Un nuevo enfoque para mejorar el diseño sostenible de cimentaciones tipo losa

Acaban de publicar nuestro artículo en la revista Environmental Impact Assessment Review (primer cuartil del JCR), en el que se propone un método directo y más riguroso para calcular el módulo de balasto en losas de cimentación, que incorpora un nuevo enfoque de seguridad y criterios de sostenibilidad para mejorar el diseño suelo-estructura.

Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal, junto con el profesor Julián Alcalá, en la Universitat Politècnica de València.

En las últimas décadas, el diseño de cimentaciones ha evolucionado hacia soluciones más seguras, eficientes y sostenibles. Sin embargo, el módulo de balasto vertical (Ks), uno de los parámetros más utilizados en la modelización del contacto suelo-estructura, sigue empleándose en muchos proyectos como si se tratara de una propiedad intrínseca del terreno. El artículo analizado sugiere un cambio de paradigma en esta práctica, al introducir un método directo para estimar Ks a partir de la relación carga-asentamiento, así como un nuevo marco de seguridad orientado al diseño sostenible. Esta aportación es especialmente relevante en el caso de las cimentaciones tipo losa, habituales en edificios y estructuras industriales.

El estudio parte de una cuestión fundamental: ¿cómo se puede estimar de forma rigurosa el módulo de balasto vertical (Ks) en losas de cimentación, considerando parámetros geotécnicos habitualmente ignorados y, al mismo tiempo, integrando criterios de sostenibilidad y seguridad en el diseño?

Esta cuestión surge de las deficiencias detectadas en los métodos indirectos y semidirectos que se emplean comúnmente, ya que no consideran aspectos clave como la profundidad de la influencia o los efectos de compensación de cargas.

Los autores desarrollan una metodología directa que combina varias herramientas avanzadas de análisis geotécnico:

  • Teoría del semiespacio elástico para representar el comportamiento del terreno.

  • Análisis de asientos por capas, con el fin de capturar la variabilidad en profundidad.

  • Mecánica de consolidación basada en ensayos edométricos, que permite incorporar la respuesta deformacional del suelo bajo carga.

  • Consideración explícita de la profundidad de la influencia y de la compensación de cargas, factores que rara vez se incluyen en los métodos tradicionales.

Con este planteamiento, se obtiene directamente un valor de Ks coherente con los principios de la energía elástica y adecuado para modelos avanzados de interacción suelo-estructura. El valor resultante, 5,30 MN/m³, se sitúa entre los límites inferiores y superiores calculados, lo que confirma la consistencia del método.

El estudio no se limita al aspecto puramente geotécnico, sino que también integra una evaluación de la sostenibilidad del ciclo de vida de tres alternativas de losa de hormigón armado. Para ello, combina un proceso jerárquico analítico neutrosófico (NAHP-G) con el método de decisión multicriterio ELECTRE III, considerando dimensiones estructurales, ambientales y socioeconómicas.

Además, se introduce un coeficiente de seguridad específico para Ks, calibrado para considerar la variabilidad espacial del subsuelo y mejorar el diseño en términos de servicio.

Los resultados del trabajo son especialmente significativos:

  • El método directo permite obtener un Ks más representativo del comportamiento real del terreno y de la losa bajo carga.

  • El nuevo coeficiente de seguridad proporciona un diseño más fiable y coherente con la incertidumbre del subsuelo.

  • Se logra una mejora de 2,5 veces en el índice de seguridad social y una reducción del 50 % en los impactos ambientales respecto a metodologías convencionales.

  • El estudio redefine Ks como una variable de diseño, no como una constante del suelo, corrigiendo así décadas de uso inapropiado en la ingeniería geotécnica.

Las conclusiones del artículo tienen un impacto directo en la práctica profesional:

  1. Mejora del diseño de losas: el método permite ajustar mejor los modelos numéricos y evitar tanto el sobredimensionamiento como los fallos por asientos excesivos.

  2. Integración de la sostenibilidad en fases tempranas del proyecto: el marco NAHP-G + ELECTRE IS proporciona una herramienta objetiva para comparar alternativas de cimentación no solo por criterios técnicos, sino también por criterios ambientales y sociales.

  3. Mayor seguridad y fiabilidad: el nuevo coeficiente de seguridad para Ks ayuda a gestionar la incertidumbre y aumenta los márgenes de seguridad de forma cuantificada.

  4. Aplicación en proyectos con elevada heterogeneidad del terreno: el enfoque resulta especialmente útil en suelos con variabilidad marcada, donde los métodos simplificados generan resultados poco fiables.

Referencia:

SÁNCHEZ-GARRIDO, A.J.; MORENO-SERRANO, J.F.; NAVARRO, I.J.; YEPES, V. (2026). Innovative safety framework and direct load–settlement method to optimize vertical subgrade modulus in sustainable mat foundations. Environmental Impact Assessment Review, 118, 108191. DOI:10.1016/j.eiar.2025.108191

Os dejo el artículo completo para su descarga, ya que está publicado en abierto.

Pincha aquí para descargar

 

Mejores prácticas para el control del nivel freático en proyectos de construcción.

Figura 1. Control del nivel freático. https://www.flickr.com/photos/wsdot/4997287082/

En este artículo se analiza un documento anexo al final: una guía formal de drenaje que detalla las lecciones aprendidas durante un proyecto de ingeniería civil excepcionalmente complejo en Christchurch (Nueva Zelanda), que se llevó a cabo de 2011 a 2016 tras un terremoto. Proporciona un marco para evaluar, diseñar e implementar el drenaje en programas de reconstrucción de infraestructuras o de recuperación tras desastres naturales, con énfasis en las prácticas de construcción y la geología local.

La guía examina diversos sistemas de control del nivel freático, como sumideros, sistemas de well-points y pozos, y ofrece criterios para seleccionar los métodos según la permeabilidad del suelo y la profundidad de la excavación. Además, establece un sistema para determinar la categoría de riesgo de un proyecto de drenaje y describe las medidas necesarias para mitigar los efectos ambientales y prevenir la subsidencia del terreno.

1.0 Introducción y principios fundamentales.

1.1 La importancia crítica del control del agua subterránea.

El control del nivel freático es un factor determinante para el éxito de cualquier proyecto de construcción que implique excavaciones. Una gestión inadecuada o la ausencia de un control efectivo puede comprometer gravemente la estabilidad de las excavaciones, la integridad de las estructuras permanentes y, en última instancia, la viabilidad económica y temporal del proyecto. El agua subterránea no controlada puede generar riesgos geotécnicos significativos, como la tubificación (piping), que es la erosión interna del suelo por el flujo de agua; el levantamiento del fondo (uplift), causado por presiones ascendentes que superan el peso del suelo en la base de la excavación, y una reducción general de la estabilidad del suelo, que puede provocar fallos en los taludes. Este manual recopila las lecciones aprendidas durante el programa de reconstrucción de la infraestructura de Christchurch (SCIRT), en el que la gestión del agua subterránea en condiciones geotécnicas complejas y tras el sismo fue un desafío diario y crítico para el éxito del proyecto. Estos fenómenos no solo suponen una amenaza para la seguridad de los trabajadores, sino que también pueden ocasionar daños en infraestructuras adyacentes y provocar retrasos y sobrecostes considerables.

Figura 2. Rotura de fondo o tapozano

1.2. Propósito y alcance del manual.

El manual proporciona una guía práctica y un proceso normalizado para evaluar, seleccionar, diseñar y monitorizar los sistemas de drenaje en obras de construcción. Con base en las enseñanzas extraídas de proyectos de infraestructura complejos, este documento pretende dotar a los ingenieros y gerentes de proyecto de las herramientas necesarias para prever y gestionar los desafíos relacionados con el nivel freático. El objetivo final es reducir los costes y los retrasos asociados a problemas imprevistos mediante una planificación proactiva y un diseño técnico riguroso de las obras temporales de drenaje.

Este manual aborda el ciclo completo de la gestión del agua subterránea en la construcción e incluye:

  • El contexto geológico y su influencia directa en las estrategias de desagüe.
  • Los sistemas de control del nivel freático disponibles, sus aplicaciones y limitaciones.
  • La mitigación de los efectos ambientales y el cumplimiento de las normativas vigentes.
  • Un marco para la evaluación sistemática de riesgos y la planificación de contingencias.

El documento se centra principalmente en los métodos de control del nivel freático, que consisten en interceptar y extraer el agua subterránea mediante bombeo. También se mencionan brevemente los procedimientos de contención, como las tablestacas o los muros pantalla, que buscan bloquear el flujo de agua hacia la excavación.

Figura 3. Combinación de pantallas con (a) bombeo convencional o (b) barreras horizontales. Adaptado de Cashman y Preene (2012)

1.3. Importancia del contexto geológico.

  • Análisis de acuíferos: una comprensión fundamental de la hidrogeología del emplazamiento es el pilar de cualquier diseño de un drenaje. Es crucial identificar la naturaleza de los acuíferos presentes, ya sean confinados, no confinados o artesianos. La fuente del agua (por ejemplo, la infiltración de lluvia o la recarga de un río) y la presión a la que se encuentra determinan directamente la selección y la eficacia del sistema de drenaje. Por ejemplo, un acuífero confinado o artesiano puede ejercer una presión ascendente significativa, lo que requiere métodos de control más robustos que los de un simple acuífero no confinado. Este conocimiento también es importante para planificar y evitar impactos no deseados en el entorno, como la afectación de pozos de agua cercanos o la inducción de asentamientos en estructuras adyacentes.
  • Análisis del perfil del suelo: el comportamiento del agua subterránea está intrínsecamente ligado a las propiedades del suelo. La permeabilidad del suelo, es decir, su capacidad para permitir el paso del agua, es el factor más crítico, ya que determina la facilidad con la que se puede extraer agua mediante bombeo.
    • Gravas y arenas limpias: son altamente permeables y ceden agua con facilidad, pero pueden generar grandes caudales de entrada.
    • Limos y arcillas: presentan baja permeabilidad, ceden agua muy lentamente y son susceptibles a la consolidación y al asentamiento cuando se reduce la presión del agua.
    • Suelos estratificados: la presencia de capas alternas de alta y baja permeabilidad puede crear condiciones complejas, como acuíferos colgados, que requieren un diseño cuidadoso para su drenaje eficaz.
  • Síntesis de los desafíos geotécnicos: la interacción entre la geología local y las actividades de construcción genera una serie de desafíos específicos que deben anticiparse.

Tabla 1: Desafíos geotécnicos comunes y sus implicaciones.

Desafío geotécnico Implicaciones para las operaciones de drenaje
Presencia de turba y suelos orgánicos Estos suelos tienen un alto contenido de agua y son muy compresibles. El drenaje puede provocar asentamientos significativos y dañar la infraestructura cercana. Por ello, es necesario realizar una evaluación de riesgos muy cuidadosa y un seguimiento de los asentamientos.
Gravas superficiales  Las capas de grava poco profundas pueden complicar la instalación de sistemas como los well-points y generar volúmenes de entrada de agua muy elevados que superen la capacidad de los sistemas de bombeo estándar.
Riesgo de encontrar condiciones artesianas La intercepción de un acuífero artesiano puede provocar un flujo de agua incontrolado hacia la excavación, lo que conlleva un riesgo de inundación, levantamiento del fondo y fallo catastrófico. Por ello, es necesario realizar una investigación geotécnica exhaustiva y elaborar un plan de contingencia robusto.
Niveles freáticos variables Los niveles freáticos pueden fluctuar estacionalmente o en respuesta a eventos de lluvia. El diseño debe ser capaz de manejar el nivel freático más alto esperado, considerando que las variaciones estacionales en Christchurch pueden alcanzar hasta 3 metros.

Por lo tanto, la comprensión profunda del contexto geológico es el primer paso indispensable para realizar una evaluación sistemática de los riesgos y diseñar un sistema de control del nivel freático adecuado.

2.0 Evaluación previa a la construcción y al análisis de riesgos.

2.1 La fase crítica de planificación.

La fase previa a la construcción ofrece la oportunidad más rentable para identificar, analizar y mitigar los riesgos asociados al drenaje de aguas subterráneas. Una evaluación rigurosa en esta etapa permite diseñar adecuadamente las obras temporales, evitar fallos durante la ejecución y realizar una asignación presupuestaria precisa, lo que evita sobrecostos y retrasos imprevistos. Aunque un diseño proactivo suponga una inversión inicial, casi siempre resulta un ahorro global para el proyecto.

2.2 Pasos clave para el diseño del drenaje.

  • Desarrollo del modelo geotécnico: para diseñar un control del nivel freático eficaz, es esencial construir un modelo conceptual del subsuelo. Este proceso debe ser dirigido por un técnico competente y consta de los siguientes pasos:
    1. Revisión de estudios previos: consultar fuentes de información existentes como mapas geológicos, bases de datos geotécnicas, investigaciones previas en la zona y fotografías aéreas.
    2. Evaluación de la permeabilidad: utilizar la información disponible para estimar preliminarmente la permeabilidad de las diferentes capas del suelo.
    3. Evaluación de riesgos inicial: realizar una evaluación de alto nivel sobre la posible presencia de suelos o aguas subterráneas contaminadas, la probabilidad de encontrar grava a poca profundidad y el riesgo de que haya condiciones artesianas.
    4. Decisión sobre investigaciones adicionales: en función de la complejidad y el perfil de riesgo del proyecto, se debe determinar si la información existente es suficiente o si se requieren investigaciones de campo específicas (por ejemplo, sondeos o ensayos de permeabilidad) para definir adecuadamente el modelo del terreno.
  • Técnicas para determinar la permeabilidad: la permeabilidad es el parámetro clave que guía el diseño del control del nivel freático. La siguiente tabla resume los métodos disponibles para su determinación, ordenados aproximadamente por coste y fiabilidad.

 

Método Descripción Aplicabilidad Coste y fiabilidad relativa
1. Empírico (registros de sondeo) Se asignan valores de permeabilidad basados en las descripciones de los suelos obtenidas de los registros de perforación, que se comparan con valores típicos de referencia. Útil para evaluaciones preliminares y proyectos de bajo riesgo. Coste: el más bajo (solo horas de diseño).

Fiabilidad: baja; solo proporciona un orden de magnitud.

2. Empírico (método de Hazen) Estimación de la permeabilidad a partir de las curvas de distribución granulométrica del suelo. Aplicable solo si se cuenta con ensayos de granulometría en suelos arenosos. Coste: bajo si los datos ya existen; de lo contrario, requiere muestreo y ensayos de laboratorio.

Fiabilidad: baja a moderada.

3. Ensayo de laboratorio (carga constante) Mide el flujo de agua a través de una muestra de suelo bajo un gradiente hidráulico constante. Adecuado para suelos con permeabilidades relativamente altas (10⁻² a 10⁻⁵ m/s), como arenas y gravas. Coste: relativamente bajo, pero requiere la obtención de muestras inalteradas.

Fiabilidad: moderada, pero puede no ser representativa de la masa de suelo a gran escala.

4. Ensayo de laboratorio (consolidación/triaxial) Mide la permeabilidad como parte de ensayos de consolidación o de ensayos triaxiales. Adecuado para suelos de baja permeabilidad (≤ 10⁻⁶ m/s), como los limos y las arcillas. Coste: relativamente bajo, pero requiere muestras inalteradas.

Fiabilidad: moderada, sujeta a las mismas limitaciones que el ensayo de carga constante.

5. Ensayo de carga instantánea (slug test) Se induce un cambio rápido en el nivel del agua en un pozo o piezómetro y se mide la velocidad de recuperación del nivel. Realizado in situ en la zona saturada. Puede ser demasiado rápido para suelos muy permeables. Coste: menor que el de un ensayo de bombeo.

Fiabilidad: Proporciona una indicación de la permeabilidad local alrededor del pozo, pero no a escala de sitio.

6. Ensayo de bombeo Se bombea agua desde un pozo a un caudal constante y se mide el abatimiento del nivel freático en el pozo de bombeo y en pozos de observación cercanos. Proporciona datos a gran escala y es adecuado para proyectos de desagüe profundos o de larga duración. Coste: el más alto y el que consume más tiempo (dura de 24 horas a 7 días).

Fiabilidad: la más alta, ya que mide la respuesta del acuífero a una escala representativa de las condiciones reales del proyecto.

2.3 Metodología de evaluación de riesgos

  • Puntuación de riesgos: Para estandarizar el nivel de análisis y supervisión requerido, se propone un sistema de puntuación de riesgos, desarrollado y probado durante el programa SCIRT, que categoriza cada proyecto de control del nivel freático. Este enfoque permite asignar los recursos de diseño de manera proporcional al riesgo identificado, de modo que los proyectos de alta complejidad reciben la atención de especialistas y los de bajo riesgo pueden gestionarse mediante prácticas normalizadas.
  • Matriz de categorización de riesgos: el número de categoría de riesgo (RCN) se calcula multiplicando las puntuaciones asignadas a seis áreas de riesgo clave (RCN = A x B x C x D x E x F), tal y como se muestra en la siguiente tabla:

 

A: Profundidad de excavación Puntuación B: Agua subterránea Puntuación C: Condiciones del terreno Puntuación
< 2 m 1 No se requiere abatimiento 0 Suelos competentes sin necesidad de soporte temporal 1
2 – 3 m 2 Abatimiento < 1 m requerido 1 Limos y arcillas de baja permeabilidad 2
3 – 6 m 6 Abatimiento 1 – 3 m requerido 2 Arenas limosas 3
6 – 15 m 10 Abatimiento 3 – 6 m requerido 5 Turba y suelos orgánicos 3
> 15 m 12 Influencia en cuerpos de agua superficial 7 Intercepta gravas de moderada a alta permeabilidad 6
Abatimiento > 6 – 9 m requerido 10 Arenas fluidas 10
Intercepta acuífero artesiano 10 Suelos contaminados 10
Agua subterránea contaminada 10
D: Duración del drenaje Puntuación E: Coste de componentes del proyecto influenciados por el drenaje Puntuación F: Efectos en servicios, infraestructuras y propiedades adyacentes Puntuación
Excavación abierta por 1 – 2 días 1 < $0.1M 1 Sitio sin construcciones 1
Excavación abierta < 1 semana 2 $0.1M a $0.5M 2 Vía local 2
Excavación abierta por 1 – 4 semanas 3 $0.5M a $1M 3 Vía arterial principal o secundaria 3
Excavación abierta por 1 – 6 meses 4 $1M a $5M 4 Propiedad privada a una distancia menor que la altura de la excavación o estructuras adyacentes sobre pilotes 3
Excavación abierta > 6 meses 5 > $5M 5 Autopista 4
Vías férreas 4
Estructuras históricas con cimentaciones superficiales 4
Infraestructura crítica vulnerable a asentamientos 5

Nota: El Número de Categoría de Riesgo (RCN) se calcula como el producto de las puntuaciones de las 6 áreas (A x B x C x D x E x F).

  • Niveles de acción de diseño recomendados: una vez calculado el RCN, la siguiente tabla define las acciones mínimas de diseño que deben llevarse a cabo.

 

Número de categoría de riesgo (RCN) Consecuencia del riesgo Acciones mínimas de diseño recomendadas
0 – 10 Bajo • No se requiere un estudio de drenaje específico para el proyecto.

• Implementar el sistema de control del nivel freático basado en la experiencia local previa.

11 – 75 Medio • Realizar un estudio de escritorio de alto nivel para evaluar las condiciones del terreno y los riesgos de drenaje.

• Seleccionar métodos de control de nivel freático apropiados considerando restricciones y riesgos.

• Realizar cálculos manuales simples para verificar la idoneidad del diseño de las obras temporales.

76 – 2,500 Alto • Realizar un estudio de escritorio detallado.

• Confirmar las condiciones del terreno y la granulometría mediante al menos un sondeo.

• Realizar cálculos de diseño de drenaje (de simples a complejos según corresponda).

• Desarrollar e implementar un plan de control de asentamientos simple si es necesario.

• Controlar de cerca los sólidos en suspensión durante la descarga.

2,500 – 187,500 Muy Alto • Revisar un informe geotécnico detallado.

• Contratar a un técnico cualificado y experimentado para brindar asesoramiento profesional.

• Realizar investigaciones de campo adicionales (p. ej., ensayos de permeabilidad, ensayos de bombeo).

• Desarrollar e implementar un plan de control de asentamientos.

• Realizar inspecciones de la condición de las propiedades adyacentes antes de comenzar los trabajos.

Una vez evaluado el riesgo y definido el nivel de diseño requerido, el siguiente paso es comprender en detalle las prácticas y metodologías de drenaje disponibles para su ejecución en campo.

3.0 Métodos y prácticas de control del nivel freático

3.1 Introducción a las metodologías

Los métodos de control del nivel freático más comunes en la construcción se basan en la extracción de agua del subsuelo para reducir dicho nivel. La elección del método más adecuado es una decisión técnica que depende fundamentalmente de las condiciones del suelo, la profundidad de la excavación, el caudal de agua previsto y los objetivos específicos del proyecto. Cada método tiene sus propias ventajas y limitaciones, que deben evaluarse cuidadosamente.

3.2 Bombeo desde sumideros 

Descripción y aplicación: el bombeo desde sumideros es el método más simple y, a menudo, el más económico. Consiste en excavar zanjas o pozos (sumideros) en el punto más bajo de la excavación para que el agua subterránea fluya por gravedad hacia ellos y, desde allí, sea bombeada y evacuada. Este método es efectivo en suelos con permeabilidad alta o moderada, como las gravas y las arenas gruesas. Su principal limitación es que el agua fluye hacia la excavación antes de ser controlada, lo que puede causar inestabilidad en los taludes y en el fondo. Existe un alto riesgo de tubificación (piping) y de arrastre de finos, lo que puede provocar asentamientos y generar una descarga de agua cargada de sedimentos que requiere un tratamiento exhaustivo.

Requisitos de diseño e instalación: para que un sumidero sea eficaz, debe cumplir los siguientes requisitos:

  • Profundidad: Suficiente para drenar la excavación y permitir la acumulación de sedimentos sin afectar la toma de la bomba.
  • Tamaño: Mucho mayor que el de la bomba para facilitar la limpieza y el mantenimiento.
  • Filtro: El sumidero debe estar protegido con una tubería ranurada o perforada, rodeada de grava gruesa (20-40 mm) para evitar la succión de partículas finas del suelo.
  • Acceso: Debe permitir la retirada de las bombas para el mantenimiento y la limpieza periódica de los sedimentos acumulados.

Como mejor práctica, se recomienda sobreexcavar el fondo del sumidero y rellenarlo con material grueso para elevar la entrada de la bomba y minimizar la movilización de partículas finas.

Figura 4. Esquema de sumidero y bomba de achique para pequeñas excavaciones, basado en Powers (1992).

Análisis comparativo

Ventajas Inconvenientes
• Coste relativamente bajo. • Moviliza sedimentos del terreno, lo que requiere tratamiento de la descarga.
• Equipos móviles y fáciles de instalar y operar. • No puede utilizarse en «arenas fluidas».
• Solo opera durante los trabajos de construcción. • Tiene un alto potencial de liberar sedimentos en el medio ambiente y es el método más común para incumplir las condiciones de los permisos ambientales.

3.3 Sistemas de well-points

Descripción y aplicación: un sistema de well-points consiste en una serie de tubos de pequeño diámetro (aproximadamente 50 mm) con una sección ranurada en el extremo inferior. Estos tubos se instalan en el terreno a intervalos regulares. Estos tubos, también denominados «puntas de lanza», se conectan a un colector principal, que, a su vez, está conectado a una bomba de vacío. La bomba crea un vacío en el sistema que extrae el agua del subsuelo.

Este método es particularmente efectivo en arenas o suelos con capas de arena. Su principal limitación es la altura de succión, que en condiciones cercanas al nivel del mar es de hasta 8 metros. Para excavaciones más profundas, sería necesario utilizar sistemas escalonados en las bermas.

Consideraciones de diseño

  • Espaciamiento: el espaciamiento entre los pozos de extracción (que suele oscilar entre 0,6 y 3 m) depende de la permeabilidad del suelo, de la geometría de la excavación y del abatimiento requerido. Cuanto más permeable es el suelo, menor debe ser el espaciamiento.
  • Paquetes de filtro: en suelos finos o estratificados, es crucial instalar un paquete de filtro (generalmente, arena de textura media a gruesa) alrededor de cada pozo de extracción. Así se evita el bombeo de finos y se crea una ruta de drenaje vertical más eficiente.
Figura 5. Componentes del sistema. Cortesía de ISCHEBECK. http://www.ischebeck.es/assets/wp-content/uploads/agotamiento_agua/Cat%C3%A1logo%20Wellpoint%2016022012.pdf

Análisis comparativo

Ventajas Inconvenientes
• Descarga limpia: Una vez establecido, el sistema extrae agua limpia que requiere poco o ningún tratamiento. • El desagüe debe realizarse muy cerca del área de trabajo.
• Abatimiento localizado del nivel freático, lo que resulta en menores volúmenes de descarga. • Funciona mejor en suelos uniformes.
• La instalación puede ocupar un espacio considerable en el entorno vial.
• Requiere experiencia para una instalación y colocación efectivas.
• Potencial de rendimiento (caudal) y de abatimiento limitados por la altura de succión.

3.4 Pozos de bombeo profundo (dewatering wells)

Descripción y aplicación: los pozos de bombeo profundo son pozos perforados de mayor diámetro y profundidad que los well-points y están equipados con una bomba sumergible. Se trata de un sistema de ingeniería que debe ser diseñado por un especialista. Cada pozo incluye componentes clave, como una rejilla dimensionada para el terreno, un paquete de filtro diseñado específicamente y un sello anular en la superficie para evitar la recarga superficial.

Este método es adecuado para excavaciones grandes, profundas o de larga duración y puede manejar grandes caudales de agua.

Consideraciones de diseño: el diseño de un sistema de pozos profundos requiere un análisis detallado de los siguientes parámetros:

  • Profundidad y diámetro del pozo: el diámetro debe ser suficiente para alojar la bomba necesaria y la profundidad debe ser significativamente mayor que el abatimiento deseado.
  • Tamaño de la ranura de la rejilla: se diseña en función del tamaño de grano del suelo o del material filtrante para maximizar la entrada de agua y minimizar la entrada de partículas finas.
  • Diseño del filtro: el filtro granular que rodea la rejilla es fundamental para evitar que los materiales finos del acuífero migren hacia el pozo.
  • Distancia entre pozos: Los pozos se espacian típicamente entre 10 y 50 metros. Su diseño es complejo, ya que se basa en la interacción entre los conos de abatimiento de cada pozo.
Figura 6. Agotamiento profundo del nivel freático mediante un pozo filtrante. Elaboración propia basado en Pérez Valcárcel (2004).

Análisis comparativo

Ventajas Inconvenientes
• Ideal para excavaciones de gran envergadura y proyectos de larga duración. • Si se extrae más agua de la necesaria, puede afectar a un área mayor de la prevista, lo que puede causar problemas de asentamiento en suelos compresibles (por ejemplo, turba).
• Descarga limpia una vez que el pozo está desarrollado correctamente. • Puede requerir un tiempo de preparación más largo para lograr el abatimiento del nivel freático.
• Alta capacidad de bombeo, superando problemas de variabilidad del suelo. • Se requiere un mayor nivel de diseño, planificación y ensayos de campo, como los ensayos de bombeo.
• Puede instalarse fuera del área de trabajo directa, liberando espacio en las zonas congestionadas.
• Las bombas sumergibles son mucho más silenciosas, ideales para áreas sensibles al ruido.

Tras describir los métodos individuales, el siguiente paso lógico es proporcionar una guía clara para seleccionar el sistema más apropiado para cada situación en el campo.

4.0 Selección del método apropiado

4.1 Una decisión estratégica

La elección del sistema de control del nivel freático adecuado es una decisión estratégica que debe equilibrar la eficacia técnica, el coste de implementación y de operación y el impacto ambiental potencial. Una elección informada no se basa en la intuición, sino en la recopilación y el análisis de datos específicos del emplazamiento. Una elección incorrecta puede provocar un rendimiento deficiente, sobrecostes y retrasos significativos en el proyecto.

4.2 Datos clave para la decisión

Para tomar una decisión fundamentada sobre el método de drenaje, es imprescindible recopilar la siguiente información:

  • Perfil y tipo de suelo, incluyendo la permeabilidad de cada estrato.
  • Dimensiones de la excavación: ancho, largo y profundidad.
  • Nivel freático existente, así como el nivel al que se necesita bajar (abatimiento requerido).
  • Método de excavación y soporte propuesto: por ejemplo, taludes abiertos o tablestacas.
  • Proximidad a estructuras existentes, cursos de agua y otras infraestructuras sensibles.

4.3 Matriz de decisión

La siguiente tabla sirve de guía para seleccionar una metodología de drenaje según el tipo de suelo predominante.

Guía para la selección de métodos de drenaje según el tipo de suelo.

Tipo de suelo Tasa de flujo de agua subterránea Posibles problemas Metodología de drenaje recomendada
Gravas / cantos Alta Se requieren grandes flujos de agua que pueden provenir de pozos profundos para excavaciones profundas o de sumideros para excavaciones superficiales. Pozos de bombeo profundo y de bombeo desde sumideros.
Arena Baja a media Baja estabilidad de la zanja si se permite que la arena fluya hacia la excavación (arena fluida). Sistemas well-point.
Limo Baja Estabilidad variable y bajo rendimiento de agua, lo que puede requerir un espaciado muy reducido de las puntas de lanza y provocar perching localizado. Sistemas de puntas de lanza (well-pointing) y de bombeo desde sumideros.
Arcilla Muy baja Se han detectado problemas mínimos de estabilidad de la zanja y una posible formación de un nivel freático colgado localizado. Sistemas de puntas de lanza (well-pointing) y de bombeo desde sumideros.
Turba Variable (baja a alta) El drenaje puede provocar la compresión de las capas, lo que provoca asentamientos y daños en los terrenos y en la infraestructura circundantes. Se requiere asesoramiento especializado.
Suelos mixtos Variable (baja a alta) La metodología se basa generalmente en el tipo de suelo predominante y en la unidad geológica que presenta el mayor rendimiento hídrico. Depende de la hidrogeología y de la unidad geológica de mayor rendimiento hídrico.

4.4 Criterios de aplicación específicos

  • Condiciones que favorecen el bombeo desde sumideros (sump pumping):
    • Suelos como grava arenosa bien graduada, grava limpia o arcilla firme o rígida.
    • Acuífero no confinado.
    • Se requiere un abatimiento moderado y no hay fuentes de recarga cercanas (por ejemplo, un arroyo).
    • La excavación tiene taludes poco pronunciados o está protegida por tablestacas hincadas a gran profundidad.
    • Cargas de cimentación ligeras.
  • Condiciones que favorecen los sistemas well-point:
    • Suelos arenosos o interestratificados que incluyan arenas (permeabilidad k = 10⁻³ a 10⁻⁵ m/s).
    • Acuífero no confinado.
    • Se requiere un abatimiento de 5 metros o menos (o de hasta 10 metros si el área de excavación es grande y permite sistemas escalonados).
  • Condiciones que favorecen la instalación de pozos de bombeo profundo (wells):
    • Las condiciones del terreno son demasiado permeables como para que los well-points sean viables.
    • Suelos limosos que requieren un diseño de filtro preciso.
    • Se requiere un abatimiento de más de 8 metros o un abatimiento en un área extensa durante un período prolongado.
    • El acceso a la excavación está restringido o el lugar está congestionado (los pozos pueden ubicarse fuera de las zonas de trabajo).

Independientemente del método elegido, es imperativo gestionar los impactos ambientales asociados, un aspecto crucial que se detallará en la siguiente sección.

Figura 7. Selección del método de drenaje adecuado.

5.0 Mitigación de efectos ambientales y gestión de impactos

5.1 Responsabilidad ambiental y cumplimiento normativo

La gestión del agua subterránea no termina con su extracción, sino que conlleva la responsabilidad de cumplir con la normativa medioambiental y minimizar cualquier impacto negativo en el entorno. Una planificación cuidadosa debe abordar dos aspectos principales: la gestión de la calidad del agua de descarga para proteger los cuerpos de agua receptores y la prevención del asentamiento del terreno, que podría dañar la infraestructura y las propiedades adyacentes.

5.2 Gestión de la calidad del agua extraída

  • Sólidos en suspensión totales (TSS): el agua bombeada desde una excavación, especialmente desde sumideros, a menudo presenta una alta concentración de sedimentos. La normativa medioambiental exige que esta agua sea tratada para eliminar los sólidos antes de su vertido. Por ejemplo, muchos permisos establecen un límite de 150 g/m³ de TSS. Para el control in situ, una herramienta práctica es la evaluación visual comparativa. En un laboratorio, se pueden preparar muestras estándar con concentraciones conocidas de TSS (por ejemplo, 150 g/m³), que sirven como referencia visual para compararlas rápidamente con las muestras de descarga tomadas en el lugar, lo que permite tomar medidas correctivas inmediatas en caso de observar una turbidez excesiva.
  • Agua subterránea contaminada: existe el riesgo de encontrar contaminantes en el agua subterránea, especialmente en áreas urbanas o industriales con un historial de actividades potencialmente contaminantes. Durante la fase de planificación, es crucial identificar las zonas de riesgo. Si el proyecto se ubica en una de estas zonas o si se sospecha de contaminación, deberán realizarse muestreos específicos del agua subterránea para analizar la presencia y concentración de contaminantes. Así se puede planificar un sistema de tratamiento adecuado si fuera necesario.

5.3 Métodos de tratamiento de la descarga

Los tanques de sedimentación son el método principal y más común para tratar la descarga. Su principio de funcionamiento es sencillo: reducir la velocidad del flujo de agua para que las partículas de sedimento se asienten por gravedad. Un diseño eficaz incluye cuatro zonas funcionales:

  1. Zona de entrada: Distribuye el flujo de manera uniforme para evitar turbulencias.
  2. Zona de asentamiento: El área principal donde ocurre la sedimentación.
  3. Zona de recolección: El fondo del tanque donde se acumulan los sedimentos.
  4. Zona de salida: Recolecta el agua clarificada para su descarga.

El dimensionamiento adecuado del tanque es fundamental y debe basarse en el caudal de bombeo y el tamaño de las partículas a eliminar.

Otros métodos

  • Filtrado a través de la vegetación: El agua se descarga sobre una superficie cubierta de vegetación densa (por ejemplo, césped), que actúa como un filtro natural. Este método solo es adecuado como tratamiento secundario tras un tanque de sedimentación.
  • Bolsas de control de sedimentos: Se trata de bolsas de geotextil que se conectan a la salida de la bomba y filtran los sedimentos. Son útiles para caudales bajos y áreas pequeñas, pero pueden obstruirse rápidamente ante altas concentraciones de sedimentos.

5.4 Control del asentamiento del terreno

Causas y riesgos: El abatimiento del nivel freático puede provocar asentamientos del terreno por tres mecanismos principales:

  1. Aumento de la tensión efectiva: al descender el nivel freático, disminuye la presión del agua en los poros del suelo, lo que incrementa la carga que puede soportar el esqueleto sólido del suelo. Esto provoca su compresión y el consiguiente hundimiento de la superficie.
  2. Pérdida de finos: Un diseño de filtro inadecuado o velocidades de flujo excesivas pueden arrastrar partículas finas del suelo y generar vacíos, lo que provoca asentamientos localizados.
  3. Inestabilidad de los taludes: una reducción insuficiente de las presiones de poro o un control inadecuado de las filtraciones puede comprometer la estabilidad de los taludes de la excavación, lo que provoca fallos localizados y desprendimientos de material.

Los suelos blandos y de baja permeabilidad, como los limos, las arcillas y los suelos orgánicos (turba), son los más susceptibles a sufrir asentamientos significativos por consolidación.

Estrategias de mitigación: Para minimizar el riesgo de asentamientos perjudiciales, deben implementarse las siguientes estrategias:

  1. Diseño adecuado de los filtros: hay que asegurarse de que los filtros de pozos o well-points estén correctamente dimensionados para retener las partículas del suelo.
  2. Control de finos: controlar la cantidad de sólidos disueltos en el agua de descarga. Un aumento sostenido puede indicar una posible pérdida de material del subsuelo.
  3. Control del radio de influencia: diseñar el sistema para limitar la bajada del nivel freático más allá de los límites de la zona, utilizando, si es necesario, barreras de corte o pozos de reinyección.
  4. Control de los asentamientos en el terreno: implementar un plan de supervisión para detectar cualquier movimiento del terreno.

Control de asentamientos: Se debe establecer un plan de supervisión que incluya la instalación de marcadores topográficos en edificios y estructuras cercanos. Es fundamental contar con un punto de referencia estable ubicado fuera de la zona de influencia del drenaje. Se deben establecer umbrales de alerta y de actuación para los asentamientos medidos. Si se alcanzan estos umbrales, se deben adoptar medidas correctivas que pueden ir desde la modificación del funcionamiento de la estación de bombeo hasta la interrupción total del drenaje.

La gestión proactiva de estos riesgos operativos y medioambientales debe complementarse con la preparación ante eventos inesperados, lo que nos lleva a la planificación de contingencias.

6.0 Planificación de contingencias: intercepción accidental de acuíferos artesianos

6.1 Preparación para lo imprevisto.

A pesar de una planificación y ejecución cuidadosas, siempre existe la posibilidad de toparse con condiciones geológicas imprevistas, como la intercepción de un acuífero artesiano o la aparición de caudales de entrada mucho mayores de lo esperado. Estas situaciones pueden escalar rápidamente y provocar un colapso catastrófico de la excavación. Por lo tanto, una preparación adecuada y un plan de respuesta rápida no son opcionales, sino parte esencial de la gestión de riesgos en cualquier proyecto de drenaje.

6.2 Medidas preparatorias

Procedimientos operativos: Antes de iniciar cualquier trabajo de excavación o perforación en zonas de riesgo, se deben establecer los siguientes procedimientos:

  • Realizar investigaciones geotécnicas adecuadas para identificar la posible presencia de acuíferos artesianos.
  • Disponer de medios para cerrar rápidamente los pozos de bombeo o las puntas de lanza si se detecta un flujo incontrolado.
  • Localizar de antemano proveedores de emergencia de materiales como cemento Portland, bentonita y geotextil.
  • Comprender el procedimiento de cálculo del diseño de la mezcla de lechada para detener el flujo. Se debe medir la carga artesiana y añadir la mezcla de lechada para lograr un equilibrio de presión.
  • Establecer y distribuir una lista de contactos de emergencia que incluya al ingeniero del proyecto, al contratista de desagüe y a las autoridades ambientales pertinentes.

Equipamiento de emergencia Se debe tener disponible en el sitio el siguiente equipamiento y suministros de emergencia, según el sistema en uso:

  • Para sistemas well-point:
    • Chips de bentonita no recubiertos para el sellado del collar.
    • Válvulas para instalar en todas las tuberías de well-points en áreas con sospecha de presión artesiana.
    • Equipo de inyección de lechada de cemento y suministros.
    • Geotextil y sacos de arena.
  • Para pozos de bombeo profundo:
    • Chips de bentonita no recubiertos para el sellado del collar.
    • Obturadores, tubería ascendente, manómetros y accesorios apropiados para cortar el flujo y medir la presión.
    • Equipo de inyección de lechada de cemento y suministros.
    • Geotextil y sacos de arena.
    • Lodo de perforación polimérico para compensar y suprimir flujos artesianos bajos durante la perforación del pozo.

Además, es necesario contar con un teléfono móvil con cámara, secciones de tubería extensibles para medir la altura de la presión artesiana y el diseño de la mezcla de lechada de contingencia.

6.3 Protocolo de implantación y respuesta

Pasos inmediatos: En caso de detectar un flujo de agua incontrolado, se debe seguir el siguiente protocolo de manera inmediata y secuencial:

  1. Evaluar la situación: Determinar si el caudal y la turbidez del agua son constantes o están aumentando. Verificar si el flujo está confinado al pozo o se está extendiendo por la excavación.
  2. Notificar al ingeniero y al gerente del proyecto: Proporcionar una descripción detallada de las condiciones, el caudal estimado y los eventos que llevaron al incidente. Enviar fotografías o videos en tiempo real si es posible.
  3. Notificar a las autoridades pertinentes: Informar a las autoridades ambientales y a otras partes interesadas sobre la situación y las medidas de contención planificadas.

Acciones de emergencia: Una vez notificado el incidente, se pueden tomar una o más de las siguientes acciones de emergencia para controlar la situación:

  • Rellenar la excavación: Comenzar a rellenarla con material hasta que el peso del relleno sea suficiente para controlar el flujo y el transporte de sedimentos.
  • Medir la presión artesiana: Utilizar secciones de tubería para medir la altura a la que llega el agua y así determinar la presión del acuífero.
  • Controlar la descarga: Dirigir cualquier descarga de agua a través de las medidas de control de erosión y sedimentos establecidas en el sitio.
  • Inundar la excavación: Como medida drástica, rellenar la excavación con agua hasta el nivel freático original para equilibrar las presiones y estabilizar la situación mientras se reconsidera el diseño.

La combinación de una planificación rigurosa, una ejecución cuidadosa y una preparación exhaustiva ante contingencias es la clave para una gestión exitosa y segura del agua subterránea en cualquier proyecto de construcción.

En este audio podéis escuchar una conversación sobre este tema.

Este es un vídeo que resume bien las ideas principales.

Os dejo el documento completo; espero que os sea de interés.

Pincha aquí para descargar

REFERENCIAS:

  • CASHMAN, P.M.; and PREENE, M. (2012). Groundwater Lowering in Construction: A Practical Guide to Dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
  • HERTZ, W.; ARNDTS, E. (1973). Theorie und praxis der grundwasserabsenkung. Ernst & Sohn, Berlin.
  • JUSTO ALPAÑES, J.L.; BAUZÁ, J.D. (2010). Tema 10: Excavaciones y drenajes. Curso de doctorado: El requisito básico de seguridad estructural en la ley orgánica de la edificación. Código Técnico de la Edificación. ETS. de Arquitectura, Universidad de Sevilla.
  • MUZAS, F. (2007). Mecánica del suelo y cimentaciones, Vol. II. Universidad Nacional de Educación a Distancia, Madrid.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • SCHULZE, W.E.; SIMMER, K. (1978). Cimentaciones. Editorial Blume, Madrid, 365 pp.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Curso:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El desastre silencioso bajo tus pies: la verdad sobre los suelos expansivos

Arcillas expansivas. https://archxde.com/arcillas-expansivas/

Pocas cosas simbolizan mejor la estabilidad que los cimientos de una construcción. Representan la frontera entre la arquitectura y la tierra firme. Sin embargo, bajo esa aparente solidez se esconde un enemigo persistente y silencioso: los suelos expansivos.

Lejos de ser una masa inerte, el suelo es un sistema vivo y dinámico que responde a los cambios de humedad con una energía capaz de fracturar losas, deformar zapatas y arruinar viviendas enteras.

Estos suelos, ricos en minerales arcillosos activos (principalmente montmorillonita o esmectita), pueden aumentar de volumen cuando se humedecen y contraerse al secarse, lo que provoca movimientos verticales y horizontales que, en muchos casos, superan la resistencia de las estructuras apoyadas sobre ellos. La magnitud de estos cambios depende de la mineralogía, la fracción de arcilla, la capacidad de intercambio catiónico y la succión matricial, es decir, la tensión negativa del agua en los poros del suelo.

Su comportamiento, descrito con precisión en la teoría de los suelos no saturados por Fredlund y Rahardjo (1993), convierte a estas arcillas en uno de los materiales más complejos y peligrosos de la ingeniería civil.

1. Un desastre oculto, más costoso que los terremotos.

Los suelos expansivos no acaparan titulares, pero su impacto económico es asombroso. Según Jones y Holtz (1973), este tipo de suelos causa más daños estructurales anuales que todos los demás fenómenos naturales combinados, incluidos los terremotos y las inundaciones. Krohn y Slosson estimaron que, solo en Estados Unidos, las pérdidas anuales ascendían a 7000 millones de dólares, una cifra que no ha dejado de crecer con la expansión urbana.

La causa de esta devastación radica en la naturaleza progresiva y acumulativa del fenómeno. Mientras que un seísmo actúa en segundos, la expansión del suelo opera día a día, modificando lentamente las condiciones de apoyo. Su carácter insidioso le ha valido el apodo de «el desastre oculto».

El daño estructural comienza con movimientos diferenciales de pocos milímetros, que al principio son imperceptibles, pero que con el tiempo se transforman en grietas en los muros, inclinaciones de losas o puertas que ya no cierran. Lo más preocupante es que estos síntomas suelen interpretarse como defectos de construcción, cuando en realidad son la manifestación visible de un proceso geotécnico profundo.

Agrietamiento de estructura por movimiento céntrico (Fredlund y Rahardjo, 1993)

2. La paradoja de la ligereza: las casas pequeñas son las más afectadas.

Resulta sorprendente que las estructuras ligeras se vean más afectadas por este fenómeno. Uno podría pensar que los edificios más pesados son los más susceptibles al movimiento del terreno, pero ocurre lo contrario.

Los suelos expansivos ejercen presiones de hinchamiento considerables, pero los proyectos a gran escala suelen incluir estudios de mecánica de suelos, pruebas de laboratorio (como las de hinchamiento libre o de volumen constante, según ASTM D4546) y diseños de cimentación apropiados. En cambio, las viviendas unifamiliares y las edificaciones ligeras, al considerarse de carga reducida, se construyen con escasa o nula investigación geotécnica y, a menudo, se basan en prácticas empíricas.

Fredlund (1993) señala que las estructuras que sufren mayores daños son precisamente aquellas que tuvieron un diseño de ingeniería menor antes de la construcción. A esto se suma un factor económico: los ingenieros geotécnicos suelen mostrarse reacios a intervenir en proyectos residenciales porque los honorarios son bajos en comparación con el alto riesgo de litigio. El resultado es un círculo vicioso: casas mal cimentadas sobre suelos hiperactivos que, con el tiempo, se deforman de forma irremediable.

3. La trampa de la compactación: cuando «mejorar» el terreno lo empeora.

A primera vista, compactar un suelo parece una acción positiva. En la mayoría de los casos, aumenta la densidad y la capacidad portante. Sin embargo, en los suelos expansivos, la compactación puede ser una trampa técnica.

Holtz y Gibbs (1956) demostraron que una compactación a alta densidad y bajo contenido de humedad incrementa significativamente el potencial de hinchamiento. Las partículas de arcilla, con carga negativa, se acercan tanto que acumulan una gran energía potencial de repulsión electrostática. Cuando posteriormente penetra agua, las moléculas se insertan entre las láminas cristalinas y las separan bruscamente, lo que provoca una expansión volumétrica explosiva.

El mismo estudio reveló que compactar por encima del contenido óptimo de agua reduce el potencial de expansión. En otras palabras, la práctica tradicional de buscar la máxima densidad seca puede resultar contraproducente. Comprender esta paradoja es esencial para la ingeniería moderna: no todos los suelos deben compactarse de la misma manera y, en algunos casos, un exceso de «mejora» puede acarrear un fracaso futuro.

4. Soluciones que desafían la lógica: cómo responde la ingeniería al suelo.

El reto de los suelos expansivos no consiste en vencer su fuerza, sino en comprender su dinámica. Por ello, las soluciones más efectivas no buscan resistir el movimiento del terreno, sino controlar la humedad o aislar la estructura de sus variaciones.

Entre las estrategias más estudiadas se encuentran:

  • Prehumedecimiento, una idea fallida: En teoría, saturar el suelo antes de construir debería eliminar su capacidad de expansión. En la práctica, esto rara vez funciona. Fredlund (1993) advierte que, durante el prehumedecimiento, las capas superiores se hinchan y sellan el suelo, impidiendo que el agua alcance los estratos más profundos. El resultado es una expansión parcial y una falsa sensación de seguridad, ya que el suelo parece estable hasta que, años después, las capas profundas se hidratan lentamente y la estructura comienza a levantarse.
  • Barreras capilares, el poder de una paradoja: Una de las técnicas más elegantes es la barrera capilar, que consiste en colocar sobre el suelo expansivo una capa de material granular grueso, como grava o arena. A simple vista parece absurdo: ¿cómo se puede proteger una arcilla del agua cubriéndola con un material permeable? Sin embargo, la física de los suelos no saturados demuestra que, cuando la grava se mantiene con baja saturación, su capacidad de transmisión capilar disminuye drásticamente y el agua infiltrada se almacena cerca de la superficie. Así, la humedad se evapora antes de llegar a las arcillas subyacentes. En palabras de Fredlund y Rahardjo (1993), esta técnica «reduce significativamente el flujo descendente de agua y estabiliza el régimen de humedad del perfil».
  • Estabilización química y control ambiental: El tratamiento con cal puede reducir la plasticidad y la actividad de las arcillas, convirtiéndolas en materiales prácticamente inertes. Asimismo, son indispensables el control del drenaje superficial, la prevención de fugas subterráneas y la exclusión de raíces profundas. No se trata solo de una cuestión estructural, sino también de una cuestión hidrológica y ambiental: la humedad del suelo debe mantenerse lo más constante posible.

Conclusión: hay que escuchar al suelo antes de construir.

El suelo no es un enemigo, sino un sistema natural que exige ser comprendido. Su comportamiento responde a leyes físico-químicas y climáticas que la ingeniería puede medir, modelar y respetar. Ignorarlas es, literalmente, construir sobre terreno inestable. El fenómeno de los suelos expansivos nos recuerda una verdad fundamental: no hay cimiento sólido sobre un terreno mal entendido. Cada grieta que aparece en una pared, cada losa que se levanta, es la voz del subsuelo que nos recuerda que el diseño estructural comienza mucho antes de colocar el primer ladrillo; comienza con el conocimiento del terreno.

Referencias

  • Fredlund, D. G., & Rahardjo, H. (1993). Soil mechanics for unsaturated soils. John Wiley & Sons.

  • Fredlund, D. G. (1983). Prediction of ground movements in swelling clays. En 31st Annual ASCE Soil Mechanics and Foundation Engineering Conference (Ponencia). Minneapolis, MN, Estados Unidos.

  • Holtz, W. G., & Gibbs, H. J. (1956). Engineering properties of expansive soils. Transactions of the American Society of Civil Engineers, 121, 641–663.

  • Jones, D. E., Jr., & Holtz, W. G. (1973). Expansive soils — The hidden disaster. Civil Engineering (ASCE), 43(8), 49–51.

  • Krohn, J. P., & Slosson, J. E. (1980). Assessment of expansive soils in the United States. En D. J. Miller (Ed.), Proceedings of the Fourth International Conference on Expansive Soils (pp. 596–608). ASCE.

  • Nelson, J. D., & Miller, D. J. (1992). Expansive soils: Problems and practice in foundation and pavement engineering. John Wiley & Sons.

  • Van der Merwe, D. H. (1964). The prediction of heave from the plasticity index and percent fraction of soils. Civil Engineering in South Africa, 6(6), 103–107.

  • Skempton, A. W. (1953). The colloidal activity of clays. En Proceedings of the 3rd International Conference on Soil Mechanics and Foundation Engineering (Vol. 1, pp. 57–61). International Society for Soil Mechanics and Foundation Engineering.

  • Hamilton, J. J. (1969). Effects of environment on the performance of shallow foundations. Canadian Geotechnical Journal, 6(1), 65–80.

Cursos:

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

En este audio tenéis una conversación sobre este tema tan relevante.

Un vídeo que resume el contenido del tema, con carácter divulgativo, lo tenéis aquí:

Aquí también tenéis un vídeo sobre cómo identificar estas arcillas expansivas en el laboratorio de suelos.

Os dejo un documento técnico de la empresa Geopier. Espero que os resulte de interés.

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Tus cimientos se diseñan con métodos desfasados? 5 revelaciones para proyectar de forma más segura y sostenible

Como profesionales de la ingeniería y la arquitectura, convivimos con una tensión permanente: garantizar la máxima seguridad de las estructuras mientras enfrentamos la presión de optimizar costes y reducir el impacto medioambiental. En el diseño de cimentaciones, esta tensión suele traducirse en incertidumbre y en un sobredimensionamiento conservador. Pero ¿qué sucede cuando uno de los supuestos básicos de nuestros cálculos se aleja de la realidad?

Un ejemplo claro es el módulo de reacción vertical del suelo, conocido como coeficiente de balasto o módulo de Winkler (Ks), un parámetro clave en el diseño de losas de cimentación que a menudo se interpreta incorrectamente y se obtiene de tablas genéricas con poco rigor. Una investigación reciente revela hallazgos significativos que cuestionan estas prácticas habituales y plantean alternativas para obtener cimentaciones más seguras, eficientes en costes y de menor impacto medioambiental.

Este artículo sintetiza una investigación publicada en la revista del primer decil del JCR, Environmental Impact Assessment Review, en la que se presenta una metodología rigurosamente formulada para la estimación directa del módulo (Ks) en cimentaciones por losa, superando las deficiencias clave de los enfoques convencionales. Su principal aportación es un modelo directo que integra la teoría del semiespacio elástico, el análisis de asientos en suelos multicapa y la mecánica de consolidación edométrica, considerando explícitamente la profundidad de influencia y los efectos de la compensación de cargas. La investigación se enmarca en el proyecto RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València. A continuación, se presenta un resumen del trabajo y de la información de contexto.

El estudio introduce un coeficiente de seguridad específico para Ks, lo que constituye una innovación que aborda la incertidumbre geotécnica y fortalece la fiabilidad del diseño en los estados límite de servicio. Esta metodología se integra en un marco de evaluación del ciclo de vida y decisión multicriterio (MCDM) que utiliza un proceso híbrido de AHP neutrosófico en grupo (NAHP-G) y ELECTRE IS para evaluar alternativas de diseño de cimentaciones según criterios económicos, ambientales y sociales.

Aplicado a un caso de estudio real, el método propuesto (denominado 3-NEW) demuestra ser la solución más sostenible. El diseño resultante (A3) mejora el rendimiento de sostenibilidad global en un 50 % y aumenta el índice de seguridad social en 2,5 veces en comparación con las metodologías de referencia. Este trabajo establece un marco unificado que avanza en la práctica del diseño geotécnico, optimiza el uso de materiales y alinea el diseño de cimentaciones con los principios de resiliencia y de economía circular.

A continuación os dejo algunas ideas clave contenidas en este estudio.

1. El módulo de balasto (Ks) no es una propiedad del suelo, sino una consecuencia de la interacción.

La primera idea consiste en entender que el módulo de balasto (Ks) no es una constante intrínseca del terreno, como el peso específico o la cohesión, que podamos consultar en una tabla. Se trata de un concepto más complejo. Es un parámetro variable que depende de la carga y de la profundidad de su influencia.

Esto significa que el módulo de balasto es el resultado de la interacción entre la cimentación (su tamaño y rigidez) y el terreno bajo una carga específica. Depende de la carga transmitida, de la geometría de la losa y de la profundidad del bulbo de presión generado. Este cambio de perspectiva es crucial, pues nos obliga a abandonar las tablas genéricas y a realizar un cálculo adaptado a las condiciones reales de cada proyecto. Así, reconocemos que el «mismo» suelo se comportará de manera diferente bajo una pequeña zapata que bajo una gran losa de un edificio. Esta idea, conocida en el ámbito geotécnico, no debería pasarse por alto.

 

2. Los métodos tradicionales no explican ni integran la paradoja de la rigidez infinita en cimentaciones totalmente compensadas.

Cuando se proyectan cimentaciones con sótanos, la excavación compensa parte de la carga del edificio al retirar el peso del suelo existente. En estos casos, los métodos convencionales de cálculo de Ks (el 1-BAS, un método empírico, y el 2-REF, un método semidirecto) o no tienen en cuenta la «paradoja del balasto infinito» (1) o no la integran ni la armonizan (2).

Si la carga neta transmitida al terreno es próxima a cero o negativa, la deformación generada por la cimentación tiende a cero, ya que la profundidad de influencia del bulbo de tensiones tiende a cero y, por tanto, el valor del balasto vertical tiende a infinito. Con la propuesta metodológica del trabajo (3-NEW, un método directo), se resuelve esta paradoja al vincular Ks directamente con los asientos elásticos reales y con las cargas transmitidas por la estructura, lo que explica el fenómeno físico y elimina la paradoja en el cálculo mediante un límite mínimo de la profundidad de influencia (el 5 % de la carga bruta transmitida). En escenarios totalmente compensados, el método regula la respuesta mediante umbrales y el factor de seguridad (FS), evitando así resultados físicamente inconsistentes.

3. Estamos olvidando el factor de seguridad donde más importa: en los asientos.

En geotecnia, es habitual aplicar un factor de seguridad (FS) de entre 2,5 y 3,0 frente a la rotura del terreno. Sin embargo, cuando el diseño se basa en el límite de asientos (algo muy común en grandes losas), aplicamos un factor de seguridad de 1,0.

Se debería buscar una mayor coherencia en esta práctica, ya que, como señala la investigación, los límites de servicio (como los asientos) quedan desprotegidos frente a la variabilidad e incertidumbre del subsuelo. En otras palabras, no dejamos margen de seguridad para proteger la estructura frente a la fisuración, las deformaciones excesivas o los daños en los acabados, que son consecuencia directa de los asientos. La investigación propone un factor de seguridad formal para el cálculo de Ks (FS = 1,2 en condiciones estándar), lo que permite armonizar la seguridad en los estados límite últimos y de servicio.

4. El diseño más seguro resultó también el más sostenible en su ciclo de vida.

El estudio comparó tres alternativas de diseño (A1-BAS, A2-REF y A3-NEW) mediante un análisis de sostenibilidad del ciclo de vida. Inicialmente, la alternativa A1 (diseñada con el método tradicional) parecía la más rentable en términos de costes y emisiones de CO₂.

Sin embargo, al introducir el criterio social de seguridad, que cuantifica la fiabilidad estructural y la seguridad para los usuarios y se deriva del nuevo marco de cálculo, la alternativa A1 fue penalizada drásticamente. La ganadora fue la alternativa A3 (diseñada con el nuevo método), no por ser la mejor en un único aspecto, sino por ofrecer el mejor equilibrio global, destacando en el criterio clave de seguridad. De hecho, A3 consiguió una mejora relativa del 50 % en el rendimiento agregado de sostenibilidad. En la práctica, esto se tradujo en un diseño que, en comparación con la alternativa A2, redujo los costes de construcción en un 12,5 % y, en comparación con la alternativa A1, disminuyó los costes de mantenimiento a largo plazo en casi un 24 %, lo que demuestra que la seguridad y la eficiencia económica pueden ir de la mano.

5. Una mayor precisión en el cálculo no implica un sobrecoste, sino un uso más eficiente del suelo.

Un análisis más riguroso de un problema no tiene por qué dar soluciones conservadoras y, por tanto, costosas. Este estudio demuestra lo contrario. Al comparar la presión admisible bruta (Qba) que el terreno puede soportar sin exceder los asientos permitidos, los resultados fueron reveladores:

  • Método convencional (2-REF): Qba = 0,146 MPa.
  • Nuevo método propuesto (3-NEW): Qba = 0,265 MPa.

Este notable aumento no se debe a una alteración del suelo, sino a que el nuevo método modela con mayor precisión la interacción suelo-estructura, considerando la profundidad de influencia (19 metros en este caso) y los asientos elásticos reales, lo que evita el conservadurismo innecesario de los métodos simplificados. Esta mayor eficiencia se traduce directamente en un diseño más optimizado y competitivo. Esta optimización no solo reduce costes, sino que también minimiza el consumo de hormigón y acero, lo que la convierte en un pilar fundamental de la construcción sostenible.

Conclusión

Hemos visto que el módulo de balasto no es una propiedad intrínseca del suelo, sino una interacción dinámica; que los métodos tradicionales caen en paradojas; que, en algunos casos, pueden comprometer la seguridad donde más importa; y que, al corregir estos errores, el diseño más seguro también se revela como el más sostenible y eficiente. Al abandonar las simplificaciones anticuadas o demasiado conservadoras y adoptar modelos que reflejen la realidad de la interacción suelo-estructura, no solo podremos construir con mayor confianza, sino también de manera más inteligente y responsable con nuestros recursos.

Así pues, nos surge una pregunta final: si los cimientos de nuestros edificios se basan en principios desactualizados, ¿qué otras suposiciones fundamentales de la ingeniería debemos reexaminar para construir un futuro más resiliente?

Referencia:

SÁNCHEZ-GARRIDO, A.J.; MORENO-SERRANO, J.F.; NAVARRO, I.J.; YEPES, V. (2026). Innovative safety framework and direct load–settlement method to optimize vertical subgrade modulus in sustainable mat foundations. Environmental Impact Assessment Review, 118, 108191. DOI:10.1016/j.eiar.2025.108191

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Preguntas frecuentes sobre entibaciones

Figura 1. Detalle de cajones de blindaje Robust BOX. Fuente: www.atenko.com

1. ¿Qué es una entibación y cuándo es necesaria en construcción?

Una entibación es un sistema provisional de contención de tierras compuesto por elementos (metálicos o de madera) que se apuntalan entre sí. Su función principal es evitar el derrumbe de las paredes verticales en excavaciones como zanjas, minas, galerías subterráneas o pozos. Se utiliza cuando no es posible crear un talud estable que impida los desprendimientos o restrinja los movimientos del terreno. También es crucial cuando la profundidad de la zanja supone un peligro para los trabajadores, en concreto a partir de 1,30 m en terrenos cohesivos y 0,80 m en terrenos no cohesivos, siempre que no haya otras solicitaciones adicionales. No sería necesaria una entibación si la excavación presenta taludes estables (45° en suelos no cohesivos, 60° en suelos cohesivos o 80° en suelos rocosos), pero factores desfavorables, como vibraciones fuertes o rellenos mal compactados, pueden hacerla indispensable. Además, es fundamental para evitar sifonamientos en suelos no cohesivos por debajo del nivel freático.

2. ¿Cuáles son los principales tipos de entibaciones de madera y sus aplicaciones?

Las entibaciones de madera se clasifican principalmente en dos tipos, según la disposición de sus tablas y el tipo de terreno:

  • Entibaciones con tablas horizontales: Se usan en terrenos cohesivos y autoestables durante la excavación. La excavación y la entibación se van alternando cada 0,80-1,30 m, apuntalando las tablas de lado a lado con codales o rollizos hasta alcanzar la profundidad total.
  • Entibaciones con tablas verticales: Ideales para terrenos sin cohesión, como arenas sueltas o lodazales. Las tablas verticales con punta se hincan con una maza antes de excavar y pueden alcanzar hasta 2 m de profundidad. A medida que se hincan, se colocan las correas o cabeceros y se apuntalan.
Figura 2. Entibación de madera. http://www.generadordeprecios.info/rehabilitacion/Acondicionamiento_del_terreno/Recalces/Entibaciones/

Además, las entibaciones de madera se clasifican según el porcentaje de superficie de excavación que cubren:

  • Entibación cuajada: Cubre el 100 % de las paredes, con tablones contiguos, y se utiliza en gravas, arenas sueltas, limos y arcillas blandas de escasa consistencia.
  • Entibación semicuajada: Cubre el 50 % de las paredes, con tablones separados unos 0,75 m, y se emplea en terrenos suficientemente compactos.
  • Entibación ligera: Cubre menos del 50 %, sin tableros, solo cabeceros apuntalados por codales separados entre 1,5 y 2 m. Se emplea también en terrenos compactos.

Aunque han sido reemplazadas en gran medida por sistemas metálicos por razones económicas y de velocidad, las entibaciones de madera siguen siendo útiles en zanjas con muchas tuberías transversales o cuando el transporte de otros sistemas no es posible.

3. ¿Qué es un muro berlinés y en qué situaciones se recomienda su uso?

Un muro berlinés es un sistema de entibación temporal que consiste en perfiles metálicos hincados verticalmente en el terreno y separados entre sí, de modo que se pueden insertar tablones de madera para contener las tierras. Es una técnica segura y económica para excavaciones de poca o media profundidad (normalmente de 3 a 8 metros) en terrenos poco estables, como suelos arenosos o finos.

Se clasifica como un muro flexible y «abierto», lo que significa que no impide el paso del agua subterránea, por lo que es necesario agotar el nivel freático de forma simultánea durante la excavación. No se recomienda su uso cerca de cimentaciones existentes ni en caso de presencia de nivel freático. Su proceso constructivo consiste en hincar perfiles de doble T a intervalos regulares y, a medida que se excava, colocar los tablones de madera entre las alas de los perfiles. La colocación de los perfiles en perforaciones preejecutadas minimiza los ruidos y las vibraciones en zonas urbanas, y la fácil manipulación de los tablones permite dejar espacios para las instalaciones existentes.

Figura 3. Muro berlinés

4. ¿Cuáles son las principales ventajas de las entibaciones metálicas frente a las de madera?

Las entibaciones metálicas, que a menudo están prefabricadas y están compuestas por paneles de aluminio o acero, presentan varias ventajas significativas con respecto a las de madera:

  • Rentabilidad y productividad: Son más económicas y rápidas de instalar debido a su ligereza, sencillez de colocación y menor necesidad de mano de obra.
  • Seguridad: Se montan y desmontan desde el exterior de la excavación con maquinaria, lo que reduce el riesgo para los operarios.
  • Reutilización y durabilidad: Pueden reutilizarse en numerosas ocasiones, con un mínimo mantenimiento y una larga vida útil.
  • Versatilidad: Permiten excavar zanjas de diversas anchuras y profundidades, independientemente de la longitud de la tubería que se vaya a instalar.
  • Eficiencia: El ritmo de colocación de tuberías es alto, ya que la excavación y la entibación se realizan simultáneamente.
  • Minimización de alteraciones: El extremo inferior de las entibaciones no llega al fondo de la excavación, por lo que no se alteran los rellenos laterales de los tubos al extraerlas y se mantiene la homogeneidad y compactación de los rellenos.
  • Extracción sencilla: En suelos expansivos, se puede regular la separación entre los paneles para relajar las presiones del suelo antes de la extracción y facilitar el proceso.

5. ¿Qué tipos de entibaciones con paneles metálicos existen y para qué profundidades son adecuadas?

Existen dos grandes familias de entibaciones con paneles metálicos, adecuadas para diferentes profundidades:

  • Sistemas de cajones de entibación (blindajes o escudos): Se recomiendan para profundidades máximas de 4 metros. Estos cajones están formados por dos paneles unidos por codales de longitud regulable y se utilizan no solo para el sostenimiento, sino también para proteger a los trabajadores. Se ensamblan en obra y pueden usarse en terrenos no cohesivos. Para profundidades mayores, su extracción se vuelve difícil y puede causar descompensaciones del terreno.
  • Sistemas con guías deslizantes (paneles con guías deslizantes): Ideales para profundidades superiores a 4 metros. Están formados por paneles de acero que se deslizan a lo largo de unas guías laterales unidas por codales. Son especialmente ventajosos en terrenos no cohesivos y permiten alcanzar mayores profundidades con dimensiones variables. Su diseño garantiza un deslizamiento suave y mantiene el paralelismo entre las planchas, lo que elimina los problemas de asentamiento.

También se menciona la entibación ligera con paneles de aluminio para suelos cohesivos, que no debe superar los 2,40 m de profundidad y que se utiliza comúnmente como blindaje del borde de zanjas de hasta 1,75 m para proteger aceras y calzadas en zonas urbanas. También se describe el sistema de entibación por presión hidráulica, con una profundidad recomendada de hasta 7 m. Este sistema es ideal para reparar conductos o instalar tuberías y es adecuado para trabajos arqueológicos, ya que no transmite vibraciones.

Figura 4. Entibadora hidráulica Pressbox Serie 800. Cortesía SBH Tiefbautechnick

6. ¿Cuáles son las medidas de seguridad más importantes a la hora de trabajar con entibaciones metálicas?

La seguridad es primordial al utilizarlas. Entre las medidas de prevención comunes y esenciales se incluyen:

  • Certificación y cumplimiento: Se deben emplear sistemas certificados que sigan estrictamente las instrucciones del fabricante, y verificar que las condiciones reales de la obra coincidan con el proyecto y las cargas admisibles.
  • Manipulación segura: Al manipular los paneles, el enganche debe realizarse en los cuatro puntos designados, utilizando eslingas y cadenas en perfecto estado y con marcado CE.
  • Protección completa de la excavación: Las entibaciones deben proteger toda la superficie excavada y sobresalir al menos 15 cm de la coronación de la zanja o pozo para evitar desplomes del frente de la excavación.
  • Orden de instalación y desinstalación: La entibación se ejecuta de arriba hacia abajo, mientras que el desentibado se realiza en orden inverso, de abajo hacia arriba, manteniendo la estabilidad de la excavación y rellenando y compactando simultáneamente.
  • Distancias de protección: Se deben respetar distancias de protección de al menos 0,60 m alrededor de la entibación, incluida la maquinaria.
  • Acceso seguro: Se deben disponer escaleras aseguradas para acceder a las zanjas, que deben sobrepasar al menos un metro del borde. Queda estrictamente prohibido subir y bajar por los codales.

7. ¿En qué se diferencia el método de descenso directo del método de descenso escalonado para la instalación de cajones de entibación?

Ambos métodos consisten en la instalación de cajones de blindaje o escudos, pero se aplican en condiciones del terreno diferentes:

  • Método de descenso directo (o de ajuste): En este método, la entibación se introduce completa hasta el fondo de una zanja ya excavada. Es adecuado para paredes de excavación estables y verticales, y cuando la zanja tiene la misma anchura que la entibación. El espacio entre la cara exterior del blindaje y el frente de excavación debe ser mínimo y rellenarse para evitar movimientos laterales del cajón. La instalación se realiza con maquinaria sencilla, como una retroexcavadora o una pequeña grúa.
  • Método de descenso escalonado (o de «corte y bajada»): Este método se utiliza para cajones provistos de bordes cortantes y es más adecuado para terrenos menos estables. Consiste en empujar cada panel con la cuchara de una pala excavadora, alternando el descenso con la excavación y la retirada del suelo. El avance en el descenso no debe exceder los 0,50 m del borde inferior de la plancha, lo que permite un control más gradual y seguro en condiciones en las que la zanja no puede permanecer abierta sin soporte.

8. ¿Qué papel juega el tipo de terreno en la selección de un sistema de entibación?

El tipo de terreno es un factor determinante a la hora de elegir el sistema de entibación más adecuado, ya que influye directamente en su estabilidad y en el empuje que ejercerá sobre las estructuras de contención.

  • Terrenos cohesivos (arcillas, limos firmes): Pueden ser autoestables durante periodos cortos. Las entibaciones con tablas horizontales son útiles para excavaciones alternas. Para entibaciones metálicas ligeras, los sistemas de cabeceros verticales son adecuados para suelos estables. En general, se requiere menos cobertura (entibación ligera o semicuajada) si son suficientemente compactos, pero a mayor profundidad o con solicitaciones externas (vial, cimentación), se necesitarán entibaciones más robustas (semicuajadas o cuajadas).
  • Terrenos no cohesivos o blandos (arenas sueltas, gravas, lodazales): Son inestables y propensos al desplome inmediato. Requieren entibaciones que cubran la totalidad de las paredes (entibación cuajada de madera) o sistemas de contención continua. Para las entibaciones de madera se emplean tablas verticales que se hincan antes de excavar. Las entibaciones metálicas con guías deslizantes son muy recomendables a partir de los 4 m de profundidad en terrenos flojos y no cohesivos, al igual que los cajones de blindaje para profundidades máximas de 4 m.
  • Terrenos con nivel freático: La presencia de agua subterránea añade complejidad. Las entibaciones «abiertas», como el muro berlinés, requieren un agotamiento simultáneo del nivel freático. En suelos no cohesivos por debajo del nivel freático, es esencial utilizar una entibación para evitar el peligro de sifonamiento.

La Norma Tecnológica NTE-ADZ establece recomendaciones específicas sobre los tipos de entibaciones de madera (ligera, semicuajada y cuajada) en función del tipo de terreno, solicitación (sin solicitación, vial o de cimentación) y profundidad de corte, y hace hincapié en la necesidad de realizar estudios pertinentes en caso de duda.

Os dejo un vídeo y un audio que resume este tema:

Glosario de términos clave

  • Acodalado: Se refiere a elementos estructurales que están soportados o apuntalados lateralmente por codales o puntales, proporcionando estabilidad contra movimientos horizontales.
  • Andamios: Estructuras auxiliares provisionales que sirven para elevar materiales y permitir el acceso de los trabajadores a distintos puntos de una obra.
  • Apeos: Estructuras provisionales diseñadas para sostener una parte de una edificación o terreno que se encuentra en riesgo de colapso, descargando el peso sobre elementos más estables.
  • Berma: Plataforma horizontal o escalón que se forma en el talud de una excavación o terraplén para mejorar su estabilidad, reducir la altura de la entibación o facilitar el acceso.
  • Cimbra: Estructura provisional de apoyo utilizada para sostener un arco, bóveda o losa de hormigón durante su construcción, hasta que adquiere la resistencia necesaria.
  • Codal: Elemento horizontal, generalmente un puntal o rollizo, que se coloca entre las paredes de una zanja o entre los paneles de una entibación para mantener su separación y resistir el empuje del terreno.
  • Cohesivo (terreno): Tipo de suelo que posee cohesión entre sus partículas (como las arcillas o limos), lo que le permite mantener una forma sin desmoronarse fácilmente.
  • Encofrado: Estructura temporal que moldea el hormigón fresco hasta que este fragua y adquiere su forma y resistencia definitiva.
  • Entibación: Sistema de contención provisional de tierras, compuesto por elementos de madera o metálicos, acodalados entre sí, para evitar el desplome de las paredes de excavaciones.
  • Entibación cuajada: Entibación de madera que cubre la totalidad de las paredes de la excavación, con los tablones situados uno a continuación del otro. Se usa en terrenos de muy escasa consistencia.
  • Entibación ligera: Entibación de madera que cubre menos del 50% de las paredes de la excavación, utilizando principalmente cabeceros apuntalados por codales. Se aplica en terrenos compactos.
  • Entibación semicuajada: Entibación de madera donde los cabeceros se unen con tablas verticales que cubren el 50% de las paredes de la excavación, con tablones separados aproximadamente 0,75 m. Se usa en terrenos compactos.
  • Nivel freático: Nivel superior de la capa de agua subterránea que satura el suelo. Su presencia afecta la estabilidad del terreno y la necesidad de entibaciones impermeables o sistemas de agotamiento.
  • No cohesivo (terreno): Tipo de suelo cuyas partículas no tienen cohesión entre sí (como las arenas o gravas), lo que lo hace propenso a desmoronarse si no se contiene.
  • Muro berlinés: Entibación temporal formada por perfiles metálicos (generalmente doble T) hincados verticalmente, entre los cuales se insertan tablones de madera para contener el terreno. Es de tipo flexible y «abierto» al agua subterránea.
  • Panel metálico: Componente prefabricado, generalmente de aluminio o acero, utilizado en sistemas de entibación moderna. Ofrecen ligereza, rapidez de instalación y alta resistencia.
  • Rollizo: Tronco de árbol sin labrar o descortezar, utilizado comúnmente como codal o puntal en entibaciones de madera.
  • Sifona miento: Fenómeno que ocurre en suelos no cohesivos bajo el nivel freático, donde el flujo de agua ascendente puede arrastrar partículas de suelo, provocando la pérdida de estabilidad y posibles desplomes.
  • Tablas (de madera): Elementos planos de madera, de un espesor determinado, utilizados para conformar las paredes de las entibaciones de madera, ya sea en disposición horizontal o vertical.
  • Tablestacas: Elementos prefabricados, generalmente metálicos o de hormigón, que se hincan en el terreno para formar una pantalla continua de contención, a menudo utilizada en entibaciones o muros pantalla.
  • Talud: Inclinación o pendiente de una superficie de terreno. En excavaciones, un talud estable es aquel que no requiere entibación para evitar el desplome.
  • Zanja: Excavación alargada y estrecha realizada en el terreno, generalmente para la instalación de tuberías, cables o cimentaciones.

 Referencias:

  • GARCÍA VALCARCE, A. (dir.) (2003). Manual de edificación: mecánica de los terrenos y cimientos. CIE Inversiones Editoriales Dossat-2000 S.L. Madrid, 716 pp.
  • GONZÁLEZ CABALLERO, M. (2001). El terreno. Edicions UPC, Barcelona, 309 pp.
  • IZQUIERDO, F.A. (2001). Cuestiones de geotecnia y cimientos. Editorial Universidad Politécnica de Valencia, 227 pp.
  • LAMBE, T.W.; WHITMAN, R.V. (1996). Mecánica de suelos. Limusa, México, D.F., 582 pp.
  • MINISTERIO DE FOMENTO (2002). Guía de Cimentaciones. Dirección General de Carreteras.
  • MINISTERIO DE LA VIVIENDA (2006). Código Técnico de la Edificación
  • TERZAGHI, K.; PECK, R. (1967). Soil Mechanics in Engineering Practice. 2nd Edition, John Wiley, New York.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3
  • YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 408 pp. Ref. 477. ISBN: 978-84-1396-238-2

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Algunas preguntas sobre los muros pantalla

Figura 1. Cuchara bivalva para construir pantallas. Por GK Bloemsma – Trabajo propio, CC BY-SA 3.0, https://commons.wikimedia.org/

1. ¿Qué es un muro pantalla y qué funciones principales tiene en el campo de la cimentación?

Un muro pantalla es una técnica de cimentación profunda que se empezó a desarrollar en la década de 1950. Su principal característica es que se trata de una contención flexible que también cumple una función de cimentación. Las funciones principales de los muros pantalla son las siguientes:

  • Contención de tierras: Especialmente útil en situaciones donde la estabilidad de la excavación es difícil y existe preocupación por la seguridad de edificios colindantes.
  • Cimentación profunda: Proporciona una base sólida para estructuras.
  • Impermeabilización: Existen pantallas diseñadas específicamente, a menudo con cemento-bentonita, para evitar la filtración de agua.
  • Combinaciones de las anteriores: Muchos proyectos requieren una combinación de estas funciones para abordar desafíos complejos del terreno y la construcción.

Los cambios de forma y los movimientos de flexión que experimentan los muros pantalla influyen significativamente en la distribución y magnitud de los empujes del suelo, así como en las resistencias y acciones mutuas entre el suelo y la estructura.

2. ¿Cómo se clasifican los muros pantalla según su trabajo estructural y su función?

Los muros pantalla se clasifican de diversas maneras para adaptarse a distintas necesidades constructivas y geológicas.

Según su trabajo estructural, se pueden clasificar de la siguiente forma:

  • Pantallas en voladizo: Se introducen en el terreno a una profundidad suficiente para asegurar su fijación, aprovechando la resistencia pasiva del suelo.
  • Pantallas ancladas: Se utilizan cuando la profundidad de excavación es considerable (generalmente > 7-8m). Su estabilidad se confía a la resistencia pasiva de la parte enterrada y a uno o varios niveles de anclajes. Se subdividen en:
    • De soporte libre (o articuladas): El empotramiento es mínimo, comportándose como una viga doblemente apoyada.
    • De soporte fijo (o empotradas): El empotramiento es suficiente para que el movimiento en su base sea insignificante, actuando como una viga apoyada-empotrada.
  • Pantallas arriostradas: Sustituyen los anclajes por estampidores (puntales).
  • Pantallas acodaladas (entibaciones): Utilizan elementos de arriostramiento para la contención.
  • Pantallas atirantadas: Similares a las ancladas, pero el término puede implicar una mayor rigidez o elementos de tracción más permanentes.
  • Pantallas con contrafuertes: Refuerzos estructurales que aumentan su rigidez y capacidad de contención.

Según su función, se distinguen:

  • Pantallas de impermeabilización: Diseñadas para crear una barrera contra el flujo de agua (ej. con cemento-bentonita).
  • Pantallas de contención de tierras: Su propósito principal es retener el suelo.
  • Pantallas de cimentación (cimentación profunda): Actúan como elementos de apoyo para la estructura.
  • Pantallas combinaciones de las anteriores: Lo más común, buscando una solución multifuncional.

3. ¿Cuáles son los métodos de excavación de bataches para la construcción de muros pantalla y cuándo se utiliza cada uno?

La excavación de los bataches (paneles que conforman el muro pantalla) es un paso crítico que se lleva a cabo mediante dos métodos principales:

  • Medios convencionales (cuchara al cable o hidráulica). Estos métodos se utilizan en condiciones de terreno normales y profundidades típicas:
    • Cuchara de cable: El cierre es mecánico. Su ventaja es que la grúa excavadora puede usarse como auxiliar para hormigonado e izado de armaduras.
    • Cuchara hidráulica: El cierre y el giro son hidráulicos. Son más fáciles de manejar y producen menos excesos de hormigón que las de cable, aunque requieren una grúa auxiliar para armadura y hormigonado.
  • Hidrofresa. Este método se emplea en situaciones más exigentes debido a sus características de precisión y capacidad. Se utiliza cuando:
    • La dureza del terreno es excesiva.
    • Se requiere una verticalidad estricta (por debajo del 0,5 %).
    • Se alcanzan grandes profundidades (superiores a 45 metros).

Antes de la excavación, es necesario construir muretes guía que dirijan la herramienta, aseguren la verticalidad de los paneles y sirvan de soporte estable para la extracción de las juntas. Durante la excavación, puede ser necesario utilizar lodos tixotrópicos (bentoníticos) o polímeros para mantener la estabilidad de las paredes.

Figura 2. Vista de murete guía. http://www.estructurasmaqueda.com

4. ¿Qué función cumplen los lodos tixotrópicos (bentoníticos) y los polímeros en la construcción de las pantallas y en qué se diferencian?

Los lodos tixotrópicos (principalmente bentoníticos) y los polímeros son fundamentales para el sostenimiento de las excavaciones de muros pantalla, sobre todo cuando la estabilidad del terreno lo requiere.

Lodos tixotrópicos (bentoníticos):

  • Funciones: Mantener las paredes de la excavación (evitando derrumbes), mantener los sólidos en suspensión y lubricar la herramienta de perforación.
  • Mecanismo de acción: Forman una «torta» (cake) impermeable en la pared de la excavación. Esta película permite que la presión hidrostática de la columna de lodo actúe contra las paredes, estabilizándolas. Para que el «cake» se forme, es necesaria cierta filtración del lodo, por lo que son efectivos en suelos permeables (arenas) pero inútiles en arcillas.
  • Propiedades: Son fluidos no newtonianos cuya viscosidad aumenta al dejarlos en reposo (tixotropía), manteniendo los sólidos en suspensión gracias a un esfuerzo umbral (yield point).
  • Contaminación: Si se contaminan, floculan y pierden su funcionalidad. Se puede añadir polímero celulósico para protegerlos y aumentar su yield point sin incrementar excesivamente la viscosidad (útil en gravas).

Polímeros:

  • Alternativa a la bentonita: Pueden sustituir total o parcialmente a los lodos bentoníticos en condiciones particulares.
  • Ventajas medioambientales: Son biodegradables con el tiempo o se pueden destruir rápidamente con agentes oxidantes (lejía, agua oxigenada) o bacterias específicas.
  • Mecanismo de acción: A diferencia de la bentonita, no forman un «cake» externo efectivo. Las largas cadenas poliméricas se infiltran en el terreno y unen sus partículas por tracción iónica, creando un «cake» interno. Esto permite que la presión hidrostática del lodo actúe contra el terreno cohesionado.
  • Limitaciones: Carecen de un «yield-point» efectivo (salvo excepciones), por lo que solo se pueden emplear en terrenos de baja permeabilidad (10-5 a 10-6 m/seg).
  • Otras características: No necesitan desarenadores, ya que los sólidos en suspensión decantan rápidamente. Se dividen en polares (aniónicos y catiónicos) y apolares, siendo estos últimos más resistentes a ataques químicos.

En resumen, los lodos bentoníticos dependen de la formación de una «torta» externa y son adecuados para suelos permeables, mientras que los polímeros actúan por infiltración y cohesión interna, siendo idóneos para suelos de baja permeabilidad y ofreciendo ventajas medioambientales.

5. ¿Cuáles son los pasos clave en la ejecución convencional de muros pantalla después de la excavación y qué consideraciones son importantes en cada uno?

Una vez completada la excavación del batache y, si es necesario, sostenida con lodos, los siguientes pasos en la ejecución convencional de muros pantalla son los siguientes:

  • Desarenado de los lodos: Si se utilizaron lodos y su contenido de arena supera el 5 %, es imprescindible desarenarlos mediante centrifugado en hidrociclones. De no hacerlo, la arena decantaría sobre el hormigón, formando bolsas que comprometerían la calidad del muro.
  • Colocación de la armadura: La armadura debe atender a varias consideraciones:
    • Debe tener un esqueleto suficientemente rígido para mantener su forma durante la manipulación.
    • Para armaduras de gran longitud, se debe eslingar por distintos puntos a lo largo de su alzado; para las cortas, disponer de asas de izado.
    • Debe dejar espacio suficiente para la tubería tremie que se usará para el hormigonado.
    • Se deben colocar separadores (metálicos o de hormigón) para asegurar el recubrimiento mínimo de 75 mm según la normativa UNE.
  • Hormigonado de las pantallas: Se utiliza la técnica del hormigón sumergido, necesaria cuando no es posible vibrar el hormigón (como ocurre bajo lodos).
    • El hormigón se introduce a través de una tubería tremie que debe permanecer introducida 5m en el hormigón (o 3m en seco), subiéndose a medida que el hormigonado avanza.
    • Para paneles de más de 5 m de longitud, se usan dos tuberías tremie.
    • Los lodos se van evacuando a medida que el hormigón asciende.
    • La duración total del hormigonado debe ser inferior al 70 % del tiempo de inicio de fraguado.
    • Se utiliza un hormigón de consistencia líquida (cono 16-20 NTE o 18-21 UNE-EN-1538).
    • El hormigón debe subir lo más horizontal posible dentro del panel.
  • Extracción de la junta: Existen diferentes tipos de juntas para asegurar la continuidad entre paneles:
    • Junta trapezoidal: No necesita retirarse antes del fraguado del hormigón. Se extrae con un cabestrante o gatos.
    • Junta circular y tricilíndrica (Stein): Deben extraerse durante el fraguado del hormigón, en el momento justo en que este ha endurecido lo suficiente para mantenerse, pero no tanto que impida la extracción. Se retiran con gatos hidráulicos.

El cumplimiento de las tolerancias establecidas en normativas como la UNE o el PG-3 es fundamental en cada una de estas etapas para garantizar la calidad y funcionalidad del muro pantalla.

6. ¿Qué son los anclajes en cimentaciones, cómo se clasifican y cuáles son sus principales aplicaciones?

Los anclajes son elementos de sujeción de estructuras al suelo, diseñados para colaborar en la estabilidad del conjunto suelo-estructura y que trabajan fundamentalmente a tracción.

Clasificación de los anclajes:

  • Según su forma de actuar:
    • Pasivos: Entran en tracción automáticamente cuando las cargas o fuerzas externas actúan, oponiéndose al movimiento del terreno y la estructura.
    • Activos (pretensados): Se pretensan hasta una carga admisible una vez instalados, comprimiendo el terreno entre el anclaje y la estructura. Esto evita el movimiento de la cabeza del anclaje hasta que se supere el esfuerzo de pretensado.
    • Mixtos: Se pretensan con una carga inferior a la admisible, dejando un margen para absorber movimientos imprevistos.
  • Según el tiempo de servicio previsto:
    • Provisionales: Diseñados para un uso temporal durante la fase de construcción.
    • Permanentes: Diseñados para permanecer en servicio durante toda la vida útil de la estructura.
  • Según el tipo de inyección:
    • Inyección única (IU): Inyección global del bulbo.
    • Inyección repetitiva (IR): Inyecciones a lo largo del bulbo en varias etapas.
    • Inyección repetitiva y selectiva (IRS): Inyecciones repetitivas en puntos específicos del bulbo.

Principales campos de aplicación:

  • Estabilización del terreno: Comprimir el terreno y coser diaclasas (fracturas).
  • Aumentar la resistencia al corte en taludes: Mejorar la estabilidad de laderas.
  • Sujeción de bóvedas de túneles y paredes de excavación: Proporcionar soporte en obras subterráneas o de contención.
  • Refuerzo de estructuras: Postesado de elementos estructurales, atirantado de bóvedas y arcos.
  • Arriostramiento de estructuras de contención: Estabilizar muros pantalla, tablestacados, etc.
  • Absorber esfuerzos en la cimentación de estructuras: Contrarrestar la subpresión en soleras bajo el nivel freático.
  • Anclaje de estructuras esbeltas y complejas: Proporcionar estabilidad a elementos con alta esbeltez.

Los anclajes inyectados constan de tres partes: la zona de anclaje (bulbo inyectado al terreno), la zona libre (cables protegidos por una vaina) y la cabeza y la placa de apoyo, que fijan el anclaje a la estructura.

Figura 3. Anclaje de un muro. Vía http://chuscmc.blogspot.com

7. ¿Cuáles son los principales estados límite que hay que considerar en el dimensionamiento de elementos de contención, como los muros pantalla, según la normativa española (CTE)?

Según esta normativa, el dimensionamiento de los elementos de contención debe verificar una serie de estados límite para garantizar la seguridad y funcionalidad de la estructura. Estos se dividen en estados límite últimos y estados límite de servicio.

Estados Límite Últimos (ELU): Se refieren a la capacidad portante y la estabilidad global, evitando la rotura o colapso.

  • Estabilidad:
    • Deslizamiento: La estructura se desliza sobre su base o una superficie de falla.
    • Hundimiento: El terreno bajo la cimentación de la estructura falla.
    • Vuelco: La estructura gira alrededor de su base.
  • Capacidad estructural: Fallo del material constitutivo de la pantalla (hormigón, acero).
  • Fallo combinado del terreno y del elemento estructural: Una combinación de los anteriores.

Para pantallas flexibles, se deben verificar además:

  • Estabilidad global: Del conjunto suelo-pantalla-anclajes-sobrecargas.
  • Estabilidad del fondo de la excavación: Evitar levantamiento o sifonamiento.
  • Estabilidad de la propia pantalla: Rotura por rotación o traslación, o por hundimiento.
  • Estabilidad de los elementos de sujeción: (Anclajes, puntales).
  • Estabilidad en las edificaciones próximas: No causar daños a estructuras adyacentes.
  • Estabilidad de las zanjas: Durante la excavación de la propia pantalla.

Estados Límite de Servicio (ELS): Se refieren a las condiciones de uso de la estructura, evitando movimientos o infiltraciones excesivas.

  • Movimientos o deformaciones: Excesivos de la estructura de contención o de sus elementos de sujeción, que afecten a la propia pantalla o a estructuras próximas.
  • Infiltración de agua no admisible: Problemas de estanqueidad.
  • Afección a la situación del agua freática en el entorno: Con posibles repercusiones a estructuras próximas.

En el cálculo se deben considerar acciones como los empujes activos y pasivos de las tierras, los empujes horizontales del agua freática, las sobrecargas y las acciones instantáneas o alternantes (terremotos, impactos). También se tienen en cuenta las propiedades del suelo, los coeficientes de empuje (de Rankine y de Coulomb) y la deformabilidad de la pantalla, que influye significativamente en la distribución de los empujes.

8. ¿Qué es el sifonamiento en excavaciones y cómo se puede prevenir?

El sifonamiento es un fenómeno de inestabilidad del terreno que se produce en excavaciones, especialmente cuando el nivel freático (NF) se halla por encima del fondo de la excavación y es preciso agotar el agua del interior. Se produce una filtración de agua a través del fondo o de las paredes de la excavación. Si la presión intersticial del agua (es decir, la presión en los poros del suelo) crece hasta igualar la presión total del terreno, la tensión efectiva del suelo se anula (σ’ = σ – u = 0), lo que provoca una pérdida de resistencia y un flujo ascendente de partículas finas del suelo. Este fenómeno se alcanza para un «gradiente crítico».

Figura 4. Longitud de empotramiento para evitar el sifonamiento

Los principales problemas que causa el sifonamiento son:

  • Inestabilidad del fondo de excavación: Pérdida de capacidad portante del suelo.
  • Reducción de la presión efectiva en el intradós de la pantalla: Disminuye el efecto positivo del empuje pasivo, comprometiendo gravemente la estabilidad del muro pantalla.
  • Tubificación o entubamiento: Si se dan sifonamientos localizados, se inicia una erosión interna que forma conductos por donde el agua arrastra material, pudiendo causar un colapso brusco.

Soluciones principales para prevenir el sifonamiento:

  • Dimensionar un correcto sistema de bombeo: Para liberar las presiones intersticiales, ya sea durante la excavación (agotamiento) o de forma permanente mediante soleras drenadas. Los sistemas pueden ser bombeo desde arquetas (para excavaciones pequeñas sin finos), pozos filtrantes o lanzas de drenaje (well point).
  • Incrementar la clava de la pantalla: Aumentar la profundidad de empotramiento del muro pantalla (∆l) incrementa el recorrido del agua, reduciendo el gradiente hidráulico. La clava real puede ser un 20% mayor que la profundidad del punto de rotación.
  • «Clavar» las pantallas en un sustrato impermeable: Si es posible, extender la pantalla hasta una capa de suelo con muy baja permeabilidad (k) para cortar el flujo de agua.
  • Disminuir la permeabilidad de la capa filtrante y aumentar su peso específico aparente (γ’): Esto se puede lograr mediante un tapón de Jet-grouting, que también puede actuar como un codal natural.
  • Aumentar el efecto ataguía de la clava de las pantallas: Mediante un «peine» de inyecciones que reduce la permeabilidad del suelo bajo el muro.
  • Congelación del nivel freático: En casos extremos, se puede congelar el agua del terreno para crear una barrera impermeable.

A continuación os dejo un audio que resume bien el contenido de estos temas. Espero que os sea de interés.

Glosario de términos clave

  • Muro pantalla: Técnica de cimentación profunda y contención flexible que se desarrolla a principios de los años 50, aúna ambas funciones, especialmente en excavaciones difíciles o cerca de edificios.
  • Contención flexible: Cualidad de los muros pantalla que permite cambios de forma y movimientos de flexión, influenciando la distribución de empujes y la interacción suelo-estructura.
  • Empotramiento: Profundidad a la que se introduce la pantalla en el terreno por debajo del nivel de excavación para asegurar su fijación y estabilidad.
  • Empujes activos: Presiones horizontales mínimas que ejerce el terreno sobre una estructura de contención cuando este se deforma alejándose de la estructura (descompresión horizontal).
  • Empujes pasivos: Presiones horizontales máximas que ejerce el terreno sobre una estructura de contención cuando este se deforma empujando hacia el terreno (compresión horizontal).
  • Empuje al reposo: Presión horizontal que ejerce el terreno cuando no hay deformación lateral de la estructura de contención.
  • Muretes-guía: Estructuras temporales previas a la excavación de bataches, que dirigen la herramienta de excavación, aseguran la verticalidad de los paneles y sirven de soporte.
  • Batache: Segmento o panel individual que conforma el muro pantalla continuo, excavado y posteriormente hormigonado.
  • Cuchara al cable/hidráulica: Herramientas de excavación utilizadas para la formación de los bataches en medios convencionales.
  • Hidrofresa: Máquina de excavación especializada para bataches, usada en terrenos muy duros, cuando se requiere verticalidad estricta o a grandes profundidades.
  • Lodos tixotrópicos (bentoníticos): Suspensiones de arcilla (bentonita) en agua, utilizadas para sostener las paredes de la excavación mediante la formación de un «cake» y presión hidrostática, además de lubricar la herramienta. Son fluidos no newtonianos.
  • Lodos poliméricos: Soluciones de polímeros en agua que sustituyen o complementan a los lodos bentoníticos, formando un «cake» interno y uniendo partículas del terreno por tracción iónica. Son biodegradables.
  • Cake: Película impermeable que se forma en las paredes de la excavación de un muro pantalla debido a la filtración del lodo bentonítico, esencial para el sostenimiento por presión hidrostática.
  • Yield point (esfuerzo umbral): Esfuerzo mínimo necesario para que un fluido tixotrópico comience a fluir; por debajo de él, el lodo se comporta como un sólido.
  • Floculación: Proceso por el cual las partículas de lodo se agrupan, perdiendo su estabilidad y funcionalidad, generalmente por contaminación.
  • Tubería tremie: Tubería utilizada para el hormigonado sumergido de los muros pantalla, asegurando que el hormigón se deposite por debajo de la superficie del lodo sin contaminarse.
  • Junta (en pantallas): Dispositivo o técnica utilizada para asegurar la continuidad y estanqueidad entre bataches adyacentes (circular, trapezoidal, tricilíndrica o Stein).
  • Desarenado: Proceso de separación de arena de los lodos bentoníticos, realizado con hidrociclones, necesario para evitar la decantación de arena en el hormigón.
  • Pantalla en voladizo: Muro pantalla que se introduce en el terreno a una profundidad suficiente para que se fije como un elemento estructural en voladizo, aprovechando la resistencia pasiva.
  • Pantalla anclada: Muro pantalla cuya estabilidad se confía a la resistencia pasiva de la parte enterrada y al apoyo de uno o varios niveles de anclajes, usado en excavaciones profundas.
  • Pantalla de soporte libre (articulada): Pantalla anclada con una profundidad de empotramiento pequeña, que permite movimientos significativos en su base y se comporta como una viga doblemente apoyada.
  • Pantalla de soporte fijo (empotrada): Pantalla anclada con una longitud de empotramiento suficiente para que el movimiento en su base sea insignificante, comportándose como una viga apoyada-empotrada.
  • Efecto arco: Fenómeno que ocurre en pantallas flexibles, donde las cargas se concentran en las zonas más rígidas (como anclajes o fondo de excavación) y hay una descarga en las zonas de mayor movimiento.
  • Sifonamiento: Fenómeno en excavaciones con nivel freático alto, donde la presión intersticial en el fondo iguala la presión total, anulando la tensión efectiva del terreno y causando inestabilidad.
  • Gradiente crítico: Valor del gradiente hidráulico a partir del cual se produce el sifonamiento del terreno.
  • Tubificación (entubamiento): Erosión interna del terreno causada por sifonamientos localizados, formando conductos en el suelo.
  • Pozos filtrantes: Sistema de drenaje que utiliza bombas lapicero dentro de pozos para abatir el nivel freático.
  • Sistema de agujas filtrantes (well-point): Drenaje basado en la hinca de minipozos alrededor de una excavación, utilizando bombas de vacío para aspirar aire y agua, adecuado para terrenos arenosos.
  • Anclaje: Elemento de sujeción que transmite cargas de una estructura al terreno, generalmente trabajando a tracción.
  • Bulbo de inyección (zona de anclaje): Parte del anclaje inyectado que se fija al terreno, donde se desarrolla la transferencia de carga.
  • Zona libre: Parte del anclaje (cables o torones) que se encuentra protegida y no está en contacto directo con el terreno, permitiendo el pretensado sin fricción.
  • Cabeza y placa de apoyo: Elementos del anclaje que lo fijan a la estructura y mediante cuñas inmovilizan los torones.
  • Método de Kranz: Método de cálculo para anclajes que evalúa la estabilidad global frente al deslizamiento de la cuña de terreno soportada por los anclajes.
  • Entibación: Conjunto de elementos (tablestacas, puntales, codales) que se utilizan para contener las paredes de una excavación, evitando su colapso.
  • Método berlinés: Tipo de entibación donde se hincan perfiles metálicos aislados antes de excavar, y luego se va entibando progresivamente con elementos de contención y puntales.
  • Levantamiento de fondo: Problema de inestabilidad característico de excavaciones entibadas en suelos arcillosos blandos, donde el fondo de la excavación asciende debido a la presión del terreno.

Referencias:

  • CASHMAN, P.M.; PREENE, M. (2012). Groundwater lowering in construction. A practical guide to dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
  • INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA (1987). Manual de ingeniería de taludes. Serie: Guías y Manuales, n.º 3, Ministerio de Educación y Ciencia, Madrid, 456 pp.
  • POWERS, J.P.; CORWIN, A.B.; SCHMALL, P.C.; KAECK, W.E. (2007). Construction dewatering and groundwater control: New methods and applications. Third Edition, John Wiley & Sons.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W., DYER, M.R. (2004). Groundwater control: design and practice. CIRIA C515, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0
  • YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La interacción suelo–estructura como factor decisivo en el diseño optimizado y robusto frente al colapso progresivo de edificios de hormigón armado

Acaban de publicarnos un artículo en Innovative Infrastructure Solutions, revista indexada en el JCR. El artículo presenta un marco de optimización estructural para edificios con pórticos de hormigón armado que integra la resistencia frente al colapso progresivo y la interacción suelo-estructura con el objetivo de conseguir diseños seguros, sostenibles y realistas. El trabajo se enmarca dentro del proyecto de investigación RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València. A continuación se recoge un resumen sintético del trabajo.

En los últimos años, la optimización matemática se ha convertido en una herramienta muy valiosa para la ingeniería. Lejos de ser un mero ejercicio teórico, se ha comprobado que permite diseñar estructuras más eficientes, con menos consumo de materiales, costes e impacto medioambiental. Sin embargo, hasta ahora, un aspecto importante había quedado fuera de estos procesos de optimización: la seguridad frente al colapso progresivo, un fenómeno en el que el fallo localizado de un elemento estructural provoca una reacción en cadena que puede ocasionar el derrumbe total del edificio.

Este tipo de situaciones no son meramente hipotéticas: explosiones accidentales, impactos de vehículos, errores de ejecución e incluso actos intencionados han provocado a lo largo de la historia fallos de este tipo, con consecuencias devastadoras en términos humanos y económicos. Por este motivo, organismos como la General Services Administration (GSA) y el Departamento de Defensa (DoD) de EE. UU. han desarrollado directrices específicas para incorporar criterios de robustez frente al colapso progresivo en el diseño estructural.

La principal aportación de este trabajo es la propuesta de un marco computacional integrado denominado Optimization-based Robust Design to Progressive Collapse (ObRDPC), que combina tres elementos fundamentales:

  1. Optimización estructural mediante algoritmos heurísticos.

  2. Diseño robusto frente a colapso progresivo, aplicado desde el inicio del proceso de cálculo con el método del Alternate Path.

  3. Consideración de la interacción suelo–estructura (SSI), aspecto habitualmente ignorado, pero que modifica de forma notable la respuesta real de un edificio.

La metodología desarrollada no se limita a verificar a posteriori si una estructura cumple los requisitos de robustez, sino que integra estas exigencias como restricciones en el propio proceso de optimización. Así, el algoritmo no solo busca minimizar un objetivo (en este caso, las emisiones de CO₂ asociadas a la construcción), sino que también garantiza la seguridad frente a escenarios de fallo.

Para validar la propuesta, se estudiaron cinco casos de edificios de pórticos de hormigón armado tridimensionales con distintas combinaciones de número de plantas (de cuatro a seis) y longitudes de vano (cuatro, seis y ocho metros). A cada edificio se le aplicaron dos escenarios de daño: la eliminación de una columna de esquina y la eliminación de una columna exterior. Estos escenarios, definidos en la guía GSA, simulan situaciones críticas y permiten evaluar la capacidad de la estructura para redistribuir las cargas y evitar un colapso en cadena.

El marco ObRDPC integra un proceso automatizado en el que el modelado estructural se realiza con SAP2000, enlazado con rutinas programadas en MATLAB. Además, se tiene en cuenta el diseño constructivo de cimentaciones mediante zapatas aisladas, que se modelan como losas apoyadas sobre un suelo con comportamiento elástico. En este punto, la SSI es fundamental, ya que los asientos diferenciales de la cimentación generan esfuerzos adicionales en pilares y vigas, lo que modifica la redistribución de cargas en caso de fallo. El estudio muestra que ignorar este efecto puede dar lugar a errores de hasta el 24 % en el dimensionamiento de la superestructura tras la pérdida de un pilar, lo que se traduce en diseños potencialmente inseguros o, por el contrario, sobredimensionados y poco sostenibles.

Los resultados más destacados se pueden resumir así:

  • Influencia de la altura del edificio: a medida que aumenta el número de plantas, la estructura gana en robustez. Esto se debe a la redundancia estructural y a la existencia de múltiples caminos alternativos para la redistribución de cargas (efecto de pórtico global, mecanismos tipo Vierendeel, etc.). En consecuencia, los edificios de mayor altura presentan una menor diferencia entre un diseño convencional y otro robusto frente al colapso progresivo.

  • Influencia de la luz de vano: a diferencia de lo que ocurre con la altura, un mayor aumento de la luz compromete la robustez. En vanos de 8 metros, el impacto ambiental de un diseño robusto frente al colapso progresivo aumenta en más de un 50 %. La razón es doble: por un lado, las vigas deben absorber momentos flectores mucho mayores cuando desaparece un apoyo y, por otro, disminuye la redundancia estructural al haber menos pilares por unidad de superficie.

  • Estrategias de redistribución de cargas: los mecanismos estructurales varían según el elemento. En las vigas, la optimización conduce a secciones más profundas y a un incremento del refuerzo superior de hasta el 35 % en zonas críticas. En los pilares, tienden a utilizarse secciones más robustas y hormigones de mayor resistencia (hasta 40 MPa) para controlar las solicitaciones combinadas de axiles y flectores. Las cimentaciones, por su parte, tienden a tener geometrías más cuadradas, lo que mejora su respuesta frente a asientos diferenciales.

  • Impacto ambiental y sostenibilidad: en edificios con vanos moderados (4 m), el sobrecoste ambiental de diseñar frente a un colapso progresivo es inferior al 8 %, una cifra razonable para garantizar una mayor seguridad. Sin embargo, en estructuras con vanos grandes, el impacto es muy significativo, por lo que es necesario reflexionar sobre las limitaciones geométricas de ciertos proyectos si se pretende compatibilizar sostenibilidad y robustez.

El valor práctico de esta investigación es indudable. Frente a los métodos tradicionales basados en el ensayo y el error y en hipótesis de apoyo rígido, la propuesta permite automatizar el proceso de diseño e integrar la seguridad y la sostenibilidad desde el principio. Para los ingenieros y proyectistas, esto supone una herramienta que evita tanto el riesgo de subdiseño (estructuras inseguras) como el de sobrediseño (estructuras innecesariamente pesadas y contaminantes).

En definitiva, este trabajo supone un avance hacia una ingeniería estructural más integral, ya que no solo se trata de optimizar costes o reducir emisiones, sino también de garantizar la resiliencia de nuestras construcciones frente a eventos extremos. La integración de la interacción suelo-estructura añade, además, un realismo que acerca la investigación a la práctica profesional. En el futuro, esta metodología podría extenderse a otros sistemas estructurales, como marcos metálicos, estructuras mixtas o rascacielos, lo que supondría un horizonte prometedor para la construcción de infraestructuras seguras, sostenibles y duraderas.

Referencia:

NEGRÍN, I.; CHAGOYÉN, E.; KRIPKA, M.; YEPES, V. (2025). An integrated framework for Optimization-based Robust Design to Progressive Collapse of RC skeleton buildings incorporating Soil-Structure Interaction effects. Innovative Infrastructure Solutions, 10:446. DOI:10.1007/s41062-025-02243-z

Os dejo el artículo para que lo descarguéis, ya que está publicado en abierto.

Pincha aquí para descargar

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Preguntas frecuentes sobre cimentaciones superficiales

¿Qué son las cimentaciones superficiales y por qué son las más utilizadas en edificación?

Las cimentaciones superficiales son elementos estructurales que transmiten los esfuerzos (verticales, horizontales y momentos) de una estructura al terreno a través de su base de contacto. Son las más utilizadas en edificación debido a que son más baratas por carga soportada y más fáciles de ejecutar que otros tipos de cimentaciones. Es fundamental no exceder la capacidad portante del terreno y que las deformaciones producidas sean admisibles para la estructura.

Figura 1. Zapata aislada centrada. Imagen cortesía de CYPE, Biblioteca de detalles constructivos

¿Cómo influye la presencia de agua y las características del suelo en la construcción de cimentaciones superficiales?

La presencia de agua es un factor crítico en la construcción de cimentaciones. Un drenaje puede incrementar significativamente los costes y los plazos, e incluso hacer inviable una cimentación superficial. Sin embargo, el nivel freático no afectará a la capacidad portante del terreno si se encuentra a una profundidad superior a 1,5 veces el ancho de la zapata por debajo de la superficie del cimiento. En cuanto al suelo, ciertos tipos pueden alterar su estructura. Por ejemplo, en limos o arenas finas, un bombeo inadecuado puede causar sifonamiento o descenso de la superficie del terreno y afectar a las estructuras cercanas. En suelos arcillosos, el contacto con agua de lluvia o la compactación por pisadas puede ablandarlos, por lo que es necesario verter el hormigón de limpieza sin demora o excavar los últimos centímetros justo antes del hormigonado.

¿Cuáles son los tipos principales de zapatas aisladas y cómo se clasifican estructuralmente?

Las zapatas aisladas son cimentaciones puntuales diseñadas para soportar elementos individuales, como pilares o muros. Se emplean en terrenos firmes y competentes, transmiten tensiones medias a altas y generan pequeños asentamientos. Son la opción más económica en roca o suelos con tensiones admisibles superiores a 0,15 N/mm². Se clasifican según su forma:

  • Rectas: De canto constante.
  • Escalonadas: Con variaciones en el canto.
  • Piramidales: Con canto variable. A veces no necesitan encofrado si el ángulo es menor de 30°, pero dificultan el vibrado.
  • Nervadas o aligeradas: Con nervios para reducir material. El Código Estructural las clasifica como rígidas o flexibles, independientemente de la rigidez del terreno. Una zapata se considera rígida si su canto (h) en el encuentro con el pilar es mayor o igual a un coeficiente (α) multiplicado por su vuelo (v), donde α depende de los módulos de elasticidad del terreno y de la zapata. Las zapatas flexibles suelen ser más económicas por requerir menor volumen de hormigón y acero.
Figura 2. Tipología de zapatas atendiendo a su forma

¿Qué problemas pueden surgir con las zapatas de medianería y de esquina, y cómo se resuelven?

Las zapatas de medianería y de esquina se utilizan cuando los pilares se ubican cerca de los límites de la propiedad. El problema principal de estas zapatas es la excentricidad de la carga, que puede provocar un momento de vuelco y levantar la cimentación. Para contrarrestar este efecto, se pueden emplear varias soluciones:

  • Atar la cimentación al forjado o a la viga superior.
  • Utilizar un tirante que conecte la zapata con otro elemento estructural.
  • Implementar una viga centradora que una las zapatas de medianería o de esquina para redistribuir las cargas y presiones sobre el terreno de manera más uniforme.

¿Cuáles son las fases de ejecución de una zapata aislada?

La construcción de una zapata aislada sigue una serie de fases secuenciales:

  1. Limpieza y desbroce del solar.
  2. Comprobación de medidas y niveles.
  3. Replanteo del movimiento de tierras.
  4. Excavación hasta la cota superior del cimiento y luego la excavación de las zapatas y riostras.
  5. Vaciado de hormigón de limpieza (aproximadamente 10 cm).
  6. Encofrado de zapatas y riostras.
  7. Colocación de la armadura inferior con separadores.
  8. Disposición de la armadura de espera de pilares («enanos»).
  9. Armado de las riostras.
  10. Vertido, vibrado y curado del hormigón. Durante este proceso, se deben cumplir disposiciones como mantener la excavación por debajo de la rasante (0,5 a 0,8 m), evitar la caída libre del hormigón, y no circular sobre el hormigón fresco.

¿Qué son las zapatas combinadas, continuas bajo pilares y continuas bajo muro, y cuándo se utilizan?

  • Zapata combinada: Apoya dos o más columnas cuando las cargas no son excesivas. Se usa si las zapatas aisladas estarían muy cerca (complicando la excavación) o si se buscan asentamientos uniformes, actuando de forma rígida. Se busca que el centro de gravedad de la superficie coincida con el de las acciones.
  • Zapata continua bajo pilares (vigas de cimentación): Son zapatas corridas que soportan tres o más pilares. Tienen una gran longitud en comparación con su sección transversal. Son menos susceptibles a asentamientos diferenciales o vacíos en el terreno que las zapatas aisladas.
  • Zapata continua bajo muro (zapata corrida bajo muro): Caracterizadas por una gran longitud en relación con otras dimensiones, se utilizan como base para muros portantes o cimentación de elementos lineales. Su objetivo es lograr homogeneidad en los asentamientos y reducir las tensiones en el terreno en comparación con las zapatas aisladas, además de ofrecer mayor facilidad constructiva.

¿Cuál es la función de las riostras en las cimentaciones y cómo influye la sismicidad en su disposición?

Las riostras son vigas de hormigón armado que conectan las zapatas. Su función principal es evitar los movimientos relativos entre las zapatas (corrimientos) y absorber cargas horizontales, por lo que son fundamentales para la resistencia a los sismos. Es necesario realizar un atado perimetral de las zapatas. La densidad y la disposición de estas vigas de atado dependen directamente de la aceleración sísmica esperada en la zona.

  • Si la aceleración sísmica está entre 0,06 g y 0,16 g, el atado puede ser unidireccional.
  • Si la aceleración sísmica es igual o superior a 0,16 g, se requiere un atado bidireccional, lo que indica una mayor densidad de riostras para lograr una mayor estabilidad.

¿Cuándo se utilizan los emparrillados y las losas de cimentación, y cuáles son sus ventajas y consideraciones clave?

  • Los emparrillados de cimentación recogen múltiples pilares en una única cimentación formada por zapatas corridas que se entrecruzan en una malla (generalmente ortogonal), lo que proporciona gran rigidez. Se utilizan cuando la presión admisible del terreno es baja, hay una elevada deformabilidad o se esperan importantes asentamientos diferenciales. Son menos sensibles a las heterogeneidades o defectos locales del terreno.
  • Las losas de cimentación (o placas de cimentación) se usan cuando la superficie de las zapatas individuales superaría el 50 % de la superficie del edificio. Son ideales para sótanos estancos por debajo del nivel freático y para reducir los asentamientos diferenciales. Son útiles en terrenos con escasa capacidad portante y en construcciones con poca superficie en relación con su volumen (por ejemplo, rascacielos o silos). Aunque pueden triplicar el coste de las zapatas, ofrecen ventajas como una mayor rigidez y la posibilidad de realizar cimentaciones «compensadas», en las que el peso de la tierra excavada equilibra el peso del edificio y se reducen los asentamientos. Las losas postesadas ofrecen rapidez, menor excavación, mayor capacidad de carga y durabilidad. Una consideración importante es el riesgo de levantamiento del fondo de la excavación en losas grandes, por lo que se requieren pantallas laterales con suficiente empotramiento.
Figura 3. Algunos tipos de cimentaciones superficiales. Imagen elaborada a partir de: http://www.generadordeprecios.info/

 

 

Referencias:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Ralph B. Peck: Una vida dedicada a la ingeniería geotécnica

Ralph B. Peck (1912 – 2008). https://www.ngi.no/en/about-ngi/ngis-historical-libraries/peck/

Ralph Brazelton Peck (23 de junio de 1912 – 18 de febrero de 2008) fue uno de los ingenieros civiles más influyentes del siglo XX. Su legado en el campo de la geotecnia se forjó a lo largo de décadas de investigación, enseñanza y práctica profesional. Nacido en Winnipeg (Canadá), creció en un ambiente técnico, ya que su padre, Orwin K. Peck, era ingeniero estructural especializado en obras ferroviarias. Esa influencia temprana marcó su destino profesional.

Aunque de niño soñaba con ser operador de tranvías, su padre lo persuadió para que estudiara ingeniería. A los 18 años rechazó becas de la Universidad de Colorado y de la Escuela de Minas de Colorado y se matriculó en el Instituto Tecnológico de Rensselaer (RPI) de Nueva York en 1930. Ese verano trabajó en la Denver & Rio Grande Railroad, donde comenzó su experiencia práctica en el mundo ferroviario. Durante sus estudios en RPI, diseñó su primer puente ferroviario, un puente con vigas de 20 m sobre el río Ánimas en Nuevo México, construido durante sus vacaciones de invierno de 1930, aunque más tarde fue destruido por una crecida del río.

En 1934, se graduó en Ingeniería Civil, pero como no encontró trabajo a causa de la Gran Depresión, aceptó una beca para cursar estudios de posgrado en estructuras, geología y matemáticas. En 1937 se doctoró en ingeniería civil con una tesis sobre rigidez en puentes colgantes, revisada por el reconocido ingeniero David Barnard Steinman.

Ese verano trabajó en la American Bridge Company, pero perdió su empleo al cabo de unos meses debido a la falta de proyectos. En marzo de 1938, cuando aún no había recibido ofertas de trabajo, tomó una decisión trascendental: pidió un préstamo de 5000 dólares a su suegro para estudiar mecánica de suelos en la Universidad de Harvard, bajo la tutela de Arthur Casagrande. Esta formación definiría el rumbo de su carrera profesional. Pocos días después, rechazó una oferta de trabajo como diseñador de puentes en la empresa Waddell & Hardesty, en Nueva York, para dedicarse a la geotecnia.

Casagrande lo aceptó en sus clases, primero como oyente y luego como ayudante de laboratorio. También colaboró con Ralph E. Fadum en el campo. Pronto, Peck comenzó a relacionarse con algunas de las figuras más destacadas del ámbito geotécnico: además de Casagrande, conoció y trabajó con Albert E. Cummings —pionero en cimentaciones con pilotes, quien más tarde le legó su biblioteca técnica—, Laurits Bjerrum, Alec W. Skempton y, especialmente, Karl Terzaghi, con quien forjaría una profunda amistad y colaboración profesional.

En enero de 1939, Terzaghi lo eligió como su representante en la obra del metro de Chicago, proyecto en el que había sido contratado como consultor. Peck asumió un papel central, manteniendo correspondencia constante con Terzaghi, a quien entregaba datos, informes y observaciones. También recibió la guía de Ray Knapp, jefe de inspección de obras del metro, a quien Peck consideró una influencia igual de formativa que Terzaghi por enseñarle a desenvolverse con eficacia en organizaciones complejas. Otra figura relevante en esta etapa fue Ralph Burke, ingeniero jefe de varios grandes proyectos en Chicago, con quien colaboró más adelante como consultor.

Su trabajo en el metro de Chicago fue clave en su desarrollo profesional. Allí aplicó, junto a Terzaghi, métodos avanzados de muestreo, medición de deformaciones e interpretación de suelos. Esta experiencia se materializó en el libro Soil Mechanics in Engineering Practice, publicado en 1948, escrito conjuntamente con Terzaghi y basado en gran medida en su experiencia conjunta. En esta obra se introdujo por primera vez el término «prueba de penetración estándar» (SPT), un concepto desarrollado a partir de un instrumento creado por Charley Gow en Boston. Terzaghi elogió públicamente la ética, el carácter y la rigurosidad de Peck durante el proceso de redacción.

En 1942, Peck se incorporó como profesor asistente de investigación en la Universidad de Illinois, donde impartió clases durante 32 años, hasta 1974. Aunque inicialmente dictaba cursos de estructuras, pronto se dedicó por completo a la geotecnia. En 1945, Terzaghi se unió como profesor visitante y su colaboración continuó en los años siguientes.

En 1953, Peck publicó junto con Thomas H. Thornburn y Walter E. Hanson el libro Foundation Engineering, que fue adoptado como texto en más de 50 universidades, consolidando aún más su influencia educativa. Su dedicación a la formación de ingenieros fue incuestionable y muchos de sus alumnos se convirtieron en figuras destacadas en el campo de la geotecnia.

Tras jubilarse, Peck mantuvo una intensa actividad como consultor, participando en más de mil proyectos en cuarenta y cuatro estados de EE. UU. y veintiocho países de cinco continentes. Su experiencia fue requerida en presas como la de Itezhi-Tezhi, en Zambia, y la de Saluda, en Carolina del Sur; en proyectos de transporte como el BART de San Francisco y los metros de Washington, Los Ángeles y Baltimore; así como en la cimentación del puente Rion-Antirion, en Grecia, y el oleoducto Trans-Alaska.

Entre 1969 y 1973, fue presidente de la Sociedad Internacional de Mecánica de Suelos e Ingeniería de Cimentaciones. A lo largo de su carrera publicó más de 200 artículos y fue ampliamente galardonado:

  • 1944: Medalla Norman de la ASCE

  • 1965: Premio Wellington de la ASCE

  • 1969: Premio Karl Terzaghi

  • 1975: Medalla Nacional de Ciencia, otorgada por el presidente Gerald Ford

  • 1988: Medalla John Fritz

  • 1999: La ASCE estableció el Ralph B. Peck Award, que premia contribuciones destacadas al desarrollo profesional de la ingeniería geotécnica mediante estudios de caso e innovaciones en metodología de diseño.

En 2009, el Instituto Geotécnico Noruego inauguró la Biblioteca Ralph B. Peck, junto a la Biblioteca Karl Terzaghi, en Oslo. En ella se conserva correspondencia entre ambos ingenieros, documentos históricos, diarios técnicos y informes que dan fe de su legado compartido.

Ralph Peck también influyó en figuras como Karl Terzaghi, quien lo consideró no solo un colega brillante, sino también un ejemplo de integridad profesional. Su enfoque metódico, su respeto por la observación cuidadosa y su compromiso con la excelencia lo convierten en una figura clave en la historia de la geotecnia.

Se casó con Marjorie E. Truby en 1937 y tuvo dos hijos. Falleció el 18 de febrero de 2008 a los 95 años, víctima de una insuficiencia cardíaca. Su vida representa una combinación única de rigor científico, habilidad práctica y vocación docente. Hoy, su legado perdura en cada estructura que ayudó a construir y en cada ingeniero al que inspiró.

Una de las frases que más me impactaron a nivel profesional es la que figura en mi blog. Dice lo siguiente:

En mi opinión, nadie puede ser un buen proyectista, un buen investigador, un buen líder en la profesión de la ingeniería civil, a menos que entienda los métodos y los problemas de los constructores

(Ralph B. Peck, 1912-2008)

Os dejo algunos vídeos de este insigne ingeniero.

Cimentaciones en suelos blandos: análisis integral de mecanismos de fallo

Acaban de publicar nuestro artículo en la revista Buildings, de la editorial Elsevier, indexada en el JCR. El trabajo ofrece una contribución significativa al estudio de los mecanismos de fallo en fosos de cimentación profunda, especialmente en entornos geotécnicos desfavorables caracterizados por suelos blandos limosos. A diferencia de los enfoques previos, que tratan los problemas de estabilidad desde una perspectiva parcial, esta investigación desarrolla un modelo integral que combina simulaciones numéricas en tres dimensiones, pruebas de campo a escala real y un enfoque de acoplamiento microestructural para analizar el comportamiento del terreno y los elementos estructurales en condiciones reales de obra.

Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal, junto con el profesor Julián Alcalá, en la Universitat Politècnica de València, y es fruto de la colaboración internacional con investigadores de la Hunan University of Science and Engineering (China).

Uno de los principales logros del estudio radica en la aplicación de un modelo multidisciplinar acoplado que tiene en cuenta factores como la consolidación del terreno, la deformabilidad del sistema de contención, la presión del agua subterránea y la calidad de la ejecución del piloteado. Este modelo no solo permite diagnosticar fallos con alta precisión, sino también anticipar comportamientos críticos antes de que se manifiesten de forma visible. Esta capacidad predictiva supone un avance significativo en el campo del control de calidad y la seguridad estructural en cimentaciones profundas.

Además, el trabajo plantea una metodología replicable basada en el uso combinado de tecnologías de ensayo estático, pruebas de onda de baja deformación y modelado por elementos finitos. La gran cantidad de datos empíricos obtenidos, junto con su correlación con los resultados simulados, constituye una base sólida para el desarrollo de futuras normativas de control y supervisión de obras en suelos con baja capacidad portante.

La investigación se ha estructurado en torno a tres ejes metodológicos principales: pruebas de campo, ensayos de laboratorio y modelado numérico. En primer lugar, se llevaron a cabo ensayos in situ que incluyeron pruebas de penetración estándar, ensayos de penetración dinámica, pruebas de velocidad de onda de corte y muestreo mediante perforación mecánica. Estos ensayos se llevaron a cabo en el entorno del proyecto XSS-10D, una obra de gran escala con un foso de cimentación profunda sometido a condiciones geotécnicas complejas.

En segundo lugar, se realizaron ensayos geotécnicos de laboratorio sobre más de 140 muestras de suelo para determinar propiedades como la densidad seca y húmeda, el contenido de humedad, el límite líquido, la cohesión y el ángulo de fricción interna. Estos datos fueron fundamentales para definir los parámetros de entrada de los modelos numéricos.

Finalmente, se construyó un modelo tridimensional por elementos finitos utilizando el programa informático Abaqus CAE. Dicho modelo incorporó las características del suelo, las estructuras de contención, los pilotes y la acción de cargas externas, teniendo en cuenta tanto el comportamiento estático como las deformaciones diferidas. Además, se emplearon modelos viscoelásticos, como el de Kelvin, y se aplicó el criterio de rotura de Mohr-Coulomb para simular el comportamiento plástico del suelo.

Los resultados obtenidos a partir del estudio del proyecto XSS-10D confirman la eficacia del modelo acoplado para detectar defectos estructurales en cimentaciones profundas. En particular, se identificó que el pilote ZH2-194 presentaba una serie de análisis anómalos en los ensayos de baja deformación, los cuales se corroboraron mediante pruebas de carga estática y muestreo con extracción de testigos.

Las pruebas de carga estática evidenciaron desplazamientos superiores a los límites de servicio, mientras que el análisis del testigo reveló defectos de fabricación como oquedades, segregación de hormigón y contaminación con materiales finos. Estas deficiencias se atribuyeron a problemas en el proceso de hormigonado, como la intrusión de lodo en el interior de la perforación, la pérdida de trabajabilidad del hormigón y la falta de compactación adecuada.

El modelo numérico reprodujo con exactitud la distribución de esfuerzos y desplazamientos en la zona afectada y localizó los puntos de mayor concentración de tensiones en las inmediaciones del pilote defectuoso. Se observó un fenómeno de desplazamiento lateral y una redistribución de esfuerzos en el sistema de contención, lo que refuerza la necesidad de tener en cuenta la interacción entre el suelo y la estructura en su conjunto.

Los resultados también mostraron la importancia de factores como la presión del agua subterránea, la consolidación secundaria del suelo y la heterogeneidad estratigráfica en la evolución de los mecanismos de fallo. En particular, la capa de limos blandos localizada en el estrato 3 resultó ser un elemento clave en la pérdida de capacidad portante y el desarrollo de deformaciones excesivas.

A partir de los resultados del presente estudio, se abren diversas posibilidades para profundizar en el análisis de cimentaciones en entornos complejos. Una dirección prometedora consiste en incorporar técnicas de inteligencia artificial para detectar automáticamente los defectos mediante el procesamiento de datos de sensores de deformación y pruebas dinámicas. Esta integración permitiría establecer sistemas de supervisión continua con capacidad de aprendizaje adaptativo.

También es pertinente investigar nuevos materiales con propiedades reológicas adaptadas a entornos saturados o con baja resistencia al corte, como morteros tixotrópicos o mezclas de hormigón autocompactante con aditivos antifisuración.

Otra línea de investigación interesante es el estudio del comportamiento de los sistemas de contención bajo acciones cíclicas o sísmicas, ya que los modelos actuales tienden a centrarse en condiciones estáticas. La incorporación de elementos de análisis dinámico permitiría mejorar la resistencia global del sistema ante eventos extremos.

Por último, se propone la estandarización de protocolos para la inspección microestructural de pilotes defectuosos, en los que se establecen umbrales de aceptabilidad y criterios objetivos de intervención.

En conclusión, el estudio realizado constituye una aportación relevante y detallada al conocimiento sobre los mecanismos de fallo en cimentaciones profundas en suelos blandos. Su enfoque integral, que combina simulaciones numéricas, ensayos geotécnicos y análisis microestructurales, ofrece herramientas eficaces para detectar patologías estructurales de manera temprana. Además, sentará las bases para mejorar los procesos constructivos y desarrollar nuevas metodologías de control de calidad adaptadas a entornos complejos. La replicabilidad del modelo y su aplicabilidad en casos reales lo convierten en una referencia útil para estudiantes y profesionales de la ingeniería civil.

Referencia:

ZHOU, Z.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Study on the failure mechanism of deep foundation pit of high-rise building: comprehensive test and microstructure coupling. Buildings, 15(8), 1270. DOI:10.3390/buildings15081270

Como el artículo es en abierto, os lo dejo para su descarga:

Pincha aquí para descargar