5 lecciones sorprendentes de la IA para construir puentes más sostenibles y económicos.

La tesis doctoral leída recientemente por Lorena Yepes Bellver se centra en la optimización del diseño de puentes de losa de hormigón pretensado para pasos elevados con el fin de mejorar la sostenibilidad económica y ambiental mediante la minimización de costes, energía incorporada y emisiones de CO₂. Con el fin de reducir la elevada carga computacional del análisis estructural, la metodología emplea un marco de optimización de dos fases asistido por modelos sustitutos, en el que se destaca el uso de Kriging y redes neuronales artificiales (RNA).

En concreto, la optimización basada en Kriging condujo a una reducción de costes del 6,54 % al disminuir significativamente el consumo de hormigón y acero activo sin comprometer la integridad estructural. Si bien las redes neuronales demostraron una mayor precisión predictiva global, el modelo Kriging resultó más eficaz para identificar los óptimos locales durante el proceso de búsqueda. El estudio concluye que las configuraciones de diseño óptimas priorizan el uso de altos coeficientes de esbeltez y suponen una reducción del hormigón y del acero activo en favor del acero pasivo, con el fin de mejorar la eficiencia energética. Finalmente, la investigación integra la toma de decisiones multicriterio (MCDM, por sus siglas en inglés) para evaluar de manera integral los diseños en función de sus objetivos económicos, estructurales y ambientales.

Cuando pensamos en la construcción de grandes infraestructuras, como los puentes, suele venirnos a la mente la imagen de proyectos masivos, increíblemente caros y con un gran impacto ambiental. Son gigantes de hormigón y acero que, aunque necesarios, parecen irrenunciablemente vinculados a un alto coste económico y ecológico.

Sin embargo, ¿y si la inteligencia artificial nos estuviera mostrando un camino para que estos gigantes de hormigón fueran más ligeros, económicos y respetuosos con el planeta? Una reciente tesis doctoral sobre la optimización de puentes está desvelando hallazgos impactantes y, en muchos casos, sorprendentes. Este artículo resume esa compleja investigación en cinco lecciones clave y a menudo sorprendentes que no solo se aplican a los puentes, sino que anuncian una nueva era en el diseño de infraestructuras.

1. La sostenibilidad cuesta mucho menos de lo que crees.

Uno de los descubrimientos más importantes de la investigación es que la idea de que la sostenibilidad siempre implica un alto sobrecoste es, en gran medida, un mito. La optimización computacional demuestra que la viabilidad económica y la reducción del impacto ambiental no son objetivos opuestos.

La tesis doctoral lo cuantifica con precisión: un modesto aumento de los costes de construcción (inferior al 1 %) puede reducir sustancialmente las emisiones de CO₂ (en más de un 2 %). Este dato es muy relevante, ya que demuestra que con un diseño inteligente asistido por modelos predictivos se puede conseguir un beneficio medioambiental significativo con una inversión mínima. La sostenibilidad y la rentabilidad pueden y deben coexistir en el diseño de las infraestructuras del futuro.

2. El secreto está en la esbeltez: cuanto más fino, más eficiente.

En el diseño de un puente, la «relación de esbeltez» es un concepto clave que define la proporción entre la altura del tablero (su grosor) y la longitud del vano principal. Tradicionalmente, podríamos pensar que «más robusto es más seguro», pero la investigación demuestra lo contrario.

El estudio identificó una relación de esbeltez óptima para minimizar el impacto ambiental. Concretamente, el estudio halló una relación de esbeltez de aproximadamente 1/30 para optimizar las emisiones de CO₂ y de aproximadamente 1/28 para optimizar la energía incorporada. Esto significa que, en lugar de construir puentes masivos por defecto, los modelos de IA demuestran que un diseño más esbelto y afinado no solo es estructuralmente sólido, sino también mucho más eficiente en el uso de materiales. Este diseño más esbelto se logra no solo usando menos material en general, sino también mediante un sorprendente reequilibrio entre los componentes clave de la estructura, como veremos a continuación.

3. El equilibrio de materiales: menos hormigón, más acero (pasivo).

Quizás uno de los descubrimientos más sorprendentes es que el diseño más sostenible no consiste simplemente en utilizar menos cantidad de todos los materiales. La solución óptima es más un reequilibrio inteligente que una simple reducción general.

La investigación revela que los diseños optimizados lograron reducir el uso de hormigón en un 14,8 % y de acero activo (el acero de pretensado que tensa la estructura) en un 11,25 %. Sin embargo, este descenso se compensa con un aumento de la armadura pasiva (el acero convencional que refuerza el hormigón). Esto resulta contraintuitivo, ya que la intuición ingenieril a menudo favorece una reducción uniforme de los materiales. Sin embargo, los modelos computacionales identifican un complejo intercambio —sacrificar un material más barato (hormigón) por otro más caro (acero pasivo)— para alcanzar un diseño globalmente óptimo en términos de coste y emisiones de CO₂, un equilibrio que sería extremadamente difícil de lograr con métodos de diseño tradicionales.

4. Precisión frente a dirección: El verdadero poder de los modelos predictivos.

Al comparar diferentes modelos de IA, como las redes neuronales artificiales y los modelos Kriging, la tesis doctoral reveló una lección fundamental sobre su verdadero propósito en ingeniería.

El estudio reveló que, si bien las redes neuronales ofrecían predicciones absolutas más precisas, el modelo Kriging era más eficaz para identificar las regiones de diseño óptimas. Esto pone de manifiesto un aspecto crucial sobre el uso de la IA en el diseño: su mayor potencial no radica en predecir un valor exacto, como si fuera una bola de cristal, sino en guiar al ingeniero hacia la «región» del diseño donde se encuentran las mejores soluciones posibles. La IA es una herramienta de exploración y dirección que permite navegar por un universo de posibilidades para encontrar de forma eficiente los diseños más prometedores.

5. La optimización va directo al bolsillo: reducción de costes superior al 6 %.

Más allá de los objetivos medioambientales, la investigación demuestra que estos modelos de IA son herramientas muy potentes para la optimización económica directa. Este descubrimiento no se refiere al equilibrio entre coste y sostenibilidad, sino a la reducción pura y dura de los costes del proyecto.

La tesis doctoral muestra que el método de optimización basado en Kriging consigue una reducción de costes del 6,54 %. Esta importante reducción se consigue principalmente minimizando el uso de materiales: un 14,8 % menos de hormigón y un 11,25 % menos de acero activo, el acero de pretensado más especializado y costoso. Esto demuestra de forma contundente que los modelos sustitutivos no solo sirven para alcanzar metas ecológicas, sino que también son una herramienta de gran impacto para la optimización económica en proyectos a gran escala.

Conclusión: Diseñando el futuro, un puente a la vez.

La inteligencia artificial y los modelos de optimización han dejado de ser conceptos abstractos para convertirse en herramientas prácticas que permiten descubrir formas novedosas y eficientes de construir la infraestructura del futuro. Los resultados de esta investigación demuestran que es posible diseñar y construir puentes que sean más económicos y sostenibles al mismo tiempo.

Estos descubrimientos no solo se aplican a los puentes, sino que abren la puerta a una nueva forma de entender la ingeniería. Si la IA puede rediseñar algo tan grande como un puente para hacerlo más sostenible, ¿qué otras grandes industrias están a punto de transformarse con un enfoque similar?

En este audio podéis escuchar una conversación sobre este tema.

Este vídeo resume las ideas principales.

Aquí tenéis un documento resumen de las ideas básicas.

Pincha aquí para descargar

Referencias:

YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Predictive modeling for carbon footprint optimization of prestressed road flyovers. Applied Sciences15(17), 9591. DOI:10.3390/app15179591

VILLALBA, P.; SÁNCHEZ-GARRIDO, A.; YEPES-BELLVER, L.; YEPES, V. (2025). A Hybrid Fuzzy DEMATEL–DANP–TOPSIS Framework for Life Cycle-Based Sustainable Retrofit Decision-Making in Seismic RC Structures. Mathematics, 13(16), 2649. DOI:10.3390/math13162649

ZHOU, Z.; WANG, Y.J.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Intelligent monitoring of loess landslides and research on multi-factor coupling damage. Geomechanics for Energy and the Environment, 42:100692. DOI:10.1016/j.gete.2025.100692

ZHOU, Z.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Study on the failure mechanism of deep foundation pit of high-rise building: comprehensive test and microstructure coupling. Buildings, 15(8), 1270. DOI:10.3390/buildings15081270

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2025). Surrogate-assisted cost optimization for post-tensioned concrete slab bridgesInfrastructures, 10(2): 43. DOI:10.3390/infrastructures10020043.

BLIGHT, T.; MARTÍNEZ-PAGÁN, P.; ROSCHIER, L.; BOULET, D.; YEPES-BELLVER, L.; YEPES, V. (2025). Innovative approach of nomography application into an engineering educational context. Plos One, 20(2): e0315426. DOI:10.1371/journal.pone.0315426

NAVARRO, I.J.; VILLALBA, I.; YEPES-BELLVER, L.; ALCALÁ, J. Social Life Cycle Assessment of Railway Track Substructure AlternativesJ. Clean. Prod. 2024450, 142008.

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2024). Artificial neural network and Kriging surrogate model for embodied energy optimization of prestressed slab bridges. Sustainability, 16(19), 8450. DOI:10.3390/su16198450

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2023). Embodied energy optimization of prestressed concrete road flyovers by a two-phase Kriging surrogate model. Materials16(20); 6767. DOI:10.3390/ma16206767

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2022). CO₂-optimization of post-tensioned concrete slab-bridge decks using surrogate modeling. Materials, 15(14):4776. DOI:10.3390/ma15144776

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

5 lecciones sorprendentes de ingeniería avanzada para construir puentes más sostenibles y económicos

Cuando pensamos en la construcción de grandes infraestructuras, como los puentes, a menudo nos viene a la mente una imagen de fuerza bruta: toneladas de hormigón y acero ensambladas con una precisión monumental. Se trata de una proeza de la ingeniería física, un testimonio de la capacidad humana para dominar los materiales y la geografía.

Sin embargo, detrás de esta fachada de poderío industrial se está produciendo una revolución silenciosa. La inteligencia artificial y los modelos computacionales avanzados, que pueden ejecutar el equivalente a décadas de diseño y pruebas de ingeniería en cuestión de horas, están redefiniendo las reglas del juego. Lejos de ser un mero ejercicio teórico, estas herramientas permiten a los ingenieros diseñar puentes que son no solo más resistentes, sino también sorprendentemente más económicos y respetuosos con el medio ambiente.

Las lecciones que siguen se basan en los hallazgos de una tesis doctoral, defendida por la profesora Lorena Yepes Bellver, innovadora en la optimización de puentes. La tesis obtuvo la máxima calificación de sobresaliente «cum laude». Las lecciones demuestran que el futuro de la construcción no radica únicamente en nuevos materiales milagrosos, sino en la aplicación de una inteligencia que permita aprovechar los ya existentes de forma mucho más eficiente.

De izquierda a derecha: Julián Alcalá, Salvador Ivorra, Lorena Yepes, Tatiana García y Antonio Tomás.

1. El pequeño coste de un gran impacto ecológico: pagar un 1 % más para emitir un 2 % menos de CO₂.

Uno de los principales obstáculos para la adopción de prácticas sostenibles ha sido siempre la creencia de que «ser verde» es significativamente más caro. Sin embargo, la investigación en optimización de puentes revela una realidad mucho más alentadora. Gracias a los diseños perfeccionados mediante metamodelos, es posible lograr reducciones significativas de la huella de carbono con un impacto económico mínimo.

El dato clave del estudio es contundente: «Un modesto aumento de los costes de construcción (menos del 1 %) puede reducir sustancialmente las emisiones de CO₂ (más del 2 %)». Este hallazgo demuestra que la sostenibilidad no tiene por qué ser un lujo, sino el resultado de una ingeniería más inteligente.

 

«Esto demuestra que el diseño de puentes sostenibles puede ser económicamente viable».

Esta lección es fundamental, ya que pone fin a una falsa dicotomía entre la economía y la ecología. Demuestra que no es necesario elegir entre un puente asequible y otro respetuoso con el medio ambiente. Gracias a las decisiones de diseño inteligentes, guiadas por la optimización avanzada, es posible alcanzar ambos objetivos simultáneamente, de modo que la sostenibilidad se convierte en una ventaja competitiva y no en una carga.

2. La paradoja de los materiales: añadir más componentes para reducir el consumo global.

La lógica convencional nos diría que, para construir de forma más sostenible, el objetivo debería ser reducir la cantidad total de materiales utilizados. Menos hormigón, menos acero, menos de todo. Sin embargo, uno de los hallazgos más sorprendentes de la tesis es una paradoja que desafía esta idea tan simple.

El diseño óptimo y más sostenible aumenta, de hecho, la cantidad de uno de sus componentes: la armadura pasiva (el acero de refuerzo convencional). A primera vista, esto parece contradictorio: ¿cómo puede ser más ecológico añadir más material?

La explicación se debe a un enfoque sistémico. Este aumento estratégico y calculado del refuerzo pasivo permite reducir considerablemente el consumo de otros dos materiales clave: el hormigón y la armadura activa (el acero de pretensado). La producción de estos materiales, especialmente la del cemento y del acero de alta resistencia, es intensiva en energía y, por tanto, genera numerosas emisiones de CO₂. En esencia, se sacrifica una pequeña cantidad de un material de menor impacto para ahorrar una cantidad mucho mayor de materiales de alto impacto.

Este enfoque, que podría describirse como «sacrificar una pieza para ganar el juego», es un ejemplo perfecto de cómo la optimización avanzada supera las reglas simplistas de reducción. En lugar de aplicar un recorte general, se analiza el sistema en su conjunto y se determina el equilibrio más eficiente. Este equilibrio inteligente de materiales solo es posible si se afina otro factor clave: la geometría de la estructura.

Retos en la optimización de puentes con metamodelos

3. Más esbelto es mejor: el secreto de la «delgadez» estructural para la sostenibilidad.

En el ámbito de la ingeniería de puentes, el concepto de «esbeltez» es fundamental. En términos sencillos, se refiere a la relación entre el canto de la losa y la luz que debe cubrir. Una mayor esbeltez implica un diseño estructural, en palabras comunes, más «delgado» o «fino».

La investigación revela un hallazgo crucial: los diseños que son óptimos tanto en términos de emisiones de CO₂ como de energía incorporada se logran con relaciones de esbeltez altas, concretamente de entre 1/30 y 1/28. En otras palabras, los puentes más sostenibles son también los más delgados y se complementan con hormigones óptimos situados entre 35 y 40 MPa de resistencia característica.

¿Por qué es esto tan beneficioso? Un diseño más esbelto requiere, inherentemente, una menor cantidad de materiales, principalmente de hormigón. Lo realmente notable es cómo se consigue. Los métodos tradicionales suelen basarse en reglas generales y márgenes de seguridad amplios, mientras que la optimización computacional permite a los ingenieros explorar miles, e incluso millones, de variaciones para acercarse al límite físico de la eficiencia sin sacrificar la seguridad. El resultado es una elegancia estructural casi contraintuitiva: puentes que alcanzan su fuerza no a través de la masa bruta, sino mediante una delgadez inteligentemente calculada, donde la sostenibilidad es una consecuencia natural de la eficiencia.

4. La optimización inteligente genera ahorros reales: una reducción de costes de hasta un 6,5 %.

Más allá de los beneficios medioambientales, la aplicación de estas técnicas de optimización tiene un impacto económico directo y medible. El diseño de infraestructuras deja de ser un arte basado únicamente en la experiencia para convertirse en una ciencia precisa que busca la máxima eficiencia económica.

El resultado principal del estudio sobre la optimización de costes es claro: el uso de modelos sustitutos (metamodelos Kriging) guiados por algoritmos heurísticos, como el recocido simulado, logró una reducción de costes del 6,54 % en comparación con un diseño de referencia.

Estos ahorros no son teóricos, sino que provienen directamente de la reducción de materiales. En concreto, se consiguió una disminución del 14,8 % en el uso de hormigón y del 11,25 % en el acero activo (pretensado). Es crucial destacar que estas reducciones se consiguieron sin afectar a la integridad estructural ni a la capacidad de servicio del puente. No se trata de sacrificar la calidad por el precio, sino de diseñar de manera más inteligente. Esta metodología convierte la optimización del diseño en una tarea académica en una herramienta práctica y altamente eficaz para la gestión económica de grandes proyectos de ingeniería civil.

5. No todos los cerebros artificiales piensan igual; la clave está en elegir el modelo computacional adecuado.

Una de las lecciones más importantes de esta investigación es que no basta con aplicar «inteligencia artificial» de forma genérica. El éxito de la optimización depende de elegir la herramienta computacional adecuada para cada tarea específica.

La tesis comparó dos potentes metamodelos: las redes neuronales artificiales (RNA) y los modelos de Kriging. Se descubrió una diferencia crucial en su rendimiento: si bien las RNA ofrecían predicciones absolutas más precisas sobre el comportamiento de un diseño concreto, el modelo de Kriging demostró ser mucho más eficaz para identificar los «óptimos locales», es decir, las zonas del mapa de diseño donde se encontraban las mejores soluciones.

Esto revela una capa más profunda de la optimización inteligente. Un modelo puede ser excelente para predecir un resultado (RNA), mientras que otro es más eficaz para guiar la búsqueda del mejor resultado posible (Kriging). No se trata solo de utilizar IA, sino de comprender qué «tipo de pensamiento» artificial es el más adecuado para cada fase del problema: predecir frente a optimizar. La verdadera maestría de la ingeniería moderna consiste en saber elegir las herramientas adecuadas para cada fase del problema.

Conclusión: la nueva frontera del diseño de infraestructuras.

La construcción de nuestras infraestructuras entra en una nueva era. La combinación de la ingeniería estructural clásica con el poder de los modelos computacionales avanzados, como el metamodelado Kriging y las redes neuronales artificiales, está abriendo una nueva frontera en la que la eficiencia y la sostenibilidad no son objetivos opcionales, sino resultados intrínsecos de un buen diseño.

Como hemos visto, los grandes avances no siempre provienen de materiales revolucionarios. A menudo, los «secretos» mejor guardados residen en la optimización inteligente de los diseños y materiales que ya conocemos. Obtener un mayor beneficio ecológico pagando menos, utilizar estratégicamente más de un material para reducir el consumo global o diseñar estructuras más esbeltas y elegantes son lecciones que van más allá de la construcción de puentes.

Nos dejan con una pregunta final que invita a la reflexión: si podemos lograr esto con los puentes, ¿qué otras áreas de la construcción y la industria están esperando a ser reinventadas por el poder de la optimización inteligente?

Os dejo un audio en el que se discuten las ideas de la tesis doctoral. Espero que os guste.

Y en este vídeo, tenemos resumidas las ideas principales de esta tesis.

Referencias:

YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Predictive modeling for carbon footprint optimization of prestressed road flyovers. Applied Sciences15(17), 9591. DOI:10.3390/app15179591

VILLALBA, P.; SÁNCHEZ-GARRIDO, A.; YEPES-BELLVER, L.; YEPES, V. (2025). A Hybrid Fuzzy DEMATEL–DANP–TOPSIS Framework for Life Cycle-Based Sustainable Retrofit Decision-Making in Seismic RC Structures. Mathematics, 13(16), 2649. DOI:10.3390/math13162649

ZHOU, Z.; WANG, Y.J.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Intelligent monitoring of loess landslides and research on multi-factor coupling damage. Geomechanics for Energy and the Environment, 42:100692. DOI:10.1016/j.gete.2025.100692

ZHOU, Z.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Study on the failure mechanism of deep foundation pit of high-rise building: comprehensive test and microstructure coupling. Buildings, 15(8), 1270. DOI:10.3390/buildings15081270

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2025). Surrogate-assisted cost optimization for post-tensioned concrete slab bridgesInfrastructures, 10(2): 43. DOI:10.3390/infrastructures10020043.

BLIGHT, T.; MARTÍNEZ-PAGÁN, P.; ROSCHIER, L.; BOULET, D.; YEPES-BELLVER, L.; YEPES, V. (2025). Innovative approach of nomography application into an engineering educational context. Plos One, 20(2): e0315426. DOI:10.1371/journal.pone.0315426

NAVARRO, I.J.; VILLALBA, I.; YEPES-BELLVER, L.; ALCALÁ, J. Social Life Cycle Assessment of Railway Track Substructure AlternativesJ. Clean. Prod. 2024450, 142008.

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2024). Artificial neural network and Kriging surrogate model for embodied energy optimization of prestressed slab bridges. Sustainability, 16(19), 8450. DOI:10.3390/su16198450

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2023). Embodied energy optimization of prestressed concrete road flyovers by a two-phase Kriging surrogate model. Materials16(20); 6767. DOI:10.3390/ma16206767

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2022). CO₂-optimization of post-tensioned concrete slab-bridge decks using surrogate modeling. Materials, 15(14):4776. DOI:10.3390/ma15144776

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.;

Verdades incómodas sobre la descarbonización industrial y el sector de la construcción

Todos estamos de acuerdo en que el futuro de la construcción debe ser más ecológico. La descarbonización del entorno construido es una prioridad en la agenda europea y, por intuición, sabemos que debemos favorecer los materiales «verdes». Las etiquetas para productos bajos en carbono parecen una solución obvia y directa para guiar al mercado.

Sin embargo, en el actual debate legislativo, centrado en iniciativas como la Ley de Aceleración de la Descarbonización Industrial (IDAA), la realidad del sector demuestra ser mucho más compleja. La Federación Europea de la Industria de la Construcción (FIEC) ha publicado un análisis estratégico que desmonta varias suposiciones populares y argumenta que las soluciones simplistas no solo son ineficaces, sino que también podrían resultar contraproducentes para la competitividad y la innovación en Europa. Este artículo desglosa las cinco revelaciones más impactantes de su análisis.

Las emisiones bajan, pero por la razón equivocada.

A primera vista, una reducción de las emisiones en industrias de alto consumo energético, como las productoras de acero o cemento, podría parecer una victoria. Sin embargo, el informe de la FIEC encendió una luz de alarma sobre la razón de esta reciente caída. El problema no es que las emisiones bajen, sino el motivo por el que lo hacen. El informe señala que, debido a factores como los altos costes energéticos y la competencia global, la producción industrial europea está en declive.

«Hoy en día, la reducción de las emisiones es con demasiada frecuencia el resultado de una menor producción, en lugar de una mayor eficiencia, una mayor integración del sistema energético y procesos de fabricación descarbonizados…».

Esta observación es crucial. No se trata solo de una mala noticia para la economía, sino de una estrategia climática fallida que simplemente deslocaliza las emisiones en lugar de eliminarlas, y que debilita la capacidad de Europa para construir la infraestructura verde del futuro.

El escepticismo de la industria: ¿por qué las etiquetas verdes son una solución incompleta?

La propuesta de crear etiquetas voluntarias para materiales industriales con bajas emisiones de carbono parece una herramienta lógica. Sin embargo, la FIEC muestra un gran escepticismo sobre su valor real y advierte de varios riesgos potenciales:

  • Los profesionales no las necesitan: Los equipos de compras no se guían por etiquetas simplificadas. Toman sus decisiones basándose en documentación técnica detallada, como las Declaraciones Ambientales de Producto (DAP o EPDs en inglés), que cuantifican de forma estandarizada el impacto ambiental de un producto a lo largo de su ciclo de vida.
  • Riesgo de confusión y carga administrativa: Una multiplicación de diferentes etiquetas podría generar confusión y una enorme carga burocrática, afectando especialmente a las pequeñas y medianas empresas (PYMES), que son la columna vertebral del sector.
  • Fragmentación del mercado: Si cada país establece sus propios umbrales, se corre el riesgo de fragmentar el mercado. No se trata solo de un problema burocrático, sino que socava el principio fundamental del Mercado Único de la UE al crear barreras que impiden a las empresas más innovadoras, independientemente de su país de origen, competir en igualdad de condiciones.
  • Valor añadido cuestionable: En resumen, no está claro que estas etiquetas aporten un valor real al proceso de toma de decisiones de los profesionales del sector, que ya cuentan con herramientas más sólidas.

El peligro de etiquetar lo incorrecto: el caso del cemento frente al hormigón.

Uno de los argumentos más potentes de la FIEC se centra en el peligro del «etiquetado indirecto». Para ilustrarlo, utilizan el ejemplo del cemento y el hormigón, mostrando cómo centrarse en el material equivocado puede anular los beneficios de una política bienintencionada.

La clave está en comprender que el cemento es un ingrediente y el hormigón es el producto final que adquieren y utilizan las empresas constructoras. Las políticas que se centran exclusivamente en etiquetar el cemento «bajo en carbono» ignoran que muchas de las mayores oportunidades de innovación se encuentran en la fase de producción del hormigón. Por ejemplo, se puede reducir la huella de carbono mediante mezclas innovadoras que logran un rendimiento estructural igual o superior con menos clínker (el componente que más emisiones genera).

Si las políticas solo incentivan un cemento «verde», se desaprovecharán todas estas innovaciones en el ámbito del hormigón. En el peor de los casos, este enfoque podría dar lugar a una «suboptimización», en la que se elige un componente supuestamente ecológico que provoca un impacto ambiental general negativo del producto final.

Si pagamos una «prima verde», el dinero debe reinvertirse.

La industria reconoce que los materiales con bajo contenido de carbono suelen tener un coste más elevado, lo que se conoce como «prima verde». La FIEC no se opone por principio a pagar este sobrecoste, pero establece una condición fundamental e ineludible: cualquier coste adicional pagado por estos productos debe reinvertirse de forma explícita y transparente en un mayor esfuerzo de descarbonización.

Esta condición convierte la «prima verde» en un mecanismo de inversión circular, creando un bucle de retroalimentación positiva en el que la demanda actual financia directamente las tecnologías limpias del futuro. Sin esta garantía, el sistema pierde credibilidad y desaparece el incentivo para que los clientes paguen más.

Una alternativa inteligente: El «precio sombra del CO₂».

En lugar de etiquetas, la FIEC propone un mecanismo más sofisticado y alineado con el mercado para la contratación pública: el «precio sombra del CO₂». Se trata de un mecanismo pragmático y elegante que utiliza herramientas existentes.

  1. Se toma la huella de carbono de un producto de construcción, un dato ya disponible en las Declaraciones Ambientales de Producto (DAP/EPD).
  2. Esa cifra de CO₂ se multiplica por el precio del carbono en el mercado de derechos de emisión de la UE (EU ETS).
  3. El resultado es un «precio sombra» monetario que no se añade al coste, sino que se utiliza como un criterio de evaluación clave en las licitaciones públicas.

Este método incentivaría una competencia real para reducir la huella de carbono de las ofertas. Es fundamental señalar que la FIEC lo concibe como un mecanismo de transición. Para evitar una «doble contabilidad», el precio sombra debería eliminarse progresivamente a medida que el EU ETS funcione sin asignaciones gratuitas.

Conclusión: más allá de la simplicidad.

El mensaje del sector de la construcción es claro: la descarbonización de un sector tan complejo no se puede lograr con gestos simbólicos. Se requieren mecanismos sofisticados que incentiven la innovación en toda la cadena de valor, desde la materia prima hasta la construcción finalizada.

La postura de la FIEC es una llamada al realismo: para lograr una descarbonización efectiva, es necesario pasar de los gestos simbólicos a los incentivos sistémicos. La pregunta crucial para los legisladores es si están dispuestos a diseñar políticas que reflejen la complejidad del mercado o si se conformarán con la falsa simplicidad de una etiqueta.

A continuación, os dejo un audio en el que se puede escuchar una conversación que ilustra claramente el contenido de este tema.

En este vídeo se recogen las ideas más importantes del artículo.

El documento que adjunto a continuación sintetiza la postura de la Federación de la Industria Europea de la Construcción (FIEC) respecto a la próxima «Acta Aceleradora de la Descarbonización Industrial» (IDAA) propuesta por la Comisión Europea. La FIEC apoya el objetivo general de la IDAA de fomentar la producción industrial sostenible y resiliente en la Unión Europea, pero expresa serias preocupaciones sobre los métodos sugeridos, en particular la creación de etiquetas voluntarias para productos industriales con bajas emisiones de carbono, como el acero y el cemento.

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Pasarelas peatonales sostenibles: cómo optimizar su diseño para reducir costes económicos y ambientales

Este artículo se centra en la aplicación práctica de la evaluación del ciclo de vida (LCA) para optimizar el impacto ambiental y los costes de los puentes peatonales compuestos de acero y hormigón. Los autores utilizan el algoritmo de búsqueda de armonía multiobjetivo (MOHS) para identificar soluciones de diseño que minimicen simultáneamente las emisiones de CO₂, la energía incorporada y los costes de construcción. Los resultados muestran una relación directa y lineal entre el coste, las emisiones de CO₂ y la energía incorporada, lo que sugiere que las soluciones económicamente eficientes también son beneficiosas para el medio ambiente. Se analizan escenarios alternativos, como variaciones en la resistencia del hormigón y fluctuaciones en el precio de los materiales, para evaluar su impacto en los resultados de la optimización. En última instancia, el estudio demuestra la eficacia de combinar la optimización estructural con la evaluación del ciclo de vida para fomentar un diseño de infraestructura más sostenible.

El trabajo se enmarca dentro del proyecto de investigación RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València. Se trata de una colaboración internacional de nuestro grupo con investigadores brasileños. A continuación se recoge un resumen sintético del trabajo.

El sector de la construcción es uno de los que más recursos consume y más emisiones de gases de efecto invernadero genera. Según el Programa de las Naciones Unidas para el Medio Ambiente, este sector consume alrededor del 34 % de la energía mundial y es responsable de aproximadamente el 37 % de las emisiones de CO₂. Ante esta realidad, mejorar la sostenibilidad de las infraestructuras es fundamental para alcanzar los Objetivos de Desarrollo Sostenible (ODS) de la ONU. En este contexto, el artículo «Aplicación práctica de la evaluación del ciclo de vida para optimizar el impacto ambiental de los puentes peatonales de acero y hormigón», de Fernando Luiz Tres Junior y colaboradores, muestra cómo la combinación de la optimización estructural multiobjetivo y la evaluación del ciclo de vida permite diseñar un puente peatonal que reduce simultáneamente su coste económico, las emisiones de CO₂ y la energía incorporada, sin sacrificar la seguridad ni la funcionalidad.

El trabajo aporta varias conclusiones relevantes. Una de las más importantes es que los objetivos de minimizar el coste y el impacto ambiental no son opuestos, sino que las soluciones más baratas también son más sostenibles. Además, el estudio cuantifica con precisión la relación entre estos factores, por lo que es posible estimar cómo varía el impacto ambiental en función del presupuesto. Otra aportación destacable es la validación práctica de la metodología: la combinación de técnicas de optimización y bases de datos de evaluación del ciclo de vida (LCA, por sus siglas en inglés) conduce a soluciones óptimas y robustas, incluso ante cambios en parámetros como la resistencia del hormigón o las fluctuaciones de precios.

El caso de estudio consiste en un puente peatonal de 17,5 m de luz y 3 m de ancho ubicado en el sur de Brasil. La estructura combina vigas de acero soldadas y una losa de hormigón armado, unidas mediante conectores de corte. Las variables de diseño incluyen el espesor y la resistencia del hormigón, las dimensiones de las vigas de acero y el grado de interacción entre ambos materiales. Estas variables pueden adoptar distintos valores discretos, lo que da lugar a más de 700 000 millones de combinaciones posibles. El objetivo de la optimización es hallar las mejores soluciones en términos de coste económico, emisiones de CO₂ y energía incorporada, cumpliendo siempre con la normativa brasileña sobre seguridad estructural y confort frente a vibraciones.

Para evaluar el impacto ambiental de los materiales, los autores utilizaron dos bases de datos. En el caso del acero de las vigas, utilizaron una base de datos internacional, que contiene datos globales sobre emisiones y consumo de energía. En el caso del hormigón y las armaduras, recurrieron a datos locales de producción del sur de Brasil. Además, analizaron dos escenarios alternativos para comprobar la solidez de las soluciones: uno con hormigón de menor resistencia (20 MPa en lugar de 40 MPa) y otro con precios más altos para los materiales (como ocurrió durante la pandemia en 2022).

Todas las soluciones se verificaron para garantizar que cumplían los requisitos normativos de seguridad y servicio, incluidos los estados límite últimos, las deformaciones y las vibraciones. Las soluciones que no superaban estas comprobaciones eran penalizadas y el algoritmo de optimización las descartaba. Para la optimización, utilizaron el algoritmo Multiobjective Harmony Search (MOHS), inspirado en la improvisación musical, que busca soluciones que «armonizan» los distintos objetivos. Este algoritmo genera y mejora iterativamente las soluciones hasta construir la denominada «frontera de Pareto», que recoge las mejores alternativas posibles sin que ninguna sea mejor en todos los objetivos a la vez.

Los resultados muestran que estos tres objetivos —coste, emisiones de CO₂ y energía incorporada— están estrechamente relacionados y no entran en conflicto entre sí. Se evita la emisión de 1 kg de CO₂ por cada 6,56 reales brasileños ahorrados por metro de puente, y se reducen 1 MJ de energía por cada 0,70 reales. Además, por cada 9,3 MJ ahorrados se evita la emisión de 1 kg de CO₂. Estas relaciones lineales reflejan que, al reducir el consumo de materiales, se consigue simultáneamente un ahorro económico y un menor impacto medioambiental.

Las soluciones óptimas obtenidas tienen características muy similares entre sí. La losa de hormigón tiene un espesor de 12 cm y la viga de acero mide aproximadamente 860 mm de altura, con un espesor del alma de 6,35 mm, y mantiene la clásica proporción luz/altura cercana a 20. La anchura de las alas superior e inferior de la viga varía, siendo la inferior más ancha y gruesa. En todos los casos, la interacción entre el acero y el hormigón es completa (grado de interacción igual a 1).

Al considerar el escenario con hormigón de menor resistencia, se observó un aumento del coste total del 3 %, debido a que fue necesario añadir más acero para compensar la menor resistencia del hormigón. En cuanto al impacto ambiental, las emisiones de CO₂ apenas se redujeron (menos de un 1 %), mientras que la energía incorporada aumentó alrededor de un 4 %. En el escenario con precios más altos de los materiales, se obtuvieron dos soluciones óptimas: una más barata, pero con mayores emisiones, y otra más cara y sostenible. En ambos casos, las diferencias entre las soluciones fueron pequeñas y se mantuvo la relación lineal entre los objetivos.

En conclusión, este trabajo demuestra que es posible diseñar puentes peatonales más económicos y sostenibles combinando optimización estructural y LCA. La reducción del consumo de materiales no solo abarata la estructura, sino que también disminuye las emisiones de CO₂ y la energía incorporada. Además, el uso de hormigón de alta resistencia reduce la cantidad de acero necesaria, lo que tiene un impacto positivo en el coste y la sostenibilidad. Las soluciones óptimas resultaron muy similares al modificar las condiciones del diseño o del mercado, lo que confirma la solidez de la metodología.

Este tipo de estudios es especialmente valioso en los países en desarrollo, donde las necesidades de infraestructuras son elevadas y los recursos económicos, limitados. El diseño de estructuras asequibles y sostenibles contribuye al desarrollo regional y a la lucha contra el cambio climático. Los autores recomiendan ampliar futuras investigaciones para incluir también el impacto social y considerar así los tres pilares de la sostenibilidad: el económico, el ambiental y el social. También recomiendan analizar el ciclo de vida completo de la estructura, incluyendo el mantenimiento y la demolición. Por último, esta metodología podría aplicarse fácilmente a otros tipos de infraestructuras, como puentes para vehículos o edificios.

En definitiva, este trabajo no solo muestra cómo reducir costes y emisiones en un puente peatonal concreto, sino que también abre la puerta a un diseño más sostenible de nuestras infraestructuras. Es un claro ejemplo de cómo la ingeniería civil puede ser una aliada clave en el desarrollo sostenible.

Referencia:

Tres Junior, F.L., Yepes, V., de Medeiros, G.F., Kripka, M. (2025). Practical Application of LCA to Optimize Environmental Impacts of Steel–concrete Footbridges. In: Brandli, L., Rosa, F.D., Petrorius, R., Veiga Avila, L., Filho, W.L. (eds) The Contribution of Life Cycle Analyses and Circular Economy to the Sustainable Development Goals. World Sustainability Series. Springer, Cham. https://doi.org/10.1007/978-3-031-85300-5_22

Glosario de términos clave

  • Evaluación del ciclo de vida (LCA): Una metodología para estimar los impactos ambientales resultantes de la fabricación de un producto o servicio, examinando cada etapa de su ciclo de vida, desde la extracción de recursos naturales hasta su eliminación.
  • Emisiones de CO2: La cantidad de dióxido de carbono liberada a la atmósfera, utilizada como un criterio clave para evaluar el impacto ambiental en este estudio.
  • Energía incorporada: La suma total de energía necesaria para producir un producto, desde la extracción de las materias primas hasta el final del proceso de fabricación, utilizada como otro criterio de impacto ambiental.
  • Optimización multi-objetivo: Un proceso de optimización que considera múltiples funciones objetivo que deben minimizarse o maximizarse simultáneamente. Produce un conjunto de soluciones no dominadas o Pareto-óptimas.
  • Algoritmo de búsqueda de armonía multi-objetivo (MOHS): Un algoritmo metaheurístico basado en la improvisación musical, adaptado para resolver problemas de optimización multi-objetivo.
  • Pasarela mixta de hormigón y acero: Una estructura que combina elementos de acero y hormigón de manera que trabajen juntos como una sola unidad para soportar cargas, aprovechando las fortalezas de ambos materiales.
  • Frontera de Pareto: Una representación gráfica que conecta el conjunto de soluciones no dominadas (Pareto-óptimas) en un problema de optimización multi-objetivo, lo que permite analizar las compensaciones entre los objetivos.
  • Solución no dominada (Pareto-Óptima): Una solución para la cual no existe otra solución admisible que mejore simultáneamente todas las funciones objetivo. Mejorar un objetivo solo es posible a expensas de al menos otro.
  • Grado de interacción (α): Una variable de diseño en vigas compuestas que representa el nivel de conexión entre el acero y el hormigón, influyendo en su comportamiento estructural combinado.
  • Estado límite último (ULS): Verificaciones relacionadas con la capacidad de la estructura para resistir las cargas máximas sin colapsar, incluyendo la tensión de cizallamiento y el momento de flexión.
  • Estado límite de servicio (SLS): Verificaciones relacionadas con el rendimiento de la estructura bajo cargas normales para garantizar la comodidad y la funcionalidad, como la limitación de los desplazamientos y las aceleraciones.
  • Penalización: Un método utilizado en algoritmos de optimización para hacer que las soluciones que no cumplen con las restricciones de diseño sean menos atractivas para el algoritmo, agregando un valor a la función objetivo.

Aportaciones al Congreso sobre Optimización de Estructuras HPSM/OPTI 2025, Edimburgo (Reino Unido)

Los días 10 a 12 de junio de 2025 se celebró en Edimburgo (Reino Unido) uno de los congresos más importantes sobre optimización de estructuras: “12th International Conference on High Performance and Optimum Design of Structures and Materials, HPSM/OPTI 2025“. He participado en dicho congreso tanto en su Comité Científico como Invited Speaker.

Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal, junto con el profesor Julián Alcalá, en la Universitat Politècnica de València. Además, es uno de los resultados de la tesis doctoral de Lorena Yepes.

En cuanto la comunicación esté publicada en el libro de ponencias, os pasaré el enlace para su descarga gratuita. A continuación os paso el resumen de la comunicación presentada.

El artículo «Multi-Attribute Decision-Making in Prestressed Concrete Road Flyover Design», propone una innovadora metodología para optimizar el diseño de puentes de hormigón pretensado teniendo en cuenta simultáneamente tres criterios clave: el coste económico, las emisiones de CO₂ y la energía incorporada en los materiales. Su objetivo es encontrar soluciones de compromiso que equilibren sostenibilidad y eficiencia estructural.

Aportaciones principales del estudio

Este trabajo aporta un enfoque sistemático y práctico para integrar criterios medioambientales y económicos en el diseño de pasos elevados. Frente a las metodologías tradicionales que suelen priorizar únicamente el coste, los autores aplican técnicas de toma de decisiones multicriterio para considerar también el impacto ambiental desde el inicio del proceso proyectual. Además, ofrecen pautas concretas para diseños preliminares que buscan un equilibrio entre coste, emisiones y consumo energético.

Metodología empleada

La investigación se basa en técnicas avanzadas de optimización y modelado. En primer lugar, se utilizaron 50 soluciones iniciales de diseño generadas mediante un muestreo estadístico conocido como Latin Hypercube Sampling, que explora diferentes combinaciones de parámetros como la resistencia del hormigón, la anchura de la base y la profundidad del tablero.

A continuación, se aplicó un modelo de sustitución de tipo Kriging, capaz de estimar con gran precisión los resultados estructurales sin necesidad de cálculos exhaustivos para cada diseño. Esto permitió ampliar el análisis a 1.000 soluciones adicionales simuladas.

Con todas las alternativas sobre la mesa, se extrajo la “frontera de Pareto”, un conjunto de soluciones no dominadas que representan los mejores compromisos posibles entre los tres objetivos. Finalmente, se aplicaron distintos escenarios de toma de decisiones multiatributo, asignando diferentes pesos a cada criterio, para seleccionar los diseños más equilibrados.

Resultados más relevantes

El análisis reveló que los diseños más sostenibles tienen características comunes: una relación entre canto del tablero y luz principal cercana a 1/30 y una resistencia del hormigón de 40 MPa. Estas configuraciones permiten reducir tanto el consumo de materiales como las emisiones sin comprometer la viabilidad estructural.

Dependiendo del peso asignado a cada criterio (coste, emisiones, energía), se identificaron varias soluciones óptimas, destacando especialmente dos (denominadas #6 y #13) por su buen rendimiento integral. Curiosamente, priorizar solo el coste lleva a soluciones con mayor canto, mientras que priorizar el medio ambiente genera estructuras más esbeltas y materialmente eficientes.

Conclusiones y recomendaciones

El estudio concluye que aplicar técnicas de decisión multicriterio en la ingeniería civil permite diseñar infraestructuras más sostenibles y racionales, sin sacrificar funcionalidad ni economía. Se recomienda considerar desde fases tempranas del diseño variables ambientales clave como las emisiones o la energía embebida, además de los costes.

Asimismo, los autores sugieren incorporar la participación de los diferentes agentes implicados (ingenieros, administraciones, ciudadanía) para lograr soluciones más equilibradas y duraderas.

Este trabajo representa un avance hacia una práctica de la ingeniería más alineada con los Objetivos de Desarrollo Sostenible, y especialmente con el ODS 9, que promueve infraestructuras resilientes, sostenibles e innovadoras.

Referencia:

YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Multi-attribute decision-making in prestressed concrete road flyover design. International Conference on High Performance and Optimum Design of Structures and Materials, HPSM/OPTI 2025, 10-12 June 2025, Edinburgh, UK.

Tesis doctoral: Optimización multicriterio para el diseño sostenible de puentes postesados mediante metamodelos

De izquierda a derecha: Julián Alcalá, Salvador Ivorra, Lorena Yepes, Tatiana García y Antonio Tomás.

Hoy, 6 de junio de 2025, ha tenido lugar la defensa de la tesis doctoral de Dª. Lorena Yepes Bellver, titulada “Multi-criteria optimization for sustainable design of post-tensioned concrete slab bridges using metamodels”, dirigida por el profesor Julián Alcalá González. La tesis ha obtenido la máxima calificación de sobresaliente «cum laude». A continuación, presentamos un pequeño resumen de la misma.

Esta tesis utiliza técnicas de modelización sustitutiva para optimizar los costes económicos y medioambientales en puentes losa de hormigón postesado hormigonado in situ. El objetivo principal de esta investigación es desarrollar una metodología sistemática que permita optimizar el diseño de puentes, reduciendo los costes, las emisiones de CO₂ y la energía necesaria para construir este tipo de puentes sin comprometer la viabilidad estructural o económica. El marco de optimización propuesto consta de dos fases secuenciales: la primera se centra en ampliar el espacio de búsqueda y la segunda intensifica la búsqueda de soluciones óptimas. El metamodelo basado en Kriging realiza una optimización heurística que da como resultado un diseño con emisiones de CO₂ significativamente menores que los diseños convencionales. El estudio revela que una relación de esbeltez de aproximadamente 1/30 arroja resultados óptimos, ya que se reduce el consumo de material y se mantiene la integridad estructural. Además, el aumento de la armadura pasiva compensa la reducción de hormigón y armadura activa, lo que da como resultado un diseño más sostenible. Por otra parte, se identifica una compensación entre costes y emisiones que muestra que un modesto aumento de los costes de construcción (menos del 1 %) puede reducir sustancialmente las emisiones de CO₂ (más del 2 %), lo que demuestra que el diseño de puentes sostenibles puede ser económicamente viable.

La investigación explora más a fondo la optimización de la energía incorporada en la construcción de pasos elevados de carreteras anuladas mediante el uso de muestreo por hipercubo latino y optimización basada en Kriging. La metodología permite identificar los parámetros críticos de diseño, como los altos coeficientes de esbeltez (en torno a 1/28), el uso mínimo de hormigón y armadura activa, y el aumento de la armadura pasiva para mejorar la eficiencia energética. Aunque en el estudio se emplearon Kriging y redes neuronales artificiales (RNA), Kriging demostró ser más eficaz a la hora de identificar óptimos locales, a pesar de que las redes neuronales ofrecen predicciones absolutas más precisas. Esto pone de manifiesto la eficacia de los modelos sustitutos a la hora de orientar las decisiones de diseño sostenible, incluso cuando los modelos no ofrecen predicciones absolutas perfectamente exactas.

En el contexto de la optimización de costes para puentes de losa postesada, el estudio demuestra el potencial del modelado sustitutivo combinado con la simulación del recocido. Los resultados muestran que el método de optimización basado en Kriging conduce a una reducción de costes del 6,54 %, principalmente mediante la minimización del uso de materiales, concretamente de hormigón en un 14,8 % y de acero activo en un 11,25 %. Estas reducciones en el consumo de material se consiguen manteniendo la integridad estructural y la capacidad de servicio del puente, lo que convierte al modelado sustitutivo en una herramienta práctica y eficaz para la optimización económica en el diseño de puentes.

El estudio también evalúa la forma de optimizar las emisiones de CO₂ en pasos elevados de carreteras pretensadas. Se identifican los parámetros óptimos de diseño, como grados de hormigón entre C-35 y C-40 MPa, profundidades del tablero entre 1,10 y 1,30 m, y anchuras de base entre 3,20 y 3,80 m. La red neuronal mostró las predicciones más precisas entre los modelos predictivos analizados, con los errores medios absolutos (MAE) y cuadrados medios (RMSE) más bajos. Estos resultados subrayan la importancia de seleccionar el modelo predictivo adecuado para optimizar las emisiones de CO₂ en el diseño de puentes y destacan el valor de utilizar modelos sustitutivos para mejorar la sostenibilidad en los proyectos de ingeniería civil.

Por último, la investigación integra la toma de decisiones multicriterio (MCDM) con la optimización basada en Kriging para evaluar y optimizar los diseños de puentes en relación con objetivos económicos, medioambientales y estructurales. El enfoque MCDM permite evaluar de manera más exhaustiva las alternativas de diseño al tener en cuenta las compensaciones entre coste, impacto ambiental y rendimiento estructural. Esta integración contribuye al desarrollo sostenible de las infraestructuras, ya que facilita la selección de diseños óptimos que se ajusten a los objetivos de sostenibilidad.

En conclusión, esta tesis demuestra que el modelado sustitutivo, que utiliza explícitamente el Kriging y redes neuronales artificiales, es un enfoque práctico para optimizar las dimensiones medioambiental y económica del diseño de puentes. El marco de optimización en dos fases que aquí se presenta proporciona una metodología eficiente desde el punto de vista computacional que permite identificar soluciones de diseño óptimas y sostenibles que cumplen las restricciones estructurales y económicas. Los resultados sugieren que la metodología es aplicable a proyectos de infraestructuras a gran escala y sentarán las bases para futuras investigaciones. Futuros estudios podrían investigar el uso de algoritmos y modelos de optimización adicionales para perfeccionar aún más el proceso de optimización y mejorar la aplicabilidad de estas metodologías en proyectos reales.

Referencias:

YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Predictive modeling for carbon footprint optimization of prestressed road flyovers. Applied Sciences15(17), 9591. DOI:10.3390/app15179591

VILLALBA, P.; SÁNCHEZ-GARRIDO, A.; YEPES-BELLVER, L.; YEPES, V. (2025). A Hybrid Fuzzy DEMATEL–DANP–TOPSIS Framework for Life Cycle-Based Sustainable Retrofit Decision-Making in Seismic RC Structures. Mathematics, 13(16), 2649. DOI:10.3390/math13162649

ZHOU, Z.; WANG, Y.J.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Intelligent monitoring of loess landslides and research on multi-factor coupling damage. Geomechanics for Energy and the Environment, 42:100692. DOI:10.1016/j.gete.2025.100692

ZHOU, Z.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Study on the failure mechanism of deep foundation pit of high-rise building: comprehensive test and microstructure coupling. Buildings, 15(8), 1270. DOI:10.3390/buildings15081270

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2025). Surrogate-assisted cost optimization for post-tensioned concrete slab bridgesInfrastructures, 10(2): 43. DOI:10.3390/infrastructures10020043.

BLIGHT, T.; MARTÍNEZ-PAGÁN, P.; ROSCHIER, L.; BOULET, D.; YEPES-BELLVER, L.; YEPES, V. (2025). Innovative approach of nomography application into an engineering educational context. Plos One, 20(2): e0315426. DOI:10.1371/journal.pone.0315426

NAVARRO, I.J.; VILLALBA, I.; YEPES-BELLVER, L.; ALCALÁ, J. Social Life Cycle Assessment of Railway Track Substructure Alternatives. J. Clean. Prod. 2024, 450, 142008.

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2024). Artificial neural network and Kriging surrogate model for embodied energy optimization of prestressed slab bridges. Sustainability, 16(19), 8450. DOI:10.3390/su16198450

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2023). Embodied energy optimization of prestressed concrete road flyovers by a two-phase Kriging surrogate model. Materials16(20); 6767. DOI:10.3390/ma16206767

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2022). CO₂-optimization of post-tensioned concrete slab-bridge decks using surrogate modeling. Materials, 15(14):4776. DOI:10.3390/ma15144776

Diseño óptimo de un puente mixto basado en un algoritmo de inteligencia de enjambre discreto

Acaban de publicarnos un artículo en la revista Structural and Multidisciplinary Optimization (revista indexada en el JCR en el primer cuartil) sobre la optimización de puentes mixtos de hormigón y acero usando un algoritmo de inteligencia de enjambre discreto y funciones de transferencia. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La optimización de puentes puede ser compleja debido al gran número de variables que intervienen en el problema. En este trabajo se ha ejecutado dos optimizaciones de puentes mixtos de sección en cajón, considerando el coste y las emisiones de CO₂ como funciones objetivo. Tomar las emisiones de CO₂ como función objetivo permite añadir criterios de sostenibilidad para comparar los resultados con el coste. Se han aplicado las metaheurísticas SAMO2, SCA y Jaya para alcanzar este objetivo. Se implementaron funciones de transferencia para adaptar SCA y Jaya a la naturaleza discontinua del problema de optimización del puente. Además, se ha llevado a cabo un Diseño de Experimentos para afinar el algoritmo y establecer sus parámetros. En consecuencia, se ha observado que SCA muestra valores similares para la función objetivo de coste que SAMO2, pero mejora el tiempo computacional en un 18% a la vez que obtiene valores más bajos para la desviación del resultado de la función objetivo. A partir de un análisis de optimización de costes y CO₂, se observa una reducción de 2,51 kg de CO₂ por cada euro reducido utilizando técnicas metaheurísticas. Además, para ambos objetivos de optimización, se comprueba que la adición de celdas a las secciones de los puentes mejora no solo el comportamiento de la sección, sino también los resultados de la optimización. Por último, los resultados muestran que el diseño propuesto de doble acción mixta en los apoyos permite eliminar los rigidizadores longitudinales continuos dispuestos en el ala inferior en este estudio.

Abstract:

Bridge optimization can be complex because of the large number of variables involved in the problem. In this paper, two box-girder steel–concrete composite bridge single objective optimizations have been carried out considering cost and CO₂ emissions as objective functions. Taking CO₂ emissions as an objective function allows adding sustainable criteria to compare the results with cost. SAMO2, SCA, and Jaya metaheuristics have been applied to reach this goal. Transfer functions have been implemented to fit SCA and Jaya to the discontinuous nature of the bridge optimization problem. Furthermore, a Design of Experiments has been conducted to tune the algorithm and set its parameters. Consequently, it has been observed that SCA shows similar values for objective cost function as SAMO2 but improves computational time by 18% while also getting lower values for the objective function result deviation. From a cost and CO₂ optimization analysis, it has been observed that a reduction of 2.51 kg CO₂ is obtained by each euro reduced using metaheuristic techniques. Moreover, for both optimization objectives, it is observed that adding cells to bridge cross-sections improves not only the section behavior but also the optimization results. Finally, it is observed that the proposed design of double composite action in the supports allows this study to remove continuous longitudinal stiffeners in the bottom flange.

Keywords:

Swarm intelligence; Steel–concrete composite structures; Bridges; Optimization; Metaheuristics; Sustainability

Reference:

MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2022). Optimal design of steel-concrete composite bridge based on a transfer function discrete swarm intelligence algorithm. Structural and Multidisciplinary Optimization, 65:312. DOI:10.1007/s00158-022-03393-9

El artículo está publicado en abierto, por lo que podéis realizar su descarga gratuita en este enlace: https://link.springer.com/article/10.1007/s00158-022-03393-9

Pincha aquí para descargar

Optimización de las emisiones de CO₂ en la construcción de puentes losa postesados utilizando metamodelos

Acaban de publicarnos un artículo en la revista Materials, revista indexada en el primer cuartil del JCR. En este caso se ha optimizado, mediante un metamodelo tipo Kriging, las emisiones de CO₂ de un puente losa postesado aligerado. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Se trata de un trabajo de investigación en el que se ha propuesto una metodología novedosa, bifase, que utilizando un metamodelo tipo Kriging y con un muestreo inteligente del espacio de soluciones, permite optimizar problemas de alto nivel de complejidad computacional. Es el caso de las estructuras de hormigón, y en este trabajo en particular, de un tablero de puente losa pretensado aligerado. Por tanto, el objetivo general de este trabajo es proponer y comprobar la aplicabilidad de una metodología que permita la reducción energética y reducción de las emisiones de CO₂ en la construcción del tablero de un puente losa pretensado aligerado. La metodología propuesta tiene carácter general, pudiéndose aplicar a la optimización de cualquier otro tipo de estructura para optimizar distintas funciones objetivo. El diseño de la metodología propuesta presenta dos fases secuenciales de optimización, la primera fase de diversificación y la segunda fase de intensificación de la búsqueda de los óptimos.

Abstract:

This paper deals with optimizing embedded carbon dioxide (CO₂) emissions using surrogate modeling, whether it is the deck of a post-tensioned cast-in-place concrete slab bridge or any other design structure. The main contribution of this proposal is that it allows optimizing structures methodically and sequentially. The approach presents two sequential phases of optimization, the first one of diversification and the second one of intensification of the search for optimums. Finally, with the amount of CO₂ emissions and the differentiating characteristics of each design, a heuristic optimization based on a Kriging metamodel is performed. An optimized solution with lower emissions than the analyzed sample is obtained. If CO₂ emissions were to be reduced, design recommendations would be to use slendernesses as high as possible, in the range of 1/30, which implies a more significant amount of passive reinforcement. This increase in passive reinforcement is compensated by reducing the measurement of concrete and active reinforcement. Another important conclusion is that reducing emissions is related to cost savings. Furthermore, it has been corroborated that for a cost increase of less than 1%, decreases in emissions emitted into the atmosphere of more than 2% can be achieved.

Keywords:

CO₂ emission; optimization; metamodel; Kriging; post-tensioned concrete; structural optimization

Reference:

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2022). CO₂-optimization of post-tensioned concrete slab-bridge decks using surrogate modeling. Materials, 15(14):4776. DOI:10.3390/ma15144776

Pincha aquí para descargar

 

¿Es obligatorio calcular la huella de carbono en los proyectos de construcción?

Una pregunta que suelen hacerme es si es necesario el cálculo de la huella de carbono en la redacción de los proyectos de construcción. A estas alturas nadie duda de la importancia que tiene la emisión de gases de efecto invernadero. En el ámbito científico y técnico, la metodología del análisis del ciclo de vida de un producto está plenamente desarrollada. Sin embargo, la docencia de este tipo de técnicas en las enseñanzas universitarias no acaba de incorporarse plenamente en los programas curriculares. Voy a relatar brevemente lo que está ocurriendo a nivel legislativo para que veáis hacia dónde va este tema.

Todo ello viene porque el pasado 1 de abril de 2022 el Pleno del Consell aprobó el proyecto de Ley de Cambio Climático y Transición Ecológica de la Comunitat Valenciana. Se trata de una propuesta de la Conselleria de Agricultura, Desarrollo Rural, Emergencia Climática y Transición Ecológica que traza una hoja de ruta para reducir las emisiones y contribuir a luchar contra el cambio climático.

La nueva normativa establece un objetivo de reducción de emisiones del 40% para 2030 y conseguir la neutralidad en el horizonte del 2050. En cuanto al consumo de energía, el objetivo es disminuir al menos un 35,4% para 2030. En relación con la transición energética, el objetivo es que el 42% del consumo de energía provenga de fuentes renovables, también en 2030. Una de las diversas obligaciones que impone el nuevo texto legislativo es que, a partir del 1 de enero de 2025, todos los municipios de la Comunitat Valenciana con más de 5.000 habitantes estén obligados a calcular y registrar su huella de carbono.

Asimismo, este requisito parece ser cada vez más como una condición necesaria para poder acogerse a determinadas ayudas públicas. A modo de ejemplo, la Resolución de 16 de febrero de 2022, de la Conselleria de Agricultura, Desarrollo Rural, Emergencia Climática y Transición Ecológica, por la que se convocan ayudas a los municipios de la Comunitat Valenciana para potenciar proyectos de lucha contra el cambio climático, para el ejercicio de 2022. Por su parte, las grandes y medianas empresas que operen en todo o parte de la Comunidad Valenciana estarán obligadas, de acuerdo con lo que se establezca reglamentariamente, a calcular y reconocer anualmente la correspondiente huella de carbono de sus actividades.

Este es un ejemplo, en el ámbito regional, de cómo se está imponiendo la evaluación de la huella de carbono en los ámbitos públicos y privados. En muchos más ámbitos y países se está legislando de una forma similar. Por tanto, y respondiendo a la pregunta planteada, la respuesta es que sí no es obligatorio calcular la huella de carbono en los proyectos, lo va a ser en el futuro próximo. Los Colegios Profesionales deberán estar atentos a estos cambios legislativos para exigir estos cálculos cuando se proceda al visado de los proyectos.

Como sabéis, nuestro grupo de investigación no solo está desarrollando la metodología para este cálculo en el ámbito ambiental y social, sino que está aplicando técnicas de decisión multicriterio para que el proyectista sea capaz de decidir la mejor de las opciones en el estudio de soluciones del proyecto. Además, para que estas técnicas sean efectivas, deben aplicarse sobre soluciones optimizadas.

Referencias:

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2022). Regional sustainable development impact through sustainable bridge optimization. Structures, 41, 1061-1076. DOI: 10.1016/j.istruc.2022.05.047

VITORIO, P.C., Jr.; YEPES, V.; KRIPKA, M. (2022). Comparison of Brazilian Social Interest Housing Projects considering Sustainability. International Journal of Environmental Research and Public Health, 19(10):6213DOI:10.3390/ijerph19106213

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2022). Social Impact Assessment Comparison of Composite and Concrete Bridge Alternatives. Sustainability, 14(9):5186. DOI:10.3390/su14095186.

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2022). Evaluating the sustainability of soil improvement techniques in foundation substructures. Journal of Cleaner Production, 351: 131463. DOI:10.1016/j.jclepro.2022.131463

MATHERN, A.; PENADÉS-PLÀ, V.; ARMESTO BARROS, J.; YEPES, V. (2022). Practical metamodel-assisted multi-objective design optimization for improved sustainability and buildability of wind turbine foundations. Structural and Multidisciplinary Optimization, 65:46. DOI:10.1007/s00158-021-03154-0

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2022). Multi-criteria decision-making applied to the sustainability of building structures based on Modern Methods of Construction. Journal of Cleaner Production, 330:129724. DOI:10.1016/j.jclepro.2021.129724

SIERRA, L.; ARAYA, F.; YEPES, V. (2021). Consideration of uncertainty and multiple disciplines in the determination of sustainable criteria for rural roads using neutrosophic logic.  Sustainability, 13(17):9854. DOI:10.3390/su13179854

ATA-ALI, N.; PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2021). Recycled versus non-recycled insulation alternatives LCA analysis for different climatic conditions in Spain. Resources, Conservation and Recycling, 175, 105838. DOI:10.1016/j.resconrec.2021.105838

HOOSE, A.; YEPES, V.; KRIPKA, M. (2021). Selection of Production Mix in the Agricultural Machinery Industry considering Sustainability in Decision Making. Sustainability, 13(16), 9110. DOI:10.3390/su13169110

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2021). Comparative life cycle analysis of concrete and composite bridges varying steel recycling ratio. Materials, 14(15):4218. DOI:10.3390/ma14154218

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Optimized application of sustainable development strategy in international engineering project management. Mathematics, 9(14):1633. DOI:10.3390/math9141633

ZHOU, Z.; ALCALÁ, J.; KRIPKA, M.; YEPES, V. (2021). Life cycle assessment of bridges using Bayesian Networks and Fuzzy Mathematics. Applied Sciences, 11(11):4916. DOI:10.3390/app11114916

BIANCHI, P.F.; YEPES, V.; VITORIO, P.C., Jr.; KRIPKA, M. (2021). Study of alternatives for the design of sustainable low-income housing in BrazilSustainability, 13(9):4757. DOI:10.3390/su13094757

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2021). Neutrosophic multi-criteria evaluation of sustainable alternatives for the structure of single-family homesEnvironmental Impact Assessment Review, 89:106572. DOI:10.1016/j.eiar.2021.106572

NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2021). Neutrosophic completion technique for incomplete higher-order AHP comparison matrices. Mathematics, 9(5):496. DOI:10.3390/math9050496

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; GARCÍA, J.; YEPES, V. (2021). Embodied energy optimization of buttressed earth-retaining walls with hybrid simulated annealing. Applied Sciences, 11(4):1800. DOI:10.3390/app11041800

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Environmental, economic and social impact assessment: study of bridges in China’s five major economic regions. International Journal of Environmental Research and Public Health, 18(1):122. DOI:10.3390/ijerph18010122

NAVARRO, I.J.; PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; REMPLING, R.; YEPES, V. (2020). Life cycle sustainability assessment for multi-criteria decision making in bridge design: A review. Journal of Civil Engineering and Management, 26(7):690-704. DOI:10.3846/jcem.2020.13599.

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2020). Bridge Carbon Emissions and Driving Factors Based on a Life-Cycle Assessment Case Study: Cable-Stayed Bridge over Hun He River in Liaoning, China. International Journal of Environmental Research and Public Health, 17(16):5953. DOI:10.3390/ijerph17165953

PONS, J.J.; VILLALBA SANCHIS, I.; INSA FRANCO, R.; YEPES, V. (2020). Life cycle assessment of a railway tracks substructures: comparison of ballast and ballastless rail tracks. Environmental Impact Assessment Review, 85:106444. DOI:10.1016/j.eiar.2020.106444

MILANI, C.J.; YEPES, V.; KRIPKA, M. (2020). Proposal of sustainability indicators for the design of small-span bridges. International Journal of Environmental Research and Public Health, 17(12):4488. DOI:10.3390/ijerph17124488

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2020). Steel-concrete composite bridges: design, life cycle assessment, maintenance and decision making. Advances in Civil Engineering, 2020:8823370. DOI:10.1155/2020/8823370

PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; GARCÍA-SEGURA, T.; NAVARRO, I.J.; YEPES, V. (2020). Environmental and social impact assessment of optimized post-tensioned concrete road bridges. Sustainability, 12(10), 4265. DOI:10.3390/su12104265

PENADÉS-PLÀ, V.; YEPES, V.; GARCÍA-SEGURA, T. (2020). Robust decision-making design for sustainable pedestrian concrete bridges. Engineering Structures, 209: 109968. DOI:10.1016/j.engstruct.2019.109968

PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; YEPES, V. (2020). Robust design optimization for low-cost concrete box-girder bridge. Mathematics, 8(3): 398. DOI:10.3390/math8030398

SÁNCHEZ-GARRIDO, A.J.; YEPES, V. (2020). Multi-criteria assessment of alternative sustainable structures for a self-promoted, single-family home. Journal of Cleaner Production, 258: 120556. DOI:10.1016/j.jclepro.2020.120556

SALAS, J.; YEPES, V. (2020). Enhancing sustainability and resilience through multi-level infrastructure planning. International Journal of Environmental Research and Public Health, 17(3): 962. DOI:10.3390/ijerph17030962

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2020). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights. Structure and Infrastructure Engineering, 16(7): 949-967. DOI:10.1080/15732479.2019.1676791

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2019). A review of multicriteria assessment techniques applied to sustainable infrastructures design. Advances in Civil Engineering, 2019: 6134803. DOI:10.1155/2019/6134803

SALAS, J.; YEPES, V. (2019). VisualUVAM: A Decision Support System Addressing the Curse of Dimensionality for the Multi-Scale Assessment of Urban Vulnerability in Spain. Sustainability, 11(8): 2191. DOI:10.3390/su11082191

MARTÍNEZ-FERNÁNDEZ, P.; VILLALBA-SANCHÍS, I.; YEPES, V.; INSA-FRANCO, R. (2019). A review of modelling and optimisation methods applied to railways energy consumption. Journal of Cleaner Production, 222:153-162. DOI:10.1016/j.jclepro.2019.03.037

KRIPKA, M.; YEPES, V.; MILANI, C.J. (2019). Selection of sustainable short-span bridge design in Brazil. Sustainability, 11(5):1307. DOI:10.3390/su11051307

SALAS, J.; YEPES, V. (2019). MS-ReRO and D-ROSE methods: assessing relational uncertainty and evaluating scenarios’ risks and opportunities on multi-scale infrastructure systems. Journal of Cleaner Production, 216:607-623. DOI:10.1016/j.jclepro.2018.12.083

PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; YEPES, V. (2019). Accelerated optimization method for low-embodied energy concrete box-girder bridge design. Engineering Structures, 179:556-565. DOI:10.1016/j.engstruct.2018.11.015

NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2019). Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective. Environmental Impact Assessment Review, 74:23-34. DOI:10.1016/j.eiar.2018.10.001

GARCÍA-SEGURA, T.; PENADÉS-PLÀ, V.; YEPES, V. (2018). Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty. Journal of Cleaner Production, 202: 904-915. DOI:10.1016/j.jclepro.2018.08.177

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2018). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 196: 698-713. DOI:10.1016/j.jclepro.2018.06.110

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environmental Impact Assessment Review, 72:50-63. DOI:10.1016/j.eiar.2018.05.003

PONS, J.J.; PENADÉS-PLÀ, V.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle assessment of earth-retaining walls: An environmental comparison. Journal of Cleaner Production, 192:411-420. DOI:10.1016/j.jclepro.2018.04.268

SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513. DOI:10.1016/j.jclepro.2018.03.022

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3):845. DOI:10.3390/su10030845

PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2018). An optimization-LCA of a prestressed concrete precast bridge. Sustainability, 10(3):685. DOI:10.3390/su10030685

SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Journal of Cleaner Production, 176:521-534. DOI:10.1016/j.jclepro.2017.12.140

GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Structural and Multidisciplinary Optimization, 56(1):139-150. DOI:10.1007/s00158-017-1653-0

GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M.; YANG, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391. DOI:10.1016/j.engstruct.2017.05.013

MOLINA-MORENO, F.; MARTÍ, J.V.; YEPES, V. (2017). Carbon embodied optimization for buttressed earth-retaining walls: implications for low-carbon conceptual designs. Journal of Cleaner Production, 164:872-884. DOI:10.1016/j.jclepro.2017.06.246

PENADÉS-PLÀ, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10):1864. DOI:10.3390/su9101864

SIERRA, L.A.; PELLICER, E.; YEPES, V. (2017). Method for estimating the social sustainability of infrastructure projects. Environmental Impact Assessment Review, 65:41-53. DOI:10.1016/j.eiar.2017.02.004

SIERRA, L.A.; YEPES, V.; PELLICER, E. (2017). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Environmental Impact Assessment Review, 67:61-72. DOI:10.1016/j.eiar.2017.08.003

TORRES-MACHI, C.; PELLICER, E.; YEPES, V.; CHAMORRO, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Journal of Cleaner Production, 148:90-102. DOI:10.1016/j.jclepro.2017.01.100

ZASTROW, P.; MOLINA-MORENO, F.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: a parametric study. Journal of Cleaner Production, 140:1037-1048. DOI: 10.1016/j.jclepro.2016.10.085

PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design. Sustainability, 8(12):1295. DOI:10.3390/su8121295

GARCÍA-SEGURA, T.; YEPES, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125:325-336. DOI:10.1016/j.engstruct.2016.07.012

MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120:231-240. DOI:10.1016/j.jclepro.2016.02.024

SIERRA, L.A.; PELLICER, E.; YEPES, V. (2016). Social sustainability in the lifecycle of Chilean public infrastructure. Journal of Construction Engineering and Management, 142(5):05015020. DOI:10.1061/(ASCE)CO.1943-7862.0001099

TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E.; YEPES, V.; VIDELA, C. (2015). Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making. Transportation Research Record, 2523:56-63. DOI:10.3141/2523-07

GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J.; PÉREZ-LÓPEZ, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridgesEngineering Structures, 92:112-122. DOI:10.1016/j.engstruct.2015.03.015

YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49:123-134. DOI:10.1016/j.autcon.2014.10.013

TORRES-MACHÍ, C.; CHAMORRO, A.; YEPES, V.; PELLICER, E. (2014). Current models and practices of economic and environmental evaluation for sustainable network-level pavement management. Revista de la Construcción, 13(2): 49-56. DOI:10.4067/S0718-915X2014000200006

TORRES-MACHÍ, C.; CHAMORRO, A.; VIDELA, C.; PELLICER, E.; YEPES, V. (2014). An iterative approach for the optimization of pavement maintenance management at the network level. The Scientific World Journal, 2014, 524329. DOI:10.1155/2014/524329

GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J. (2014). Life-cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. International Journal of Life Cycle Assessment, 19(1):3-12. DOI:10.1007/s11367-013-0614-0

MARTINEZ-MARTIN, F.J.; GONZALEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2012). Multi-objective optimization design of bridge piers with hybrid heuristic algorithms. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 13(6):420-432. DOI:10.1631/jzus.A1100304

YEPES, V.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J.; VILLALBA, P. (2012). CO2-Optimization Design of Reinforced Concrete Retaining Walls based on a VNS-Threshold Acceptance Strategy. Journal of Computing in Civil Engineering, 26 (3):378-386. DOI:10.1061/(ASCE)CP.1943-5487.0000140

PAYÁ-ZAFORTEZA, I.; YEPES, V.; HOSPITALER, A.; GONZÁLEZ-VIDOSA, F. (2009). CO2-Optimization of Reinforced Concrete Frames by Simulated Annealing. Engineering Structures, 31(7): 1501-1508. DOI: 10.1016/j.engstruct.2009.02.034

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Diseño de experimentos factorial completo aplicado al proyecto de muros de contención

En el congreso CMMoST 2019 (5th International Conference on Mechanical Models in Structural Engineering), celebrado en Alicante del 23 al 25 de octubre de 2019, tuvimos la ocasión de presentar varias comunicaciones. A continuación os paso una denominada “Diseño de experimentos factorial completo aplicado al proyecto de muros de contención“.

En este caso, se trataba aplicar una técnica estadística procedente del diseño de experimentos, el diseño factorial completo, para determinar las variables significativas y las interacciones entre las variables cuando se trata de calcular una estructura. En este caso, se trata de analizar las emisiones de CO2 en la construcción de un muro de contención de tierras. Esta metodología es muy interesante para los estudiantes de máster. Ya hemos publicado algún artículo sobre el mismo tema aplicado a puentes pretensados. Os dejo el artículo en abierto.

Referencia:

MARTÍNEZ-MUÑOZ, D.; YEPES, V.; MARTÍ, J.V. (2019). Diseño de experimentos factorial completo aplicado al proyecto de muros de contención. 5th International Conference on Mechanical Models in Structural Engineering, CMMoST 2019, 23-25 oct 2019, Alicante, Spain, pp. 201-213. ISBN: 978–84–17924–58–4

Pincha aquí para descargar