Decálogo en la rehabilitación y refuerzo de cimentaciones

Juan José Rosas Alaguero

Por su interés, os recomiendo el decálogo que Juan José Rosas, ingeniero de caminos consultor en geotecnia aplicada, nos ofrece en relación con la rehabilitación y refuerzo de cimentaciones. Este decálogo lo hizo público en un curso sobre reparación y refuerzo de cimentaciones en rehabilitación de edificios, del cual os dejo el vídeo.

DECÁLOGO:

  1. Antes de actuar, se ha de estabilizar.
  2. No confundas la enfermedad con los síntomas.
  3. Un minuto o un euro en fase de diagnóstico (establecer el o los escenarios que explican los hechos así como los riesgos e incertidumbres soportadas) son horas y cientos de euros en fase de proyecto (determinación de protocolos de actuación y dimensionado de elementos) así como días y miles de euros en fase de construcción.
  4. Enfoca tus prospecciones a descartar escenarios no a buscarlos. Contempla como posibles todos los escenarios que no hayas descartado.
  5. Establece protocolos de actuación que analicen y gestionen los riesgos en todas las fases constructivas siendo éstos suficientemente flexibles para adaptarse a cambios de escenarios.
  6. Si no has acertado en el diagnóstico, al menos, que tu actuación no empeore la situación (anclaje pasivo y activo).
  7. Lo que ha funcionado suele tener tendencia a seguir funcionando, por ende, lo que no ha funcionado difícilmente pasará a funcionar.
  8. La conexión de los elementos nuevos y los antiguos es el punto más crítico de la actuación, trátalo como tal.
  9. Todo lo que puedas medir, mídelo. De las pocas cosas que puedes fiarte es de los datos de pruebas de carga y de la auscultación, luego ausculta.
  10. A veces únicamente puedes optar por soluciones paliativas.

Referencias:

ROSAS, J.J. GEOJUANJO: Una visión pragmática y personal de la geotecnia aplicada. http://geojuanjo.blogspot.com.es/

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

¿Qué es un sistema de costes basado en actividades?

 

Metodología en los sistemas ABC
Metodología en los sistemas ABC. Imagen: © V. Yepes

En las empresas constructoras, la forma de asignar los costes en obra a veces oculta o camufla los verdaderos costes en los que se incurre para producir determinada unidad de obra. En este post se da repaso a una técnica bien conocida en el ámbito empresarial, pero que se aplica muy poco en el ámbito de la industria de la construcción.  Se trata del sistema de costes basado en actividades (Catalá y Yepes, 1999).

La utilización del Sistema de Costes basados en Actividades (ABC) “Activity-Based Costing” -introducido a finales de los 80 para mejorar la determinación del coste del producto y servicio prestado por una empresa, se ha considerado como una herramienta de análisis poderosa en los últimos años, pues presenta ventajas frente a otras herramientas como la asignación de costes tradicional (full” y “direct costing). El ABC imputa metódicamente todos los costes indirectos de una empresa a las “actividades” que los hacen necesarios, y luego distribuye los costes de las actividades entre los productos. Esta técnica analiza las tareas como parte de un proceso, permitiendo obtener información valiosa que es capaz de eliminar aquellas que no aportan valor añadido a la empresa constructora, dentro de un objetivo de mejora continua de la organización.

La noción de cadena de valor refuerza la necesidad de hacer un análisis desagregado de costes, en otras palabras, la unidad relevante para el análisis estratégico de costes son las actividades y no los productos o servicios finales. Manejar costes a nivel de unidad de obra supone moverse en un plano demasiado agregado para que puedan alcanzarse conclusiones verdaderamente significativas desde un punto de vista competitivo. Si una actividad es común a varios productos, la información importante en costes no es la que procede de cada uno de ellos, sino la creada por el efecto combinado de todos los productos o servicios que comparten dicha actividad.

El sistema ABC establece la asignación de los costes indirectos no por el volumen de ventas, sino por la utilización efectiva que para cada producto se hace de una actividad concreta. La imputación de los costes indirectos se establece en dos etapas. En primer lugar, los costes no asignables directamente a cada una de las unidades de obra, deberían agruparse respecto a centros de coste que tuviesen un nexo común —siendo esta etapa de asignación típicamente utilizada para evaluar los resultados del responsable del Grupo de Actividades—, y en una segunda etapa se seleccionarían las medidas de asignación de los gastos a cada una de las unidades de obra utilizando relaciones causa-efecto. Cada eslabón o actividad diferenciada puede tener su cost driver o inductor de coste, que son aquellos factores estructurales que determinan el comportamiento del coste dentro de cada actividad y que componen la cadena de valor de un negocio.

La metodología empleada en los sistemas ABC es la siguiente:

1.    Identificación de las diferentes actividades.

2.    Definición de los inductores de coste para cuantificar el volumen de costes vinculados a cada actividad.

3.    Agrupación de las actividades homogéneas que se desarrollen en los diferentes centros de responsabilidad y determinación del coste unitario del inductor de coste.

4.    Determinación del coste del producto o servicio final mediante la agregación de costes asignados a los diferentes componentes intermedios que lo integran.

La aplicación de los sistemas ABC en la construcción se centra en las actividades realizadas para producir cada unidad de obra. El coste de las actividades se asigna a cada unidad de obra basándose en los consumos que, de dichas actividades se realizan. Por tanto, la diferencia respecto a la metodología expuesta en el punto anterior es clara: no existe una asignación arbitrariamente lineal.

Un sistema ABC se estructuraría, como mínimo, en cuatro diferentes categorías o tipos de actividades:

 ·      Actividades de Nivel Unitario, realizadas cada vez que se produce una unidad de producto.

·      Actividades de Nivel Lote, realizadas cada vez que un lote de producto es producido.

·      Actividades de Mantenimiento, que se realizan como una necesidad para mantener la producción de cada diferente tipo de producto.

·      Actividades de Apoyo, que sustenten el funcionamiento general del proceso de fabricación.

Dentro de las tres primeras categorías, es posible asignar sus costes generados a cada una de las unidades de obra correspondientes. Sin embargo, las actividades de apoyo en obra tales como limpieza y seguridad de las instalaciones, labores de carácter administrativo, etc. se intentarán asignar para evitar, en lo posible, su imputación arbitraria a las unidades. En algunas ocasiones no deberían atribuirse estos costes de apoyo a las unidades de obra, ya que su arbitraria asignación no añade información económica susceptible de establecer acciones correctoras para dicha unidad.

Los costes determinados con el sistema ABC no coinciden con el obtenido de forma tradicional, pues, al eliminar determinados sesgos, distorsiona menos el coste real de la unidad de obra. Por tanto, con sistemas de coste basados en las actividades se obtiene información de mayor calidad para la gestión de una empresa constructora.

El análisis planteado se hace más complejo que el tradicional, puesto que no se trata solo de diferenciar actividades, sino también de investigar por separado en cada una de ellas cuál es el factor que propulsa su comportamiento, de su coste. La asignación no rigurosa de los costes no imputables directamente a cada unidad de obra, puede fácilmente camuflar ineficiencias de la empresa constructora, compensando costes entre las diversas unidades, perdiéndose, por tanto, oportunidades de mejora en la competitividad.

Referencias

CATALÁ, J.; YEPES, V. (1999). Aplicación del sistema de costes ABC en la gestión de proyectos y obras. Forum Calidad, 102:42-47. Junio. Depósito Legal: M-9765-1989. ISSN: 1139-5567. Edita: Forum Calidad, S.R.L. Alcobendas (Madrid). (pdf)

¿Qué es y para qué sirve una red neuronal artificial?

Parece que hoy día, al igual que hace algunos milenios, la profesión de “oráculo” es una de las más demandadas, especialmente cuando se afrontan tiempos difíciles y el ser humano pretende predecir qué va a pasar para tomar la decisión correcta. Una de las profesiones de más futuro, según algunos, es la relacionada con “Big Data“. Pues bien, este post trata de introducir, de forma muy somera, una herramienta que es extraordinariamente potente para predecir relaciones fuertemente no lineales de grandes volúmenes de datos. También es una herramienta que, mal empleada, nos engaña. Todo empezó cuando nuestro Premio Nobel Santiago Ramón y Cajal empezó a describir nuestro sistema nervioso.
Las redes de neuronas artificiales (denominadas habitualmente como RNA o en inglés como: “ANN”) son un paradigma de aprendizaje y procesamiento automático inspirado en la forma en que funciona el sistema nervioso de los animales. Se trata de un sistema de interconexión de neuronas que colaboran entre sí para producir un estímulo de salida. En inteligencia artificial es frecuente referirse a ellas como redes de neuronas o redes neuronales. Forman parte de los denominados “Sistemas Inteligentes“, dentro de la rama de la Inteligencia Artificial.

Nuestro grupo de investigación ha publicado algunos artículos empleando esta herramienta en el ámbito del hormigón:

  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Structural and Multidisciplinary Optimization, 56(1):139-150. DOI:1007/s00158-017-1653-0
  • MARTÍ-VARGAS, J.R.; FERRI, F.J.; YEPES, V. (2013). Prediction of the transfer length of prestressing strands with neural networks. Computers and Concrete, 12(2):187-209. DOI: http://dx.doi.org/10.12989/cac.2013.12.2.187.

Un tutorial muy interesante sobre este tema es: http://www.gc.ssr.upm.es/inves/neural/ann2/anntutorial.html , así como el siguiente: http://sabia.tic.udc.es/mgestal/cv/RNAtutorial/index.html

¿Queréis usar una red neural on-line? Os paso el siguiente enlace: http://playground.tensorflow.org/

Os dejo también unos cuantos vídeos que os pueden ampliar información sobre el tema. Espero que os gusten.

Este programa de Redes creo que puede ampliar algo más la filosofía subyacente del aprendizaje y la inteligencia:

También dejo una presentación de clase sobre el tema:

GDE Error: Error al recuperar el fichero. Si es necesario, desactiva la comprobación de errores (404:Not Found)

El lenguaje metafórico de los ingenieros

Las metáforas no sólo se utilizan en el lenguaje poético, sino en el día a día de la comunicación, incluyendo la técnica. Hay incluso libros y tesis doctorales que atienden a este interesante tema, como el de la profesora María Boquera (podéis ver la portada a la izquierda). A continuación os dejo unas cuantas metáforas que utilizamos los ingenieros civiles. Seguro que se os ocurren muchísimas más. Las podéis poner en Twitter siguiendo el ejemplo que os doy. Hay cientos.

Los orígenes del hormigón armado

http://www.cehopu.cedex.es/hormigon/

Las civilizaciones antiguas ya tuvieron la idea de juntar piedras usando un amalgamador. Así, hacia el 2500 a.C., los egipcios ya emplearon un mortero de cal y yeso en la construcción de las pirámides de Giza. Sin embargo, fueron los romanos los que emplearon el hormigón a gran escala en obras como el Coliseo (en su cimiento y paredes internas) y el Panteón, construidos en los años 80 y 120 d.C. en Roma, o bien en el puente de Alcántara, en Hispania, del 104 al 106 d.C.

Tras la caída del imperio romano, el uso del hormigón decae hasta que, en la segunda mitad del siglo XVIII, se vuelve a utilizar en Francia y en Inglaterra. Así, en 1758, el ingeniero John Smeaton, ideó un nuevo mortero al reconstruir el faro de Eddyston en la costa de Cornish. En esta obra se empleó un mortero adicionando una puzolana a una caliza con una alta proporción de arcilla. Este mortero se comportaba bien frente a la acción del agua del mar debido a la presencia de arcilla en las cales, permitiendo incluso fraguar bajo el agua, y permanecer insoluble una vez endurecido.

Aunque Joseph Aspdin patentó en 1824 el cemento Portland, se considera al francés Vicat como padre del cemento al proponer en 1817 un sistema de fabricación que se sigue usando actualmente. Con todo, el cemento Portland actual se produce, desde el año 1845, con el sistema de Isaac C. Jhonson. Este procedimento se basa en altas temperaturas capaces de clinkerizar la mezcla de arcilla y caliza.

Las nuevas dársenas en el puerto de Toulon (Francia), en 1748, constituyen la primera obra moderna en la que se emplea el hormigón y que se encuentre documentada. Esta obra se ejecutó mediante tongadas alternas de hormigón fabricado con puzolana y mampostería irregular. En 1845 Lambot empieza a fabricar en Francia objetos en los que combina el hormigón y el acero, surgiendo de esta forma el primer hormigón armado.

Patentes de sistemas de hormigón armado (Christophe 1902)

Destaca la publicación, en 1861, del libro “Bétons Aglomérés appliqués à l’art de construire“, donde François Coignet analiza la función del hormigón y del acero como partes integrantes del nuevo material. Joseph Monier construye en 1875 el primer puente de hormigón armado del mundo en Chazalet (Francia) con un vano de 16,5 m de luz patentando el hormigón armado. En 1885, asociados Coignet y Monier, presentan en la Exposición Universal de París ejemplos de elementos que podrían realizarse con hormigón como vigas, bóvedas, tubos, etc.

A finales del siglo XIX se comienza a utilizar el hormigón en países como Alemania y Estados Unidos. Aunque las primeras aplicaciones del hormigón en Estados Unidos datan de 1875, fue a partir de 1890 cuando su empleo alcanzó un impulso extraordinario. Eran unos años donde las bases científicas del comportamiento del hormigón armado no estaban asentadas y, por tanto, las aplicaciones estaban sujetas a patentes y sistemas de firmas comerciales. Así, a pesar de las patentes de Monier sobre el hormigón armado, el desarrollo del nuevo material no despegó hasta que empresarios alemanes como Freytag no compraron los derechos de explotación. Fue en 1885 cuando el ingeniero Gustaf Wayss, que acababa de asociarse a las empresas alemanas que poseían los derechos de Monier, estableció los principios básicos del comportamiento del hormigón armado.

Edmond Coignet y De Tedesco publicaron en 1884 el primer método de dimensionamiento elástico de secciones de hormigón armado sometidas a flexión, mientras que el ingeniero Mathias Koenen, director técnico de la empresa de Wayss y Freytag, publicó en 1886 el primer método empírico de este tipo de secciones. La empresa de Wayss y Freytag construyó entre 1887 y 1899 trescientos veinte puentes distribuidos por toda Alemania y el Imperio austro-húngaro.

Las construcciones de Monier en Alemania supusieron un impulso potente en Francia, donde, a partir de 1890, empezó una auténtica revolución en la industria de este país. Jean Bordenave patentó en 1886 un sistema de tuberías de hormigón armado (Sidéro-ciment) que se utilizaría por primera vez en el abastecimiento de agua potable de Venecia. La primera patente realmente significativa en el ámbito del hormigón la realizó F. Hennebique en 1892 en Francia y Bélgica. En 1902 Rabut define las leyes de deformación del hormigón armado y sus reglas de cálculo y empleo. En 1904 De Tedesco publica el primer volumen completo sobre hormigón. La primera tesis sobre hormigón estructural la presentó F. Dischinger en 1928, versando dicho trabajo sobre láminas de hormigón para cubrir grandes espacios.

Anuncio cemento, 1903

En España la técnica del hormigón armado también llegó a finales del siglo XIX, desarrollándose simultáneamente con la industria del cemento portland. Nuestro país se situó desde ese momento en las primeras posiciones en el desarrollo internacional de la construcción con hormigón armado. La fabricación de traviesas de ferrocarril por parte de Nicolau en 1891 y el proyecto y construcción en 1893 del depósito de agua de Puigverd (LLeida) por parte del ingeniero Francesc Macià, se consideran las primeras aplicaciones de este material. En los primeros años del siglo XX, otros ingenieros y arquitectos (Ribera, Zafra, Rebollo, Durán, Jalvo, Fernández Casado, Torroja, entre otros) contribuyeron enormemente al desarrollo del hormigón armado en España. Por último, a partir de 1910, se introduce la enseñanza del hormigón armado en la Escuela de Ingenieros de Caminos de Madrid. No obstante, accidentes como el de la construcción del tercer depósito del Canal de Isabel II hizo que estos inicios fueran complicados.

Puente de Ribera (1910) en Valencia de Don Juan (León). http://www.mirame.chduero.es/PHD/Hidro.php?id=196

Referencias:

http://www.cehopu.cedex.es/hormigon/

http://informesdelaconstruccion.revistas.csic.es/index.php/informesdelaconstruccion/article/viewArticle/3261/3674

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Optimización heurística de muros de contrafuertes

Para empezar este año 2017, nada mejor que te comuniquen la publicación de un artículo de investigación el mismo día 1. Se trata en este caso de la utilización de algoritmos heurísticos híbridos para optimizar el coste de muros de contrafuertes. Se ha publicado en la revista Engineering Structures.

Podéis acceder a solicitar el artículo en este enlace:

https://www.researchgate.net/publication/312022114_Optimization_of_buttressed_earth-retaining_walls_using_hybrid_harmony_search_algorithms

Abstract:

This paper represents an economic optimization of buttressed earth-retaining walls. We explore the optimum solutions using a harmony search with an intensification stage through threshold accepting. The calibration of the resulting algorithm has been obtained as a result of several test runs for different parameters. A design parametric study was computed to walls in series from 4 to 16 m total height. The results showed different ratios of reinforcement per volume of concrete for three types of ground fill. Our main findings confirmed that the most sensitive variable for optimum walls is the wall-friction angle. The preference for wall-fill friction angles different to 0 in project design is confirmed. The type of fill is stated as the main key factor affecting the cost of optimum walls. The design parametric study shows that the soil foundation bearing capacity substantially affects costs, mainly in coarse granular fills (F1). In that sense, cost-optimum walls are less sensitive to the bearing capacity in mixed soils (F2) and fine soils of low plasticity (F3). Our results also showed that safety against sliding is a more influential factor for optimum buttressed walls than the overturning constraint. Finally, as for the results derived from the optimization procedure, a more suitable rule of thumb to dimension the footing thickness of the footing is proposed.

Keywords:

Structural design; Heuristics; Harmony search; Cost optimization; Concrete structures

Reference:

MOLINA-MORENO, F.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2017). Optimization of buttressed earth-retaining walls using hybrid harmony search algorithms. Engineering Structures, 134:205-216. http://dx.doi.org/10.1016/j.engstruct.2016.12.042