonas inundables. Por ejemplo, el uso incorrecto de aparejos en mampostería o la falta de conocimientos técnicos en la ejecución de los cimientos puede resultar en problemas estructurales graves cuando la edificación enfrenta una inundación.

5. Medidas preventivas para minimizar daños en situaciones de inundación

La implementación de medidas preventivas ayuda a minimizar el impacto de las inundaciones en las edificaciones. Estas son algunas acciones recomendadas:

  • Inspección y mantenimiento regulares: Es crucial que las edificaciones en zonas propensas a inundaciones reciban mantenimiento constante y revisiones estructurales periódicas. Las inspecciones técnicas pueden identificar signos de desgaste o debilidades estructurales antes de que se conviertan en problemas graves. Esto incluye revisar cimientos, paredes y elementos de soporte clave.
  • Empleo de materiales resistentes al agua: Al construir o rehabilitar una vivienda en una zona propensa a las inundaciones, se recomienda usar materiales menos porosos y resistentes al agua. Asimismo, en áreas vulnerables, se recomienda aplicar revestimientos y pinturas impermeables en paredes y cimientos para evitar la absorción de humedad.
  • Adecuación del terreno y del sistema de drenaje: El sistema de drenaje del terreno circundante a una edificación es fundamental para evitar que el agua se acumule y afecte a los cimientos. En zonas propensas a las inundaciones, es importante crear canales de drenaje y pendientes que faciliten la salida del agua hacia áreas de menor riesgo.

6. Recomendaciones de emergencia para responder a inundaciones en edificaciones

En caso de inundación, estas son algunas recomendaciones prácticas para garantizar la seguridad de las personas y proteger, en la medida de lo posible, la estructura del edificio:

  • Inspección inmediata de daños: Una vez que el nivel del agua haya descendido, es fundamental realizar una inspección detallada del edificio para identificar daños visibles y ocultos. Los técnicos deben evaluar los cimientos y la estabilidad de las paredes para identificar signos de debilitamiento estructural que puedan suponer un riesgo.
  • Secado y limpieza de estructuras: Es crucial crucial eliminar el agua acumulada y permitir que las estructuras afectadas se sequen. El secado evita que la humedad siga dañando los materiales de construcción. Además, se debe limpiar la suciedad y los restos dejados por la inundación, ya que estos pueden acelerar el deterioro de los materiales.
  • Refuerzo y reparación de cimientos y paredes: Si las inspecciones revelan daños en los cimientos o paredes, es necesario realizar refuerzos inmediatos para evitar colapsos. Los cimientos debilitados pueden reforzarse con elementos estructurales adicionales y las paredes pueden requerir tratamientos impermeabilizantes o refuerzos de mampostería.

Conclusión

Entender los efectos de las inundaciones en las edificaciones es fundamental para aplicar medidas de prevención y reparación efectivas. Estos eventos pueden causar daños severos en la estructura, la estabilidad y el contenido de los edificios, lo que subraya la necesidad de realizar un diagnóstico preciso y de llevar a cabo acciones correctivas. La identificación de las áreas vulnerables, junto con el uso de materiales adecuados y sistemas de drenaje eficientes, es esencial para reducir los riesgos. Asimismo, el mantenimiento regular y una respuesta rápida ante las inundaciones son cruciales para proteger tanto la seguridad de los ocupantes como la integridad del edificio. La implementación de técnicas constructivas apropiadas mejora la resistencia de las estructuras frente a estos desastres.

A continuación, dejo algunos documentos que creo que pueden ser de interés.

Descargar (PDF, 24.19MB)

Descargar (PDF, 50.33MB)

Descargar (PDF, 1.26MB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Técnica innovadora optimiza estructuras de hormigón y reduce emisiones de CO₂ al considerar la interacción suelo-estructura

El artículo científico, titulado «Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction» y publicado recientemente en Engineering Structures, una de las revistas de mayor impacto en ingeniería civil, aborda un desafío clave en la ingeniería estructural: cómo optimizar el diseño de estructuras de hormigón armado para minimizar su impacto ambiental, con especial atención a la reducción de las emisiones de CO₂.

Esta investigación es el resultado de una colaboración internacional realizada en el marco de los proyectos HYDELIFE y RESILIFE, cuyo investigador principal es Víctor Yepes, y es fruto de una colaboración internacional entre investigadores de Cuba, Brasil y España.

Contexto de la investigación

La optimización estructural ha sido ampliamente explorada en las últimas décadas debido a la creciente necesidad de reducir los costes de construcción y el uso de materiales, todo ello mientras se minimiza el impacto ambiental. En el caso de las estructuras de hormigón armado, que son esenciales en la construcción de edificios y obras de infraestructura, optimizar su diseño conlleva implicaciones significativas en cuanto al ahorro de recursos y la reducción de las emisiones de CO₂.

Los problemas de optimización estructural pueden resolverse mediante métodos exactos, como la programación matemática, o mediante métodos heurísticos que imitan procesos naturales (como la evolución genética o el comportamiento de enjambres). Aunque los métodos heurísticos son más eficientes para problemas complejos y no lineales, como los que involucran grandes estructuras tridimensionales, requieren un alto coste computacional. Para abordar este problema, los autores proponen el uso de metamodelos, que son modelos simplificados que permiten realizar simulaciones con un consumo computacional mucho menor sin sacrificar demasiada precisión. En este estudio, se utiliza un metamodelo basado en Kriging, una técnica que permite aproximar el comportamiento de estructuras complejas.

Además, el estudio introduce una novedad crucial: la inclusión de la interacción suelo-estructura (SSI, por sus siglas en inglés) durante el modelado. Esta interacción, que muchas veces se ignora en los modelos tradicionales, afecta significativamente al comportamiento de la superestructura (el marco de hormigón). Ignorarla puede dar lugar a diseños menos precisos que no tienen en cuenta los asentamientos diferenciales del suelo, lo que puede provocar tensiones adicionales y un mayor deterioro de las estructuras con el tiempo.

Metodología

La investigación emplea un enfoque combinado de optimización heurística convencional y una estrategia basada en Kriging para optimizar marcos espaciales de hormigón armado. El objetivo es reducir las emisiones de CO₂ de las estructuras optimizadas, en línea con los esfuerzos para disminuir el impacto ambiental del sector de la construcción. El estudio incluye tres estudios de caso, cada uno con diferentes configuraciones estructurales (variando la longitud de los vanos y el número de niveles de las estructuras) para generalizar los resultados.

El elemento clave en esta investigación es la inclusión de la interacción suelo-estructura, que afecta al comportamiento global del sistema. Los autores utilizan un modelo de Winkler, que representa el suelo como un conjunto de resortes con rigidez variable en función de las características del suelo, y lo implementan en dos tipos de suelos: uno cohesivo y otro granular. Esta diferenciación es importante porque cada tipo de suelo responde de manera distinta a las cargas, lo que provoca asentamientos que, en última instancia, influyen en las tensiones de la superestructura. La plataforma CSi-SAP2000 se utilizó como motor de cálculo, mientras que el análisis geotécnico y estructural se integró mediante MATLAB.

Resultados

Uno de los hallazgos más destacados del estudio es que la inclusión de la interacción suelo-estructura modifica significativamente los diseños estructurales. En general, las estructuras diseñadas teniendo en cuenta la interacción suelo-estructura requieren más material (mayores cantidades de hormigón y acero), lo que refleja el aumento de tensiones debido a los asentamientos diferenciales. Por ejemplo, en comparación con un modelo con soportes rígidos ideales, las estructuras que consideran la inclusión de la interacción suelo-estructura muestran un aumento del 12,03 % en las emisiones de CO₂ en suelos cohesivos y hasta un 18,81 % en suelos friccionales.

Los elementos estructurales más afectados por la interacción suelo-estructura son las columnas. Esto se debe a que los asentamientos diferenciales incrementan los momentos flectores en las columnas, lo que requiere un refuerzo adicional y secciones más grandes para resistir las nuevas tensiones. En algunos casos, las emisiones de CO₂ asociadas a las columnas aumentaron más del 60 % al considerar la interacción con el suelo. Los resultados son especialmente marcados en suelos granulares, donde los asentamientos diferenciales son más pronunciados.

Además, la metodología basada en metamodelos, asistida por la técnica de Kriging, demostró ser eficaz para lograr optimizaciones con un alto grado de precisión (hasta un 98,24 % en suelos cohesivos y un 98,10 % en suelos granulares), todo ello reduciendo el tiempo de cálculo en aproximadamente un 90 % en comparación con los métodos heurísticos convencionales.

Implicaciones

Este estudio tiene importantes implicaciones prácticas para el diseño de estructuras de hormigón armado. La inclusión de la interacción suelo-estructura permite obtener diseños más robustos y precisos, lo que reduce el riesgo de fallos prematuros y la necesidad de costosos trabajos de mantenimiento a largo plazo. Los modelos que no tienen en cuenta la interacción suelo-estructura pueden dar como resultado estructuras que inicialmente parecen eficientes, pero que con el tiempo se deterioran más rápidamente debido a las tensiones adicionales no previstas. Por tanto, incluir esta interacción desde el inicio del diseño mejora significativamente la durabilidad y la fiabilidad de las estructuras.

Desde el punto de vista ambiental, el uso de metamodelos para optimizar estructuras de hormigón supone un importante avance. Al reducir el material necesario y mejorar la eficiencia estructural, se contribuye a la reducción de las emisiones de CO₂, un objetivo clave en la lucha contra el cambio climático. Además, la metodología propuesta ofrece un enfoque más sostenible al disminuir los recursos computacionales necesarios para realizar simulaciones complejas.

En conclusión, la inclusión de la interacción suelo-estructura y el uso de metamodelos basados en Kriging suponen una contribución innovadora al campo de la ingeniería estructural. Esta investigación no solo proporciona mejores resultados de diseño, sino que también tiene el potencial de reducir el impacto ambiental de las estructuras de hormigón armado, lo que hace que el sector de la construcción sea más sostenible y eficiente.

Referencia:

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction. Engineering Structures, 293:116657. DOI:10.1016/j.engstruct.2023.116657

Este artículo está publicado en abierto, por lo que puedes descargar aquí mismo:

Descargar (PDF, 8.18MB)

Grandes vertidos de hormigón

Figura 1. Vertido de 16 200 m³ de hormigón en la losa de cimentación del rascacielos Wilshire Grand Center. https://ycivilengineering.blogspot.com/2014/02/record-mundial-en-vertido-continuo-de.html

Se considera un gran vertido la colocación de más de 200 m³ de hormigón en un mismo elemento. Es el caso del hormigonado en presas o en grandes losas de cimentación, entre otros. Por ejemplo, en la losa de cimentación del rascacielos Wilshire Grand Center (Los Ángeles, Estados Unidos), se vertieron 16 200 m³ de hormigón en un lapso de 18 horas y media, empleando 208 camiones que realizaron más de 2100 viajes. Se llenó un enorme hueco de 5,5 m de profundidad que está revestido con 3180 toneladas de armaduras de acero.

Los principales problemas asociados a los grandes vertidos son la liberación de una gran cantidad de calor de hidratación y la consiguiente contracción del hormigón al enfriarse, lo que puede causar fisuras. En estructuras de gran envergadura, como las presas, los espesores son tan significativos que la pérdida de calor de la masa a través de su superficie es extremadamente lenta, a menudo tardando varios meses. Este prolongado período de elevación de la temperatura provocan fisuras considerables debido a la retracción térmica. A continuación, se presentan algunas recomendaciones para mitigar los efectos de la colocación de grandes masas de hormigón.

Las medidas a adoptar para este tipo de hormigonado empiezan en el proceso de dosificación, en el que se deben utilizar cementos de bajo calor de hidratación (inferiores a 65 cal/g a los cinco días de edad), sustituir parte del cemento por cenizas volantes o escorias de alto horno y enfriar los componentes. En cuanto al procedimiento de construcción, se recomienda evitar diferencias de temperatura superiores a 20 °C entre dos puntos cualesquiera, evitar restricciones externas y hormigonar de forma continua.

El cemento de bajo calor de hidratación, a veces llamado «cemento frío», resulta especialmente útil en la producción de grandes volúmenes de hormigón concentrado, dado que reduce significativamente el calor liberado durante la reacción de hidratación, evitando así la formación de fisuras térmicas debido al rápido secado que puede provocar el intenso desprendimiento de calor. Por otro lado, debido a esta misma razón, son altamente susceptibles a las bajas temperaturas, las cuales retrasan significativamente su proceso de endurecimiento. Por lo tanto, no se recomienda su uso cuando la temperatura desciende por debajo de +5 °C. En general, se debe minimizar la cantidad de cemento utilizada. Un exceso de cemento conlleva la necesidad de incrementar la cantidad de agua, lo que puede provocar problemas de fisuración y pérdida de resistencia. Es esencial recordar que los mejores hormigones son aquellos que proporcionan las características de resistencia y durabilidad deseadas con el menor consumo posible de cemento. Un exceso de cemento, especialmente si es rico en silicato tricálcico, genera una considerable liberación de calor. Esto puede provocar tensiones térmicas diferenciales que superen la resistencia a la tracción del hormigón, sobre todo en las etapas tempranas de fraguado.

Además de reducir la cantidad de cemento y, por tanto, el calor de fraguado (y, en consecuencia, el riesgo de fisuración), la inclusión de puzolanas y cenizas conlleva otros beneficios significativos. Estos materiales no solo mejoran la trabajabilidad de la mezcla fresca, lo que se traduce en una reducción del contenido de agua necesario para el amasado (entre un 5 % y un 8 %), sino que también aumentan la resistencia y promueven una mayor durabilidad del hormigón.

El control de la temperatura se realiza mediante termopares colocados a 25 mm de la superficie exterior del hormigón y en el centro del elemento. Si la diferencia de temperaturas supera los 20 °C, se debe elevar la temperatura de la zona más fría utilizando una capa de arena, láminas de polietileno, cartón aislante, mantas aislantes, lonas, etc., aplicadas durante varios días. Para reducir la temperatura máxima alcanzada, se recomienda utilizar cementos de bajo calor de hidratación y reemplazar parte del cemento por aditivos. Estas medidas son efectivas para elementos de hasta 2,5 m de espesor.

En elementos más gruesos, el hormigón permanece en condiciones adiabáticas durante muchos días, lo que acelera la hidratación del cemento debido al aumento de la temperatura. Aproximadamente, la temperatura máxima aumenta en 12 °C por cada 100 kg de cemento Portland por m³ de hormigón. En estos casos, el uso de retardadores puede retrasar el aumento de temperatura, pero no reducirlo.

Las restricciones al enfriamiento pueden surgir cuando el hormigón se coloca sobre una base ya endurecida o cuando la secuencia de vertido deja una masa significativa atrapada entre dos áreas de hormigón endurecido con armadura intermedia. En situaciones donde no se puede evitar esta restricción a la contracción o dilatación térmica, es fundamental colocar suficiente armadura de distribución para controlar la formación de fisuras.

Además, se recomienda verter el hormigón de manera continua. Esto requiere un suministro adecuado de hormigón en las proximidades y una planificación cuidadosa. La realización de vertidos en pequeñas cantidades puede ser poco recomendable debido a la creación de numerosas juntas de hormigonado.

Os dejo algunos vídeos ilustrativos. Espero que os interesen.

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

TIKTIN, J. (1994). Procesamiento de áridos: instalaciones y puesta en obra de hormigón. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Madrid, 360 pp. ISBN: 84-7493-205-X.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Diseño sostenible de los cimientos de los aerogeneradores terrestres

Acaban de publicarnos un artículo en el Journal of Physics: Conference Series, referente a la comunicación que presentamos en la WindEurope Annual Event 2024 en Bilbao. El estudio se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El documento evalúa la sostenibilidad de los cimientos de los aerogeneradores utilizando un enfoque holístico, comparando diferentes alternativas concretas en función de los impactos del ciclo de vida y empleando un modelo de toma de decisiones multicriterio. Cuantifica la sostenibilidad y clasifica el hormigón con escorias de alto horno como el más sostenible, seguido del hormigón convencional y las cenizas volantes, y proporciona una metodología para la optimización del diseño con una perspectiva sostenible.

Las conclusiones más importantes de este trabajo son las siguientes:

  • El estudio concluye que la alternativa del hormigón con escorias molidas de alto horno (GBFS) demuestra índices de sostenibilidad más altos en comparación con el hormigón convencional (CONV) y el hormigón con cenizas volantes (FA) para cimentaciones de aerogeneradores.
  • El GBFS supera al CONV y al FA en términos de impacto ambiental, mientras que el CONV es más económico que el GBFS y el FA, y el GBFS muestra impactos sociales más destacados según los indicadores de los trabajadores.
  • El documento hace hincapié en la importancia de tener en cuenta simultáneamente las dimensiones económica, ambiental y social al optimizar el diseño, y destaca la necesidad de adoptar un enfoque holístico de la sostenibilidad en el diseño de las cimentaciones de las turbinas eólicas.

Abstract

Recently, wind power has emerged as a prominent contributor to electricity production. Minimizing the costs and maximizing the sustainability of wind energy is required to improve its competitiveness against other non-renewable energy sources. This communication offers a practical approach to assess the sustainability of wind turbine generator foundations from a 3-dimensional holistic point of view. Specifically, the main goal of this study is to analyse the life cycle impacts of one shallow foundation design by comparing three different concrete alternatives: conventional concrete, concrete with 66-80% of blast furnace slags and concrete with 20% fly ash, and then to apply a Multi-Criteria Decision-Making model based on TOPSIS method to evaluate and compare the resulting sustainability of each alternative considered. The study results in a methodology for quantifying sustainability rather than simply qualifying it. Therefore, with a sustainable perspective, this methodology can be employed for design optimization, such as geometry and materials. Specifically, in this study, concrete with blast furnace slags emerges as the top-ranked sustainable alternative, followed by conventional concrete in second place and the fly ash option in third position.

Reference:

MASANET, C.; NAVARRO, I.; COLLADO, M.; YEPES, V. (2024) Journal of Physics:Conference Series, 2745:012005. DOI:10.1088/1742-6596/2745/1/012005

Esta comunicación está en abierto, por lo que os la dejo para su descarga.

Descargar (PDF, 808KB)

 

Hormigón de limpieza en fondos de excavación

Figura 1. Hormigón de limpieza. https://www.paviconj-es.es/noticias/hormigon-de-limpieza/

El hormigón de limpieza (HL) tiene como objetivo evitar la desecación del hormigón estructural durante su vertido, así como una posible contaminación de este durante las primeras horas de su hormigonado. El Anejo 10 del Código Estructural detalla el alcance, los materiales y las especificaciones para este tipo de hormigón. Para esta aplicación, se debe usar el hormigón HL-150/C/TM, es decir, tal y como se indica en la identificación, donde la cantidad mínima de cemento por metro cúbico es de 150 kg, como se especifica en su identificación. Se sugiere que el tamaño máximo del árido sea inferior a 30 mm para mejorar la manejabilidad durante su aplicación. Estos hormigones tienen una baja proporción de cemento, por lo que se aconseja la inclusión de aditivos reductores de agua para minimizar la porosidad en su estado endurecido.

Lo habitual en obra es extender una capa de hormigón de regularización sobre la superficie del fondo de excavación. Según el Código Estructural, los hormigones de nivelación o limpieza de excavaciones no se consideran de naturaleza estructural y, por tanto, no están sujetos a los requisitos de resistencia mínima establecidos para otros tipos de hormigón, ya sea en masa, armado o pretensado. Sin embargo, cuando las piezas estructurales están en contacto directo con el terreno y no se ha aplicado una capa de limpieza, el recubrimiento mínimo requerido es de 70 mm, según lo establecido en el Artículo 44.2.1.1.

La finalidad de esta solera es proporcionar una base plana y horizontal para la zapata y, en suelos permeables, evitar que la lechada de hormigón estructural penetre en el terreno, dejando los áridos de la parte inferior sin recubrimiento, lo que daría como resultado un hormigón poroso que facilita la entrada de agua. Se recomienda un espesor mínimo de 10 cm para la solera de hormigón pobre y su superficie debe nivelarse de manera que el canto del cimiento se ajuste adecuadamente en cada punto, con una discrepancia de menos de 20 mm respecto al valor teórico indicado en los planos.

Figura 2. Hormigón de limpieza. https://www.lesterrassesresidencial.es/proceso/hormigon-de-limpieza/

Dado su reducido espesor y su función como hormigón de sacrificio, es necesario aplicar un proceso de curado para minimizar la desecación que pueda sufrir al entrar en contacto directo con el terreno. La altura máxima del hormigón de limpieza será la misma que la prevista en el proyecto para la base de las zapatas o vigas riostras.

En resumen, el hormigón de limpieza ofrece varias ventajas:

  • Previene que el hormigón estructural que se vierte posteriormente para el arriostrado entre en contacto con el suelo.
  • Aunque no tiene una función estructural en la obra, mejora la calidad y la durabilidad del hormigón estructural.
  • Contribuye a conformar el volumen geométrico requerido para un propósito específico.
  • Se puede elaborar in situ, lo que elimina la necesidad de fabricarlo en planta.
  • Proporciona un nivelado excelente, lo que facilita las tareas posteriores de levantamiento de muros de carga u otros elementos de construcción.
  • Evita la contaminación de las armaduras y las protege.
  • Previene la deshidratación del hormigón estructural durante el vertido.

Os dejo a continuación el Anejo 10 del Código Estructural donde se define el alcance y las especificaciones que deben tener los hormigones de limpieza.

Descargar (PDF, 680KB)

Aquí tenéis varios vídeos al respecto. Espero que os sean de interés.

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

MONTERO, E. (2006). Puesta en obra del hormigón. Exigencias básicas. Consejo General de la Arquitectura Técnica de España, Madrid, 750 pp.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Tipo de cemento para hormigones resistentes a sulfatos en cimentaciones

Figura 1. Ataque por sulfatos del hormigón. https://anfapa.com/articulos-tecnicos-morteros-de-reparacion-de-hormigon/1164/causas-quimicas-del-deterioro-del-hormigon

Los sulfatos son compuestos químicos que se encuentran en una gran variedad de concentraciones en el suelo, las aguas subterráneas, las aguas superficiales y las aguas marinas. Entre los sulfatos de origen natural se encuentran algunos suelos orgánicos, suelos con turbas y algunos suelos arcillosos. Otra fuente natural de sulfatos son los sulfatos de origen biológico, industrial o minero presentes en el agua de mar.

La mayoría de los suelos contienen sulfatos, que pueden presentarse en formas tales como calcio, magnesio, sodio, amonio y potasio, ya sea en el suelo mismo o en las aguas subterráneas. Es habitual que las cimentaciones de las estructuras se sitúen en este tipo de suelos, por lo que existe la posibilidad de que los sulfatos presentes ataquen el hormigón. El deterioro del hormigón debido al ataque de sulfatos se distingue por una reacción química en la que el ion sulfato, actuando como agente corrosivo, interactúa con componentes como aluminato, iones de sulfato, calcio y grupos oxhidrilo del cemento Portland endurecido, así como de otros cementos que contienen clínker de Portland, generando principalmente etringita y, en menor medida, yeso, así como una descalcificación. Este fenómeno se denomina «formación diferida de etringita» o «etrignita secundaria». Estas reacciones expansivas también pueden ocasionar fisuras, desprendimientos y pérdida de resistencia en el hormigón, dado que ocurren después de que el hormigón ha alcanzado su estado endurecido y se ha vuelto un cuerpo rígido.

El ataque de los sulfatos derivados de las sales es un fenómeno reconocido desde hace décadas. Ya en 1887, Candlot observó cómo los morteros utilizados en la construcción de las fortificaciones de París se deterioraban, particularmente en las zonas en las que estuvieron en contacto con agua que contenía sulfatos (selenitosas). Esta reacción química genera expansión en la pasta y crea una presión capaz de romperla y, finalmente, desintegrar el hormigón. Es sabido que el sulfato cálcico se combina con la alúmina del cemento para formar la sal de Candlot (etringita), un sulfo-aluminato cálcico que provoca un notable aumento de volumen.

La naturaleza y el alcance de los daños en el hormigón variarán en función de la concentración de sulfatos, el tipo de cationes presentes en la solución de sulfato (ya sea sodio o magnesio), el pH de la solución y, por supuesto, la microestructura de la pasta de cemento endurecida. Algunos tipos de cemento son más susceptibles al sulfato de magnesio que al sulfato de sodio. El mecanismo principal consiste en la sustitución del calcio en el silicato de calcio hidratado, que forma parte de la matriz de cemento, lo que provoca la pérdida de las propiedades de unión de la matriz.

Por lo general, los sulfatos en estado sólido no generan un daño significativo al hormigón; sin embargo, cuando se encuentran en estado líquido, pueden penetrar los vacíos de la estructura y reaccionar con los productos de cemento hidratado. Entre los sulfatos, el de calcio tiende a causar menores daños debido a su baja solubilidad, mientras que el sulfato de magnesio representa un riesgo mayor.

La mayoría de estos sulfatos interactúan con el hidróxido de calcio y los aluminatos de calcio hidratados presentes en el hormigón, lo que provoca cambios en el volumen de la pasta de cemento y, en consecuencia, el deterioro de la estructura de hormigón. Además, el sulfato de magnesio, junto con el hidróxido de calcio, puede reaccionar con el silicato de calcio hidratado, lo que provoca la pulverización del hormigón en masa. En un hormigón poroso, estos ataques encuentran una vía fácil para su acción destructora.

Figura 2. Corrosión en ambiente marino. https://e-struc.com/2017/05/09/patologias-asociadas-la-prescripcion-del-hormigon/

Por otra parte, el hormigón también se ve afectado por los cloruros, que provocan principalmente la corrosión de las armaduras. Los iones cloruro, ya procedan del agua marina o de las sales utilizadas en el deshielo, tienen la capacidad de penetrar a través de los poros del hormigón, tanto cuando estos están completamente saturados como parcialmente. Esta penetración puede desencadenar diversos fenómenos. En la superficie del hormigón, los efectos del ataque por cloruros se manifiestan mediante una fisuración irregular, que resulta de la exposición de las armaduras y su consiguiente corrosión generalizada. Esto conduce a la desintegración gradual del hormigón. Es muy importante recordar que el ambiente marino se considera agresivo hasta una distancia de 5 km de la costa.

Los cementos resistentes a los sulfatos (SR) o al agua de mar (MR) son muy útiles para obras en contacto con terrenos yesíferos o aguas selenitosas y deben tener un bajo contenido en aluminatos. Este tipo de cementos tienen limitado en su composición un contenido de aluminato tricálcico y de alumino-ferrito tetracálcico, según la norma UNE-EN 197-1. Esta limitación en el aluminato tricálcico implica un bajo calor de hidratación, una menor retracción y un desarrollo más lento de las resistencias. A cambio, disminuye la trabajabilidad de las mezclas.

Según la vigente Instrucción de Recepción de Cementos (a fecha de hoy, la RC-16), se consideran cementos resistentes a los sulfatos, además de los definidos en el Anejo I relativo a la norma UNE-EN 197-1 (SR), aquellos con la característica adicional de resistencia a los sulfatos definidos en la norma UNE 80303-1 (SRC). Asimismo, se consideran cementos resistentes al agua de mar aquellos con la característica adicional de resistencia al agua de mar, definidos en la norma UNE 80303-2.

Se usarán cementos resistentes a los sulfatos en obras de hormigón en masa o armado, siempre que su contenido, expresado en iones sulfato, cuyos contenidos sean igual o mayor que 600 mg/l en el caso de aguas, o 3.000 mg/kg en el caso de suelos. Según el Capítulo 7 del Código Estructural, estos límites se ven superados en el caso de las clases de exposición XA2 y XA3, correspondientes al ataque medio y fuerte en un medio agresivo (no sería, por tanto, necesario un cemento sulforresistente en la clase XA1). En el caso de que un elemento estructural de hormigón en masa, armado o pretensado se encuentre sometido al ataque de agua de mar, el cemento a emplear deberá tener la característica adicional de resistencia al agua de mar o, en su defecto, la característica adicional de resistencia a los sulfatos. Lo anterior no será de aplicación si se trata de agua de mar o el contenido en cloruros es superior a 5000 mg/l (art. 43.3.4.1 del Código Estructural).

En el caso de elementos de hormigón en masa en contacto con agua de mar y, por tanto, sometidos a una clase de exposición XA2, y en el caso de elementos de hormigón armado o pretensado que vayan a estar sometidos a una clase de exposición XS2 o XS3, se utilizará un cemento con la característica adicional MR, SR o SRC, según la Instrucción para la recepción de cementos vigente (Art. 43.3.4.2 del Código Estructural).

El Código Estructural recoge en su Anejo 6 las recomendaciones para la selección del tipo de cemento que se debe emplear en hormigones estructurales. Este anejo no hace más que aconsejar, con carácter general, las condiciones que debe cumplir el cemento para su empleo según la instrucción vigente para la recepción de cementos. Además, el tipo de cemento deberá elegirse considerando la aplicación del hormigón, las circunstancias del hormigonado y las condiciones de agresividad ambiental a las que va a estar sometido el elemento de hormigón.

La aplicación estructural, en el caso de las cimentaciones, diferencia entre las ejecutadas con hormigón en masa y las realizadas con hormigón armado. En ambos casos, es necesario cumplir las prescripciones de la vigente Instrucción de Recepción de Cementos relativas al empleo de la característica adicional de resistencia a los sulfatos (SR o SRC) o al agua de mar (MR), cuando corresponda.

  • En el caso de cimentaciones de hormigón en masa, son muy adecuados los cementos comunes tipo CEM IV/B, siendo adecuados el resto de cementos comunes, excepto los CEM II/A-Q, CEM II/B-Q, CEM II/A-W, CEM II/B-W, CEM II/A-T, CEM II/B-T y CEM III/C. En todos los casos, se recomienda la característica adicional de bajo calor de hidratación (LH).
  • Si se trata de cimentaciones de hormigón armado, son muy adecuados los cementos comunes tipo CEM I y CEM II/A, siendo adecuados el resto de cementos comunes a excepción de los CEM III/B, CEM III/C, CEM IV/B, CEM II/A-Q, CEM II/B-Q, CEM II/A-W, CEM II/B-W, CEM II/A-T y CEM II/B-T.
Figura 3. Cemento sulforresistente CEM I 42,5 R-SR5

Atendiendo a la clase de exposición, los tipos de cementos recomendados para la clase XA (ataque químico al hormigón por sulfatos) son los mismos que los aconsejados para la clase XS (corrosión de las armaduras por cloruros de origen marino). En ambos casos, son muy adecuados los cementos CEM II/S, CEM II/V (preferentemente los CEM II/B-V), CEM II/P (preferentemente los CEM II/B-P), CEM II/A-D, CEM III, CEM IV (preferentemente los CEM IV/A) y CEM V/A. Se recuerda que en la clase de exposición XS, es necesario emplear cementos que cumplan las prescripciones relativas a la característica adicional de resistencia al agua de mar (MR).

Para el caso de las clases XA2 o XA3 (moderada o alta agresividad química), es necesario emplear cementos que cumplan las prescripciones relativas a la característica adicional de resistencia a los sulfatos (SR o SRC), tal y como establece el articulado del Código. En los casos en que el elemento esté en contacto con agua de mar, será únicamente necesario que cumplan las prescripciones relativas a la característica adicional de resistencia al agua de mar (MR).

Una relación agua/cemento baja en la dosificación de un hormigón se ve menos afectada por los sulfatos que si es alta, pues provoca que el hormigón sea menos permeable. Además, un contenido de cemento elevado garantiza una mayor durabilidad del hormigón. Es por ello que la Tabla 43.2.1.a del Código indica una relación agua/cemento máxima de 0,50 para las clases XS1 (expuesto a aerosoles marinos, pero no en contacto con el agua del mar) y XS2 (permanentemente sumergido en agua de mar), que se reduce a 0,45 en XS3 (zonas de carrera de mareas o sapicaduras). El contenido mínimo de cemento (kg/m3) será de 300, 325 y 350 para XS1, XS2 y XS3, respectivamente. En el caso de ambiente XA1 (débil agresividad química) y XA2 (moderada agresividad química), la máxima relación agua/cemento es de 0,50, mientras que en XA3 (alta agresividad química), es de 0,45. El contenido mínimo de cemento (kg/m3) será de 325, 350 y 350 para XA1, XA2 y XA3, respectivamente.

La Tabla 43.2.1.b del Código indica la resistencia característica mínima alcanzable para un hormigón fabricado con un cemento de categoría resistente 32,5 R con los contenidos mínimos de cemento y la máxima relación agua/cemento indicados en la Tabla 43.2.1.a del Código. Para hormigón en masa, la exposición XS no tiene mínimos, mientras que, para hormigón armado, es de 30 N/mm² para XS1 y XS2, y de 35 N/mm² para XS3. En las exposiciones XA1 y XA2, la resistencia mínima es de 30 N/mm² tanto en hormigón armado como en hormigón en masa, mientras que para XA3 es de 35 N/mm², en cualquier caso.

Además, una adecuada colocación del hormigón, con un control del vibrado y del curado, puede mejorar su resistencia a los sulfatos, siempre y cuando se cumplan las condiciones anteriormente mencionadas. Tampoco debe olvidarse que, en el caso del hormigón armado, deben guardarse unos recubrimientos mínimos que dependerán del tipo de cemento utilizado, de la vida útil de proyecto y de la clase de exposición, según se desprende del Capítulo 9 del Código Estructural, relativo a la durabilidad de las estructuras de hormigón.

Tabla. Requisitos de dosificación y de resistencia mínima esperada del hormigón para clases de exposición XS y XA, según el Código Estructural.

Os dejo unos vídeos explicativos.

También os dejo un artículo, que creo de interés.

Descargar (PDF, 4.68MB)

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Nuestro proyecto de aerogeneradores en el Anuario InfoRUVID 2023

Es un placer compartir la noticia de que uno de mis proyectos ha sido seleccionado para su inclusión en la sección TECNOLOGÍA de nuestro Anuario InfoRUVID 2023, donde se presentan algunas de las noticias de investigación más relevantes que tuvieron lugar durante el año 2023 y que ya fueron recogidas en alguna de las ediciones mensuales del boletín digital InfoRUVID.

Tanto el boletín como el anuario son editados por la Red de Universidades Valencianas para el fomento de la I+D+i (RUVID) para visibilizar y poner en valor el trabajo investigador que se desarrolla en las universidades y el CSIC de la Comunitat Valenciana y del cual nos sentimos muy orgullosos.

Accede a la versión web del Anuario InfoRUVID 2023 en https://bit.ly/AnuarioInfoRUVID2023, donde podrás consultarlo online o descargarlo en pdf, tanto la versión completa como cada una de sus secciones por separado.

Asimismo, te invitamos a que lo compartas con todas aquellas personas a las que consideres que les podría interesar. ¡Difundamos entre todos el talento de nuestras universidades!

Encofrado de cimentaciones

Figura 1. Encofrado de madera para zapata. Fuente: https://fotos.habitissimo.es/foto/encofrado-cimentacion_176457

Generalmente, las cimentaciones se hormigonan directamente contra el terreno, sin necesidad de encofrarlas. Sin embargo, cuando el terreno es blando y las paredes de las zanjas o pozos tienden a desmoronarse, formando taludes naturales de hasta 45º, es necesario encofrar para mantener la geometría de la cimentación y evitar un desperdicio excesivo de hormigón (Figura 1). Aunque el coste del encofrado pueda parecer elevado, puede compensarse con el ahorro en la cantidad de hormigón utilizado.

Si el terreno es lo suficientemente firme como para mantener una excavación con paredes verticales, pero la cimentación queda ligeramente elevada sobre el nivel del terreno, será necesario utilizar tableros para compensar esta diferencia de altura. Para este tipo de encofrado, los tableros se colocarán junto con sus barras de hinca para fijarlos al terreno. Además, para compensar el desplazamiento del encofrado ante la presión del hormigón, la distancia “a” debe ser ligeramente inferior a la “b”, según la Figura 2.

Figura 2. Encofrado para cimentación elevada sobre el terreno

Con terreno rocoso, a veces resulta más económico utilizar encofrado para la cimentación. En estos casos, suele ser rentable vaciar hasta la cota de asiento de la cimentación (ya sea mediante voladuras o con martillos hidráulicos) y luego encofrar sobre este nivel, en lugar de verter solo hasta la cota superior de la cimentación y posteriormente excavar en la roca cada una de ellas.

En la mayoría de los casos, se recurre al encofrado tradicional realizado completamente en madera. Inicialmente, se construye el entablado para contener el hormigón, fijando tablas a las costillas, llamadas costales o costeros (Figura 3). La alineación longitudinal del tablero se asegura mediante las carreras, ya que las tablas carecen de la rigidez necesaria. Los encofrados de ambas caras de la zapata continua, comúnmente conocidos como costeros, se nivelan utilizando tornapuntas. En la actualidad, la superficie entablada que entra en contacto con el hormigón se compone de tableros de madera monocapa o tricapa de dimensiones estándar de 1,00 x 0,50 m y 2,00 x 0,50 m, en lugar de tablas individuales, cuya colocación resulta laboriosa. Los elementos restantes, como costillas y carreras, continúan fabricándose con tablones y tabloncillos.

Figura 3. Encofrado de cimentaciones por el sistema tradicional en madera. Fuente: https://esn-d.techinfus.com/fundament/opalubka/

Para contrarrestar la presión del hormigón fresco, se instalan tirantes o latiguillos que unen los dos costeros. Dado que la altura del encofrado es limitada y, por ende, la presión también lo es, es suficiente utilizar alambres tensados por torsión para atirantar. La separación entre los costeros se mantiene mediante codales, los cuales se ajustan a medida que se vierten las sucesivas capas de hormigón. Para sujetar los tableros enfrentados frente a la presión del hormigón, se utilizan unos latiguillos. Se trata de una varilla corrugada de unos 6 a 8 mm de diámetro que atraviesa todo el encofrado, colocando en los extremos una rana o perrillo haciendo de tope. Las ranas se fijan a la varilla mediante unos dientes que imposibilitan su desplazamiento. Para recuperar la varilla, esta puede alojarse en un tubo plástico o bien colocarse por el exterior y con la varilla haciendo de tope (Figura 4).

Figura 4. Colocación de rana o perrillo por el exterior y con la varilla haciendo de tope y totalmente recuperable. Fuente: https://construirconjorge.com/rana-tensora/

Como alternativas adicionales al encofrado de madera, existen cimentaciones encofradas que emplean paneles de chapa o encofrado tipo marco (Figuras 5 y 6).

Figura 5. Encofrado metálico para zapata corrida. Fuente: https://www.urbipedia.org/w/index.php?curid=36621

 

Figura 6. Encofrado metálico para zapata. Fuente: Ignacio Serrano (desdeelmurete.com)

Una alternativa es la utilización de un encofrado perdido de polipropileno alveolar o bien mallazos con barras de diferentes diámetros y una lámina de polietileno (Figura 7). En este caso es muy fácil de instalar, debido a su peso reducido y no es necesario desencofrar ni limpiar el encofrado para un nuevo uso. Además, no existen fugas de cemento líquido y el elemento plástico sirve de protección al hormigón en caso de aguas subterráneas agresivas.

Figura 7. Encofrado perdido para cimentación de lámina de polipropileno Fuente: https://morcon.co.uk/new-foundation-domestic-dwelling/

Cuando la altura del cimiento sea pequeña, es posible encofrar con un murete de ladrillo o bien de bloques de hormigón, que queda perdido, tal y como se muestra en la Figura 8. Hay que tener mucha precaución con este tipo de encofrado, pues la altura hace que el empuje del hormigón fresco sea alto y es fácil que se rompa.

Figura 8. Fuente: https://www.facebook.com/photo/?fbid=678200360980000&set=pcb.678200414313328

Os dejo a continuación algunos vídeos, algunos de encofrados de madera, y otro de polipropileno. Espero que os sean de interés.

Referencias:

AFECI (2021). Guía sobre encofrados y cimbras. 3ª edición, Asociación de fabricantes de encofrados y cimbras, 76 pp.

ANDECE (2020). Guía técnica. Elementos prefabricados de hormigón para obras de ingeniería civil, 86 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

MEDINA, E. (2014). Construcción de estructuras de hormigón armado en edificación. 3ª edición, Biblioteca Técnica Universitaria, Bellisco Ediciones, Madrid, 502 pp.

PEURIFOY, R.L. (1967). Encofrados para estructuras de hormigón. McGraw-Hill y Ediciones Castillo, Madrid, 344 pp.

RICOUARD, M.J. (1980). Encofrados. Cálculo y aplicaciones en edificación y obras civiles. Editores Técnicos Asociados, S.A. Barcelona, 312 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 408 pp. Ref. 477. ISBN: 978-84-1396-238-2

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Maquinaria y procedimientos de construcción: Problemas resueltos

Os presento el libro que he publicado sobre maquinaria y procedimientos de construcción. Se trata de una completa colección de 300 problemas resueltos, abarcando aspectos relacionados con la maquinaria, medios auxiliares y procedimientos de construcción. Su contenido se enfoca en la mecanización de las obras, costos, disponibilidad, fiabilidad y mantenimiento de equipos, estudio del trabajo, producción de maquinaria, sondeos y perforaciones, técnicas de mejora del terreno, control y abatimiento del nivel freático, movimiento de tierras, equipos de dragado, explosivos y voladuras, excavación de túneles, instalaciones de tratamiento de áridos, compactación de suelos, ejecución de firmes, maquinaria auxiliar como bombas, compresores o ventiladores, cables y equipos de elevación, cimentaciones y vaciados, encofrados y cimbras, fabricación y puesta en obra del hormigón, organización y planificación de obras.

Es un libro, por tanto, muy enfocado a los ámbitos de la ingeniería de la construcción, tanto en el ámbito de la edificación, de la minería o de la ingeniería civil. Además, se incluyen 27 nomogramas originales y 19 apéndices para apoyar tanto a estudiantes de ingeniería o arquitectura, como a profesionales que enfrentan desafíos similares en su práctica diaria en obra o proyecto. La colección se complementa con un listado de referencias bibliográficas que respaldan los aspectos teóricos y prácticos abordados en los problemas. Estos problemas son similares a los tratados durante las clases de resolución de casos prácticos en la asignatura de Procedimientos de Construcción del Grado en Ingeniería Civil de la Universitat Politècnica de València (España). Por tanto, el libro resulta adecuado tanto para estudiantes de grado como para cursos de máster relacionados con la ingeniería civil y la edificación.

El libro tiene 562 páginas. Este libro lo podéis conseguir en la propia Universitat Politècnica de València o bien directamente por internet en esta dirección: https://www.lalibreria.upv.es/portalEd/UpvGEStore/products/p_376-7-1

Sobre el autor: Víctor Yepes Piqueras. Doctor Ingeniero de Caminos, Canales y Puertos. Catedrático de Universidad del Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil de la Universitat Politècnica de València. Número 1 de su promoción, ha desarrollado su vida profesional en empresas constructoras, en el sector público y en el ámbito universitario. Ha sido director académico del Máster Universitario en Ingeniería del Hormigón (acreditado con el sello EUR-ACE®), investigador del Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y profesor visitante en la Pontificia Universidad Católica de Chile. Imparte docencia en asignaturas de grado y posgrado relacionadas con procedimientos de construcción y gestión de obras, calidad e innovación, modelos predictivos y optimización en la ingeniería. Sus líneas de investigación actuales se centran en la optimización multiobjetivo, la sostenibilidad y el análisis de ciclo de vida de puentes y estructuras de hormigón.

Referencia:

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

A continuación os paso las primeras páginas del libro, con el índice, para hacerse una idea del contenido desarrollado.

Descargar (PDF, 17.88MB)

Optimización de estructuras de hormigón armado asistida por metamodelos considerando la interacción suelo-estructura

Acaban de publicarnos un artículo en Engineering Structures, revista indexada en el primer cuartil del JCR. El artículo propone una estrategia de optimización metaheurística asistida por metamodelos para minimizar las emisiones de CO₂ de las estructuras de armazón de hormigón armado, teniendo en cuenta la interacción suelo-estructura. El enfoque permite abordar problemas de optimización estructural de alta complejidad y, al mismo tiempo, lograr un ahorro computacional de alrededor del 90%. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Las contribuciones de este trabajo son las siguientes:

  • El artículo propone una estrategia de optimización metaheurística asistida por metamodelos para minimizar las emisiones de CO₂ de las estructuras de armazón de hormigón armado, teniendo en cuenta la interacción suelo-estructura.
  • El enfoque sugerido permite abordar problemas de optimización estructural de alta complejidad y, al mismo tiempo, lograr un ahorro computacional de alrededor del 90%.
  • El estudio muestra que incluir la interacción suelo-estructura conduce a resultados de diseño diferentes a los obtenidos con los soportes clásicos, y que los cimientos también resultan importantes dentro del ensamblaje estructural.
  • El enfoque metaheurístico permite obtener resultados (de media) con una precisión de hasta el 98,24% en los suelos cohesivos y del 98,10% en los suelos friccionales, en comparación con los resultados de la optimización heurística.

Abstract:

It is well known that conventional heuristic optimization is the most common approach to deal with structural optimization problems. However, metamodel-assisted optimization has become a valuable strategy for decreasing computational consumption. This paper applies conventional heuristic and Kriging-based meta-heuristic optimization to minimize the CO2 emissions of spatial reinforced concrete frame structures, considering an aspect usually ignored during modeling, such as the soil-structure interaction (SSI). Due to the particularities of the formulated problem, there are better strategies than simple Kriging-based optimization to solve it. Thus, a meta-heuristic strategy is proposed using a Kriging-based two-phase methodology and a local search algorithm. Three different models of structures are used in the study. Results show that including the SSI leads to different design results than those obtained using classical supports. The foundations, usually ignored in this type of research, also prove significant within the structural assembly. Additionally, using an appropriate coefficient of penalization, the meta-heuristic approach can find (on average) results up to 98.24% accuracy for cohesive soils and 98.10% for frictional ones compared with the results of the heuristic optimization, achieving computational savings of about 90%. Therefore, considering aspects such as the SSI, the proposed metamodeling strategy allows for dealing with high-complexity structural optimization problems.

Keywords:

Structural optimization; Reinforced concrete; Frame structures; CO₂ emissions; Metamodel; Kriging; Soil-structure interaction

Reference:

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction. Engineering Structures, 293:116657. DOI:10.1016/j.engstruct.2023.116657

Al tratarse de un artículo publicado en abierto, os dejo el mismo para su descarga. Espero que os sea de interés.

Descargar (PDF, 8.18MB)