En un artículo anterior ya se habló del cimbrado, recimbrado, clareado y descimbrado de plantas consecutivas de un edificio. Allí se recogieron recomendaciones para estimar el plazo de descimbrado de una estructura de hormigón.
El plazo mínimo de descimbrado depende de la evolución de la resistencia, del módulo de deformación, de las condiciones de curado, de las características de la estructura y de la relación entre la carga muerta y la carga actuante en el momento del descimbrado. Esta operación comienza quitando los puntales de las zonas más deformables del forjado (extremo de los voladizos y centros de vano) para continuar hacia los apoyos. Esto se hace para no cargar más de lo previsto y que se deforme el forjado de forma brusca.
Los comentarios al artículo 53.2 del Código Estructural proponen determinar el plazo de descimbrado utilizando la siguiente expresión, basada en el concepto de madurez del hormigón (edad equivalente entre dos hormigones dependiente del tiempo y de la temperatura). Esta fórmula solo se aplica a elementos de hormigón armado fabricados con cementos Portland sin adiciones, suponiendo que el endurecimiento se haya realizado en condiciones ordinarias:
donde:
Q es la diferencia entre la carga que actúa en situación de proyecto y la carga que actúa en una determinada fase constructiva
G es la carga que actúa en una determinada fase de construcción (en el momento de descimbrar), incluido el peso propio y la carga transmitida procedente de forjados cimbrados sobre el elemento a estudiar
T es la temperatura media en °C de las máximas y mínimas diarias durante los j días
J es el número de días desde el hormigonado hasta el descimbrado
Esta fórmula ha estado presente en las ediciones de la norma española desde 1973. Ofrece un ajuste que, si bien prioriza la seguridad, proporciona valores adecuadamente precisos. Además, considera tanto la influencia de la temperatura como la relación entre las cargas. De hecho, representa una simplificación de un enfoque más amplio que se encuentra en la Instrucción HA 61.
Si analizamos la fórmula a una temperatura de 20 °C y consideramos la carga total como la que actúa al descimbrar, obtendremos un valor de 28 días. Conforme aumenta la relación entre la carga que actuará posteriormente y la carga que actuará al descimbrar, la fórmula arroja edades de descimbrado cada vez menores, llegando incluso a valores asintóticos. En consecuencia, esta fórmula produce valores que, si bien pueden inclinarse hacia la seguridad, no generan grandes contradicciones. En la Figura 2 se representa el criterio del Código Estructural para los plazos de descimbrado.
Por ejemplo, supongamos que se quiere estimar el plazo de descimbrado de una estructura atendiendo al método sugerido en los comentarios del artículo 53.2 del Código Estructural. Para ello se considera que se ha empleado en la fabricación del hormigón un cemento Portland y el endurecimiento se ha realizado en condiciones ordinarias. Se supone que la carga que actúa en el momento de descimbrar (incluido el peso propio) es de 45 kN y que la carga total que actuará posteriormente es de 65 kN. Suponemos una temperatura media hasta el descimbrado de 18 °C. En este caso, Q = 65-45 = 20 kN; G = 45 kN. El plazo es j = 15,13 días. Por tanto, se podría descimbrar a los 16 días del hormigonado.
Ahora os presentamos un nomograma elaborado junto con el profesor Pedro Martínez-Pagán. Este recurso puede ser valioso para calcular rápidamente el tiempo de descimbrado en función de la temperatura y la relación Q/G. Por ejemplo, de un vistazo se puede determinar el tiempo necesario para el descimbrado en invierno, a 5 °C.
Referencias:
CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.
MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.
El puente internacional de Tui, que se extiende sobre las aguas del río Miño, enlaza las poblaciones de Valença y Tuy, ubicadas en la frontera entre Portugal y España. Una de las características que lo distingue es su capacidad para atender el tráfico vehicular, facilitar la circulación ferroviaria y permitir el paso de peatones. Este atributo, poco frecuente en la época de su construcción, enfatiza su singularidad. Más allá de su funcionalidad, el puente cumple el papel de unificador entre dos ciudades que a lo largo de la historia han estado inmersas en disputas militares y estratégicas, principalmente debido a su separación por el cauce del río Miño.
Este puente se distingue por su diseño de estructura metálica en forma de celosía, tomando la apariencia de un cajón que se asienta sobre pilares de piedra robustos. Durante su construcción, se empleó el método de lanzar secciones metálicas previamente fabricadas en los accesos, apoyándolas temporalmente mientras sobresalían en voladizo sobre el río.
La estructura en sí está compuesta por una celosía metálica que consta de cinco vanos biapoyados. Los extremos tienen una longitud de 61,5 m cada uno, mientras que los tres vanos centrales miden 69 m. En el nivel inferior de esta celosía se encuentra el tablero para el tráfico vehicular, junto con una pasarela adicional destinada a peatones. Por otro lado, en la plataforma superior se aloja la vía férrea.
La disposición de los elementos se vio influenciada por la necesidad de mantener un espacio adecuado para el ferrocarril, así como por las emisiones de humo generadas por las locomotoras. Estas limitaciones jugaron un papel decisivo en la configuración definitiva de la estructura.
A pesar de los rumores que atribuyen el diseño del puente a Gustave Eiffel o a uno de sus discípulos, la verdad es que fue concebido por el ingeniero y diputado riojano Pelayo Mancebo y Ágreda. El origen del proyecto se remonta a junio de 1879 y probablemente contó con la asesoría de Eusebio Page, quien ocupaba el cargo de Jefe de la Comisión de Estudios de los Ferrocarriles Internacionales.
La construcción del puente se licitó en 1881, siendo adjudicada a la empresa belga “Braine le Comte” por 205.766.000 reales. Esta selección se dio en medio de una competencia que contó con otras siete propuestas, sobresaliendo en particular la presentada por el estudio de Eiffel. El coste de esta obra fue compartido por España y Portugal. La empresa belga introdujo algunas modificaciones al diseño original del proyecto, resaltando la elección de cambiar los pilares metálicos por pilares de piedra.
En términos de ingeniería, los primeros encargados de la obra fueron Eugenio y Ernesto Rolín, seguidos por Augusto Cazaux, quien ya había participado en la construcción de estructuras como el Viaducto de Madrid, así como en los viaductos de Redondela, Zaragoza y Santarém.
La construcción de esta magnífica obra se extendió a lo largo de 34 meses, desde noviembre de 1881 hasta octubre de 1884, y demandó la utilización de un total de 1.504 toneladas de hierro. Las piedras empleadas en la construcción de la sillería fueron extraídas de Lanhelas, Portugal. En enero de 1885, se llevaron a cabo pruebas de carga, utilizando locomotoras con un peso de hasta 68 toneladas, en concordancia con la normativa francesa.
Desde entonces, el puente ha requerido únicamente una intervención de reparación, que tuvo lugar en 1975 bajo la dirección del ingeniero portugués Edgar Cardoso. Esta actuación se centró en abordar una inclinación anormal que se había manifestado en la estructura.
La ceremonia oficial de inauguración del Puente Internacional se realizó el 25 de marzo de 1886, transcurriendo alrededor de un año y medio desde su entrada en funcionamiento. Este evento marcó un hito al sustituir las barcazas que hasta entonces habían servido como el vínculo de comunicación entre ambas ciudades.
Desde la inauguración del nuevo Puente Internacional en 1995, que se destaca por su modernidad y amplitud, se ha implementado la restricción del paso de vehículos pesados sobre la antigua estructura. Incluso para vehículos livianos, se desaconseja su uso, recomendándose las rutas de la autopista A-55 en España y la A3 en Portugal.
Os paso algún vídeo donde se pueden ver detalles del puente. Espero que os gusten.
El artículo 48.3 del Código Estructural es el que establece las características de los encofrados y moldes necesarios para la ejecución de estructuras de hormigón. Estos elementos deben ser resistentes para soportar las acciones durante el proceso constructivo de las estructuras de hormigón y mantener la rigidez para cumplir con las tolerancias del proyecto. Deben asegurar la estanqueidad de las juntas y evitar dañar el hormigón al retirarse.
Se recomienda seguir la norma UNE 180201 y garantizar la limpieza y alineación adecuadas. Además, en casos específicos, deben permitir el emplazamiento de las armaduras y evitar movimientos indeseados. La superficie en contacto con el hormigón debe mantener la geometría y textura previstas. Se pueden usar diferentes materiales, pero deben cumplir con los requisitos de no perjudicar las propiedades del hormigón. Es esencial asegurar la unión de elementos de seguridad complementarios a la estructura del encofrado.
A modo de resumen, las características generales que deben presentar los encofrados y moldes son los siguientes:
Estanqueidad suficiente de las juntas para evitar fugas de lechada que afecten el acabado y durabilidad del elemento.
Resistencia adecuada a las presiones del hormigón fresco y al método de compactación.
Alineación y verticalidad de los paneles, especialmente en pilares y forjados en estructuras de edificación.
Mantenimiento de la geometría sin abolladuras fuera de tolerancia.
Limpieza de residuos en el interior de los moldes.
Conservar características que permitan texturas específicas en el acabado del hormigón.
En casos de encofrados dobles o contra el terreno, garantizar la operatividad de las ventanas para el vertido del hormigón.
En elementos pretensados, permitir el correcto emplazamiento de las armaduras activas sin comprometer la estanqueidad.
Adoptar medidas para evitar movimientos indeseados en elementos de gran longitud.
Superficie encofrante que mantenga la geometría prevista y la textura especificada en el proyecto.
En encofrados susceptibles de movimiento, pueden exigirse pruebas previas para evaluar el comportamiento durante la ejecución.
Los encofrados pueden ser de diversos materiales que no afecten las propiedades del hormigón. En caso de madera, deben humedecerse previamente.
La unión de elementos complementarios para la seguridad, como barandillas, anclajes y cimbras, debe realizarse adecuadamente a la estructura resistente del encofrado.
En apretada síntesis, los encofrados y moldes deben ser seguros, resistentes y mantener la calidad del acabado del hormigón en el proceso de construcción.
Os recojo, a continuación, el artículo 48.3 del Código Estructural.
“Los encofrados y moldes deberán ser capaces de resistir las acciones a las que van a estar sometidos durante el proceso de construcción y tener la rigidez suficiente para asegurar que se van a satisfacer las tolerancias especificadas en el proyecto. Además, deberán poder retirarse sin causar sacudidas anormales ni daños en el hormigón.
Se realizarán, preferentemente, conforme a la norma UNE 180201.
Con carácter general, deberán presentar al menos las siguientes características:
estanqueidad suficiente de las juntas entre los paneles de encofrado o en los moldes, previendo que las posibles fugas de lechada por las mismas no comprometan el acabado previsto para el elemento ni su durabilidad;
resistencia adecuada a las presiones del hormigón fresco y a los efectos del método de compactación;
alineación y en su caso, verticalidad de los paneles de encofrado, prestando especial interés a la continuidad en la verticalidad de los pilares en su cruce con los forjados en el caso de estructuras de edificación;
mantenimiento de la geometría de los paneles de moldes y encofrados, con ausencia de abolladuras fuera de las tolerancias establecidas en el proyecto o, en su defecto, por este Código;
limpieza de la cara interior de los moldes, evitándose la existencia de cualquier tipo de residuo propio de las labores de montaje de las armaduras, tales como restos de alambre, recortes, casquillos, etc.;
mantenimiento, en su caso, de las características que permitan texturas específicas en el acabado del hormigón, como por ejemplo, bajorrelieves, impresiones, etc.
Cuando sea necesario el uso de encofrados dobles o encofrados contra el terreno natural, como por ejemplo, en tableros de puente de sección cajón, cubiertas laminares, etc. deberá garantizarse la operatividad de las ventanas por las que esté previsto efectuar las operaciones posteriores de vertido y compactación del hormigón.
En el caso de elementos pretensados, los encofrados y moldes deberán permitir el correcto emplazamiento y alojamiento de las armaduras activas, sin merma de la necesaria estanqueidad.
En elementos de gran longitud, se adoptarán medidas específicas para evitar movimientos indeseados durante la fase de puesta en obra del hormigón.
La superficie encofrante que estará en contacto directo con el hormigón, tanto en los encofrados como en los moldes, deberá ser capaz de mantener las características necesarias para que los elementos de hormigón estructural reproduzcan adecuadamente la geometría prevista para ellos en el proyecto, así como para dotar a las caras vistas de dichos elementos de la textura y la uniformidad especificada, en su caso, en dicho proyecto.
En los encofrados susceptibles de movimiento durante la ejecución, como por ejemplo, en encofrados trepantes o encofrados deslizantes, la dirección facultativa podrá exigir que el constructor realice una prueba en obra sobre un prototipo, previa a su empleo real en la estructura, que permita evaluar el comportamiento durante la fase de ejecución. Dicho prototipo, a juicio de la dirección facultativa, podrá formar parte de una unidad de obra.
Los encofrados y moldes podrán ser de cualquier material que no perjudique a las propiedades del hormigón. Cuando sean de madera, deberán humedecerse previamente para evitar que absorban el agua contenida en el hormigón. Por otra parte, las piezas de madera se dispondrán de manera que se permita su libre entumecimiento, sin peligro de que se originen esfuerzos o deformaciones anormales. No podrán emplearse encofrados de aluminio, salvo que pueda facilitarse a la dirección facultativa un certificado, elaborado por una entidad de control y firmado por persona física, de que los paneles empleados han sido sometidos con anterioridad a un tratamiento de protección superficial que evite la reacción con los álcalis del cemento.
En todos los casos se realizará correctamente la unión de los elementos complementarios para la seguridad (tales como: barandillas de protección, dispositivos de anclaje para redes de seguridad, dispositivos de anclaje preparados para los equipos de protección individual y, en general, cualquier otro elemento destinado a dotar de seguridad al sistema de encofrado, diseñado y fabricado por el fabricante del mismo) a la estructura resistente del encofrado o molde y, en su caso, de las cimbras y apuntalamientos”.
Referencias:
PEURIFOY, R.L. (1967). Encofrados para estructuras de hormigón. McGraw-Hill y Ediciones Castillo, Madrid, 344 pp.
RICOUARD, M.J. (1980). Encofrados. Cálculo y aplicaciones en edificación y obras civiles. Editores Técnicos Asociados, S.A. Barcelona, 312 pp.
Los encofrados desechables de cartón son la elección ideal para la construcción de columnas y pilares, especialmente cuando tienen forma redonda, aunque también sirven para formas cuadradas o rectangulares (Figura 1). Están disponibles en una amplia variedad de diámetros, que van desde 150 hasta 1300 mm, y alturas que oscilan entre 3 y 12 m, presentando un espesor de 9 mm.
Su creciente popularidad en el ámbito de la construcción se debe a la excelente calidad del acabado que proporcionan. Existen dos tipos de acabado interior: el estándar, que muestra una espiral inherente a la fabricación del encofrado, y el liso, donde el interior está revestido con bandas de K.A.P. (papel Kraft, aluminio y polietileno) para evitar juntas, logrando así una superficie completamente lisa en el pilar.
El desencofrado es un proceso rápido, con un tiempo promedio de un minuto, y permite realizar ajustes mediante simples cortes y adiciones con un serrucho y cinta adhesiva. Además, su ligereza facilita su manipulación sin esfuerzo, pudiendo manejarse el molde por una persona y sin ayuda de grúas. Los encofrados desechables pueden dejarse en su lugar durante un período prolongado para facilitar el curado y el aumento de la resistencia del concreto antes de su remoción.
En cuanto a las opciones disponibles, destacan:
“Gran diámetro”: una serie de encofrados circulares desechables diseñados para diámetros de 650 a 1500 mm.
“Cuadrado”: un sistema de encofrado para pilares con secciones cuadradas o rectangulares, obtenido mediante la combinación de un contramolde exterior cilíndrico y un molde interior de poliestireno expandido. La altura estándar es de 3 o 4 m, y las secciones pueden ser de cualquier combinación, desde 200 hasta 1000 mm. El aislamiento térmico del encofrado permite que el hormigón fragüe con su propia humedad.
Una de las cualidades más sobresalientes es el acabado pulido de las superficies y la ausencia de uniones, lo que garantiza resultados estéticos muy atractivos y de alta calidad. No obstante, uno de los inconvenientes es que, en ciertos casos donde el soporte quedará visible, puede dejar una línea en espiral marcada en la superficie.
Para garantizar la calidad del hormigonado, es esencial retirar cuidadosamente el encofrado en el área correspondiente, rompiendo el molde a lo largo de su generatriz, para así detectar posibles defectos en el hormigón. Luego de esta comprobación, se recomienda volver a fijar el encofrado con alambre o cinta de embalar para prevenir cualquier daño durante la ejecución de la obra.
Entre los fallos que pueden surgir al utilizar este tipo de encofrados, se destacan los siguientes:
Si el acabado interior es de plástico, cualquier corte en la lámina puede provocar que el hormigón se filtre entre la lámina y el revestimiento exterior. Por tanto, es fundamental evitar dañar el interior al insertar el molde entre las armaduras.
En el caso de los revestimientos interiores hechos de cartón plastificado, el problema suele ser su adherencia puntual al hormigón. Ocasionalmente, el molde puede deformarse si se golpea durante el almacenamiento en obra, lo que se reflejará en el soporte hormigonado.
Es imprescindible asegurarse de que los moldes estén limpios en su interior, sin restos de ningún tipo.
En conclusión, los encofrados de cartón son una opción popular para la construcción de columnas y pilares debido a su excelente acabado. Sin embargo, es importante tomar precauciones para evitar posibles problemas durante el proceso de hormigonado. Con un manejo adecuado y verificaciones oportunas, se pueden obtener resultados sobresalientes con este tipo de encofrados.
Os dejo algunos vídeos sobre este tipo de encofrado. Espero que os sean de interés.
Referencias:
PEURIFOY, R.L. (1967). Encofrados para estructuras de hormigón. McGraw-Hill y Ediciones Castillo, Madrid, 344 pp.
RICOUARD, M.J. (1980). Encofrados. Cálculo y aplicaciones en edificación y obras civiles. Editores Técnicos Asociados, S.A. Barcelona, 312 pp.
Los encofrados tienen la función de moldear el hormigón según el tamaño y la forma deseados, además de controlar su posición y alineación. Sin embargo, más que simplemente ser moldes, los encofrados son estructuras temporales que soportan su propio peso, el del hormigón recién colocado y las cargas vivas de la construcción, que incluyen materiales, equipos y personal.
El encofrado es una estructura temporal en el sentido de que se construye rápidamente, soporta una carga elevada durante unas pocas horas durante el vertido del hormigón, y se desmonta en pocos días para ser reutilizada en el futuro. Además, otros elementos clásicos en su naturaleza temporal son las conexiones, refuerzos, anclajes y dispositivos de ajuste necesarios para los encofrados.
En el caso de los encofrados de hormigón, la noción de “estructuras temporales” no refleja completamente la realidad. De hecho, los encofrados, sus componentes y accesorios se utilizan una y otra vez a lo largo de su vida útil. Por esta razón, es esencial emplear materiales altamente duraderos y de fácil mantenimiento. El diseño del encofrado debe permitir su montaje y desmontaje eficiente para maximizar la productividad en las obras. El proceso de desmontaje o desencofrado de los encofrados depende de factores como la adherencia entre el hormigón y el encofrado, así como la rigidez y contracción del hormigón. En lo posible, los encofrados deberían permanecer en su lugar durante todo el período de curado.
Sin embargo, para lograr su reutilización, es crucial determinar el momento óptimo para retirarlos, lo cual se basa en señales como la ausencia de deflexiones o distorsiones excesivas y la inexistencia de grietas u otros daños en el hormigón debido a la remoción del encofrado o sus apoyos. En cualquier caso, los encofrados no deben retirarse hasta que el hormigón haya alcanzado la suficiente dureza para soportar su propio peso y cualquier otra carga adicional que pueda tener. La superficie del hormigón también debe ser lo suficientemente resistente como para no dañarse ni marcarse al retirar cuidadosamente los encofrados.
En los procedimientos constructivos que emplean encofrados, los principales objetivos son garantizar la calidad, asegurar la seguridad tanto para los trabajadores como para la estructura de hormigón, y buscar soluciones económicas que cumplan con los requisitos de calidad y seguridad. Para lograr estos objetivos, es esencial una buena cooperación y coordinación entre el proyectista y el contratista. La economía es especialmente relevante, pues los costos de los encofrados pueden representar entre el 25% y el 35% del coste total de la estructura.
Tabla 1. Distribución de los costes asignados a cada una de las unidades componentes de la estructura de hormigón (Concrete Society, 1995)
Concepto
Coste del material
Coste de mano de obra y varios
% del coste total
Hormigón
12%
8%
20%
Armaduras
19%
6%
25%
Encofrados y cimbras
8%
27%
35%
Varios
13%
7%
20%
Total
52%
48%
100%
Por tanto, si se tuviera que reducir el coste del encofrado, se deberían atender a los siguientes aspectos:
1. Planificación para el máximo reuso: Diseñar encofrados para un uso máximo puede implicar una mayor inversión en su resistencia y costo inicial, pero esto puede resultar en ahorros significativos en el costo total del proyecto.
2. Construcción económica del encofrado:
Utilizar encofrados prefabricados en taller: Proporciona la máxima eficiencia en condiciones de trabajo y en el empleo de materiales y herramientas.
Establecer un área de taller en el lugar de la obra: Ideal para encofrados de secciones grandes o cuando los costos de transporte son altos.
Emplear encofrados construidos en el lugar de la obra: Adecuados para trabajos más pequeños o cuando los encofrados deben adaptarse al terreno.
Alquilar encofrados prefabricados (mayor flexibilidad para ajustarse al volumen de trabajo).
3. Colocación y desmontaje:
Repetir tareas para incrementar la eficiencia del equipo a medida que avanza el trabajo.
Utilizar conexiones metálicas con abrazaderas o pasadores especiales que sean seguros y fáciles de montar y desmontar.
Incorporar características adicionales que faciliten el manejo, montaje y desmontaje, como asas o puntos de elevación.
4. Grúas y montacargas:
Limitar el tamaño de las secciones del encofrado a la capacidad de la grúa más grande planificada para el trabajo.
Completar las torres de escaleras temprano en el cronograma para utilizarlas en el traslado de personal y materiales.
Dejar una bahía abierta para permitir el movimiento de grúas móviles y camiones de hormigón.
5. Montaje de armadura:
El diseño del encofrado puede permitir que las barras de refuerzo se ensamblen previamente antes de la instalación, lo que crea condiciones más favorables.
6. Colocación del hormigón:
Los levantamientos altos en la construcción de paredes pueden dificultar la colocación y vibración del hormigón.
La tasa de colocación está limitada por el diseño del encofrado.
Implementar estrategias de reducción de costos en estas áreas clave contribuirá a una construcción más eficiente y rentable, sin comprometer la calidad y seguridad del proyecto.
Os dejo un vídeo explicativo que, espero, sea de vuestro interés.
Referencias:
CONCRETE SOCIETY (1995). Formwork: A guide to good practice. Concrete Society Special Publication CS030. 2nd edition, London, 294 pp.
PEURIFOY, R.L. (1967). Encofrados para estructuras de hormigón. McGraw-Hill y Ediciones Castillo, Madrid, 344 pp.
RICOUARD, M.J. (1980). Encofrados. Cálculo y aplicaciones en edificación y obras civiles. Editores Técnicos Asociados, S.A. Barcelona, 312 pp.
Las cubetas o bañeras son elementos de uso frecuente en forjados bidireccionales. Se presentan en dimensiones habituales de 80/80 – 90/90 y un espesor de 25/40 cm. Estos moldes, fabricados en plástico, ofrecen diversas ventajas, como su ligereza, resistencia al impacto, inmunidad al óxido y capacidad para generar superficies de hormigón lisas.
Es importante realizar una limpieza minuciosa después de cada uso, eliminando los residuos de hormigón con espátulas y aplicando agua a presión para garantizar una limpieza completa. La mayoría de estas cubetas incorpora una válvula que permite inyectar aire a presión en caso de que queden adheridas al hormigón, facilitando así su desencofrado.
Su vida útil puede variar, siendo de alrededor de dos años con un trato normal, un año con un trato descuidado y hasta cuatro años con una manipulación cuidadosa.
Cabe destacar que, en caso de rotura, estas piezas pueden ser reparadas mediante soldadura, aunque la decisión de reparar o reemplazar dependerá principalmente de criterios económicos, ya que el costo de reparación podría superar el de fabricación de una nueva pieza.
Para prolongar la vida útil de las cubetas, es fundamental evitar ciertas prácticas. Se debe evitar tirar las piezas durante el desencofrado, instalarlas sin limpieza previa o sin aplicar desencofrantes, arrojar piezas del encofrado metálico sobre ellas, desplazarlas arrastrándolas sobre el forjado y apilarlas al aire libre sin protección. La exposición a la lluvia y al frío puede deformarlas.
Asimismo, en el mercado existen sistemas innovadores con piezas modulares plásticas que permiten un montaje rápido y ordenado desde la superficie de apoyo, gracias a su ligereza. También hay disponibles cubetas no recuperables (perdidas) diseñadas específicamente para forjados sanitarios, capaces de soportar sobrecargas de hasta 1000 kg/m².
Os dejo unos vídeos explicativos, que creo son de interés.
Referencias:
MONTERO, E. (2006). Puesta en obra del hormigón. Consejo General de la Arquitectura Técnica de España, 750 pp.
PEURIFOY, R.L. (1967). Encofrados para estructuras de hormigón. McGraw-Hill y Ediciones Castillo, Madrid, 344 pp.
RICOUARD, M.J. (1980). Encofrados. Cálculo y aplicaciones en edificación y obras civiles. Editores Técnicos Asociados, S.A. Barcelona, 312 pp.
El desencofrante es un producto químico diseñado para evitar que el hormigón o el mortero se adhieran al retirar el encofrado, lo que permite mantener la superficie encofrante en óptimas condiciones. Su uso proporciona una serie de ventajas significativas: ofrece un desencofrado rápido y eficaz, sin ser tóxico ni dañar el medio ambiente. Además, no mancha el hormigón y contribuye a prolongar la vida útil del encofrado, reduciendo el desgaste de la madera. Un punto importante es que no ataca ni afecta a los moldes metálicos ni a las partes de goma que conforman cualquier tipo de encofrado. Al ser altamente eficiente, su rendimiento es notable y, por ende, resulta económico. Utilizar este desencofrante ahorra tiempo y mano de obra en la limpieza posterior de los encofrados, lo que lo convierte en una opción valiosa y conveniente para proyectos de construcción y obras de hormigón.
Es fundamental emplear exclusivamente productos desencofrantes de fabricación industrial, proporcionando al director de ejecución información detallada sobre su marca, tipo y composición. Estos productos deben seleccionarse cuidadosamente para asegurar que no afecten la calidad ni el aspecto del hormigón, y su aplicación debe llevarse a cabo de forma meticulosa para evitar cualquier contacto con las armaduras activas o pasivas.
La razón principal para emplear estos productos radica en su capacidad para evitar la adherencia entre el hormigón y el encofrado, creando una película hidrófuga sobre la superficie del hormigón. No obstante, es crucial tener en cuenta que en ningún caso deben entrar en contacto con las armaduras, pues podría perjudicar la adherencia adecuada con el hormigón. Para mitigar cualquier riesgo asociado, se deben usar separadores que garanticen una correcta distancia y eviten cualquier posibilidad de contacto no deseado entre el producto desencofrante y las armaduras. Al seguir estas precauciones, se asegura un acabado óptimo y duradero en las estructuras de hormigón.
Los productos de este tipo deben cumplir con una serie de características fundamentales. En primer lugar, deben permitir una aplicación sencilla en capas continuas y uniformemente delgadas, sin provocar coqueras, variaciones de color u otros defectos en la superficie del hormigón. Es esencial que no se mezclen con el agua para evitar que penetren en el hormigón y alteren el fraguado. Asimismo, es importante que no reaccionen ni con el hormigón ni con el encofrado. Además, se espera que proporcionen una mayor durabilidad al encofrado, permitiendo un aumento en el número de usos. Durante su aplicación, no deben generar efectos nocivos como dermatitis o alergias en los operarios que los manipulan. Por último, deben facilitar la limpieza de los moldes, garantizando así un proceso más eficiente y efectivo en su utilización.
No obstante, la acción aislante de estos productos desmoldantes se ve limitada por la baja resistencia de la película a los efectos de temperatura y abrasión. Los desmoldantes basados en procesos químicos forman películas que ofrecen una mayor resistencia, pues la reacción entre la pasta de cemento y el producto crea una capa jabonosa que asegura una clara separación entre el hormigón y el encofrado. Para seleccionar el desmoldante adecuado, se realizan pruebas en un muro de muestra, teniendo en cuenta todos los factores que puedan influir en un proyecto específico.
Existen distintos tipos de desmoldantes, entre ellos:
Aceites: Los desmoldantes de aceites minerales puros tienden a dejar residuos en el hormigón y su efecto separador es pequeño, basándose principalmente en procesos físicos. Se recomiendan para tareas simples de desencofrado con poca exigencia en la calidad del acabado superficial del hormigón. Algunos productos de aceite mineral incorporan aditivos para mejorar su efecto separador mediante la combinación de procesos físicos y químicos para lograr un mejor rendimiento.
Emulsiones: Las emulsiones se dividen en dos tipos: agua en aceite y aceite en agua, siendo estas últimas más estables. Las emulsiones de aceite en agua se suministran como concentrados de aceite a los cuales se les agrega un determinado volumen de agua in situ. El efecto separador de estas emulsiones depende del índice de concentración. Al agregar agua a los desencofrantes más comunes del mercado, se observa que en ninguno de los casos es fácil removerlos con agua, pues el líquido resbala sobre la película formada.
La forma más sencilla de aplicar estos productos es mediante nebulización a presión, aunque en muchas ocasiones también se utilizan métodos convencionales como brocha o rodillo, siempre buscando obtener una capa delgada y uniforme. Es imprescindible que la superficie de los encofrados sobre los que se aplicará el producto esté completamente limpia y preparada. En el caso de encofrados de madera, es necesario saturarlos previamente con agua antes de aplicar el producto de desmoldeo. Si se trata de hormigones vistos, se recomienda realizar ensayos previos antes de seleccionar los productos adecuados. La elección cuidadosa y la correcta aplicación de estos productos son fundamentales para obtener un resultado óptimo y garantizar la calidad del acabado.
El artículo 48.4 del Código Estructural indica lo siguiente respecto a los productos desencofrantes:
“Salvo indicación expresa de la dirección facultativa, el constructor podrá seleccionar los productos empleados para facilitar el desencofrado y el fabricante de elementos prefabricados los correspondientes al desmoldeo. Los productos serán de la naturaleza adecuada y deberán elegirse y aplicarse de manera que no sean perjudiciales para las propiedades o el aspecto del hormigón, que no afecten a las armaduras o los encofrados, y que no produzcan efectos perjudiciales para el medioambiente. No se permitirá la aplicación de gasóleo, grasa corriente o cualquier otro producto análogo.
Además, no deberán impedir la posterior aplicación de revestimientos superficiales, ni la posible ejecución de juntas de hormigonado.
Previamente a su aplicación, el constructor facilitará a la dirección facultativa un certificado, firmado por persona física, que refleje las características del producto desencofrante que se pretende emplear, así como sus posibles efectos sobre el hormigón.
Se aplicarán en capas continuas y uniformes sobre la superficie interna del encofrado o molde, debiéndose verter el hormigón dentro del período de tiempo en el que el producto sea efectivo según el certificado al que se refiere el párrafo anterior”.
A continuación os dejo un catálogo de la empresa Fuchs que incluye los desencofrantes.
Los tableros contrachapados son una variedad de tablero de madera compuesta por la unión de finas chapas de madera reforzada, las cuales se pegan con las fibras dispuestas transversalmente una sobre otra, utilizando resinas sintéticas y aplicando fuerte presión y calor. Esta técnica confiere al tablero una gran estabilidad dimensional y resistencia, logrando un aspecto similar al de la madera maciza. Estos tableros son conocidos con diferentes nombres según la región geográfica, como multilaminado, triplay o madera terciada, y en países de habla inglesa, se les llama plywood.
En su proceso de fabricación, se dispone un número impar de chapas, que se ensamblan alternando las direcciones de la veta. Es decir, cada chapa está dispuesta en sentido perpendicular respecto a la siguiente o la anterior. Esto les confiere muchas de sus ventajas frente a otras clases de paneles. Por lo general, se emplean chapas con espesores de 2 a 3 mm, aunque cabe mencionar que pueden existir variantes en cuanto al grosor utilizado.
Dentro de los tableros multicapas hay diferencias, así por poner un ejemplo para un acabado especial, se podría emplear un tablero abedul-abedul de 15 capas y para uno normal, otro abeto-abeto de 8 capas.
Los contrachapados se emplean en la construcción, especialmente para superficies de encofrados en contacto directo con el hormigón. En cuanto al encolado de estos encofrados, las resinas fenólicas soportan el ataque de microorganismos y tanto al agua fría como caliente.
Este tablero contrachapado de superficie lisa es altamente resistente y versátil, permitiendo una mayor cantidad de usos repetidos que los tableros convencionales, además de ofrecer un excelente acabado para el hormigón visto.
El contrachapado fenólico ha ganado una creciente popularidad en la industria de la construcción debido a sus propiedades mecánicas excepcionales y su notable resistencia a la intemperie. Ampliamente empleado en la construcción de puentes, muros y techos, este material ofrece una amplia gama de aplicaciones en encofrados.
Compuesto por múltiples capas de hojas de madera impregnada con resina fenólica, un material sintético extremadamente resistente, el contrachapado fenólico se une mediante un adhesivo robusto y es sometido a presión y calor para formar una hoja rígida y duradera. Como resultado, supera con creces tanto a la madera como al contrachapado en términos de resistencia y durabilidad, lo que lo convierte en una elección insuperable en numerosas aplicaciones de construcción.
Entre las ventajas destacadas de estos paneles se encuentran sus dimensiones lo suficientemente grandes, sin juntas, lo que permite una colocación y retirada económicas; su variedad de espesores disponibles; sus propiedades físicas consistentes; la economía que ofrece debido a sus múltiples usos; las superficies lisas, lo que reduce el coste del acabado final de los paramentos; y su bajo coste de fabricación. Como inconvenientes se puede indicar que solamente permiten leves curvaturas.
El gran éxito del tablero contrachapado para encofrado se debe a varias razones fundamentales:
Ahorro de madera: Gracias a la reducción de medidas, se minimizan las pérdidas de material.
Rápido armado: Los operarios están familiarizados con el sistema utilizado en construcciones anteriores, lo que agiliza el montaje.
Menos personal especializado: La facilidad de uso permite que personal semiespecializado pueda ensamblar los encofrados estandarizados, reduciendo la necesidad de mano de obra especializada.
Prefabricación y estandarización: La fabricación en grandes series y el empleo de grúas ligeras para su manejo permiten un ahorro significativo de tiempo y mano de obra en la construcción.
Ventajas en entornos congestionados: La posibilidad de fabricar las unidades del encofrado en la fábrica, en lugar de hacerlo en la obra, es especialmente beneficiosa en lugares de construcción con limitaciones de espacio.
Plazos de entrega más cortos: La estandarización, prefabricación y reducción en el trabajo de acabado contribuyen a plazos de entrega más rápidos y menor gasto en intereses.
Los contrachapados presentan variaciones según su tipo, que incluyen la especie de madera utilizada, la calidad de las chapas (donde generalmente se especifica la calidad de las caras exteriores pero no siempre de las interiores), el espesor tanto de las chapas como del conjunto y el tipo de encolado utilizado. Estos parámetros influyen en las propiedades y usos específicos de cada tipo de contrachapado.
Según su uso o ambiente de utilización, se clasifican según las normas UNE-EN 335-1 y UNE-EN 314-2 para la calidad del encolado en:
Interior (Encolado 1): Fabricados empleando colas y resinas de urea-formaldehído.
Exterior Cubierto o semiexterior (Encolado 2): Se utilizan resinas de urea formaldehído melamínico.
Exterior (Encolado 3): En este tipo de ambientes, se requiere combinar maderas con buena resistencia natural a la humedad y podredumbre, junto con colas fenólicas.
Otro aspecto importante es la madera utilizada, pues diferentes tipos de madera otorgan distintas propiedades técnicas al contrachapado final. Por ejemplo, un contrachapado de abedul tendrá características diferentes al de okume. Además de la elección de la madera, es relevante considerar la calidad de la misma. Las fichas técnicas suelen hacer mención a la calidad de la cara, contracara y chapas interiores, ya que las necesidades varían según si el tablero se usará en construcción o en la fabricación de mobiliario.
En los encofrados, se utilizan dos tipos de contrachapados: uno diseñado para exteriores y otro para interiores. El contrachapado para exteriores se fabrica con una cola completamente impermeable y está destinado a lugares expuestos a condiciones climáticas adversas y humedad. Por otro lado, el contrachapado para interiores también es resistente a la humedad, aunque no es completamente impermeable. Se emplea en situaciones donde la exposición al mal tiempo y humedad no será excesiva. De esta manera, se asegura que cada tipo de contrachapado se emplea en el entorno adecuado, optimizando su rendimiento y durabilidad según las condiciones específicas de uso.
El contrachapado para exteriores se presenta con una o ambas caras revestidas por una capa dura y resistente de resinas fundidas impermeables, lo que garantiza una mayor durabilidad del pulido de las superficies y permite su reutilización en numerosas ocasiones. Los tableros de encofrado están recubiertos en ambos lados con una película fenólica, lo que les proporciona una superficie muy fina y también incrementa ligeramente su resistencia. Algunos constructores y fabricantes protegen las esquinas y los cantos usando perfiles de metal. Para prevenir la adhesión del hormigón al encofrado y asegurar un desencofrado sin dañar la superficie del hormigón o el encofrado, es completamente necesario aplicar pinturas de protección, aceitar los tableros o recubrirlos con películas fenólicas o film fenólico.
La medida más comúnmente utilizada en la industria de los tableros es el estándar de 244×122 cm, aunque también se encuentran tableros de 244×210 cm, especialmente para fines de construcción. En cuanto al espesor, varía entre 5 y 50 mm, siendo los espesores más frecuentes los mismos que para otros tableros, como 10, 12, 15, 16, 18 y 19 mm. Los espesores estándar del tablero contrachapado de encofrado son de 12 mm, que se utilizan en construcciones normales. Para construcciones más pesadas, se emplean tableros de 15-18 y 21 mm. Es importante destacar que los contrachapados con un espesor menor a 12 mm se reservan para aplicaciones en elementos especiales, como revestimientos de encofrados construidos con otros materiales o en superficies curvas, debido a que las láminas delgadas de madera contrachapada tienden a curvarse con relativa facilidad.
El contrachapado permite lograr curvas sencillas de forma fácil, obteniendo excelentes resultados cuando se cuenta con una superficie continua con la curvatura precisa para apoyar los paneles. En casos donde existan puntos críticos con curvaturas complicadas, se prefieren dos planchas delgadas superpuestas en lugar de una sola con el mismo grosor total. Además, si es necesario trabajar con radios de curvatura aún más pequeños, es posible lograrlos utilizando contrachapado para exteriores y aplicándoles previamente un tratamiento de humedecimiento y vaporización.
Para facilitar el despegado del encofrado, es necesario impregnar los tableros con una grasa especial o un agente similar. Para una mayor durabilidad, se puede aplicar una primera capa de pintura de aluminio. Este tratamiento asegura que el encofrado pueda retirarse sin dañar ni el hormigón ni la superficie del tablero. Es importante limpiar todos los residuos de hormigón y quitar los clavos antes de apilar los tableros para evitar el deterioro normal de la madera. Con un manejo adecuado, es posible emplear los mismos tableros un número elevado de veces. Incluso cuando están dañados y no son aptos para encofrar, todavía tienen un alto valor de recuperación para suelos, rampas o techos.
Los tableros fenólicos tienen una capacidad máxima de carga que puede variar dependiendo de las circunstancias. En situaciones normales, pueden soportar hasta 80 cargas, pero si se busca un acabado más cuidado, este número se reduce a 50. En condiciones especiales, la capacidad máxima puede disminuir aún más, llegando incluso a 20 o menos cargas. No obstante, la durabilidad del tablero fenólico depende no solo del espesor de la capa de revestimiento, que puede variar desde 540 hasta 120 g/m2, sino también del trato al que se le someta. Si se maneja con relativo cuidado, está bien sellado y se evita clavar en exceso, su vida útil será la adecuada.
Es crucial evitar el uso de un tablero inadecuado, pues esto podría ocasionar fallos superficiales en el hormigón. Un falso ahorro en esta partida podría generar costos adicionales mucho mayores para reparaciones o, en ocasiones extremas, incluso requerir demoliciones y nuevas construcciones.
Para prolongar la vida útil de los tableros, se deben seguir algunas recomendaciones durante su almacenamiento. En primer lugar, es fundamental evitar el contacto directo con agua y la exposición al sol. Al apilar los tableros sobre el suelo, es esencial comprobar que no haya presencia de agua ni barro en la zona de almacenamiento. Además, se debe evitar guardar los tableros en lugares excesivamente secos o con temperaturas elevadas, ya que esto podría provocar deformaciones. Al seguir estas pautas, se garantiza una mayor durabilidad y rendimiento de los tableros fenólicos.
Os dejo algunos vídeos explicativos. Espero que os sean de interés.
También os dejo un catálogo de Alsina sobre productos fenólicos y componentes.
La protección del patrimonio arquitectónico considera no solo el valor intrínseco de un edificio, sino también los valores que aporta al espacio público, especialmente la imagen exterior que ofrece la fachada. Las normas urbanísticas municipales muchas veces obligan a preservar dicha fachada y permiten demoler y reconstruir el resto de la estructura. Este es un proceso complejo que precisa del uso de apeos específicos que garanticen la seguridad y la estabilidad de estas fachadas mientras se procede a la demolición y reconstrucción del resto del edificio (Figura 1).
En los últimos años, se han incrementado significativamente este tipo de intervenciones, por lo que este tipo de apeos han llamado la atención y ha crecido la sensibilidad para que su empleo sea seguro. Estas estructuras de apeo, aunque sean temporales, deben proyectarse, calcularse y ejecutarse con el mismo nivel de detalle que cualquier otro tipo de estructura permanente. Además, al sustentar un elemento tan relevante en condiciones no previstas originalmente, que a menudo ha sido afectado por alteraciones o daños significativos, es fundamental llevar a cabo estudios pormenorizados que aborden estos aspectos con especial atención y cuidado.
Hemos asistido a una continua mejora en este tipo de intervenciones. Se refleja tanto en el cuidado con el que se resuelve el problema, empleando sistemas tradicionales de sustentación mediante estructuras tubulares interconectadas, como en el aumento de intervenciones basadas en estructuras de perfiles laminados diseñadas y construidas específicamente para este propósito. Además, se ha introducido en el mercado sistemas industrializados de estructuras para este tipo de apeos.
La estabilización del interior de la fachada (Figura 2) consiste en una estructura modular compuesta por vigas y tensores conectados mediante uniones atornilladas. Este sistema cuenta con diferentes niveles de correas y puntales, diseñados para unir los muros y solidarizar el movimiento entre ellos. Es importante que estos muros tengan la capacidad de soportar las cargas horizontales a las que estarán expuestos, pues la función del arriostramiento es asegurar una conexión sólida entre ellos, para que trabajen de manera conjunta y eficiente. La ingeniería de esta conexión posibilita la compatibilización de los desplazamientos horizontales entre el conjunto de muros y rigidizadores. Como resultado, parte de la carga se deriva hacia los otros muros arriostrados, lo que disminuye significativamente la tensión sobre el muro en estudio. Esto conlleva una reducción del riesgo de deformaciones y fisuraciones excesivas, contribuyendo a una mayor durabilidad y seguridad de la estructura.
El proceso de apeo de la fachada involucra varias fases. En primer lugar, es importante obtener un profundo conocimiento previo de los elementos afectados por el apeo, lo que abarca tres aspectos esenciales: las características constructivas de la fachada y su relación con el resto del edificio, el estado de conservación y posibles daños, así como un estudio detallado del suelo y subsuelo donde se asentará el apeo. La siguiente etapa implica definir el propio apeo y establecer las medidas de seguridad necesarias, atendiendo a las particularidades específicas de la fachada y las lesiones presentes, considerando las acciones concretas requeridas, así como aspectos generales relacionados con la estabilización, como excentricidades de carga, pandeo, fuerzas del viento y sismicidad. Por último, la ejecución de las obras incluye medidas preliminares, como calado de forjados y tabiques para permitir el paso de elementos del apeo, junto con la implementación de apuntalamientos y consolidaciones específicas según el estado intrínseco de la fachada. Posteriormente, se construye la estructura de sustentación de la fachada y se procede a la demolición del interior del edificio para, finalmente, vincular el nuevo edificio de manera segura a la antigua fachada.
Aquí tenéis algunos vídeos que, espero, os interesen:
Os paso un documento donde se describen los estabilizadores de fachada, de la profesora Inmaculada Oliver Faubel, de la Universitat Politècnica de València.
El cálculo de los rendimientos de los equipos no es un tema sencillo, pues son muchos los factores de producción de los que depende. No obstante, a veces necesitamos conocer, aunque sea de forma aproximada, la producción de la maquinaria, por ejemplo, para la justificación de los precios en un proyecto. Para resolver este problema, os propongo un método simplificado, pero que tiene en cuenta muchos de los factores que intervienen en la merma de la producción. Lo que es un error es considerar los rendimientos de los equipos que vienen dados en la justificación de precios de las bases de datos, pues son valores medios que, en numerosas ocasiones, se alejan peligrosamente de la realidad. Tampoco se deben usar los datos directamente proporcionados por los fabricantes, folletos, libros, internet, etc., pues son producciones que se alcanzan en casos ideales con maquinistas muy experimentados y en condiciones de trabajo que difícilmente se acercan a lo que realmente pasa en una obra.
MÉTODO SIMPLIFICADO PARA EL CÁLCULO DE LA PRODUCCIÓN DE LA MAQUINARIA
Se propone el siguiente procedimiento simplificado para atender a la reducción de producción de un equipo debido a las condiciones de trabajo, la influencia del tráfico, la congestión de la obra, otras contingencias y de las condiciones atmosféricas en la producción de un equipo.
La producción real estará afectada por factores de reducción de la siguiente forma:
Se entiende por producción máxima, o producción tipo de un equipo, Pmáx, aquella capaz de realizar en 54 minutos por cada hora de trabajo de forma ininterrumpida siguiendo un determinado método de trabajo y en unas condiciones determinadas. A falta de datos específicos, esta producción es la que habitualmente proporcionan los fabricantes de los equipos. Seguidamente, se detalla el cálculo simplificado de los factores de producción.
El factor de las condiciones de trabajo de la obra para una máquina fc en un tajo determinado se puede obtener de la siguiente tabla:
Condiciones de trabajo
fc
Óptima
1,00
Buena
0,95
Normal
0,85
Regular
0,75
Mala
0,65
El factor de retraso, fd, está relacionado con el mal tiempo o las interrupciones debidas al tráfico, congestión en la obra u otras contingencias, siendo su expresión la siguiente:
siendo
Donde
ft factor de reducción como consecuencia del tráfico, congestión en la obra u otras contingencias
TTD tiempo total de trabajo disponible
TPT tiempo perdido debido al tráfico, congestión en la obra y otras contingencias durante las horas de trabajo
fw factor de reducción por meteorología adversa
NTDA número total de días (horas) en los que las condiciones atmosféricas permiten trabajar
NTD número total de días (horas)
El factor de operación, fo, considera que el personal no trabaja al máximo rendimiento todas las horas, ni se pueden anticipar a imprevistos. En la tabla siguiente se muestra el factor sugerido en función de la calificación de los operadores y la organización de la obra.
Experiencia y motivación de los operadores
Muy buena
Buena
Mediana
Mediocre
Pobre
Organización de la obra
Muy buena
0,90
0,84
0,78
0,73
0,67
Buena
0,88
0,82
0,77
0,71
0,65
Mediana
0,86
0,80
0,75
0,69
0,64
Mediocre
0,84
0,79
0,73
0,67
0,62
Pobre
0,82
0,77
0,71
0,65
0,60
El factor de fallo mecánico, fb, depende de la antigüedad de la máquina. Durante el primer año no se considera reducción alguna, por lo que fb = 1,00. Pero por cada año transcurrido a partir de ese momento, se reduce de forma lineal el factor, hasta llegar a fb = 0,85 al finalizar la vida económica de la máquina.
PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.
YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J. (2012). Técnicas de planificación y control de obras. Editorial de la Universitat Politècnica de València. Ref. 189. Valencia, 94 pp.