Métodos docentes en la enseñanza universitaria

En el laboratorio de estructuras. Escuela de Ingenieros de Caminos de Valencia. Imagen: V. Yepes

Las metodologías didácticas conforman uno de los pilares básicos e indispensables de los proyectos formativos. Éstas han evolucionado con los años y son muchas las recopilaciones que se hacen de ellas. La expresión método constituye un término excesivamente amplio y heterogéneo que se ha empleado como cajón de sastre en el que cabe desde la forma de afrontar los contenidos, los estilos de organización del grupo de alumnos, el tipo de tareas o actividades de aprendizaje o el estilo de relación entre las personas, entre otros componentes.

 

 

 

 

En lo que sigue se utilizará el concepto de método docente en su sentido más amplio. Éstos pueden clasificarse de diversas formas, atendiendo a determinadas características no excluyentes. Así, García-García (2002) los clasifica:

  • Por la forma de razonamiento: deductivos, inductivos, analógicos o comparativos.
  • Por la coordinación de la materia: lógicos o psicológicos.
  • Por la concretización de la enseñanza: simbólicos o verbalísticos e intuitivos.
  • Por la sistematización de la materia: rígida o semirrígida y ocasionales.
  • Por la actividad del alumnado: activos y pasivos.
  • Por la globalización de los conocimientos: globalizados o especializados.
  • Por la relación entre profesor y alumno: individuales, recíprocos y colectivos.
  • Por el trabajo del alumno: individual, colectivo o mixto.
  • Por la aceptación de lo enseñado: dogmáticos o heurísticos.

 

En clase de Gestión de la Innovación. Imagen: V. Yepes

Continue reading “Métodos docentes en la enseñanza universitaria”

Balance personal de 2017 en el ámbito docente e investigador

El 31 de diciembre de cualquier año es un buen día para hacer balance del año. Este 2017 ha sido uno de los años de mayor productividad docente e investigadora desde que me dedico en exclusiva a la Universidad. Quizá lo más destacable sea la obtención de la Cátedra de Universidad en el Área de Ingeniería de la Construcción. Han sido muchos años de espera desde obtener la acreditación, pero al fin todo llega. En cuanto a Proyectos de Investigación, se acaba este año BRIDLIFE y, justo hace unas horas, me comunican la aprobación provisional de un nuevo proyecto trianual, DIMALIFE, con el aliciente de adjudicarse también un contrato predoctoral. En lo referido a la gestión, este año pasé el testigo de la Dirección del Máster en Ingeniería del Hormigón a la profesora Carmen Castro, después de nueve años, con la obtención de la acreditación EUR-ACE para el título. Por otra parte, pasé a ocupar la Subdirección del Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil. La labor docente se ha complementado con la dirección de cuatro trabajos fin de máster, dos proyectos final de carrera y cuatro trabajos fin de grado. A ello se suma la labor divulgadora en Twitter, Facebook, en los blogs de las asignaturas y en la elaboración de material audiovisual, con ocho Polimedias.

La labor investigadora la he realizado, igual que en estos últimos años, en el ICITECH (Instituto de Ciencia y Tecnología del Hormigón), que desde septiembre ha pasado a ser oficialmente un Instituto Universitario. En cuanto a la producción investigadora del 2017, destacan 12 artículos indexados en el JCR publicados este año y 2 más que ya han sido aceptados y publicados para el 2018. A ello habría que sumar tres artículos en otras revistas, la edición de un libro y 18 comunicaciones en congresos. También debería añadir la labor como miembro del comité editorial de siete revistas, tres de ellas del JCR. Esta labor hace que mi indicador H sea de 17, según la Web of Science. Recordar la lectura de la tesis doctoral de Leonardo Sierra, con la máxima calificación y mención internacional. Destaca este la estancia este año del profesor Terje Haukaas, de la British Columbia University, de Vancouver (Canadá), trabajando en nuestro grupo de investigación. Este estancia enlaza con la que el profesor Dan Frangopol realizó el año pasado y la que previsiblemente realizará el profesor Moacir Kripka el próximo curso. También este año, nuestra becaria FPI, Tatiana García Segura, ha podido incorporarse como Profesora Ayudante Doctor en nuestro Departamento, una vez se terminó su beca. Asimismo, me gustaría resaltar mi pertenencia este año en el Comité Científico de tres congresos internacionales: VII Congreso Internacional de la Asociación Científico-Técnica del Hormigón Estructural (ACHE 2017), XX Congreso Internacional de Turismo, Universidad-Empresa y 9th International Structural Engineering and Construction Conference (ISEC-9). En éste último, también participé como Editor de las Actas y en el Comité Organizador. También he sido editor de dos números especiales, uno de ellos en revista JCR. Asimismo, he participado en varios tribunales de tesis doctorales, tesinas de máster y trabajos final de grado.

En definitiva, 2017 se puede calificar de un buen año en estos aspectos universitarios. Espero que 2018 siga siendo al menos, la mitad de bueno que éste. Ese año celebraremos el 50 aniversario de nuestra Escuela de Ingenieros de Caminos de Valencia. A continuación paso un listado de alguna de las cosas que he podido terminar este año.

Continue reading “Balance personal de 2017 en el ámbito docente e investigador”

Palabras de Pedro Jaén en el Acto de Graduación del Máster Universitario en Ingeniería del Hormigón

El pasado miércoles 20 de diciembre de 2017 tuvo lugar el Acto de Graduación de la Promoción 2016-2018 del Máster Universitario en Ingeniería del Hormigón. En dicho acto, el Secretario del Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil, D. Pedro Ildefonso Jaén Gómez, dirigió unas palabras a los asistentes. Ha tenido la amabilidad de pasarme su discurso y, por su interés, y con su autorización, lo transcribo a continuación:

  • Muy buenas tardes, Sr. Director del Dpto. de Ingeniería de la Construcción, Sra. Directora del Máster Universitario en Ingeniería del Hormigón, miembros de la comunidad Universitaria, señores y señoras, bienvenidos, bienvenidas a este acto de graduación de la promoción 2016-18 del Máster Universitario en Ingeniería del Hormigón. Soy Pedro Jaén, Secretario del DICPIC, y quisiera dirigirles unas palabras previas a la entrega de los Diplomas.
  • Nos encontramos en una muy buena universidad, la Politécnica de Valencia. Para sustentar esta afirmación, expondré algunos datos objetivos:

Continue reading “Palabras de Pedro Jaén en el Acto de Graduación del Máster Universitario en Ingeniería del Hormigón”

¿Qué son los resultados de aprendizaje en el ámbito universitario?

Un resultado de aprendizaje se puede definir como “una declaración de lo que el estudiante se espera que conozca, comprenda y sea capaz de hacer al finalizar un periodo de aprendizaje”. Este concepto se considera como uno de los pilares del proceso de Bolonia (R.D. 1027/2011; ANECA, 2014). Sin embargo, esta noción, muy relacionada con el aprendizaje del estudiante, muchas veces se ha confundido con los objetivos de una asignatura, que suelen ser declaraciones generales que indican los contenidos, el enfoque, la dirección y los propósitos que hay detrás de la asignatura o el programa, desde el punto de vista del profesor. Un ejemplo de objetivo sería el siguiente: “presentar a los estudiantes los procedimientos de construcción básicos de túneles”. Como se puede comprobar, no es algo que se pueda evaluar. En cambio “elegir los procedimientos y la maquinaria más adecuada para la excavación de túneles” sí que se encuentra relacionado con lo que puede lograr el estudiante, y se puede evaluar. También se podrían diferenciar los resultados de aprendizaje en función del nivel de enseñanza terminado: de un módulo, de una materia o de una asignatura, que identifica lo que se espera que el estudiante sepa, comprenda y sea capaz de hacer al término de la correspondiente unidad académica. En este caso, los resultados del aprendizaje están directamente vinculados con una estrategia concreta de enseñanza y con unos métodos específicos de evaluación. Este alineamiento entre resultados, actividades de enseñanza y estrategias de evaluación dota de transparencia el proceso global de enseñanza- aprendizaje y permite garantizar la coherencia interna de los módulos y las asignaturas.

Figura: Estructura de competencias y resultados de aprendizaje (Yepes, 2017)

Por otra parte, la frontera entre resultado de aprendizaje y competencia a veces se difumina en función del contexto. De hecho, hay países donde ambos conceptos son sinónimos:

  • El Marco Europeo de Cualificaciones para el aprendizaje permanente (EQF) considera que las competencias son parte de los resultados del aprendizaje.
  • El proyecto Tuning (Estructuras educativas en Europa) considera que las competencias se dividen en específicas y genéricas e incluyen “conocimientos y comprensión”, “saber cómo actuar” y “saber cómo ser”. En Tuning los resultados del aprendizaje, por su parte, expresan el nivel de competencia adquiridos.
  • En el Marco de Cualificaciones del EEES los resultados del aprendizaje son el producto del proceso de enseñanza. El término competencias se utiliza en un sentido amplio permitiendo la graduación de habilidades o destrezas, y se considera que está incluido en el concepto de resultados del aprendizaje.

En España, el uso del término “competencias” está más extendido que el de “resultados del aprendizaje”. Así, el R.D. 1393/2007 señala que “los planes de estudios conducentes a la obtención de un título deberán tener en el centro de sus objetivos la adquisición de competencias por parte de los estudiantes, ampliando, sin excluir, el tradicional enfoque basado en contenidos y horas lectivas”. Los resultados del aprendizaje se mencionan en la exposición de motivos (“Se proponen los créditos europeos, ECTS, como unidad de medida que refleja los resultados del aprendizaje y volumen de trabajo realizado por el estudiante para alcanzar los objetivos establecidos en el plan de estudios”) y en el punto 8 del Anexo I (la universidad debe presentar el “procedimiento general de la Universidad para valorar el progreso y los resultados del aprendizaje de los estudiantes”). Las órdenes ministeriales relacionadas con los títulos que habilitan para una actividad profesional regulada hablan de competencias, y no de resultados de aprendizaje. Éste último término sí que se utiliza en el R.D. 1027/2011 por el que se establece el Marco Español de Cualificaciones para la Educación Superior (MECES).

Ante esta confusión, se aconseja seguir el criterio de la Guía de apoyo de ANECA, en donde se considera que los resultados del aprendizaje son concreciones de las competencias para un determinado nivel y que son el resultado del proceso de enseñanza-aprendizaje. Por tanto, se considera que los resultados del aprendizaje describen lo que los estudiantes deben ser capaces de hacer al término del proceso formativo o de la asignatura. Para que ello sea posible deben definirse con claridad; deben ser observables y evaluables; deben ser factibles y alcanzables por los estudiantes; deben diseñarse para asegurar su idoneidad y relevancia con respecto a la asignatura o enseñanza; deben guardar relación directa con los resultados del aprendizaje del programa; y deben corresponder al nivel definido en el MECES.

Los resultados del aprendizaje se definen con frases con un verbo de acción, un contenido u objeto sobre el que el estudiante tiene que actuar y un contexto o condiciones en las que se producirá la acción. Suele utilizarse la jerarquía de Bloom para su redacción. La “Guía de apoyo para la redacción, puesta en práctica y evaluación de los resultados del aprendizaje” (2014) da recomendaciones para definir los resultados:

  1. Incluir la siguiente frase, antes de enumerar los resultados del aprendizaje “Al terminar con éxito esta asignatura/enseñanza, los estudiantes serán capaces de…
  2. Comenzar con un verbo de acción seguido del objeto del verbo y del contexto.
  3. Evitar considerar únicamente resultados del aprendizaje relacionados con las categorías más bajas.
  4. Incluir resultados del aprendizaje que incluyan o combinen tres planos (cognitivo, subjetivo y psicomotor).
  5. Incluir únicamente aquellos resultados del aprendizaje que el estudiante vaya a ser capaz de alcanzar, evitando ser demasiado ambicioso.
  6. Establecer cuidadosamente el nivel de ejecución correspondiente al resultado pertinente para un determinado nivel académico.
  7. La redacción ha de ser comprensible por otros profesores, estudiantes y la sociedad en general.
  8. Considerar cómo se pueden medir y evaluar los resultados del aprendizaje.
  9. Incluir aquellos resultados que se consideren elementales para definir el aprendizaje esencial de la asignatura.
  10. Un número entre 5 y 10 se considera bastante habitual.

Otro aspecto importante es la relación entre los resultados de aprendizaje y su evaluación. En este sentido, los métodos y las actividades formativas y los sistemas de evaluación deben coordinarse para alcanzar los resultados del aprendizaje. Así, la ANECA considera importante esta alineación, como así queda reflejado en el “Criterio 6. Resultados de aprendizaje”, en donde la directriz 6.1 a valorar para su cumplimiento indica “Las actividades formativas, sus metodologías docentes y los sistemas de evaluación empleados son adecuados y se ajustan razonablemente al objetivo de la adquisición de los resultados de aprendizaje previstos.” Por último, señalar que los resultados de aprendizaje son dinámicos, siendo aconsejable su revisión periódica y sistemática así como su interrelación con las metodologías docentes y las prácticas de evaluación.

Referencias:

ANECA (2014). Guía de apoyo para la redacción, puesta en práctica y evaluación de los resultados de aprendizaje.
YEPES, V. (2017). Proyecto docente. Concurso de Acceso al Cuerpo de Catedráticos de Universidad. Universitat Politècnica de València, 642 pp.

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

 

 

Las competencias en el Grado de Ingeniería Civil de la Universitat Politècnica de València

Las competencias específicas son las propias de un ámbito o título y se orientan a la consecución de un perfil concreto del egresado. En estas competencias se incluyen las competencias básicas o generales y las competencias específicas propiamente. En el caso de los títulos que habilitan para el ejercicio de una actividad profesional regulada, las órdenes ministeriales correspondientes hacen referencia a las competencias que se deben requerir. Sobre los componentes que conforman la competencia de un título resulta de interés un trabajo desarrollado (Yepes et al., 2016) sobre la adquisición de competencias en un máster en gestión de la construcción.

El Apartado 3 del “Anexo I” de la Orden CIN/307/2009, de 9 de febrero, incluye las competencias de carácter general y en su Apartado 5 las competencias de los módulos correspondientes a las especializaciones que habilitan para el ejercicio de la profesión de Ingeniero Técnico de Obras Públicas. El diseño del título de Grado en Ingeniería Civil en la UPV se ha basado en estas competencias. Además, se han complementado con otras competencias adicionales dando lugar al listado completo recogido en la actual Memoria de Verificación del título, fechada el 30 de julio de 2015. El listado de competencias de este título es el siguiente:

Competencias básicas

CB1 – Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio.

CB2 – Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio.

CB3 – Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética.

CB4 – Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado.

CB5 – Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía.

Competencias generales

A01 – Analizar críticamente los procesos propios de la Ingeniería Civil.

A02. – Aprender de manera autónoma nuevos conocimientos y técnicas adecuados para la Ingeniería Civil.

A03 – Comprender y asumir la responsabilidad ética y profesional de la actividad del Ingeniero Civil.

A04 – Comprender y utilizar el lenguaje propio de la ingeniería así como la terminología propia de la Ingeniería Civil.

A05 – Comunicar de forma efectiva, tanto escrito como oral, conocimientos, procedimientos, resultados e ideas relacionadas con la Ingeniería Civil.

A06 – Comunicar por escrito y de forma oral conocimientos, procedimientos, resultados e ideas relacionadas con la Ingeniería Civil en una segunda lengua.

A07 – Conocer y comprender las ciencias y las tecnologías correspondientes para la planificación, proyecto, construcción y explotación de las obras propias del Sector de la Ingeniería Civil.

A08 – Dirigir y coordinar grupos de trabajo en el ámbito de la Ingeniería Civil, proponiendo métodos de trabajo estándar y herramientas a utilizar.

A09 – Disponer de los fundamentos físicos y matemáticos necesarios para interpretar, seleccionar y valorar la aplicación de nuevos conceptos y desarrollos científicos y tecnológicos relacionados con la Ingeniería Civil.

A10 – Tener la capacidad para organizar y gestionar técnica, económica y administrativamente los distintos medios de producción propios de la Ingeniería Civil.

A11 – Capacitar científica y técnicamente para el ejercicio de la profesión de Ingeniero Técnico de Obras Públicas con conocimiento de las funciones de asesoría, análisis, diseño, cálculo, proyecto, construcción, mantenimiento conservación y explotación.

A12 – Comprender los múltiples condicionamientos de carácter técnico y legal que se plantean en la construcción de una obra pública, y capacitación para emplear métodos contrastados y tecnologías acreditadas, con la finalidad de conseguir la mayor eficacia de la construcción dentro del respeto por el medio ambiente y la protección de la seguridad y salud de los trabajadores y usuarios de la obra pública.

P01 – Comprender trabajos de ingeniería complejos, que engloben distintas disciplinas de la ingeniería civil y materias relacionadas. Integrar estos conocimientos en el planteamiento y definición de la ejecución, conservación o explotación de obras de ingeniería civil.

Competencias específicas

A13 – Capacitar para la aplicación de la legislación necesaria durante el ejercicio de la profesión de Ingeniero Técnico de Obras Públicas.

A14 – Proyectar, inspeccionar y dirigir obras, en su ámbito.

A15 – Mantener y conservar los recursos hidráulicos y energéticos, en su ámbito Capacidad para el mantenimiento y conservación de los recursos hidráulicos y energéticos, en su ámbito.

A16 – Realizar de estudios de planificación territorial y de los aspectos medioambientales relacionados con las infraestructuras, en su ámbito.

A17 – Mantener, conservar y explotar infraestructuras, en su ámbito.

A18 – Realizar estudios y diseñar captaciones de aguas superficiales o subterráneas, en su ámbito.

A19 – Aplicar técnicas de gestión empresarial y legislación laboral. Conocimiento y capacidad de aplicación de técnicas de gestión empresarial y legislación laboral.

A20 – Conocer la historia de la ingeniería civil y analizar y valorar las obras públicas en particular y la construcción en general.

B01 – Resolver problemas matemáticos que puedan plantearse en la ingeniería, aplicando los conocimientos sobre: álgebra lineal; geometría; geometría diferencial; cálculo diferencial e integral; ecuaciones diferenciales y en derivadas parciales; métodos numéricos; algorítmicos numéricos; estadísticos y optimización.

B02 – Adquirir visión espacial y dominar las técnicas de representación gráfica, tanto por métodos tradicionales de geometría métrica y geometría descriptiva como mediante las aplicaciones de diseño asistido por ordenador.

B03 – Aplicar los conocimientos básicos sobre el uso y programación de los ordenadores, sistemas operativos, bases de datos y programas informáticos a la ingeniería.

B04 – Resolver problemas propios de la ingeniería, aplicando los conceptos básicos sobre las leyes generales de la mecánica, termodinámica, campos y ondas y electromagnetismo.

B05 – Resolver problemas propios de la ingeniería aplicando los conocimientos básicos de geología y morfología del terreno. Climatología.

B06 – Organizar y gestionar empresas. Conocer el concepto de empresa, su marco institucional y jurídico.

C01 – Obtener mediciones, formar planos, establecer trazados, llevar al terreno geometrías definidas o controlar movimientos de estructuras u obras de tierra, aplicando las técnicas topográficas imprescindibles.

C02 – Comprender las propiedades químicas, físicas, mecánicas y tecnológicas de los materiales más utilizados en construcción.

C03 – Aplicar los conocimientos de materiales de construcción en sistemas estructurales, a partir del conocimiento de la relación entre la estructura de los materiales y las propiedades mecánicas que de ella se derivan.

C04 – Analizar y comprender cómo las características de las estructuras influyen en su comportamiento. Aplicar los conocimientos sobre el funcionamiento resistente de las estructuras para dimensionarlas siguiendo las normativas existentes y utilizando métodos de cálculo analítico y numérico.

C05 – Aplicar los conocimientos de geotecnia y mecánica de suelos y de rocas en el desarrollo de estudios, proyectos, construcciones y explotaciones donde sea necesario efectuar movimientos de tierras, cimentaciones y estructuras de contención.

C06 – Concebir, proyectar, construir y mantener estructuras de hormigón armado y estructuras metálicas a partir del conocimiento de los fundamentos del comportamiento de dichas estructuras.

C07 – Comprender los conceptos y los aspectos técnicos vinculados a los sistemas de conducciones, tanto en presión como en lámina libre.

C08 – Comprender los conceptos básicos de hidrología superficial y subterránea.

C09 – Analizar la problemática de la seguridad y salud en las obras de construcción.

C10 – Comprender el sistema eléctrico de potencia: generación de energía, red de transporte, reparto y distribución, así como sobre tipos de líneas y conductores. Comprender la normativa sobre baja y alta tensión.

C11 – Aplicar metodologías de estudios y evaluaciones de impacto ambiental.

C12 – Comprender los procedimientos constructivos, la maquinaría de construcción y las técnicas de organización, medición y valoración de obras.

H01 – Identificar obras e instalaciones hidráulicas, sistemas energéticos, aprovechamientos hidroeléctricos y planificación y gestión de recursos hidráulicos superficiales y subterráneos.

H02 – Comprender el funcionamiento de los ecosistemas y los factores ambientales.

H03 – Identificar los proyectos de servicios urbanos relacionados con la distribución de agua y el saneamiento.

I01 – Comprensión y producción de textos complejos específicos de Ingeniería civil y del ámbito científico técnico en inglés. Conversación fluida en inglés como usuario independiente. Consolidación de terminología específica de la ingeniería civil en inglés (nivel B2).

I02 – Comprensión y producción de textos complejos específicos de Ingeniería civil y del ámbito científico técnico en francés. Conversación fluida en francés como usuario independiente. Consolidación de terminología específica de la ingeniería civil en francés (nivel B2).

I03 – Comprensión y producción de textos complejos específicos de Ingeniería civil y del ámbito científico técnico en alemán. Conversación fluida en alemán como usuario independiente. Consolidación de terminología específica de la ingeniería civil en alemán (nivel B2).

I04 – Expresión oral y escrita en castellano de ideas y conceptos complejos relacionados con la Ingeniería civil. Redacción de informes, dictámenes, proyectos y otros textos frecuentes de la ingeniería. Defensa oral de estos textos y de otros conceptos relacionados.

I05 – Expresión oral y escrita en valenciano de ideas y conceptos complejos relacionados con la Ingeniería civil. Redacción de informes, dictámenes, proyectos y otros textos frecuentes de la ingeniería. Defensa oral de estos textos y de otros conceptos relacionados.

P02 – Conocer y comprender determinados aspectos del proceso proyecto-construcción: contrato de consultoría y asistencia, documentos del proyecto y contrato de obra. Obtener una visión conjunta de todo el Proyecto de Construcción y su interpretación.

T03 – Comprender el marco de regulación de la gestión urbanística.

T04 – Urbanizar el espacio público urbano y proyectar los servicios urbanos, tales como distribución de agua, saneamiento, gestión de residuos, sistemas de transporte, tráfico, iluminación, etc., conociendo la influencia de las infraestructuras en la ordenación del territorio.

T05 – Comprender el diseño y funcionamiento de las infraestructuras para el intercambio modal, tales como puertos, aeropuertos, estaciones ferroviarias y centros logísticos de transporte.

V01 – Aplicar el conocimiento de la tipología y las bases de cálculo de los elementos prefabricados en los procesos de fabricación.

V02 – Comprender el proyecto, cálculo, construcción y mantenimiento de las obras de edificación en cuanto a la estructura, los acabados, las instalaciones y los equipos propios.

V03 – Construir y conservar obras marítimas.

V04 – Construir y conservar carreteras, así como dimensionar el proyecto y los elementos que componen las dotaciones viarias básicas.

V05 – Construir y conservar las líneas de ferrocarriles con conocimiento para aplicar la normativa técnica específica y diferenciando las características del material móvil.

V06 – Aplicar los procedimientos constructivos, la maquinaria de construcción y las técnicas de planificación de obras.

V07 – Construir obras geotécnicas.

V08 – Comprender los sistemas de abastecimiento y saneamiento, así como su dimensionamiento, construcción y conservación.

Referencias:

YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2016). Desarrollo y evaluación de la competencia transversal “pensamiento crítico” en el grado de ingeniería civil. Congreso Nacional de Innovación Educativa y Docencia en Red IN-RED 2016, Valencia, pp. 1-14.

YEPES, V. (2017). Proyecto docente. Concurso de Acceso al Cuerpo de Catedráticos de Universidad. Universitat Politècnica de València, 642 pp.

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Qué es la optimización por cristalización simulada?

La cristalización simulada (también llamado recocido simulado)  “Simulated Annealing, SA” constituye una de las estrategias a las que se recurre en la resolución de los problemas de optimización combinatoria. Kirkpatrick, Gelatt y Vecchi la propusieron por primera vez en 1983 y Cerny en 1985 de forma independiente. Estos autores se inspiraron en los trabajos sobre Mecánica Estadística de Metrópolis et al. (1953). La metaheurística despliega una estructura que se inserta cómodamente en la programación, mostrando además una considerable habilidad para escapar de los óptimos locales. Fue una técnica que experimentó un auge considerable en la década de los 80 para resolver los modelos matemáticos de optimización.

La energía de un sistema termodinámico se compara con la función de coste evaluada para una solución admisible de un problema de optimización combinatoria. En ambos casos se trata de evolucionar de un estado a otro de menor energía o coste. El acceso de un estado metaestable a otro se alcanza introduciendo “ruido” con un parámetro de control al que se denomina temperatura. Su reducción adecuada permite, con una elevada probabilidad, que un sistema termodinámico adquiera un mínimo global de energía. Conceptualmente es un algoritmo de búsqueda por entornos, que selecciona candidatos de forma aleatoria. La alternativa se aprueba si perfecciona la solución actual (D menor o igual que cero); en caso contrario, será aceptada con una probabilidad  (e(-D/T) si D>0, donde T es el parámetro temperatura) decreciente con el aumento de la diferencia entre los costes de la solución candidata y la actual. El proceso se repite cuando la propuesta no es admitida. La selección aleatoria de soluciones degradadas permite eludir los mínimos locales. La cristalización simulada se codifica fácilmente, incluso en problemas complejos y con funciones objetivo arbitrarias. Además, con independencia de la solución inicial, el algoritmo converge estadísticamente a la solución óptima (Lundy y Mees, 1986). En cualquier caso, SA proporciona generalmente soluciones valiosas, aunque no informa si ha llegado al óptimo absoluto. Por contra, al ser un procedimiento general, en ocasiones no resulta competitivo, aunque sí comparable, ante otros específicos que aprovechan información adicional del problema. El algoritmo es lento, especialmente si la función objetivo es costosa en su tiempo de computación. Además, la cristalización simulada pierde terreno frente a otros métodos más simples y rápidos como el descenso local cuando el espacio de las soluciones es poco abrupto o escasean los mínimos locales.

Os dejo un vídeo explicativo:

Referencias

CERNY, V. (1985). Thermodynamical approach to the traveling salesman problem: an efficient simulated algorithm. Journal of Optimization Theory and Applications, 45: 41-51.

KIRKPATRICHK, S.; GELATT, C.D.; VECCHI, M.P. (1983). Optimization by simulated annealing. Science, 220(4598): 671-680.

LUNDY, M.; MEES, A. (1986). Convergence of an Annealing Algorithm. Mathematical programming, 34:111-124.

METROPOLIS, N.; ROSENBLUTH, A.W.; ROSENBLUTH, M.N.; TELLER, A.H.; TELER, E. (1953). Equation of State Calculation by Fast Computing Machines. Journal of Chemical Physics, 21:1087-1092.

GONZÁLEZ-VIDOSA-VIDOSA, F.; YEPES, V.; ALCALÁ, J.; CARRERA, M.; PEREA, C.; PAYÁ-ZAFORTEZA, I. (2008) Optimization of Reinforced Concrete Structures by Simulated Annealing. TAN, C.M. (ed): Simulated Annealing. I-Tech Education and Publishing, Vienna, pp. 307-320. (link)

Market demands on construction management: A view from graduate students

Document downloaded from:
This paper must be cited as:

https://riunet.upv.es/handle/10251/89675

Pellicer Armiñana, E.; Yepes Piqueras, V.; Ortega Llarena, AJ.; Carrión García, A. (2017). Market demands on construction management: A view from graduate students. JOURNAL OF PROFESSIONAL ISSUES IN ENGINEERING EDUCATION AND PRACTICE. 143(4):1-11. doi:10.1061/(ASCE)EI.1943-5541.0000334

Descargar (PDF, 367KB)

 

 

¿Es fácil optimizar estructuras de hormigón?

Es más, ¿es posible que un ordenador sea capaz de diseñar de forma automática estructuras óptimas sin darle ninguna pista o información previa? Estoy convencido que a la vuelta de un par de años, todos los programas comerciales tendrán paquetes de optimización estructural que permitirán reducciones de coste en torno al 5-15% respecto a los programas actuales. Ya os adelanto que esta nueva tecnología va a traer consigo nuevas patologías en las estructuras de hormigón, que con la optimización se parecen más a las estructuras metálicas. Con el tiempo habrá que introducir capítulos o restricciones en las futuras versiones de la EHE o de los Eurocódigos. En este post vamos a continuar comentando aspectos relacionados con la modelización matemática, la optimización combinatoria, las metaheurísticas y los algoritmos.

Toda esta aventura la empezamos en el año 2002, con el primer curso de doctorado sobre optimización heurística en la ingeniería civil, que luego hemos ido ampliando y mejorando en el actual Máster Oficial en Ingeniería del Hormigón. Ya tenemos varias tesis doctorales y artículos científicos al respecto para aquellos de vosotros curiosos o interesados en el tema. Para aquellos que queráis ver algunas aplicaciones concretas, os recomiendo el siguiente capítulo de libro que escribimos sobre la optimización de distintas estructuras con un algoritmo tan simple como la cristalización simulada. Para aquellos otros que tengáis más curiosidad, os dejo algunas publicaciones de nuestro grupo de investigación en el apartado de referencias.

Os paso, para abrir boca, una forma sencilla de optimizar a través de este Polimedia. Espero que os guste.

Referencias:

  • MOLINA-MORENO, F.; MARTÍ, J.V.; YEPES, V. (2017). Carbon embodied optimization for buttressed earth-retaining walls: implications for low-carbon conceptual designs. Journal of Cleaner Production, 164:872-884. https://authors.elsevier.com/a/1VLOP3QCo9NDzg 
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M.; YANG, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391. DOI:10.1016/j.engstruct.2017.05.013 OPEN ACCESS
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Structural and Multidisciplinary Optimization, 56(1):139-150. doi: 10.1007/s00158-017-1653-0
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; GONZÁLEZ-VIDOSA, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4):738-749. DOI: 10.1016/j.acme.2017.02.006
  • MOLINA-MORENO, F.; GARCÍA-SEGURA; MARTÍ, J.V.; YEPES, V. (2017). Optimization of Buttressed Earth-Retaining Walls using Hybrid Harmony Search Algorithms. Engineering Structures, 134:205-216. DOI: 10.1016/j.engstruct.2016.12.042
  • GARCÍA-SEGURA, T.; YEPES, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125:325-336. DOI: 10.1016/j.engstruct.2016.07.012.
  • MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120:231-240. DOI: 10.1016/j.jclepro.2016.02.024
  • GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J.; PÉREZ-LÓPEZ, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92:112-122. DOI: 10.1016/j.engstruct.2015.03.015 (link)
  • LUZ, A.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; MARTÍ, J.V. (2015). Diseño de estribos abiertos en puentes de carretera obtenidos mediante optimización híbrida de escalada estocástica. Informes de la Construcción, 67(540), e114. DOI: 10.3989/ic.14.089
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2015). Memetic algorithm approach to designing of precast-prestressed concrete road bridges with steel fiber-reinforcement. Journal of Structural Engineering ASCE, 141(2): 04014114. DOI:10.1061/(ASCE)ST.1943-541X.0001058 (descargar versión autor)
  • YEPES, V.; GARCÍA-SEGURA, T.; MORENO-JIMÉNEZ, J.M. (2015). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4):1024-1036. doi:10.1016/j.acme.2015.05.001
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49:123-134. DOI: 10.1016/j.autcon.2014.10.013 (link)
  • GARCÍA-SEGURA, T.; YEPES, V.; MARTÍ, J.V.; ALCALÁ, J. (2014). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures,  11(7):1190 – 1205. ISSN: 1679-7817. (link)
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; LUZ, A. (2013). Diseño automático de tableros óptimos de puentes de carretera de vigas artesa prefabricadas mediante algoritmos meméticos híbridos. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, DOI: http://dx.doi.org/10.1016/j.rimni.2013.04.010.
  • TORRES-MACHÍ, C.; YEPES, V.; ALCALA, J.; PELLICER, E. (2013). Optimization of high-performance concrete structures by variable neighborhood search. International Journal of Civil Engineering, 11(2):90-99 . ISSN: 1735-0522. (link)
  • MARTÍNEZ-MARTÍN, F.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2013). A parametric study of optimum tall piers for railway bridge viaducts. Structural Engineering and Mechanics45(6): 723-740. (link)
  • MARTINEZ-MARTIN, F.J.; GONZALEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2012). Multi-objective optimization design of bridge piers with hybrid heuristic algorithms. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering, 13(6):420-432. DOI: 10.1631/jzus.A1100304. ISSN 1673-565X (Print); ISSN 1862-1775 (Online).  (link)
  • MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J. (2013). Design of prestressed concrete precast road bridges with hybrid simulated annealing. Engineering Structures48:342-352. DOI:10.1016/j.engstruct.2012.09.014. ISSN: 0141-0296.(link)
  • YEPES, V.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J.; VILLALBA, P. (2012). CO2-Optimization Design of Reinforced Concrete Retaining Walls based on a VNS-Threshold Acceptance Strategy. Journal of Computing in Civil Engineering ASCE, 26 (3):378-386. DOI: 10.1061/(ASCE)CP.1943-5487.0000140. ISNN: 0887-3801. (link)
  • CARBONELL, A.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2011). Búsqueda exhaustiva por entornos aplicada al diseño económico de bóvedas de hormigón armado. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 27(3):227-235.  (link) [Global best local search applied to the economic design of reinforced concrete vauls]
  • CARBONELL, A.; GONZÁLEZ-VIDOSA, F.; YEPES, V. (2011). Heuristic optimization of reinforced concrete road vault underpasses. Advances in Engineering Software, 42(4): 151-159. ISSN: 0965-9978.  (link)
  • MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2011). Estudio paramétrico de pilas para viaductos de carretera. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 27(3):236-250. (link)
  • MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; ALCALÁ, J. (2011). Design of tall bridge piers by ant colony optimization. Engineering Structures, 33:2320-2329.
  • PEREA, C.; YEPES, V.; ALCALÁ, J.; HOSPITALER, A.; GONZÁLEZ-VIDOSA, F. (2010). A parametric study of optimum road frame bridges by threshold acceptance. Indian Journal of Engineering & Materials Sciences, 17(6):427-437. ISSN: 0971-4588.  (link)
  • PAYÁ-ZAFORTEZA, I.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2010). On the Weibull cost estimation of building frames designed by simulated annealing. Meccanica, 45(5): 693-704. DOI 10.1007/s11012-010-9285-0. ISSN: 0025-6455.  (link)
  • MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2010). Design of prestressed concrete precast pedestrian bridges by heuristic optimization. Advances in Engineering Software, 41(7-8): 916-922. http://dx.doi.org/10.1016/j.advengsoft.2010.05.003
  • MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2010). Heuristic Optimization of RC Bridge Piers with Rectangular Hollow Sections. Computers & Structures, 88: 375-386. ISSN: 0045-7949.  (link)
  • PAYÁ, I.; YEPES, V.; HOSPITALER, A.; GONZÁLEZ-VIDOSA, F. (2009). CO2-Efficient Design of Reinforced Concrete Building Frames. Engineering Structures, 31: 1501-1508. ISSN: 0141-0296. (link)
  • YEPES, V.; ALCALÁ, J.; PEREA, C.; GONZÁLEZ-VIDOSA, F. (2008). A Parametric Study of Optimum Earth Retaining Walls by Simulated Annealing. Engineering Structures, 30(3): 821-830. ISSN: 0141-0296.  (link)
  • PEREA, C.; ALCALÁ, J.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2008). Design of Reinforced Concrete Bridge Frames by Heuristic Optimization. Advances in Engineering Software, 39(8): 676-688. ISSN: 0965-9978.  (link)
  • PAYÁ, I.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2008). Multiobjective Optimization of Reinforced Concrete Building Frames by Simulated Annealing. Computer-Aided Civil and Infrastructure Engineering, 23(8): 596-610. ISSN: 1093-9687.  (link)
  • PAYÁ, I.; YEPES, V.; CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F. (2006). Optimización heurística de pórticos de edificación de hormigón armado. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 22(3): 241-259. [Heuristic optimization of reinforced concrete building frames]. (link)

Valoración de las herramientas y metodologías activas en el Grado en Ingeniería de Obras Públicas

Resumen: El cambio en la orientación del sistema de educación superior ha dado lugar a un modelo de enseñanza centrada en el aprendizaje del estudiante y la adquisición de habilidades. La comunicación presenta la valoración por parte de los alumnos de los recursos utilizados en la docencia de la “clase inversa”. Se ha diseñado un cuestionario para evaluar la metodología activa y herramientas utilizadas. De los resultados se destaca que la herramienta mejor valorada es Lessons, seguida de Recursos de Poliformat y diapositivas en pdf. Los vídeos de polimedia y los vídeos de procedimientos constructivos presentan poca desviación, indicando que todos los alumnos están de acuerdo con la utilidad de dichas tecnologías. También es importante destacar que no hay ningún alumno en desacuerdo con la metodología activa. En concreto, la corrección de entregables es la actividad más valorada en el proceso del aprendizaje.

Palabras clave: recursos tecnológicos, herramientas, metodología activa, clase inversa, cuestionario

Referencia:

GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2017). Valoración de las herramientas y metodologías activas en el Grado en Ingeniería de Obras Públicas. Congreso Nacional de Innovación Educativa y de Docencia en Red IN-RED 2017, Valencia, 13 y 14 de julio de 2017, 9 pp.

Descargar (PDF, 502KB)

Punto de funcionamiento de una bomba centrífuga. Problema resuelto.

Bomba centrífuga. https://es.wikipedia.org/

 

El punto de funcionamiento o de operación de una bomba centrífuga se define como el flujo volumétrico de fluido que esta enviara cuando se instale en un sistema dado. El régimen de trabajo se determina por el punto de intersección de las características de la bomba y de la tubería. Por eso, al ser la característica de la conducción (tubería) invariable, salvo que se actúe sobre la válvula de impulsión, el cambio del número de revoluciones de la bomba provocará el desplazamiento del punto de trabajo a lo largo de la característica de la tubería. Si esta corta a una parábola de regímenes semejantes, al cambiar el número de revoluciones y pasar a otra curva característica, la semejanza se conservará, pudiéndose considerar en este caso que el cambio del número de revoluciones de la bomba no alterará la semejanza de los regímenes de trabajo.

Para aclarar un poco más este tema, os dejo un problema resuelto y un vídeo con los conceptos básicos resueltos. Espero que os sea de interés.

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Descargar (PDF, 215KB)