Preguntas sobre la elaboración y puesta en obra del hormigón

El artículo 71 de la Instrucción de Hormigón Estructural EHE-08 trata sobre la elaboración y puesta en obra del hormigón. Leyendo su articulado tienes las respuestas a estas preguntas típicas que me hacen los alumnos:

  • ¿Qué diferencia existe entre la homogeneidad y la uniformidad del hormigón? ¿Cómo se evalúa normalmente la uniformidad?

La homogeneidad del hormigón consiste en el mantenimiento de características similares dentro de una misma amasada. En cambio la uniformidad consiste en el mantenimiento de características similares entre distintas amasadas.

La uniformidad se analiza evaluando, mediante el coeficiente de variación, la dispersión que existe entre características análogas de distintas amasadas. Para ello, normalmente, se utilizan los valores de la resistencia a compresión a 28 días.

  • ¿Qué se entiende por “hormigón preparado”?

Se entiende, en el marco de la Instrucción de Hormigón Estructural EHE-08, que el hormigón preparado es aquel que se fabrica en una central que no pertenece a las instalaciones propias de la obra y que está inscrita en el Registro Industrial según el Título 4º de la Ley 21/1992, de 16 de julio, de Industria y el Real Decreto 697/1995, de 28 de abril, estando dicha inscripción a disposición del peticionario y de las Administraciones competentes.

  • ¿En qué consiste la segregación de los áridos?

La segregación de los áridos consiste en la separación de sus partículas de forma que no presenten una distribución uniforme. De forma análoga, se entiende que la segregación del hormigón es la separación de sus componentes una vez amasado provocando que la mezcla de hormigón fresco presente una distribución de sus partículas no uniforme.

Imagen de planta de hormigón
  • ¿Qué se debe hacer cuando cambiamos de aditivo y utilizamos el mismo dosificador?

En el caso de que no tengamos un dosificador diferente para cada aditivo, antes de hacer el cambio de aditivo, deberá limpiarse el sistema dosificador, excepto en el caso en que los diferentes aditivos sean compatibles entre sí, de acuerdo con la documentación aportada por el Suministrador del aditivo.

  • ¿Cómo se comprueba la homogeneidad del hormigón?

La homogeneidad se analiza evaluando la dispersión que existe entre características de diversas muestras tomadas de la misma amasada, lo que permite comprobar la idoneidad del proceso de dosificación, amasado y transporte. Deben comprobarse siempre el índice de consistencia y la resistencia a compresión a 7 días, y, al menos, dos de las siguientes: densidad del hormigón, contenido de aire, contenido de árido grueso y módulo granulométrico del árido.

  • ¿Qué datos técnicos deben estar visibles en una placa referidos a una amasadora móvil?

Volumen total del tambor, su capacidad máxima en términos de volumen de hormigón amasado, y las velocidades máxima y mínima de rotación.

  • ¿Por qué se recomienda que se almacenen los áridos bajo techado?

Se recomienda almacenar los áridos bajo techado, en recintos convenientemente protegidos y aislados, con el fin de evitar el empleo de áridos excesivamente calientes durante el verano o saturados de humedad en invierno o en época de lluvia.

  • ¿Cuál es la cantidad mínima de cemento que se puede utilizar en la fabricación dedicada a hormigón armado? ¿En qué caso se puede utilizar dicho mínimo?

El contenido mínimo de cemento para el hormigón armado es de 250 kg/m3, siempre y cuando la clase de exposición sea I y no se supere una relación agua/cemento de 0,65. Para otras clases de exposición este mínimo puede subir hasta 350 kg/m3, en el caso de clases de exposición IIIc, Qb y Qc.

  • ¿Cuál es la cantidad máxima de cemento que podemos utilizar en la fabricación de 1 m3 de hormigón? ¿Por qué se limita?

La cantidad máxima de cemento por metro cúbico de hormigón será de 500 kg. En casos excepcionales, previa justificación experimental y autorización expresa de la Dirección de Obra, se podrá superar dicho límite. Aún en los casos excepcionales, no es aconsejable una dosificación de cemento superior a los 500 kg/m3. El peligro de emplear mezclas muy ricas en cemento, reside en los fuertes valores que, en tales casos, pueden alcanzar la retracción y el calor de fraguado en las primeras edades.

  • ¿Cómo influye la cantidad de cemento a utilizar en función del tamaño de los áridos?

Con carácter general, la cantidad mínima de cemento por metro cúbico de hormigón depende, en particular, del tamaño de los áridos, debiendo ser más elevada a medida que disminuye dicho tamaño, y más reducida  a medida que aumenta el tamaño de éstos.

  • ¿Cuántas fracciones granulométricas de áridos, al menos, se deben utilizar en la fabricación del hormigón?

El árido deberá componerse de al menos dos fracciones granulométricas, para tamaños máximos iguales o inferiores a 20 mm, y de tres fracciones granulométricas para tamaños máximos mayores.

  • ¿Cuáles son las fuentes de donde procede el agua de amasado y que deben tenerse en cuenta para calcular el total de agua empleado en una amasada?

El agua de amasado está constituida, fundamentalmente, por la directamente añadida a la amasada, la procedente de la humedad de los áridos y, en su caso, la aportada por aditivos líquidos.

  • ¿Qué diferencia existe en el amasado de un hormigón de alta resistencia respecto a uno convencional?

Se recomienda el empleo de amasadoras fijas en la central de hormigón, así como incrementar, como mínimo, en un 50% el tiempo de amasado respecto al empleado en hormigones convencionales con los medios usuales.

  • ¿Cuánto tiempo puede pasar entre la adición de agua de amasado al cemento y a los áridos y la colocación del hormigón? ¿Qué factores pueden hacer cambiar esta prescripción?

El tiempo transcurrido entre la adición de agua del amasado al cemento y a los áridos y la colocación del hormigón, no debe ser mayor de hora y media, salvo que se utilicen aditivos retardadores de fraguado. Dicho tiempo límite podrá disminuirse, en su caso, cuando el Fabricante del hormigón considere necesario establecer en su hoja de suministro un plazo inferior para su puesta en obra. En tiempo caluroso, o bajo condiciones que contribuyan a un rápido fraguado del hormigón, el tiempo límite deberá ser inferior, a menos que se adopten medidas especiales que, sin perjudicar la calidad del hormigón, aumenten el tiempo de fraguado.

  • ¿Cuánto podemos llenar el tambor de una amasadora móvil durante el transporte?

Cuando el hormigón se amasa completamente en central y se transporta en amasadoras móviles, el volumen de hormigón transportado no deberá exceder del 80% del volumen total del tambor. Cuando el hormigón se amasa o se termina de amasar, en amasadora móvil, el volumen no excederá de los dos tercios del volumen total del tambor.

  • ¿Se puede adicionar agua u otras sustancias una vez se ha fabricado la masa fresca? ¿Qué podemos hacer si el asentamiento es menor que el especificado?

Queda expresamente prohibida la adición al hormigón de cualquiera cantidad de agua u otras sustancias que puedan alterar la composición original de la masa fresca. No obstante, si el asentamiento es menor que el especificado, el suministrador podrá adicionar aditivo plastificante o superplastificante para aumentarlo hasta alcanzar dicha consistencia, sin que ésta rebase las tolerancias indicadas por la Instrucción EHE-08 y siempre que se haga conforme a un procedimiento escrito y específico que previamente haya sido aprobado por el Fabricante del hormigón. Para ello, el elemento de transporte o, en su caso, la central de obra, deberá estar equipado con el correspondiente sistema dosificador de aditivo y reamasar el hormigón hasta dispersar totalmente el aditivo añadido. El tiempo de reamasado será de al menos 1 min/m3, sin ser en ningún caso inferior a 5 minutos.

  • ¿Por qué no es recomendable el vertido del hormigón en grandes montones y su posterior distribución por medio de vibradores?

El vertido en grandes montones y su posterior distribución por medio de vibradores no es, en absoluto, recomendable, ya que produce una notable segregación en la masa del hormigón.

  • ¿Qué ocurre si se vierte el hormigón desde una altura superior a 2 m?

Si se realiza un vertido del hormigón en caída libre, con una altura superior a 2 m, se produce inevitablemente, la disgregación de la masa, y puede incluso dañar la superficie de los encofrados o desplazar éstos y las armaduras o conductos de pretensado, debiéndose adoptar las medidas oportunas para evitarlo.

  • ¿Cuándo se puede decir que un hormigón está bien compactado?

El proceso de compactación deberá prolongarse hasta que refluya la pasta a la superficie y deje de salir aire. De este modo se eliminan los huecos y se obtiene un perfecto cerrado de la masa, sin que llegue a producirse segregación.

  • ¿Cuál es el espesor de la tongada de hormigón a compactar, en situaciones normales?

El espesor de las capas o tangadas en que se extienda el hormigón estará en función del método y eficacia del procedimiento de compactación empleado. Como regla general, este espesor estará comprendido entre 30 y 60 cm.

  • ¿Qué puede ocurrir si hemos realizado una compactación del hormigón excesiva?

Una excesiva compactación del hormigón en obra puede conducir a defectos como la formación de una capa superficial débil que no se reflejen suficientemente en el valor de la resistencia a compresión.

  • ¿Qué tipo de compactación se utilizará para un hormigón de consistencia fluida?

A título informativo, la EHE-08 recomienda un picado con barra cuando la consistencia es fluida.

  • ¿Cuál es el límite inferior de temperatura de la masa de hormigón en el momento de verterla en el molde o encofrado?

La EHE-08 indica que la temperatura de la masa de hormigón, en el momento de verterla en el molde o encofrado, no será inferior a 5ºC.

  • ¿Qué efectos tiene el tiempo frío sobre el hormigón en fase de endurecimiento?

La hidratación de la pasta de cemento se retrasa con las bajas temperaturas. Además, la helada puede dañar de manera permanente al hormigón poco endurecido si el agua contenida en los poros se hiela y rompe el material.

  • ¿Bajo qué condiciones se suspenderá el hormigonado en tiempo caluroso?

Si la temperatura ambiente es superior a 40ºC o hay un viento excesivo, salvo que, previa autorización expresa de la Dirección Facultativa, se adopten medidas especiales.

  • Si se está hormigonando una gran masa, ¿qué temperatura como máximo deberá tener la masa de hormigón fresco?

Se debe asegurar que la temperatura en el momento del vertido sea inferior a 15ºC en el caso de grandes masas de hormigón.

  • ¿Dónde se deben disponer las juntas de hormigonado?

Las juntas de hormigonado, que deberán, en general, estar previstas en el proyecto, se situarán en dirección lo más normal posible a la delas tensiones de compresión, y allí donde su efecto sea menos perjudicial, alejándolas, con dicho fin, de las zonas en las que la armadura esté sometida a fuertes tracciones. Se les dará la forma apropiada que asegure una unión lo más íntima posible entre el antiguo y el nuevo hormigón. Cuando haya necesidad de disponer juntas de hormigonado no previstas en el proyecto se dispondrán en los lugares que apruebe la Dirección Facultativa, y preferentemente sobre los puntales de la cimbra.

  • ¿Qué debe hacerse al reanudar el hormigonado sobre una junta de hormigonado previa?

Antes de reanudar el hormigonado, se retirará la capa superficial de mortero, dejando los áridos al descubierto y se limpiará la junta de toda suciedad o árido que haya quedado suelto. En el caso de que el hormigón antiguo esté seco, es necesario humedecer antes de proceder al vertido del hormigón fresco. En cualquier caso, el procedimiento de limpieza utilizado no deberá producir alteraciones apreciables en la adherencia entre la pasta y el árido grueso. Expresamente se prohíbe el empleo de productos corrosivos en la limpieza de juntas.

  • Imagine que existe contacto entre dos hormigones con resistencias características muy distintas, como es el caso de edificios con pilares de hormigón de alta resistencia y formados de hormigón convencional. ¿Qué medidas deberemos adoptar?

En tal caso, se puede adoptar una de las siguientes medidas:

Disponer, en la zona de forjado ocupada por el pilar, hormigón de la resistencia característica de éste. Esta superficie debería extenderse 600 mm más allá de la cara del pilar. Es importante disponer en primer lugar el hormigón de alta resistencia, para prevenir posibles caídas de hormigón convencional en la posición del pilar. Es responsabilidad del proyectista definir en planos las zonas donde el hormigón de alta resistencia y el hormigón convencional van situaos.

Ejecutar todo el forjado con hormigón convencional. En tal caso, el hormigón del pilar en el canto del forjado tiene una resistencia menor que en el resto del pilar pero mayor que la del forjado por estar confinado por éste. Conviene estudiar específicamente la resistencia de esta zona.

  • ¿Cuáles son los principales métodos de curado del hormigón?

Los principales método para el curado del hormigón son los siguientes: protección con láminas de plástico, protección con materiales humedecidos (sacos de arpillera, arena, paja, etc.), riego con agua, aplicación de productos de curado que formen membranas de protección.

PROBLEMA: Determinar la duración mínima, en días, del curado de un hormigón con una clase de exposición normal, con una temperatura media durante el curado de 10ºC, no expuesta ni al sol ni al viento, con una humedad relativa del 85%, con una clase del cemento 42,5 R CEM II y una relación a/c = 0,55.

Para una estimación de la duración mínima de curado D, en días, se puede aplicar la siguiente expresión de la EHE-08:

D=K·L·D0 +D1

K es el coeficiente de ponderación ambiental. Según la Tabla 71.6.d, K=1,00.

L es el coeficiente de ponderación térmica. Según la Tabla 71.6.e, L=1,30.

D0 es el parámetro básico de curado. Según la Tabla 71.6.a y la Tabla 71.6.b, D0=3.

D1 es un parámetro función del tipo de cemento. Según la Tabla 71.6.c, D1=1.

 

Con los datos anteriores, D=1,00·1,30·3+1 = 4,9. Adoptamos 5 días como duración mínima de curado.

 

Vídeos promocionales de los estudios de ingeniería civil

¿Hay que vender los estudios de ingeniería civil? En este post voy a dejar ejemplos en forma de vídeos de cómo distintas universidades de distintos países intentar atraer futuros alumnos hacia este tipo de estudios. En España, esta promoción no ha sido necesaria debido al prestigio que han tenido hasta ahora de los estudios del ingeniero de caminos, canales y puertos o del ingeniero técnico de obras públicas. Hoy todo ha cambiado. Múltiples universidades, el Plan Bolonia que “ordena” los planes de estudios en grados y postgrados, la crisis en el sector de la construcción que tiene visos de ser estructural y no coyuntural, etc. Lo que está claro es que hoy hay que formar a los alumnos que entran para una profesión que ejercerán, en el mejor de los casos, a los 4-6 años de haber comenzado. El reto de la enseñanza es que nuestros futuros ingenieros adquieran las competencias que necesitarán dentro de una década. Un buen reto.

Algunos han optado por la solución fácil: campañas promocionales. Primero hay que explicar qué es un ingeniero civil y luego atraerlo hacia una universidad. Este tipo de promociones es habitual en otros países, pero aquí va a ser cada vez más frecuente. Ello nos lleva a varias reflexiones: ¿qué se vende?, ¿se está engañando al consumidor? Lo que los economistas definen como “asimetrías informativas” pueden llevar a una profunda decepción en nuestros alumnos-consumidores. Por tanto, se hace necesario que existan indicadores fiables y transparentes de todo este proceso de venta.

Por otra parte, en un mercado transparente, la competencia es saludable. Ello debería hacer que las mejores universidades acapararan los mejores alumnos. Para que ello fuera así, el mercado laboral debería, sin ambages, discriminar positivamente a aquellos egresados con una formación de gran calidad, adaptada al mercado.

Os dejo a continuación algunos de estos vídeos, alguno hasta divertido. Espero que os gusten y nos hagan reflexionar a todos.

 

 

La aplicación de la toma de decisiones multicriterio a la gestión de presas

Presa de Aldeadávila. Wikipedia

La gestión del mantenimiento de las presas existentes constituye un proceso complejo que requiere la aplicación de la toma de decisiones atendiendo a  múltiples criterios para evitar las severas consecuencias sociales, económicas y medioambientales que pueden acarrear. A continuación os dejo un artículo científico que nos acaban de publicar al respecto. Realiza una revisión profunda del estado del arte en la materia. Espero que os sea de interés.

El artículo completo lo podéis encontrar aquí:  http://www.sciencedirect.com/science/article/pii/S0959652617301051

 

Abstract:

Decisions for aging-dam management requires a transparent process to prevent the dam failure, thus to avoid severe consequences in socio-economic and environmental terms. Multiple criteria analysis arose to model complex problems like this. This paper reviews specific problems, applications and Multi-Criteria Decision Making techniques for dam management. Multi-Attribute Decision Making techniques had a major presence under the single approach, specially the Analytic Hierarchy Process, and its combination with Technique for Order of Preference by Similarity to Ideal Solution was prominent under the hybrid approach; while a high variety of complementary techniques was identified. A growing hybridization and fuzzification are the two most relevant trends observed. The integration of stakeholders within the decision making process and the inclusion of trade-offs and interactions between components within the evaluation model must receive a deeper exploration. Despite the progressive consolidation of Multi-Criteria Decision Making in dam management, further research is required to differentiate between rational and intuitive decision processes. Additionally, the need to address benefits, opportunities, costs and risks related to repair, upgrading or removal measures in aging dams suggests the Analytic Network Process, not yet explored under this approach, as an interesting path worth investigating.

Keywords:

  • Ageing dams;
  • Dam management;
  • Decision making;
  • Multiple criteria analysis;
  • Risk

Referencia:

ZAMARRÓN-MIEZA, I.; YEPES, V.; MORENO-JIMÉNEZ, J.M. (2017). A systematic review of application of multi-criteria decision analysis for aging-dam management. Journal of Cleaner Production, 147:217-230. http://www.sciencedirect.com/science/article/pii/S0959652617301051

Descargar (PDF, 851KB)

Instalaciones de dosificación para la fabricación de hormigón

http://www.horus.es/ci/portfolio-view/control-de-plantas-de-hormigon/

La dosificación es el conjunto de operaciones que permiten cargar los constituyentes del hormigón en la mezcladora siguiendo un orden preestablecido y garantizando que se respeten las proporciones fijadas por las fórmulas correspondientes a cada mezcla.

El artículo 71.2.3 de la Instrucción de Hormigón Estructural, EHE-08, proporciona las características que deben de cumplir las instalaciones de dosificación.

En la realidad, la cantidad de materiales que se utilizan realmente en una amasada varían con respecto a los valores nominales de las fórmulas. Las normas UNE-EN206-1:2008 y la EHE-08 definen las tolerancias que se deben respetar en la dosificación. En la Tabla 1 se recogen dichas tolerancias.

Los materiales constituyentes del hormigón se encuentran en estado sólido (cemento, áridos y adiciones) o líquido (agua y aditivos). Cada constituyente posee su línea de dosificación propia. La Tabla 2 resume las instalaciones de dosificación empleadas.

Las instalaciones de dosificación deben disponer silos con compartimentos adecuados y separados para cada una de las fracciones granulométricas necesarias de árido. Se garantizará en cada compartimento que la descarga sea eficaz, sin atascos y con una segregación mínima.

Los constituyentes sólidos como el cemento, los áridos y las adiciones se dosifican por peso; el agua se puede dosificar por peso o por volumen, al igual que los aditivos líquidos. Hoy día, el agua se dosifica normalmente por peso, debido a la mayor rapidez y precisión. Para mayor precisión, algunas plantas disponen de medidores de humedad y corrección del agua de amasado al incluir la que aportan los áridos.

Los aditivos líquidos se continúan dosificando por volumen, aunque muchas centrales vienen preparadas para dosificarlos también en peso. En los aditivos, como las cantidades son bajas, las básculas deben ser más pequeñas y por consiguiente son más sensibles a las vibraciones existentes en las centrales. Se debe de poder medir con claridad la cantidad de aditivo correspondiente a 50 kg de cemento. Se recomienda, para el caso de los aditivos, que se utilice un dosificador diferente para cada uno de ellos. En caso contrario, debería realizarse una limpieza del sistema dosificador, salvo que los diferentes aditivos fueran compatibles entre sí.

En el caso de una dosificación ponderal por peso, se emplean básculas para pesar los materiales, garantizando que en ningún caso se dosifiquen cantidades por debajo del 10% de la capacidad total de la escala de la báscula empleada.

Existen diversos tipos de básculas, aunque todas se componen de un receptáculo, un dispositivo de medida y un sistema de evacuación. Es muy importante que se encuentren perfectamente limpios todos los puntos de apoyo, las articulaciones y partes análogas de las básculas.

 

Imagen de planta de hormigón

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València.

Jerga, falacias y encuestas electorales: Las hipótesis en la investigación científica

Muchas veces la jerga que utilizan determinados colectivos o profesiones confunden al común de los mortales. La creación de un lenguaje jergal propio es habitual en todo grupo humano muy cerrado, con contacto estrecho y prolongado entre sus integrantes, y con una separación muy nítidamente marcada entre “dentro” y “fuera”. Un ejemplo es la jerga médica, donde la precisión necesaria para describir una enfermedad requiere de una traducción simultánea al enfermo. Otras veces existen consultores que, escudándose en neologismos, tecnicismos o anglicismos, venden mejor sus ideas o productos. No menos confuso es el lenguaje estadístico, sobre todo cuando se trata de encuestas electorales. Este lenguaje confuso, y en numerosas ocasiones deliberadamente difícil de entender, oculta ideas o conceptos sencillos. Este es el caso de las hipótesis en la investigación científica y las pruebas de hipótesis empleadas en la estadística.

Todos esperamos de un jurado que declare culpable o inocente a un acusado. Sin embargo, esto no es tan sencillo. El acusado es inocente hasta que no se demuestre lo contrario, pero el dictamen final solo puede decir que no existen pruebas suficientes para declarar que el acusado sea culpable, lo cual no es equivalente a la inocencia. Además, es fácil intuir que el jurado no es infalible. Puede equivocarse culpando a un inocente y también absolviendo a un culpable. Lo mismo ocurre con un test de embarazo o de alcoholemia, puede dar un falso positivo o un falso negativo. ¿Qué significa que una encuesta afirma que el partido “A” va a ganar las elecciones? De esto trata una prueba de hipótesis, pero vayamos por partes.

B-DERsTIQAAgORN

Una hipótesis puede definirse como una explicación tentativa de un fenómeno investigado que se enuncia como una proposición o afirmación. A veces las hipótesis no son verdaderas, e incluso pueden no llegar a comprobarse. Pueden ser más o menos generales o precisas, y abarcar dos o más variables, pero lo que es común a toda hipótesis, es que necesita una comprobación empírica, es decir, se debe verificar con la realidad. Pero ahora viene el problema: ¿en cuántos casos necesitamos para verificar una hipótesis? Siempre quedará la duda de que el caso siguiente negará lo planteado en la hipótesis. Por tanto, nos encontramos ante un método inductivo donde el reto será generalizar una proposición partiendo de un conjunto de datos, que denominaremos muestra.

Este tipo de hipótesis son, en realidad, hipótesis de investigación o de trabajo. Pueden ser varias, y suelen denominarse como H1, H2, …, Hi. Se trata de proposiciones tentativas que pueden clasificarse en varios tipos:

a) Descriptivas de un valor o dato pronosticado

b) Correlacionales

c) De diferencia de grupos

d) Causales.

En estadística, se llaman hipótesis nulas aquellas que niegan o refutan la relación entre variables, denominándose como H0. Estas hipótesis sirven para refutar o negar lo que afirma la hipótesis de investigación. Por ejemplo, si lo que quiero comprobar es la relación existente entre la relación agua/cemento con la resistencia a compresión a 28 días de una probeta de hormigón, entonces la hipótesis nula es que no existe una relación entre ambas variables. La idea es demostrar mediante una muestra que no existen pruebas suficientemente significativas para rechazar la hipótesis nula que indica que no existe relación entre dichas variables. Sin embargo, en un lenguaje menos formal, lo que realmente queremos es verificar que existe dicha relación. Sin embargo, también existen hipótesis alternativas, que son posibilidades diferentes de las hipótesis de investigación y nula. Así, si nuestra hipótesis de investigación establece que “esta silla es roja”, la hipótesis nula es “esta silla no es roja”, pero las hipótesis alternativas pueden ser: “esta silla es verde”, “esta silla es azul”, etc. Realmente, la hipótesis alternativas no son más que otras hipótesis de investigación. Curiosamente, en investigación no hay una regla fija para la formulación de hipótesis. Hay veces que solo se incluye la hipótesis de investigación, en otras ocasiones se incluye la hipótesis nula y, en otras, también las alternativas.

Pero, ¿se puede afirmar que un partido va a ganar las elecciones según una encuesta?, o dicho de otro modo, ¿se puede probar que una hipótesis es, con toda rotundidad, verdadera o falsa? Desgraciadamente, no se puede realizar dicha afirmación. Lo único que se puede hacer es argumentar, a la vista de unos datos empíricos obtenidos de una investigación particular, que tenemos evidencias para apoyar a favor o en contra una hipótesis. Cuantas más investigaciones, más credibilidad tendrá, y ello solo será válido para el contexto en que se comprobó. De ahí la importancia de elegir una muestra que sea suficientemente representativa de la población total. Por tanto, solo podemos argumentar la validez de las hipótesis desde el punto de vista estadístico. Las pruebas de hipótesis sirven para este cometido.

A continuación os dejo una figura donde se describe, de forma muy resumida, lo que es una prueba de hipótesis. Me gustaría que os fijaseis en que en toda prueba de hipótesis existen dos tipos de errores, el falso positivo (mandar a un inocente a la cárcel) y el falso negativo (exculpar a un culpable). Estos errores deberían ser lo más bajos posibles, pero a veces no es sencillo. Para que ambos errores bajen de forma simultánea, no hay más remedio que aumentar el tamaño de la muestra. Por este motivo, para hacer un examen lo más justo posible, este debería aprobar a los que han estudiado y suspender a los que no. Lo mejor es que el número de preguntas sea lo más alto posible.

Por tanto, ojo cuando el titular de un periódico nos ofrezca una previsión electoral. Hay que mirar bien cómo se ha hecho la encuesta y, lo más importante, saber interpretar los resultados desde el punto de vista estadístico.

Test de hipótesis

Referencias:

Hernández, R.; Fernández, C.; Baptista, P. (2014). Metodología de la investigación. Sexta edición, McGraw-Hill Education, México.

Empuje del hormigón fresco sobre un encofrado

By Farina Destil (Farinacasseforme) [Public domain], via Wikimedia Commons

El peso y la presión del hormigón fresco son los factores que condicionan el dimensionamiento de los encofrados, por encima de los efectos del peso propio, el viento, la nieve y las sobre carga de uso, entre otros. No obstante, el establecimiento de las solicitaciones del hormigón antes de su endurecimiento requiere un apartado para entender los factores básicos que permiten cuantificar, aunque sea de forma aproximada, estas acciones.

Al igual que ocurre con los áridos sin cohesión (arena, grava, etc.), al verterse el hormigón fresco sobre un plano vertical, éste adoptará una forma de cono de revolución con un ángulo de talud natural o ángulo de rozamiento interno. Si se trunca dicho cono con un encofrado, las paredes se ven sometidas a lo que se llamará presión granulostática.

Si se anula dicho ángulo de rozamiento interno mediante el proceso del vibrado del hormigón, éste se comporta paulatinamente como un fluido imperfecto, ejerciendo una presión distinta que se denominará presión hidrostática. Entre una capa ya vibrada, que ha recuperado su ángulo de rozamiento interno, y que ejerce una presión sobre las paredes de tipo granulostática, y la siguiente capa que está en proceso de vibración, -y por tanto con presión hidrostática- debe existir una zona de transición para que se mantenga la continuidad de las leyes de presiones.

Os dejo a continuación unos pequeños apuntes que permiten aclarar conceptos y proporcionan herramientas para el cálculo, utilizando distintos procedimientos, de la presión del hormigón fresco. Espero que os sea útil.

Descargar (PDF, 259KB)

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Seguridad en la ejecución de muros pantalla

http://www.archiexpo.es

Un muro pantalla o pantalla de hormigón in situ es un tipo de cimentación profunda, o estructura de contención flexible, empleado habitualmente en ingeniería civil. Funciona como un muro de contención que se construye antes de efectuar el vaciado de tierras y que transmite los esfuerzos al terreno. En algunos posts anteriores ya hemos descrito este elemento constructivo.

En este artículo nos vamos a centrar en los aspectos de seguridad. Para ello os dejamos un vídeo descriptivo de la ejecución de muros pantalla en seguridad realizado por el Comité de Seguridad de AETESS para la Guía técnica audiovisual para la promoción de la Seguridad Laboral en el sector de las Cimentaciones Especiales (www.aetess.com), así como un enlace a la guía técnica de seguridad AETESS de muros pantalla (link). Espero que os sea el material de utilidad.

Referencia:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Turbina Francis

turbin4
Figura 1. Esquema turbina Francis

La turbina Francis, desarrollada por James B. Francis, es una turbomáquina motora a reacción y de flujo mixto. Son turbinas hidráulicas que se pueden diseñar para un amplio rango de saltos y caudales, capaces de operar en desniveles que van de los dos metros hasta varios cientos de metros. Esto, junto con su alta eficiencia, ha hecho que este tipo de turbina sea el más usado en el mundo, principalmente para la producción de energía eléctrica en centrales hidroeléctricas.  Son muy costosas de diseñar, fabricar e instalar, pero pueden funcionar durante décadas.

Estas turbinas presentan un diseño hidrodinámico que garantiza un alto rendimiento debido a las bajas pérdidas hidráulicas. Son robustas, con bajo costo de mantenimiento. Sin embargo, no se recomienda su instalación con alturas de agua mayores de 800 m ni cuando existen grandes variaciones de caudal. Asimismo, es muy importante controlar la cavitación.

Figura 2. Espiral de entrada de una turbina Francis, Presa Grand Coulee.

Las partes de una turbina Francis son las siguientes:

  • Cámara espiral: distribuye uniformemente el fluido en la entrada del rodete. La forma en espiral o caracol se debe a que la velocidad media del fluido debe permanecer constante en cada punto de la misma. La sección transversal puede ser rectangular o circular, siendo esta última la más utilizada.
  • Predistribuidor: formado por álabes fijos que tienen una función netamente estructural, para mantener la estructura de la caja espiral y conferirle rigidez transversal, que además poseen una forma hidrodinámica para minimizar las pérdidas hidráulicas.
  • Distribuidor: constituido por álabes móviles directores, cuya misión es dirigir convenientemente el agua hacia los álabes del rodete (fijos) y regular el caudal admitido, modificando de esta forma la potencia de la turbina de manera que se ajuste en lo posible a las variaciones de carga de la red eléctrica, a la vez de direccionar el fluido para mejorar el rendimiento de la máquina. Este recibe el nombre de distribuidor Fink.
  • Rotor o rodete: es el corazón de la turbina, pues aquí tiene lugar el intercambio de energía entre la máquina y el fluido. En forma general, la energía del fluido al momento de pasar por el rodete es una suma de energía cinéticaenergía de presión y energía potencial. La turbina convierte esta energía en energía mecánica que se manifiesta en el giro del rodete. El rodete a su vez transmite esta energía por medio de un eje a un generador eléctrico dónde se realiza la conversión final en energía eléctrica. El rotor puede tener diversas formas dependiendo del número específico de revoluciones para el cual esté diseñada la máquina, que a su vez depende del salto hidráulico y del caudal de diseño.
  • Tubo de aspiración: es la salida de la turbina. Su función es darle continuidad al flujo y recuperar el salto perdido en las instalaciones que están por encima del nivel de agua a la salida. En general se construye en forma de difusor, para generar un efecto de aspiración, el cual recupera parte de la energía que no fuera entregada al rotor en su ausencia.

 

Las turbinas Francis se pueden clasificar en función de la velocidad específica del rotor y de las características del salto:

  • Turbina Francis lenta: para saltos de gran altura, alrededor de 200 m o más
  • Turbina Francis normal: indicada en saltos de altura media, entre 200 y 20 m
  • Turbina Francis rápidas y extrarrápidas: apropiadas para saltos de pequeña altura, inferiores a 20 m

A continuación os paso un par de vídeos explicativos que espero os sean de utilidad:

Os paso un vídeo de una Turbina Francis de la Central Hidroeléctrica de la Presa Susqueda en funcionamiento, produciendo 27,5 MW por caída hidráulica de 162 m.

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 212 pp.

El Plan de Estudios del Máster en Ingeniería del Hormigón

IMG_20121106_094440En este post me gustaría dar cierta información básica del Máster Oficial en Ingeniería del Hormigón que se imparte en el Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil de la Universitat Politècnica de València. Se trata de un máster verificado por ANECA que deriva de la docencia impartida en el Programa de Doctorado de dicho departamento. Es un máster de orientación tanto profesional como investigadora, con una fuerte presencia de alumnos procedentes de otros países, fundamentalmente del ámbito latinoamericano y europeo. Se trata del único máster especializado en hormigón impartido en lengua española a nivel internacional. Sus profesores pertenecen todos ellos al ICITECH, Instituto de Ciencia y Tecnología del Hormigón, instituto de investigación con laboratorios e instalaciones propias para desarrollar las líneas de investigación asociadas.

Los estudios del Máster en Ingeniería del Hormigón proporcionan tanto un amplio conocimiento sobre el hormigón como material de construcción como las habilidades necesarias para el análisis y diseño de estructuras de hormigón. Estos estudios incluyen aspectos que van desde la naturaleza y propiedades químicas de los componentes que lo constituyen y las propiedades tecnológicas y de durabilidad, incluyendo la tecnología de diseño, producción y puesta en obra del hormigón, hasta los relacionados con el diseño, análisis, construcción, mantenimiento y reparación de estructuras. Todos ellos abordados  teniendo en cuenta criterios de calidad, seguridad, sostenibilidad, cooperación al desarrollo y responsabilidad social corporativa.

Los alumnos pueden acceder a este máster desde perfiles diversos, por lo que se oferta  un plan  de estudios con una adecuada y amplia optatividad que les permita construir su currículo específico dentro del mundo del hormigón y afines. Estos estudios están orientados a la formación de  investigadores, docentes y especialistas en algunos de los siguientes campos del hormigón:

1.- Propiedades físico-químicas y tecnológicas de los hormigones y sus materiales constituyentes convencionales y avanzados, su fabricación y sus aplicaciones.

2.- Propiedades físico-químicas y tecnológicas de los materiales para la reparación de construcciones de hormigón estructural y sus aplicaciones.

3.- Procedimientos constructivos, maquinaria y medios auxiliares para la construcción de estructuras de hormigón convencionales y singulares.

4.- Durabilidad de las construcciones de hormigón y medidas de protección.

5.- Aspectos medioambientales y ciclo de vida del hormigón.

6.- Evaluación y diagnóstico de construcciones de hormigón estructural, y los métodos, mecanismos y medios para su reparación y rehabilitación.

7.- Comportamiento mecánico-resistente de las construcciones de hormigón estructural, su modelización numérica y análisis experimental.

8.- Diseño, optimización y proyecto de construcciones de hormigón.

9.- Construcción industrializada y prefabricación

.facebook_2096399093El Plan de Estudios está divido en un módulo básico, de 60 créditos, que se impartirá en el primer año académico, un segundo módulo complementario, de 15 créditos, que se impartirá en el primer cuatrimestre del segundo año académico y el Trabajo de Fin de Máster, de 15 créditos, lo cual suma los 90 créditos del máster. El módulo básico se divide en tres materias de carácter común y obligatorio para todos los alumnos, cada una de ellas de 20 créditos. En dicho módulo básico se encuadrarán las materias de “Materiales constitutivos y durabilidad del hormigón”, “Análisis de estructuras de hormigón” y “Concepción y diseño de estructuras de hormigón”. Este módulo se desarrollará durante el primer curso, tanto en los cuatrimestres primero y segundo. En cuanto al módulo complementario, éste se desarrollará íntegramente en el primer cuatrimestre del segundo año, constando de una materia denominada “Complementos de construcción y tecnología del hormigón”, de 15 créditos.

Con respecto al Trabajo de Fin de Máster, no se exige un período cerrado y obligatorio para su entrega y su defensa, si bien se estima una duración de 3-4 meses. El motivo de esta atemporalidad reside en facilitar al alumno incrementar el período en el que desarrolle esta actividad minimizando el solapamiento con la docencia del primer cuatrimestre del segundo año. Por otra parte, y teniendo en cuenta que una parte importante de los Trabajos de Fin de Máster estarán fundamentados en resultados experimentales de laboratorio, será necesario prever períodos de ensayos y medidas experimentales que deberán ser coordinados con las actividades investigadoras habituales. 

A continuación tenéis un enlace embebido de la página oficial del máster donde podéis ver el Plan de Estudios e información adicional.

 

 

 

Springsol: mejora de terrenos mediante columnas de suelo-cemento

Figura 1. http://www.tectonica-online.com/

Springsol es una técnica especialmente útil en el tratamiento del terreno en trabajos de rehabilitación o refuerzo de estructuras, terrenos bajo losas de naves industriales, terraplenes en infraestructuras de comunicación, etc. Se encuentra a medio camino entre el pilote de mortero, las columnas de suelo-cemento realizadas mediante jet grouting y las columnas de mortero inyectado a presión controlada ejecutadas mediante intrusiones rígidas o compaction grouting.

Se trata de un procedimiento donde se crea una columna de suelo-cemento por medios mecánicos, con unas aspas o alas que giran y amasan el suelo. Utiliza equipos de tamaño reducido realizando perforaciones de pequeños diámetros (de 100 a 150 mm). Esta característica permite minimizar el efecto sobre losas, soleras o zapatas, siendo posible perforar estratos intermedios no perforables con barrenas, dejando los primeros metros sin tratamiento. Además, evita la inyección a altas presiones, susceptibles de afectar a las estructuras. Además, permite ejecutar la columna a partir de una profundidad concreta (con, por ejemplo tapones, de fondo).

Una aplicación especialmente interesante es el tratamiento de taludes ferroviarios atravesando el balasto, evitando su contaminación, con una mínima afección al servicio.

Figura 2. Aspecto de la columna formada. http://www.rodiokronsa.es/
Figura 3. A- Perforación con ligante. B- Mezcla suelo-ligante (rechazo). C- Apertura de alas bajo tubería. D- Perforación, mezcla suelo-ligante. Diámetro de columna 400 mm. http://www.tectonica-online.com/
Figura 4. http://actions-incitatives.ifsttar.fr/

Os paso a continuación una animación donde se puede ver con mayor claridad cómo funciona este tratamiento.

Referencias:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.