Arthur Casagrande: el ingeniero que cimentó la mecánica de suelos moderna

Arthur Casagrande (1902–1981). https://gyaconstructora.wordpress.com/2015/11/30/arthur-casagrande-y-la-mecanica-de-suelos/

Arthur Casagrande (28 de agosto de 1902 – 6 de septiembre de 1981) fue un ingeniero civil estadounidense de origen austrohúngaro, cuya obra sentó las bases del desarrollo inicial de la geotecnia y de la mecánica de suelos. Su nombre está asociado a innovaciones en el diseño de aparatos experimentales y a contribuciones fundamentales al estudio de la filtración, la licuefacción de suelos y el comportamiento mecánico de las arcillas. También es conocido por crear el histórico programa de enseñanza de la mecánica de suelos en la Universidad de Harvard, que más tarde sería imitado por universidades de todo el mundo. Junto con Karl Terzaghi, es reconocido como uno de los padres de la mecánica de suelos moderna.

Casagrande nació en Ajdovščina, en la actual Eslovenia, que entonces formaba parte del Imperio austrohúngaro. Tras cursar su primer año escolar en Linz, se mudó con su familia a Trieste. Al llegar a la edad de ingresar en la enseñanza secundaria, fue admitido en la Realschule, un tipo de escuela destinada a estudiantes que posteriormente cursarían estudios técnicos o un aprendizaje profesional. Su decisión de asistir a este centro estuvo influida por la tradición familiar materna, ya que muchos de sus parientes se habían dedicado a las ingenierías mecánica y química. En 1924, se graduó como ingeniero civil en la Technische Hochschule (TH) de Viena y continuó trabajando allí como asistente a tiempo completo del profesor Schaffernak en el laboratorio de hidráulica.

La disolución del Imperio austrohúngaro tras la Primera Guerra Mundial dejó el sector de la construcción prácticamente paralizado, lo que limitó en gran medida las oportunidades para los jóvenes ingenieros. Este difícil contexto, sumado al fallecimiento de su padre en 1924, incrementó su responsabilidad económica familiar y reforzó su deseo de participar en grandes proyectos de ingeniería. A pesar de la oposición de su madre y de su profesor, decidió emprender el arriesgado viaje a Estados Unidos. Tras llegar a Nueva York en 1926, se alojó durante diez días en un albergue de la YMCA antes de mudarse a Nueva Jersey, donde trabajó durante unos meses como delineante.

Una visita al Massachusetts Institute of Technology (MIT) en busca de empleo cambiaría su carrera para siempre. Allí conoció a Karl von Terzaghi, que acababa de llegar, y le ofreció inmediatamente un puesto de asistente privado. Desde 1926 hasta 1932, Casagrande trabajó como asistente de investigación asignado al MIT para el US Bureau of Public Roads, colaborando con Terzaghi en numerosos proyectos destinados a mejorar las técnicas y los equipos de ensayo de suelos. En 1929, viajó con él a Viena para ayudarle a establecer un laboratorio de mecánica de suelos que pronto se convertiría en un centro de referencia mundial. Durante este viaje por Europa, Casagrande visitó todos los laboratorios de mecánica de suelos existentes en ese momento, lo que le permitió adquirir un conocimiento excepcional del estado del arte internacional.

A su regreso al MIT, desarrolló equipos que sentarían las bases de los utilizados actualmente: el aparato del límite líquido, la prueba del hidrómetro, el ensayo capilar horizontal, el odómetro y la caja de corte. También fue pionero en realizar ensayos triaxiales y en estudiar los cambios volumétricos de los suelos durante el esfuerzo cortante en Estados Unidos. Gracias a sus avances experimentales, realizó aportaciones fundamentales: fue uno de los primeros en comprender el desarrollo de las presiones de poros durante los cortes no drenados, destacó la diferencia crítica entre las arcillas intactas y las remoldeadas y estableció los procedimientos estándar para identificar la presión de preconsolidación en los suelos sobreeconsolidados. Además, la conocida «línea A» de la carta de plasticidad probablemente lleva su nombre.

En 1932 se trasladó a la Universidad de Harvard, donde en 1946 fue nombrado titular de la nueva cátedra de Mecánica de Suelos e Ingeniería de Cimentaciones. Allí organizó un programa de posgrado que pasó de contar con 12 estudiantes en 1932 a más de 80 tras la Segunda Guerra Mundial. Entre 1942 y 1944, a petición del Army Corps of Engineers, formó intensivamente en mecánica de suelos aplicada a la construcción de aeródromos a unos cuatrocientos oficiales. Aunque Terzaghi llegaría posteriormente a Harvard con la ayuda de Casagrande para escapar de la inestabilidad política en Europa, lo cierto es que Casagrande trabajó prácticamente solo en la sección de mecánica de suelos debido a las prolongadas ausencias de Terzaghi y a su escaso interés por las tareas administrativas. El éxito del programa de Harvard, que hacía hincapié en los cursos de laboratorio y en el estudio detallado de la filtración, se debía claramente a Casagrande y su metodología serviría más tarde de modelo en universidades de todo el mundo.

En 1936, organizó la primera Conferencia Internacional de Mecánica de Suelos e Ingeniería de Cimentaciones. Aunque Terzaghi consideraba que suponía un riesgo excesivo para una disciplina aún joven, el evento fue un éxito rotundo. La conferencia dio lugar a la creación de la actual International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE) y marcó el momento en que la mecánica de suelos se convirtió en una parte esencial de la ingeniería civil. Alec Skempton describió posteriormente el periodo comprendido entre la publicación de Erdbaumechanik (Terzaghi, 1925) y esta conferencia como la etapa formativa clave de la mecánica de suelos moderna.

En paralelo a su labor académica, Casagrande desarrolló una destacada actividad como consultor, especialmente en proyectos relacionados con presas de tierra y en la investigación de fallos en dichas estructuras. Su interés por las presas se refleja en sus estudios sobre la filtración y la licuefacción. Tras la Segunda Guerra Mundial, el Corps of Engineers le encargó investigar los posibles efectos de las explosiones atómicas sobre la estabilidad de los taludes del Canal de Panamá. Esta investigación lo convirtió en uno de los primeros especialistas en la investigación de la resistencia dinámica de los suelos. También fue él quien introdujo el término «licuefacción» en la literatura de mecánica de suelos, aunque posteriormente consideró que su uso era inadecuado para describir los fenómenos asociados a cargas sísmicas cíclicas e insistió en que el término debía reservarse para suelos que experimentaran un notable ablandamiento por deformación, lo que conlleva un comportamiento cercano al flujo.

Su reconocimiento internacional se reflejó en numerosos premios. Fue nombrado primer Rankine Lecturer por la British Geotechnical Association y recibió la prestigiosa distinción de Terzaghi Lecturer, otorgada por la ASCE. En su honor, se creó posteriormente el Arthur Casagrande Professional Development Award, destinado a impulsar la carrera de jóvenes ingenieros e investigadores en geotecnia. A lo largo de su carrera, escribió más de cien textos e informes sobre mecánica de suelos, asentamientos, comportamiento dinámico y problemas relacionados con presas y cimentaciones.

Arthur Casagrande falleció en Estados Unidos el 6 de septiembre de 1981, a los 79 años. Su legado científico y pedagógico sigue profundamente arraigado en la ingeniería geotécnica contemporánea. Su nombre sigue asociado a la rigurosidad experimental, la innovación técnica y la consolidación definitiva de la mecánica de suelos como disciplina moderna.

Os dejo un vídeo que resume los aspectos básicos de su biografía.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Karl von Terzaghi: vida, obra, controversias, método y legado del fundador de la geotecnia moderna

Karl von Terzaghi (1883–1963). https://www.tuwien.at/en/cee/geotechnik/igb/soil-mechanics-laboratory/terzaghi-archive

Karl von Terzaghi nació el 2 de octubre de 1883 en Praga, que por entonces formaba parte del Imperio austrohúngaro. Hijo del teniente coronel Anton von Terzaghi y de Amalia Eberle, creció en el riguroso ambiente cultural y disciplinario de la tradición militar austríaca. Desde niño, destacó por su curiosidad por la astronomía, la geografía y, más tarde, las matemáticas y la geometría. A los diez años ingresó en una escuela militar y, a los catorce, pasó a otra academia en Hranice, donde se graduó con honores. En 1900, inició estudios de ingeniería mecánica en la Universidad Técnica de Graz, donde reforzó su interés por la mecánica teórica, la geología, las ciencias naturales y la observación del paisaje, pasiones que conservaría toda su vida. Se graduó con honores en 1904, tras superar incluso un intento de expulsión.

Realizó el servicio militar obligatorio, durante el cual tradujo Outline of Field Geology, ampliándolo con nuevo contenido, lo que marcó el comienzo de su extensa producción escrita. Después, volvió a la universidad para estudiar asignaturas relacionadas con la geología y la ingeniería civil y publicó su primer artículo sobre las terrazas geológicas del sur de Estiria. Empezó su carrera profesional en la empresa Adolph von Pittel, donde participó en proyectos hidroeléctricos y llegó a encargarse del diseño y la construcción de estructuras de hormigón armado. Tras trabajar en presas de Croacia y pasar seis meses en Rusia, desarrolló métodos gráficos para tanques industriales que empleó en su tesis doctoral. En 1912 obtuvo el doctorado en Ciencias Técnicas por la Universidad Técnica de Graz.

Ese mismo año viajó por Estados Unidos para estudiar presas y obras hidráulicas, lo que amplió su visión sobre la ingeniería civil. Regresó a Austria en 1913, pero la Primera Guerra Mundial interrumpió su trayectoria: fue movilizado como oficial de ingenieros, llegó a dirigir hasta mil hombres y participó en misiones de combate, como la toma de Belgrado. Posteriormente, fue transferido a la aviación, donde fue comandante de la estación de ensayos aeronáuticos de Aspern.

Tras la guerra, se trasladó a Estambul, donde fue profesor en la Escuela Imperial de Ingeniería (posteriormente, la Universidad Técnica de Estambul) y también colaboró con el Robert College. Entre 1919 y 1925 llevó a cabo investigaciones experimentales fundamentales sobre permeabilidad, empujes en muros de contención y el comportamiento del suelo saturado. Durante este periodo, desarrolló sus primeras teorías unificadas y diseñó equipos experimentales originales. En 1925, publicó Erdbaumechanik auf Bodenphysikalischer Grundlage, la primera formulación integral de la mecánica de suelos moderna, en la que introdujo su mayor aportación conceptual: el principio de tensiones efectivas, piedra angular para comprender asentamientos, la resistencia al corte, la consolidación, la permeabilidad y la erosión.

Su obra llamó la atención a nivel internacional, especialmente en Estados Unidos, y ese mismo año fue invitado al MIT. Publicó artículos en la revista Engineering News-Record que contribuyeron a difundir sus ideas. En Cambridge, aunque tuvo dificultades académicas y administrativas, estableció el primer laboratorio estadounidense de mecánica de suelos y formó al joven Arthur Casagrande, que sería su asistente privado entre 1926 y 1932, y una figura clave en el desarrollo de métodos experimentales, de clasificación de suelos y de técnicas de campo. Ese mismo año, trabajó con Aurelia Schober Plath, quien tradujo manuscritos y amplió el alcance de su producción escrita. Durante este periodo, impartió cursos que sentaron las bases de los programas modernos de mecánica de suelos, desarrolló redes de flujo, métodos de medición de presiones de poros, estudios de consolidación y análisis de asentamientos, y formuló principios que todavía hoy estructuran la práctica geotécnica.

En 1928 conoció a la geóloga Ruth Dogget, con quien se casó poco después, y en 1929 aceptó una cátedra en la Technische Hochschule de Viena. Antes de instalarse, realizó consultorías en la URSS, experiencia que lo marcó políticamente: detestó el sistema soviético y se declaró en contra de él. Desde Viena, obtuvo gran prestigio internacional asesorando en proyectos en Europa, en el norte de África y en Rusia. Trabajó en inyecciones (grouting), en cimentaciones sobre diferentes suelos y en la ampliación de Erdbaumechanik. Su interés intelectual abarcaba no solo la ingeniería y la geología, sino también la filosofía, la ética, la literatura, la arquitectura, el arte, la música, las flores, los viajes, la conversación, la natación y la escritura. Era un lector y observador incansable, un excelente cronista y un prolífico corresponsal con una tendencia natural a clasificar el mundo: rocas, suelos, ideas, personas y fenómenos.

En 1935 tomó un año sabático en el que realizó una consultoría para los planes monumentales de Núremberg, donde llegó a discutir cuestiones de cimentación con Adolf Hitler, una experiencia que le resultó profundamente inquietante. En 1936, organizó y presidió en Harvard la Primera Conferencia Internacional de Mecánica de Suelos e Ingeniería de Cimentaciones, germen de la ISSMGE. Poco después, regresó a Viena, donde se enfrentó a controversias profesionales —especialmente con Paul Fillunger— y a tensiones políticas en aumento. Su amarga reflexión resumió la situación: «Mi país me tachó de nazi, los nazis de bolchevique y los bolcheviques de conservador idealista. Solo uno podía tener razón… y fueron los bolcheviques». Para escapar de ese ambiente, se dedicó a consultorías en Inglaterra, Italia, Francia, Argelia y Letonia.

En 1938 emigró definitivamente a Estados Unidos y aceptó un puesto en la Universidad de Harvard, donde sentó las bases de la ingeniería geotécnica moderna. Allí impartió clases, investigó, publicó y trabajó como consultor en proyectos emblemáticos, como el metro de Chicago, las instalaciones navales de Newport News, el reflotamiento del Normandie y numerosas presas en Norteamérica. En marzo de 1943 se hizo ciudadano estadounidense.

Durante las décadas de 1940 y 1950, amplió su ámbito técnico para abarcar la clasificación de suelos y rocas, así como los fenómenos capilares. También estudió la tubificación y su prevención, así como el diseño y la construcción de presas de tierra, roca y hormigón sobre distintos tipos de cimentación. Trabajó en el análisis de redes de flujo bidimensionales y tridimensionales, así como en el diseño de anclajes para puentes colgantes. Desarrolló aportes importantes en ingeniería de túneles, pilas de cimentación, hincado de pilotes y en la compactación y mejora del terreno. Asimismo, investigó la ingeniería del permafrost y el diseño para prevenir socavaciones.
Analizó la subsidencia regional causada por la extracción de petróleo y por el proceso de formación y colapso de sumideros. Finalmente, impulsó avances en la instrumentación de campo y de laboratorio, además de promover la documentación precisa de fallos. Su libro Soil Mechanics in Engineering Practice (junto con Ralph Peck) se convirtió en un clásico mundial.

En 1954, fue nombrado presidente del Consejo Consultivo de la Gran Presa de Asuán, cargo del que dimitió en 1959 debido a sus desacuerdos con los ingenieros soviéticos. Continuó asesorando en proyectos hidroeléctricos, en particular en Columbia Británica. Respecto a su jubilación, se citan con frecuencia dos fechas: 1953 y 1956. En ambos casos, continuó con su actividad docente y de consultoría durante varios años más.

En 1926, a los 43 años, se consolidó la evolución de sus objetivos vitales: tras haber cumplido su meta juvenil de formular una teoría analítica y empírica del comportamiento del suelo, dedicó su madurez a ajustarla y someterla a la realidad física mediante la práctica profesional. Su preocupación constante era la dificultad para conocer con suficiente antelación la morfología y las propiedades del terreno antes de construir. Esa inquietud lo llevó a desarrollar, junto con Ralph Peck, el método observacional, que se basa en la incorporación de mediciones y observaciones durante la ejecución para adaptar el diseño en tiempo real. Aunque fue un pionero teórico, solía decir que el ingeniero debía mantenerse en contacto con el comportamiento real del suelo y no dejarse cegar por modelos o teorías.

Su personalidad reflejaba ese rigor crítico: era un oyente excepcional, un lector apasionado, un observador meticuloso y un crítico severo de quienes se dejaban atrapar por teorías sin base empírica o de quienes no tenían teoría alguna. Defendía estrictos principios profesionales: aceptar solo encargos que pudiera manejar con competencia, asumir escenarios geotécnicos conservadores, examinar todos los ángulos de un problema, evitar simplificar en exceso el comportamiento del terreno, documentar fallos, publicar resultados y ajustar diseños según datos reales.

Fue un educador influyente en Estambul, el MIT, Viena y Harvard, así como conferenciante en Berlín, Texas e Illinois. Paradójicamente, desconfiaba de la educación formal cuando esta entorpecía la observación directa y admiraba a los «hombres hechos a sí mismos» que aprendían con los ojos y la mente abiertos.

A lo largo de su vida recibió numerosos honores: nueve doctorados honoris causa, cuatro Medallas Norman de la ASCE, la creación en 1960 del Premio Karl Terzaghi, la instauración en 1963 de la Karl Terzaghi Lecture y, más tarde, conmemoraciones como la emisión del sello austríaco de 1983 y el «Terzaghi Day». La presa Mission, en Columbia Británica, fue renombrada en 1965 como presa Terzaghi. Sus cenizas reposan en South Waterford (Maine).

Karl von Terzaghi murió el 25 de octubre de 1963, dejando un legado inmenso. Su combinación de teoría, observación, instrumentación, análisis, docencia y práctica sentó las bases del campo que hoy conocemos como ingeniería geotécnica y sus ideas siguen guiando esta disciplina en todo el mundo.

Os dejo un vídeo en el que se condensa parte de su biografía.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Preguntas frecuentes sobre el agua en medio poroso y sus problemas en excavaciones.

1. ¿Qué es un acuífero y cómo se clasifica?

Un acuífero es una formación geológica subterránea que contiene y transmite agua. Se clasifican principalmente en:

  • Acuífero libre: El agua está en contacto con la atmósfera a través de los poros o las fisuras de la zona no saturada. El límite superior es el nivel freático, donde la presión del agua es atmosférica.
  • Acuífero confinado: El acuífero está cubierto por una capa impermeable (acuicludo o acuitardo) y el agua se encuentra a una presión superior a la atmosférica. Si se perfora un pozo en un acuífero confinado y el agua sube por encima de la superficie del terreno, se dice que existen existen «condiciones artesianas».
Figura 1. Esquema de acuífero. https://es.wikipedia.org/wiki/Archivo:Aquifer_es.svg

Además, existen otras formaciones relevantes:

  • Acuicludo: Una formación geológica que, aunque contiene agua, no la transmite de manera efectiva, por lo que no es apta para su explotación (por ejemplo, terrenos arcillosos).
  • Acuitardo: Transmite el agua muy lentamente, por lo que no es apto para su captación, pero puede permitir la recarga vertical de otros acuíferos en condiciones especiales (por ejemplo, arcillas limosas o arenosas).

2. ¿Qué es la carga hidráulica total y por qué es importante la Ley de Darcy en el estudio del flujo de agua en medios porosos?

La carga hidráulica total (H), también conocida como potencial, representa la energía por unidad de peso de un fluido en movimiento, expresada como una altura. Incluye la altura geométrica (z), la altura de presión (u/γw) y la altura de velocidad (v²/2g). En el contexto del flujo en medios porosos, la velocidad suele ser despreciable, por lo que la carga total se simplifica a la altura piezométrica.

La Ley de Darcy es fundamental porque describe la velocidad del flujo de agua en un medio poroso. Establece que la velocidad (v) es directamente proporcional al gradiente hidráulico (i) y al coeficiente de permeabilidad (k), es decir, v = k · i. El coeficiente de permeabilidad mide la facilidad con la que el agua circula a través del suelo y depende tanto de las características del acuífero (porosidad, tamaño de los poros interconectados) como del fluido (viscosidad, peso específico). Esta ley es crucial para comprender cómo se mueve el agua a través del suelo y para calcular caudales en diversas aplicaciones geotécnicas.

Figura 2. Esquema de la ley de Darcy

3. ¿Qué son las tensiones efectivas y por qué son tan importantes en geotecnia según el postulado de Terzaghi?

Las tensiones efectivas (σ‘) son un concepto fundamental en geotecnia, postulado por Karl von Terzaghi en 1923. Se definen como el exceso de tensión sobre la presión intersticial (o presión neutra) del agua (u) presente en el suelo. Es decir, son las tensiones que actúan exclusivamente sobre la fase sólida del suelo, transmitiéndose grano a grano.

Su importancia radica en el postulado de Terzaghi, que establece lo siguiente: «Cualquier efecto medible debido a un cambio de tensiones, como la compresión, la distorsión o la modificación de la resistencia al corte de un suelo, se debe exclusivamente a cambios en las tensiones efectivas». Esto significa que la deformación y la resistencia del suelo dependen directamente de las tensiones efectivas y no de las tensiones totales. Por ejemplo, si el volumen o la distorsión de un suelo saturado no cambian, es porque sus tensiones efectivas no han cambiado. Si se permite el drenaje del agua (es decir, si se disipa la presión intersticial), las tensiones efectivas aumentan, lo que provoca la deformación del suelo y la modificación de su resistencia al corte, un fenómeno conocido como consolidación.

4. ¿Cuáles son los principales problemas geotécnicos relacionados con el agua en las excavaciones?

El agua subterránea y superficial puede causar diversos problemas geotécnicos significativos en las excavaciones:

  • Subsidencia: Un descenso del nivel freático (por bombeo o excavación) aumenta las tensiones efectivas, provocando asentamientos en el terreno circundante. Un aumento del freático también puede causar asentamientos en suelos arcillosos o reducir la capacidad portante en arenas.
  • Deslizamiento de taludes: El flujo de agua en los taludes de una excavación incrementa su peso y reduce su resistencia al corte, llevando a la inestabilidad. Esto se agrava si la excavación corta dos estratos, donde el flujo entre capas puede causar erosión.
  • Erosión superficial: El afloramiento de agua en los taludes provoca cárcavas y arrastre de terreno, lo que compromete la estabilidad y debilita las bermas.
  • Erosión interna o tubificación (piping): El agua arrastra partículas finas a través de los huecos del suelo, formando túneles internos. Esto es propenso en suelos dispersables y puede ocurrir en presas o por flujos anómalos en pozos de drenaje o anclajes defectuosos.
  • Inestabilidad del fondo o sifonamiento: Ocurre cuando un flujo ascendente de agua en un terreno granular no consolidado anula la presión efectiva, por lo que el suelo se comporta como un fluido (arenas movedizas). Esto sucede cuando las fuerzas de filtración superan el peso sumergido del suelo.
  • Levantamiento del fondo o taponazo (uplift): El fondo de la excavación se vuelve inestable cuando el empuje del agua subterránea —típico en un acuífero confinado bajo un estrato de baja permeabilidad— supera el peso del terreno que lo soporta.

5. ¿Qué es el sifonamiento o «efecto Renard» y cuándo ocurre?

El sifonamiento, también conocido como licuefacción o «efecto Renard», se produce cuando existe un flujo ascendente de agua en el terreno y la presión del agua es tan alta que anula las tensiones efectivas del suelo. En suelos granulares sin cohesión, como la arena, el terreno pierde completamente su resistencia al corte y comienza a comportarse como un fluido en ebullición, similar a las arenas movedizas.

Este fenómeno sucede cuando se alcanza un «gradiente crítico», que es la relación entre el peso específico sumergido del suelo y el peso específico del agua. Si se sitúa un objeto con un peso específico superior al de la mezcla fluida de terreno y agua sobre un terreno con licuefacción, se hundirá. Supone un grave riesgo en las excavaciones, especialmente por debajo del nivel freático, ya que puede provocar el desprendimiento de cimentaciones y maquinaria.

6. ¿Cómo se relaciona el coeficiente de permeabilidad con la permeabilidad equivalente en estratos de suelo?

El coeficiente de permeabilidad (k) mide la facilidad con la que el agua fluye a través de un suelo concreto. Sin embargo, en la práctica, el suelo suele estar compuesto por múltiples estratos con diferentes permeabilidades y espesores. En estos casos, se calcula una permeabilidad equivalente, que puede ser horizontal o vertical:

  • Permeabilidad equivalente horizontal: Se aplica cuando el flujo de agua atraviesa horizontalmente un conjunto de estratos. El caudal total es la suma de los caudales en cada estrato.
  • Permeabilidad equivalente vertical: Se usa cuando el flujo de agua atraviesa verticalmente los estratos. En este caso, el caudal es constante a lo largo de los estratos, pero cada estrato tiene un gradiente hidráulico diferente.

Estos cálculos son esenciales para modelar con precisión el flujo de agua en suelos estratificados.

7. ¿Qué es una red de flujo y para qué se utiliza en geotecnia?

Una red de flujo es una representación gráfica del flujo de agua subterránea en un medio poroso. Está formada por dos familias de curvas ortogonales entre sí.

  • Líneas equipotenciales (Ψ): Son líneas que conectan puntos donde la altura piezométrica (carga hidráulica) es constante.
  • Líneas de corriente (Φ): Son las trayectorias que siguen las partículas de fluido a medida que se mueven a través del suelo.

La red de flujo se construye de manera que las fronteras impermeables actúan como líneas de corriente y las fronteras permeables (como una lámina de agua) son líneas equipotenciales. Al intersectarse, ambas familias de líneas deben formar «cuadrados curvilíneos».

Figura 3. Red de flujo, formada por líneas equipotenciales (Ψ) y  líneas de corriente (Φ)

Las principales aplicaciones de las redes de flujo en geotecnia son:

  • Calcular las presiones del agua subterránea: Permiten determinar las presiones en diferentes puntos o superficies.
  • Estimar los caudales del agua subterránea: Todos los canales de flujo (espacio entre dos líneas de corriente adyacentes) transportan el mismo caudal.
  • Calcular los gradientes hidráulicos: La pérdida de carga total se distribuye uniformemente entre las equipotenciales. Esto es crucial para evaluar la estabilidad de taludes y el riesgo de sifonamiento.

8. ¿Cómo se puede prevenir el sifonamiento en una excavación y qué factores influyen en las medidas de prevención?

Para prevenir el sifonamiento en una excavación, especialmente por debajo del nivel freático, una de las medidas principales es utilizar tablestacas o ataguías con una longitud de empotramiento suficiente. Esta longitud adicional por debajo del nivel de excavación aumenta el recorrido más corto que puede seguir el agua, lo que reduce el gradiente hidráulico y, en consecuencia, las fuerzas de filtración.

La profundidad de empotramiento necesaria depende de varios factores:

  • Profundidad de la excavación bajo el nivel freático: A mayor profundidad de excavación, mayor empotramiento se requiere.
  • Porosidad del suelo: Cuanto mayor es la porosidad del terreno (es decir, más vacíos hay en el suelo), mayor empotramiento es necesario para evitar el sifonamiento.
  • Peso específico de las partículas sólidas y del agua: Estos valores influyen en el peso específico sumergido del suelo y, por ende, en el gradiente crítico.
  • Coeficiente de seguridad (η): Se aplica un coeficiente de seguridad para garantizar que el empotramiento sea suficiente para resistir el sifonamiento. Por ejemplo, el Código Técnico de la Edificación (CTE) en España recomienda un coeficiente de seguridad de η = 2 para pantallas.
Figura 4. Sifonamiento en la base de una tablestaca o pantalla.

Es fundamental realizar cálculos geotécnicos y estructurales detallados para determinar el empotramiento necesario, que debe corresponder al mayor valor entre el requerido para evitar el sifonamiento y el necesario para soportar los esfuerzos de empuje. Además, la experiencia y el sentido común son fundamentales a la hora de implementar estas medidas.

REFERENCIAS:

  • PÉREZ VALCÁRCEL, J.B. (2004). Excavaciones urbanas y estructuras de contención. Ediciones Cat, Colegio Oficial de Arquitectos de Galicia, 419 pp.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W., DYER, M.R. (2004). Groundwater control: design and practice. CIRIA C515, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Ralph B. Peck: Una vida dedicada a la ingeniería geotécnica

Ralph B. Peck (1912 – 2008). https://www.ngi.no/en/about-ngi/ngis-historical-libraries/peck/

Ralph Brazelton Peck (23 de junio de 1912 – 18 de febrero de 2008) fue uno de los ingenieros civiles más influyentes del siglo XX. Su legado en el campo de la geotecnia se forjó a lo largo de décadas de investigación, enseñanza y práctica profesional. Nacido en Winnipeg (Canadá), creció en un ambiente técnico, ya que su padre, Orwin K. Peck, era ingeniero estructural especializado en obras ferroviarias. Esa influencia temprana marcó su destino profesional.

Aunque de niño soñaba con ser operador de tranvías, su padre lo persuadió para que estudiara ingeniería. A los 18 años rechazó becas de la Universidad de Colorado y de la Escuela de Minas de Colorado y se matriculó en el Instituto Tecnológico de Rensselaer (RPI) de Nueva York en 1930. Ese verano trabajó en la Denver & Rio Grande Railroad, donde comenzó su experiencia práctica en el mundo ferroviario. Durante sus estudios en RPI, diseñó su primer puente ferroviario, un puente con vigas de 20 m sobre el río Ánimas en Nuevo México, construido durante sus vacaciones de invierno de 1930, aunque más tarde fue destruido por una crecida del río.

En 1934, se graduó en Ingeniería Civil, pero como no encontró trabajo a causa de la Gran Depresión, aceptó una beca para cursar estudios de posgrado en estructuras, geología y matemáticas. En 1937 se doctoró en ingeniería civil con una tesis sobre rigidez en puentes colgantes, revisada por el reconocido ingeniero David Barnard Steinman.

Ese verano trabajó en la American Bridge Company, pero perdió su empleo al cabo de unos meses debido a la falta de proyectos. En marzo de 1938, cuando aún no había recibido ofertas de trabajo, tomó una decisión trascendental: pidió un préstamo de 5000 dólares a su suegro para estudiar mecánica de suelos en la Universidad de Harvard, bajo la tutela de Arthur Casagrande. Esta formación definiría el rumbo de su carrera profesional. Pocos días después, rechazó una oferta de trabajo como diseñador de puentes en la empresa Waddell & Hardesty, en Nueva York, para dedicarse a la geotecnia.

Casagrande lo aceptó en sus clases, primero como oyente y luego como ayudante de laboratorio. También colaboró con Ralph E. Fadum en el campo. Pronto, Peck comenzó a relacionarse con algunas de las figuras más destacadas del ámbito geotécnico: además de Casagrande, conoció y trabajó con Albert E. Cummings —pionero en cimentaciones con pilotes, quien más tarde le legó su biblioteca técnica—, Laurits Bjerrum, Alec W. Skempton y, especialmente, Karl Terzaghi, con quien forjaría una profunda amistad y colaboración profesional.

En enero de 1939, Terzaghi lo eligió como su representante en la obra del metro de Chicago, proyecto en el que había sido contratado como consultor. Peck asumió un papel central, manteniendo correspondencia constante con Terzaghi, a quien entregaba datos, informes y observaciones. También recibió la guía de Ray Knapp, jefe de inspección de obras del metro, a quien Peck consideró una influencia igual de formativa que Terzaghi por enseñarle a desenvolverse con eficacia en organizaciones complejas. Otra figura relevante en esta etapa fue Ralph Burke, ingeniero jefe de varios grandes proyectos en Chicago, con quien colaboró más adelante como consultor.

Su trabajo en el metro de Chicago fue clave en su desarrollo profesional. Allí aplicó, junto a Terzaghi, métodos avanzados de muestreo, medición de deformaciones e interpretación de suelos. Esta experiencia se materializó en el libro Soil Mechanics in Engineering Practice, publicado en 1948, escrito conjuntamente con Terzaghi y basado en gran medida en su experiencia conjunta. En esta obra se introdujo por primera vez el término «prueba de penetración estándar» (SPT), un concepto desarrollado a partir de un instrumento creado por Charley Gow en Boston. Terzaghi elogió públicamente la ética, el carácter y la rigurosidad de Peck durante el proceso de redacción.

En 1942, Peck se incorporó como profesor asistente de investigación en la Universidad de Illinois, donde impartió clases durante 32 años, hasta 1974. Aunque inicialmente dictaba cursos de estructuras, pronto se dedicó por completo a la geotecnia. En 1945, Terzaghi se unió como profesor visitante y su colaboración continuó en los años siguientes.

En 1953, Peck publicó junto con Thomas H. Thornburn y Walter E. Hanson el libro Foundation Engineering, que fue adoptado como texto en más de 50 universidades, consolidando aún más su influencia educativa. Su dedicación a la formación de ingenieros fue incuestionable y muchos de sus alumnos se convirtieron en figuras destacadas en el campo de la geotecnia.

Tras jubilarse, Peck mantuvo una intensa actividad como consultor, participando en más de mil proyectos en cuarenta y cuatro estados de EE. UU. y veintiocho países de cinco continentes. Su experiencia fue requerida en presas como la de Itezhi-Tezhi, en Zambia, y la de Saluda, en Carolina del Sur; en proyectos de transporte como el BART de San Francisco y los metros de Washington, Los Ángeles y Baltimore; así como en la cimentación del puente Rion-Antirion, en Grecia, y el oleoducto Trans-Alaska.

Entre 1969 y 1973, fue presidente de la Sociedad Internacional de Mecánica de Suelos e Ingeniería de Cimentaciones. A lo largo de su carrera publicó más de 200 artículos y fue ampliamente galardonado:

  • 1944: Medalla Norman de la ASCE

  • 1965: Premio Wellington de la ASCE

  • 1969: Premio Karl Terzaghi

  • 1975: Medalla Nacional de Ciencia, otorgada por el presidente Gerald Ford

  • 1988: Medalla John Fritz

  • 1999: La ASCE estableció el Ralph B. Peck Award, que premia contribuciones destacadas al desarrollo profesional de la ingeniería geotécnica mediante estudios de caso e innovaciones en metodología de diseño.

En 2009, el Instituto Geotécnico Noruego inauguró la Biblioteca Ralph B. Peck, junto a la Biblioteca Karl Terzaghi, en Oslo. En ella se conserva correspondencia entre ambos ingenieros, documentos históricos, diarios técnicos y informes que dan fe de su legado compartido.

Ralph Peck también influyó en figuras como Karl Terzaghi, quien lo consideró no solo un colega brillante, sino también un ejemplo de integridad profesional. Su enfoque metódico, su respeto por la observación cuidadosa y su compromiso con la excelencia lo convierten en una figura clave en la historia de la geotecnia.

Se casó con Marjorie E. Truby en 1937 y tuvo dos hijos. Falleció el 18 de febrero de 2008 a los 95 años, víctima de una insuficiencia cardíaca. Su vida representa una combinación única de rigor científico, habilidad práctica y vocación docente. Hoy, su legado perdura en cada estructura que ayudó a construir y en cada ingeniero al que inspiró.

Una de las frases que más me impactaron a nivel profesional es la que figura en mi blog. Dice lo siguiente:

En mi opinión, nadie puede ser un buen proyectista, un buen investigador, un buen líder en la profesión de la ingeniería civil, a menos que entienda los métodos y los problemas de los constructores

(Ralph B. Peck, 1912-2008)

Os dejo algunos vídeos de este insigne ingeniero.

Control de la mejora de un suelo con ensayos de penetración dinámica

Prueba de penetración dinámica superpesada. https://www.gtklaboratorio.com/prueba-de-penetracion-dinamica-superpesada-en-bilbao

Para comprobar la efectividad de un tratamiento de mejora de suelos, tal y como pudiera ser la compactación dinámica, es necesario verificar que la mejora conseguida es suficientemente buena como para alcanzar los objetivos marcados por el proyecto correspondiente. Una forma económica y sencilla de ensayar el terreno en profundidad consiste en hincar un varillaje con una punta metálica, de forma que, contabilizando el número de golpes necesarios para hacer avanzar dicha punta una longitud determinada, se pudiese correlacionar dicho valor con las características geotécnicas del terreno. A este tipo de pruebas se les conoce con el nombre de ensayos de penetración dinámica.

El ensayo de penetración estándar o SPT (Standard Penetration Test) es quizás uno de los ensayos más frecuentes que se utiliza cuando se realizan sondeos de reconocimiento. De hecho, representan una importante fuente de datos acerca de la resistencia del terreno. Se trata de medir el número de golpes necesario para que se introduzca una cuchara cilíndrica y hueca muy robusta que, además, permite extraer una muestra alterada de su interior. Tanto la cuchara como la masa y la altura a la que caen están normalizadas. La ventaja del SPT es que se permite visualizar el terreno donde se ha realizado la prueba y permite su identificación, e incluso, si el terreno es cohesivo, obtener su humedad. Se trata de ensayos de bajo coste y de alta representatividad, especialmente para suelos granulares y mixtos. La descripción del ensayo se encuentra recogida en la norma UNE 103-800-92. El valor que se obtiene se denomina resistencia a la penetración estándar N30spt.

Este ensayo nace en 1927 cuando un sondista de la Raymond Concrete Pile propuso a Terzaghi contar el número de golpes necesarios para hincar 1 pie el tomamuestras que se utilizaba para obtener muestras en terrenos no cohesivos. Tras realizar un gran número de ensayos, Terzaghi y Peck (1948) publican sus resultados en su libro “Mecánica de suelos en la ingeniería práctica”. Esta prueba se ha difundido internacionalmente y existen numerosos estudios que permiten relacionar de forma empírica el valor N30SPT con las propiedades geotécnicas del terreno in situ. Sin embargo, gran parte de las correlaciones corresponden a terrenos arenosos, pues la presencia de gravas oscurece la interpretación de los resultados e incluso puede impedir la realización del ensayo. Por tanto, es un ensayo especialmente indicado para terrenos con una amplia fracción arenosa y lo es menos cuando existe una mayor proporción de finos o de gravas.

Uto y Fijuki (1981) recomiendan corregir el valor de la resistencia a penetración estándar cuando se ensaya a más de 20 metros de profundidad. Skempton (1986) propone factores de corrección a dicho valor en función de la profundidad del ensayo y del diámetro del sondeo, aunque estas correcciones se realizan para suelos granulares, puesto que para los cohesivos dicha influencia es despreciable. Otras correcciones independientes del sistema de ensayo se refieren al nivel freático (Terzaghi y Peck, 1948), a la presión de confinamiento (Gibbs y Holz, 1957), siendo objeto de distintos estudios que están resumidos en Liao y Whitman (1985).

En cuanto a las correlaciones de Nspt con los parámetros geotécnicos del terreno, Terzaghi y Peck (1948) publicaron las primeras correlaciones con la densidad relativa de arenas cuarzíticas, siendo modificadas posteriormente por Skempton (1986). Gibbs y Holtz (1957) comprobaron que se debía introducir la presión de confinamiento en dichas relaciones, y luego Meyerhof (1956) ajustó dichas relaciones. Otras correlaciones referidas al ángulo de rozamiento interno, deformabilidad o potencial de licuación pueden verse en Devicenzi y Frank (1995). Sin embargo, tal y como se comentó anteriormente, las correlaciones sobre terrenos cohesivos se han considerado meramente orientativas, debido a la dispersión de resultados. Sin embargo, hoy en día este criterio se está cuestionando y se están aceptando estas pruebas en todo tipo de terrenos.

Cuando lo que se quiere es disponer de un registro continuo para caracterizar un suelo en profundidad, se puede emplear la prueba de penetración dinámica superpesada o DPSH (Dynamic Probing Super Heavy). Las características del ensayo son distintas a las del SPT. Aquí se utiliza una punta cónica perpendicular al eje de penetración midiéndose el golpeo necesario para profundizar 20 centímetros. Sin embargo, se ha tratado de establecer una correlación entre ambos ensayos que, en el caso de las arenas, el factor de conversión entre ambos ensayos es próximo a la unidad, siempre que estemos entre los 5 y 30 golpes, y siempre que estemos a un máximo de 10 – 15 m, pues a partir de aquí la dispersión aumenta debido al efecto de rozamiento de las varillas, que empieza a ser importante. En el caso de la correlación entre el ensayo Borros o DSPH y el SPT en arcillas, se puede consultar el trabajo de Dapena et al (2000).

Son muchas las correlaciones que se han encontrado entre los ensayos a penetración dinámica. Las equivalencias entre los ensayos parten de una relación de semejanza entre la energía de hinca. Un resumen de los parámetros geomecánicos obtenidos a partir de estos ensayos aplicado a suelos mixtos cohesivos-granulares puede verse en Parra y Ramos (2006).

Todo ello nos lleva a la siguiente conclusión: no es muy fiable establecer correlaciones entre los distintos ensayos de penetración dinámica, especialmente cuando el suelo empieza a ser cohesivo. El tema se complica mucho más cuando el terreno no es natural, sino que se trata de un relleno antrópico heterogéneo. Ello obliga a realizar un estudio en profundidad para establecer dichas correlaciones, siendo aconsejable efectuar un penetrómetro de contraste al lado de un sondeo con SPT.

Os dejo a continuación varios vídeos al respecto de estos ensayos.

También os dejo la maniobra completa del ensayo SPT.

Referencias

  • Armijo, G.; Blanco, M.A. (2017). Diseño y verificación del tratamiento de mejora del terreno mediante compactación dinámica. Aplicación a un caso real. Interempresas.net.
  • Devincenzi, M.; Frank, N. (1995). “Ensayos Geotécnicos in situ”, Igeotest, Figueres, Girona.
  • Gibbs, H.J.; Holtz, W.G. (1957). “Research on Determining the Density of Sands by Spoon Penetration Testing”. Proc. 4th Conf. On SMFE, London.
  • Liao, S.; Whitman, R.V. (1986). “Overburden Correction Factors for SPT in Sand”, Journal of Geotechnical Engineering, ASCE, Vol 112, Nº 3.
  • Menard, L.; Broise Y. (1976). “Theoretical and practical aspects of dynamic consolidation”, Ground Treatment by deep compaction, Institution of Civil Engineers, LONDON, pp. 3-18.
  • Meyerhof, G.G. (1956). “Penetration Test and Bearing Capacity of Cohesionless Soils”. Journal of Geotechnical Engineering, ASCE, Vol. 91.
  • Parra, F.; Ramos, L.L. (2006). “Obtención de parámetros geomecánicos a partir de ensayos a penetración dinámica continua en suelos mixtos cohesivos-granulares”. Ingeopres: Actualidad técnica de ingeniería civil, minería, geología y medio ambiente, 145: pp. 20-24.
  • Skempton, A.W. (1986). “Standard Penetration Test Procedure and Effects in Sandsof Overburden Pressure, Relative Density, Particle Size, Ageing and Overconsolidation”. Geotechnique, 36, pp. 425-437.
  • Terzaghi, K.; Peck, R.B. (1948). “Soil Mechanics in Engineering Practice”. Ed. John Wiley and Sons, New York.
  • Uto, K.; Fuyuki, M. (1981). “Present and Future Trend on Penetration Testing in Japan”, Japanese Soc. SMFE.
  • Dapena, E.; Lacasa, J. García, A. (2000). “Relación entre los resultados de los ensayos de penetración dinámica Borros DPSH y el SPT en un suelo arcilloso”. Actas del Simp. sobre geotecnia de las infraestructuras lineales. Soc. Española de Mec. del Suelo e Ing. Geotécnica.
  • Yepes, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • Yepes, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Conceptos básicos del agua en medio poroso

Figura 1. Esquema de acuífero. https://es.wikipedia.org/wiki/Archivo:Aquifer_es.svg

Cualquier curso de geotecnia básica dedica una parte importante de su temario a describir y caracterizar el agua en el suelo, especialmente el flujo en medios porosos y la incidencia de las presiones efectivas en la deformación de los suelos.

En este artículo vamos a recordar algunos conceptos básicos que, de una u otra forma, influyen directamente en los procedimientos constructivos, especialmente cuando se trata de controlar el agua. Se remite al lector a la bibliografía básica para profundizar más en estos temas.

  • Acuífero: terreno por donde circula el agua. Al límite impermeable inferior del acuífero se le denomina muro y al superior techo. Si el agua se encuentra en contacto con la atmósfera a través de los poros o fisuras existentes en la zona no saturada, se denomina acuífero libre. En cambio, en un acuífero confinado, el techo se encuentra a presión superior a la atmosférica.
  • Acuicludo: formación geológica que conteniendo agua en su interior, incluso hasta la saturación, no la transmite y, por tanto, no es posible su explotación (caso de terrenos arcillosos).
  • Acuitardo: formación geológica que transmiten muy lentamente el agua, por lo que tampoco son aptos para la captación. Sin embargo, en condiciones especiales, permiten una recarga vertical de otros acuíferos. Es el caso de un estrato de arcillas limosas o arenosas.
  • Nivel freático: lugar geométrico de los puntos donde la presión del agua es la atmosférica. Es el nivel que alcanza la superficie del agua en pozos de observación en libre comunicación con los vacíos del suelo in situ. Por encima del nivel freático existe el agua capilar donde su presión es menor que la atmosférica. En un punto concreto, en un pozo, se habla de nivel piezométrico, que si se encuentra por encima de la superficie del terreno, se dice que existen «condiciones artesianas».
  • Coeficiente de almacenamiento: cantidad de agua que cede un prisma de acuífero de base cuadrada unitaria cuando se le deprime la unidad. Es adimensional. Su valor oscila normalmente entre 0,2 y 0,4 en acuíferos libres, oscilando entre 10-5 y 10-3 en los acuíferos cautivos y semiconfinados, al entrar en juego los efectos mecánicos del terreno o de la propia agua.
Figura 2. Esquema de acuífero libre y confinado (Bouwer, 1987)
  • Porosidad: porcentaje del volumen total de un suelo o roca que está ocupado por poros. Estos poros estarán rellenos de agua si el material está saturado, o de aire y agua si no lo está. Si solo se considera el volumen de los poros que están interconectados, se denomina «porosidad eficaz». En los acuíferos libres el coeficiente de almacenamiento coincide con la porosidad eficaz.
  • Índice de poros o huecos: razón entre el volumen de poros y el volumen de sólidos.
  • Humedad: relación entre el peso del agua que contiene un suelo y el peso del suelo seco.
  • Grado de saturación: porcentaje del volumen de huecos ocupados por el agua.
  • Carga hidráulica total: también llamado potencial, es la energía por unidad de peso (expresada como una altura) en un determinado punto de un fluido en movimiento. Donde H es la carga hidráulica total, z la altura geométrica, u/γw  la altura de presión, siendo u la presión del agua en el punto considerado y  γw  el peso específico del agua y v2/2g la altura de velocidad, siendo v la velocidad del flujo en el punto considerado y g la aceleración de la gravedad. Todos estos términos tienen unidades de longitud. Si el agua está en reposo (condiciones hidrostáticas), o bien se desprecia la velocidad por ser muy baja (caso de la circulación del agua en medio poroso), la carga total es la altura piezométrica.

  • Líneas de corriente o líneas de flujo: son las curvas por las que se mueven las partículas fluidas, invariables en el transcurso del tiempo. A medida que el agua circula a través del suelo, modifica su velocidad y potencial.
  • Líneas equipotenciales: lugares geométricos del flujo donde la altura piezométrica es constante.
Figura 3. Red de flujo, formada por líneas equipotenciales (Ψ) y  líneas de corriente (Φ)
  • Teorema de Bernouilli: en el caso ideal de un fluido perfecto e incompresible sujeto a un flujo permanente y estacionario, la carga hidráulica total se mantiene constante entre dos puntos cualesquiera del fluido a lo largo de una línea de corriente. Como un fluido real no es perfecto, cualquier obstáculo al flujo produce una pérdida de carga. De hecho, existe flujo entre dos puntos si existe una diferencia en la carga hidráulica, de forma que el agua circula del punto de mayor a menor potencial. Si se añade energía H al caudal mediante una bomba, y se consideran las pérdidas hr, del punto 1 al punto 2, la ecuación queda:

  • Coeficiente de permeabilidad: k, mide la facilidad para que el agua circule a través de un suelo. También se llama conductividad hidráulica, y tiene unidades de velocidad, normalmente cm/s. La permeabilidad implica una posibilidad de recorrido y exige la existencia de vacíos o huecos continuos. La permeabilidad depende de factores intrínsecos al acuífero y extrínsecos, que dependen del fluido, y son su viscosidad y su peso específico. Según Hazen, en arenas uniformes, la permeabilidad es proporcional al cuadrado del diámetro eficaz (D10 ).
  • Permeabilidad equivalente horizontal: el flujo atraviesa horizontalmente un conjunto de n estratos, con una permeabilidad cada uno de ki  y un espesor ei .  El caudal equivalente será la suma de los caudales, por lo que la permeabilidad equivalente, kh vale lo siguiente:

  • Permeabilidad equivalente vertical: el flujo atraviesa verticalmente un conjunto de n estratos, con una permeabilidad cada uno de ki  y un espesor ei .  El caudal a lo largo de los estratos, y cada estrato tendrá un gradiente distinto ii, por lo que igualando las pérdidas de carga y despejando, obtenemos la permeabilidad equivalente kv , que vale lo siguiente:

 

  • Gradiente hidráulico: i, se define como la pérdida de carga (altura piezométrica) por unidad de longitud recorrida. Es un vector cuya dirección se orienta con los potenciales decrecientes.

  • Ley de Darcy: la velocidad del fluido en medio poroso es proporcional al gradiente hidráulico a través del coeficiente de permeabilidad. No es una propiedad intrínseca del suelo y tiene unidades de velocidad. Aquí se ha supuesto un flujo laminar en medio poroso y una velocidad media a través de una sección «macroscópica» de suelo, es decir, la velocidad aparente a lo largo de las líneas de flujo.

Figura 4. Esquema de la ley de Darcy
  • Transmisividad: caudal que se filtra a través de una franja vertical de terreno, de ancho unidad y de altura igual al espesor saturado, bajo un gradiente unidad, a una temperatura determinada y durante la unidad de tiempo. Sus unidades son las de una velocidad multiplicada por una longitud.
  • Ecuación de Laplace: modeliza un flujo estacionario en medio poroso homogéneo e isótropo de un fluido incompresible, en un suelo de peso específico constante y saturado. De difícil solución analítica, se puede resolver gráficamente dibujando dos familias de curvas ortogonales entre sí, las líneas equipotenciales (Ψ) y las líneas de corriente (Φ), que forman la red de flujo. Para dibujar la red de flujo hay que considerar que las fronteras impermeables constituyen líneas de corriente y las fronteras permeables (como una lámina de agua) es una línea equipotencial. Al cortarse ambas familias de líneas, se deben obtener «cuadrados curvilíneos».

  • Red de flujo: una vez dibujada la red, la pérdida de carga total se distribuye de forma uniforme entre las equipotenciales, todos los canales de flujo transportan el mismo caudal, y un canal de flujo es el comprendido entre dos líneas de corriente. Las principales aplicaciones de las redes de flujo son: calcular las presiones del agua subterránea en unas determinadas líneas o superficies, estimar los caudales del agua subterránea y calcular los gradientes hidráulicos.
Figura 5. Red de flujo bajo una presa
  • Fuerzas de filtración o de arrastre: son fuerzas másicas (fuerza por unidad de volumen) que el agua ejerce sobre el terreno al circular por sus poros. El módulo de estas fuerzas por unidad de volumen es el producto del peso específico del agua por el gradiente. La fuerza de filtración tiene la dirección y el sentido del flujo.

  • Presión efectiva: es la presión que se transmite grano a grano, siendo la diferencia entre las presiones totales y las intersticiales. Según el postulado de Terzaghi, la resistencia al esfuerzo cortante y el cambio de volumen de un suelo dependen de la magnitud de la presión efectiva y sus variaciones.

Os voy a dejar algunos vídeos explicativos de estos conceptos. Espero que os sean de utilidad.

Referencias:

  • BOUWER, H. (1978). Groundwater Hidrology. Mc Graw-Hill Book Co., New York, 480 pp.
  • DAS, B. (2005). Fundamental of Geotechnical Engineering – 2nd ed, Technomic Publishing Co.
  • GONZÁLEZ DE VALLEJO, L.I. et al. (2004). Ingeniería Geológica. Pearson, Prentice Hall, Madrid.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W., DYER, M.R. (2004). Groundwater control: design and practice. CIRIA C515, London.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Empujes sobre entibaciones según Terzaghi y Peck

Figura 1. Entibación en excavación de zanja. https://commons.wikimedia.org/wiki/File:Sbh_s600.JPG

Ya se habló en un artículo anterior de la altura crítica, que si se sobrepasa, obliga a entibar una excavación. Este es un aspecto de gran importancia en la seguridad de las personas. Para ello resulta fundamental el cálculo de los empujes del terreno sobre la entibación para dimensionar correctamente los elementos constitutivos de esta estructura auxiliar.

La deformación que se desarrolla en el terreno al ir entibando una excavación, poniendo puntales de arriba hacia abajo, es diferente a la que desarrollan la condición de empuje activo en los muros. Este hecho provoca que la distribución real de los empujes sobre una entibación sea diferente a la clásica ley triangular que aparecen en los muros. Esto se debe, entre otros motivos, a que la entibación va a girar respecto a un punto situado en la parte superior (primer apuntalamiento), frente al típico muro en ménsula, donde el giro se realiza, aproximadamente, en la base de la estructura.

En la Figura 2 podemos ver que los empujes reales no crecen proporcionalmente con la profundidad y que, en el fondo de la excavación, acaban anulándose. Por tanto, la parte superior, que se apuntala desde el primer momento, recibe unos empujes superiores a los de la ley triangular, y en la parte inferior, son menores. La ley de empujes, por tanto, se aproxima a una parábola.

Figura 2. Empujes reales de forma parabólica sobre entibaciones

Terzaghi y Peck (1967) propusieron algunos esquemas simplificados útiles para determinados suelos típicos. Son los denominados «diagramas de presión aparente«, deducidos a partir de medidas realizadas en diferentes obras a mediados del siglo XX (Berlín, Múnich, Chicago, Nueva York y Oslo) en entibaciones apuntadas, no ancladas, de más de 6 m de profundidad.  No se trata realmente de unos diagramas de empujes únicos, sino de las envolventes empíricas de los distintos diagramas reales que se observan en una fase de excavación y que pueden ser bastante complicados (secuencia de construcción, temperatura, acomodo entre pantalla y apoyos, etc.).

Teniendo en cuanto los valores a, b y c de la Figura 3, se pueden estimar la ley de empujes en función de la Tabla 1 (Izquierdo, 2001). Hay que tener presente que estos empujes, sacados de mediciones realmente tomadas en obra, son aplicables a los empujes sobre entibaciones, por lo que no es de aplicación directa a superficies continuas y mucho más rígidas como los muros pantalla.

Figura 3. Distribuciones propuestas para empuje sobre entibaciones

 

Tabla 1. Procedimiento empírico de Terzaghi y Peck (1967) para determinar las cargas sobre los puntales en una excavación entibada (Izquierdo, 2001)

En la Tabla 1, Ka es el coeficiente de empuje activo, cu la cohesión del terreno sin drenaje y γ su peso específico.

REFERENCIAS:

  • GARCÍA VALCARCE, A. (dir.) (2003). Manual de edificación: mecánica de los terrenos y cimientos. CIE Inversiones Editoriales Dossat-2000 S.L. Madrid, 716 pp.
  • GONZÁLEZ CABALLERO, M. (2001). El terreno. Edicions UPC, Barcelona, 309 pp.
  • IZQUIERDO, F.A. (2001). Cuestiones de geotecnia y cimientos. Editorial Universidad Politécnica de Valencia, 227 pp.
  • LAMBE, T.W.; WHITMAN, R.V. (1996). Mecánica de suelos. Limusa, México, D.F., 582 pp.
  • MINISTERIO DE FOMENTO (2002). Guía de Cimentaciones. Dirección General de Carreteras.
  • MINISTERIO DE LA VIVIENDA (2006). Código Técnico de la Edificación
  • TERZAGHI, K.; PECK, R. (1967). Soil Mechanics in Engineering Practice. 2nd Edition, John Wiley, New York.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3
  • YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 408 pp. Ref. 477. ISBN: 978-84-1396-238-2

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Paradoja de Zenón en la parsimonia del asiento de los suelos saturados

Figura 1. Inclinación de la torre de Pisa

Una de las paradojas que planteó el filósofo Zenón de Elea es que si para ir a un lugar recorres primero la mitad de la distancia, luego la mitad de la distancia que te queda por recorrer, y así hasta el infinito, nunca llegarás a tu destino, aunque estés toda la vida andando. Esta paradoja se solucionó matemáticamente en el siglo XIX al aceptar que la suma de 1/2 + 1/4 + … suman 1. Pues bien, un terreno saturado al que sometemos a una carga va a asentar de forma indefinida, pero no superará un valor tope determinado. Veamos esto con mayor detalle.

En un artículo anterior vimos hablamos del Principio de Terzaghi, por el cual un terreno se deforma solo cuando existe un cambio en sus tensiones efectivas. Cuando se carga un terreno saturado, éste tiene la costumbre provocar asientos que se incrementan con el tiempo, siempre que sea posible el drenaje. Esto plantea la pregunta de si los asientos crecerán de forma indefinida con el tiempo. Afortunadamente, el asiento tiende asintóticamente a una magnitud última a la cual se llegará, eso sí, en tiempo infinito.

Pero empecemos por el principio. En presencia de un sólido homogéneo, isótropo y linealmente elástico, la teoría de la elasticidad nos permite conocer perfectamente la deformación que tendrá ante un incremento de cargas. Para ello basta conocer el módulo de elasticidad E y el coeficiente de Poisson ν. Es más, si estamos ante este tipo de terreno y conocemos las ecuaciones de Hooke en términos efectivos (es decir, conocemos E‘ y  γ’, obtenidos en suelo drenado, a largo plazo), entonces tenemos herramientas para averiguar la deformación del terreno, tal y como vimos en el artículo que donde hablábamos de los asientos de cargas rectangulares en el semiespacio de Boussinesq. Este método sería válido para cargas de servicio o de trabajo, alejadas de la carga de rotura (factor de seguridad del orden de 3), que probablemente generen asientos elásticos. El método elástico será tanto más aceptable cuanto más se asemeje el comportamiento del suelo al del sólido lineal-elástico, como es el caso de los suelos granulares o las arcillas fuertemente sobreconsolidadas, bajo presiones normales de cimentación.

Sin embargo, no vamos a tener tanta suerte. El comportamiento del suelo es más complejo. De hecho, la deformación ocurrirá, tal y como se ha comentado anteriormente, cuando las presiones efectivas empiecen a cambiar. Y eso tendrá lugar si se permiten disipar las presiones intersticiales del terreno. Por tanto, las deformaciones van a depender, entre otros factores, de la permeabilidad. Terrenos altamente permeables, como gravas o arenas, van a deformar rápidamente, puesto que el agua drenará con mucha facilidad. Pero terrenos más impermeables como las arcillas, el proceso se dilatará en el tiempo. Es el fenómeno conocido como consolidación.

Por tanto, ante un terreno saturado, tenemos tres tipos de consolidación. La consolidación inicial la provoca un aumento de la presión total, que provoca un cambio de volumen debido a efectos como la disolución de las burbujas de aire, el cierre de fisuras o la reordenación de las partículas, entre otras posibles causas. La consolidación primaria, es provocada por el aumento de la presión efectiva como consecuencia de la disipación de las sobrepresiones intersticiales. Por último, la consolidación secundaria se produce a tensión efectiva constante, es decir, una vez disipada la sobrepresión intersticial y se debe a factores como la fluencia por desplazamientos y reorientaciones de partículas, o bien a la descomposición de la materia orgánica del suelo, entre otras posibles causas.

Figura 2. Curva de consolidación de un suelo saturado.

Para determinar tanto la magnitud de la deformación de un suelo al aumentar la tensión efectiva a la que está sometido (curva edométrica), como la velocidad a la que ocurre el asiento de consolidación (curva de consolidación), se utiliza el ensayo edométrico. De este ensayo y sus características hablaremos en otros artículos.

Pero aquí lo que queremos es ver cómo evolucionan los asiento con el tiempo durante el proceso de consolidación. En un proceso unidimensional, la ecuación que gobierna dicho proceso es la siguiente:

donde Cv es el denominado coeficiente de consolidación vertical, que depende del nivel de tensiones existente y cuyas unidades son [L2]/[T]. Este coeficiente en una arcilla puede deducirse de un ensayo edométrico de una muestra inalterada. Su valor tipo oscila entre 0,4 x 10-4  y 3 x 10-3 cm2/s, y los valores deducidos in situ oscilan entre 0,7 x 10-4  y 250 cm2/s (González Caballero, 2001).

Si definimos como grado de consolidación U la relación entre el asiento experimentado en un instante por el suelo respecto al asiento total, podemos utilizar U como variable auxiliar adimensional para resolver la ecuación diferencial anterior.

Si llamamos factor de tiempo a Tv, éste se encuentra relacionado con U. La solución simplificada de la ecuación diferencial, suponiendo que el incremento de presión total es uniforme o lineal en el caso del doble drenaje, nos lleva a dos ecuaciones sencillas, que son las siguientes:

Estas expresiones las hemos dibujado en la Figura 3, donde se relaciona U con Tv. Se puede observar que para el grado de consolidación del 100%, el factor de tiempo se hace infinito. No obstante, se puede considerar que un factor de tiempo Tv = 2 corresponde prácticamente al final de la consolidación primaria.

Figura 3. Factor de tiempo en función del grado de consolidación

Además, el coeficiente de consolidación vertical Cv está relacionado con el factor de tiempo Tv, con la distancia libre de drenaje d y con el tiempo t a través de la siguiente expresión:

Por tanto, se puede saber el tiempo que tardará en asentar un suelo saturado para alcanzar un grado de consolidación determinado conociendo la distancia libre de drenaje y el coeficiente de consolidación vertical. Los cálculos pueden realizarse rápidamente utilizando la gráfica de la Figura 4. Se ha dibujado el eje vertical en escala logarítmica. Cada función indica una longitud libre de drenaje distinta.

Figura 4. Relación entre el producto del coeficiente de consolidación y el tiempo con el grado de consolidación y la distancia libre de drenaje.

Vamos a hacer un cálculo aproximado utilizando la Figura 4. Si suponemos una arcilla con un coeficiente de consolidación Cv = 1,0 m2/año, en el periodo de 1 año, con una longitud de drenaje de 1 m, se habrá superado más del 90% del asiento previsto, pero si la longitud de drenaje es de 2 m, no llegaremos al 60% del asiento.

Se deja al lector curioso la demostración de que si la longitud de drenaje la dividimos por n, entonces el tiempo que se tardará en alcanzar el mismo grado de consolidación se divide por n2 . Así, por ejemplo, una capa de arcillas dispuesta entre dos capas de material granular tardará en alcanzar un mismo asiento en la cuarta parte del tiempo que si dicha capa estuviese dispuesta entre una capa granular y otra impermeable.

Referencias:

  • DAS, B. (2005). Fundamental of Geotechnical Engineering – 2nd ed, Technomic Publishing Co.
  • GONZÁLEZ CABALLERO, M. (2001). El terreno. Edicions UPC, 309 pp.
  • GONZÁLEZ DE VALLEJO, L.I. et al. (2004). Ingeniería Geológica. Pearson, Prentice Hall, Madrid.
  • IZQUIERDO, F.A. (2001). Cuestiones de geotecnia y cimientos. Editorial Universidad Politécnica de Valencia, 227 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La magia de las tensiones efectivas en geotecnia

Karl von Terzaghi (1883 – 1963) ://es.wikipedia.org/wiki/Karl_von_Terzaghi

Os presento uno de los conceptos básicos utilizados en geotecnia que, en ocasiones, complica a muchos de mis estudiantes cuando en la asignatura Procedimientos de Construcción explicamos algunos aspectos de la mejora de terrenos (columna de grava, precarga, drenes verticales, etc.). Se trata del concepto de «tensiones efectivas», que hoy es sencillo, pero que confundió a numerosos ingenieros durante mucho tiempo.

La ley de elasticidad Hooke, donde la aplicación de una fuerza supone una deformación proporcional a la misma, desde luego no era aplicable directamente a muchos problemas que los ingenieros tenían con el terreno. Desde siempre se conoce que el comportamiento mecánico del suelo es algo complejo, pero era sorprendente, por ejemplo, que una carga aplicada sobre un terreno con nivel freático elevado, no se deformase. Y lo más sorprendente, es que, al cabo de cierto tiempo, sin modificar el estado de cargas, el terreno se deformara «por arte de magia».

Este problema ingenieril traía de cabeza a muchos ingenieros hasta los primeros años del siglo XX. Si se analiza un suelo desde el punto de vista «microscópico», la transmisión de esfuerzos se realiza mediante cadenas de partículas, unas apoyadas con otras. Lo que es peor, si este suelo es de partículas tan finas como son las arcillas, la fuerza de gravedad pierde importancia frente a las fuerzas fisico-químicas. La solución es entender la mecánica del suelo como si fuera un medio continuo, es decir, desde el punto de vista «macroscópico». Tal simplificación necesita un marco teórico de partida que fue postulado por uno de los grandes genios y padre de la mecánica de suelos: Karl von Terzaghi (Praga, 2 de octubre de 1883 – Winchester, Massachusetts, 25 de octubre de 1963).

Su aportación genial fue formular un postulado acerca de lo que denominó como «tensiones efectivas«. Como todo postulado que se precie, se trata de una proposición no evidente por sí misma, ni demostrada, pero que se acepta, ya que no existe otro principio al que pueda ser referida. De todos modos, las evidencias empíricas del correcto funcionamiento de este postulado hace que hoy día se admita en el campo de la mecánica de suelos porque permite explicar multitud de problemas geotécnicos. Terzaghi definió el concepto de tensiones efectivas, en 1923, partiendo de resultados experimentales. De forma muy simple, diremos que las tensiones efectivas que actúan en el terreno son el exceso de tensión sobre la presión intersticial del agua presente en él. Y lo más importante de todo ello es que son las tensiones efectivas las que pueden provocar cambios en la deformación del terreno. Pero vamos a reproducir (González de Vallejo et al., 2004) las dos partes fundamentales del enunciado de su postulado, según las propias palabras de Terzaghi:

«Las tensiones en cualquier punto de un plano que atraviesa una masa de suelo pueden ser calculadas a partir de las tensiones principales totales σ1, σ2 y σ3 , que actúan en ese punto. Si los poros del suelo se encuentran rellenos de agua bajo una presión u, las tensiones principales totales se componen de dos partes. Una parte, u, llamada presión neutra o presión intersticial, actúa sobre el agua y sobre las partículas sólidas en todas direcciones y con igual intensidad. Las diferencias σ’1 = σ1 – u, σ’2 = σ2 – u, σ’3 = σ3 – u  representan un exceso de presión sobre la presión neutra u, y actúan exclusivamente en la fase sólida del suelo. Estas fracciones de las tensiones principales totales se denominan tensiones efectivas.

Cualquier efecto medible debido a un cambio de tensiones, tal como la compresión, la distorsión o la modificación de la resistencia al corte de un suelo, es debido exclusivamente a cambios en las tensiones efectivas».

Podemos sacar varias conclusiones directamente de este postulado:

  1. Si en un suelo saturado no hay cambios de volumen ni de distorsión, eso significa que las tensiones efectivas no han cambiado.
  2. Como el agua no es capaz de soportar tensiones tangenciales, las que existan en un suelo saturado la debe absorber el esqueleto sólido del suelo.
  3. Si a un suelo saturado se le permite el drenaje (disipación de la tensión intersticial), entonces este suelo se deforma y se modifica su resistencia a corte. Al fenómeno se denomina consolidación.

Como entretenimiento práctico podéis deducir cómo la tensión efectiva en un punto de un estrato situado bajo nivel freático es igual al producto de la profundidad del punto en el estrato multiplicado por el peso específico sumergido del material de dicho estrato. Asimismo, si existen distintos estratos, es la suma de las alturas de los posibles estratos por sus correspondientes pesos específicos sumergidos.

Referencias:

  • DAS, B. (2005). Fundamental of Geotechnical Engineering – 2nd ed, Technomic Publishing Co.
  • GONZÁLEZ DE VALLEJO, L.I. et al. (2004). Ingeniería Geológica. Pearson, Prentice Hall, Madrid.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Cursos:

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Diagramas de carga-deflexión en la compactación mecánica de suelos

Figura 1. Rodillo compactador Hamm 3412

La compactación mecánica está basada en las relaciones entre las tensiones y las deformaciones o deflexiones causadas por una carga compresora.

Si se analiza el ensayo realizado sobre una probeta de suelo cilíndrica, permaneciendo la superficie lateral libre y en cuya base superior aplicamos una carga mediante una chapa metálica, con un valor que vaya aumentando a velocidad constante, se obtiene el diagrama de carga-deflexión como el de la Figura 2. En este ensayo, una vez alcanzado determinado valor en la carga, la probeta rompe. Asimismo, la pendiente de la curva cargas-asientos correspondiente a cada ciclo permite calcular el módulo de deformación del suelo.

Figura 2. Tensión-deformación en una probeta con paredes laterales libres

La curva permite comprobar ciertos fenómenos significativos. El primero de ellos es que si al llegar al punto 3 dejamos de aumentar la carga, sigue la probeta deformándose hasta estabilizarse en el punto 4 al cabo de cierto tiempo. Este efecto es acusado en suelos plásticos y húmedos por su dificultad en evacuar el aire y el agua. El segundo fenómeno es que si a partir de un punto tal como el 1 descargamos a la misma velocidad que veníamos cargando, la probeta recupera parte de su deformación, hasta llegar a 2 cuando ya no existe tensión. Si a partir de este punto repetimos el proceso, la nueva curva se aproxima a la original hasta ser tangente con ella. Estas dos ramas, de compresión y de descompresión, no se confunden, sino que forman un lazo nominado de histéresis.

Si este experimento se realiza con un terreno natural, y otro recompuesto de la rotura de los anteriores ensayos, y ambos se vuelven a testar con la misma humedad, se observa que a igualdad de cargas, los suelos recompuestos o amasados rompen antes y sufren mayor deformación. Análogamente, si experimentamos a mayores velocidades de incremento de carga, las deformaciones son menores ya que no da tiempo suficiente a evacuar aire y agua de la muestra.

El segundo tipo de ensayo propuesto sería someter la probeta cilíndrica a un proceso de cargas escalonado, de forma que permanezca constante la compresión durante un periodo de tiempo dilatado que garantice que se alcanza el alargamiento límite para dicha carga. A su vez, la probeta tendrá impedida su deformación lateral, siendo porosas las bases del cilindro, pudiendo así aplicar cargas de mayor magnitud. En este caso sólo existe deformación vertical siendo la lateral nula, hablándose entonces de deformación edométrica, por ser el edómetro el aparato en el cual se realiza este experimento. Por cierto, edómetro viene del griego «oidos«, hinchamiento, por ser la medida de la expansividad de los suelos en contacto en el agua, una de sus primeras aplicaciones.

Figura 3. Celda de edómetro

En este caso, la curva obtenida presenta las mismas características que la anterior. Si no se descarga, la curva (0135) se denomina de compresión noval. Al descargar, nos movemos de forma lineal por la rama de descarga. Se llama presión de preconsolidación la máxima que ha sufrido el material en su historia, siendo por tanto que un suelo o está en la rama elástica o en la tensión de preconsolidación.

Se distinguen tres tipos de asientos al realizar un ensayo edométrico. La consolidación inicial es un asiento independiente del fenómeno de consolidación y que está asociado a deformaciones debidas al cierre de fisuras de la muestra, a rozamientos y huelgos del sistema de aplicación de la carga, etc. La consolidación primaria se rige por la teoría de la consolidación, es decir, existe un asiento debido a la expulsión del agua como consecuencia de la sobrepresión aplicada. Por último, la consolidación secundaria se debe a fenómenos viscosos y de reajuste de la estructura del suelo una vez las sobrepresiones se han anulado, y tampoco se debe al fenómeno de consolidación. La teoría de la consolidación está basada en el principio de Terzaghi, y plantea que un suelo saturado y poco permeable reacciona inicialmente a un cambio tensional como si no cambiara de volumen, generando sobrepresiones intersticiales. A medida que éstas se van disipando hacia los contornos drenantes, las tensiones totales transmitidas inicialmente se transforman, gradualmente, en presiones efectivas, y el suelo se deforma.

Se llaman suelos normalmente consolidados aquellos en los que la tensión efectiva actual es la máxima que han tenido en su historia, y suelos sobreconsolidados o preconsolidados los que han soportado en el pasado una tensión superior a la actual. Es evidente que cuanto antes se hablaba de un suelo remoldeado en anteriores ensayos, este es, por definición, sobreconsolidado.

A continuación os dejo un vídeo sobre el ensayo edométrico. Espero que os sea de interés.

Referencia:

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.