El control del hormigón

Probetas de hormigón.

El control del hormigón y sus componentes se encuentra en el articulado de la instrucción EHE-08 de hormigón estructural. Entre otras, la instrucción actual tuvo que contemplar aspectos como la incorporación del marcado CE (Directiva Europea 89/106/CEE), la aprobación del Código Técnico de Edificación y la incorporación de nuevos hormigones (reciclados, autocompactantes, no estructurales, ligeros o con fibras). Todo ello se enmarca dentro de un entorno donde la sociedad demanda mayor calidad en los productos, aparecen nuevas exigencias como la durabilidad y la sostenibilidad y se extiende el control de calidad a todo el proceso constructivo.

En este sentido, es necesario diferenciar aquellos hormigones que posean el Distintivo de Calidad Oficialmente Reconocido (DCOR) de los hormigones que no los posean. La relación de distintivos reconocidos y de centrales se puede consultar en la página web de la Comisión Permanente del Hormigón (enlace).

A continuación os dejo un enlace a la «Guía para el control en obra del hormigón según la instrucción EHE-08 y metodología para actuaciones con resultados de control en obra desfavorables», de ANEFHOP, y unos vídeos explicativos del profesor Antonio Garrido, que espero os sean de interés y utilidad. También os recomiendo el siguiente enlace sobre control de conformidad del hormigón: https://estonocumple.wordpress.com/2011/03/17/control-de-conformidad-de-un-hormigon/ 

 

 

Resultados parciales del proyecto BRIDLIFE

ph_vigas-artesaEl objetivo del proyecto BRIDLIFE consiste en desarrollar una metodología que permita incorporar un análisis del ciclo de vida de puentes de hormigón pretensado, definiendo un proceso de toma de decisiones que integre los aspectos sociales y medioambientales mediante técnicas analíticas de toma de decisiones multicriterio.

Los resultados esperados detallarán qué tipologías, actuaciones de conservación y alternativas de demolición y reutilización son adecuadas para minimizar los impactos, dentro de una política de fuerte limitación presupuestaria que compromete seriamente las políticas de creación y conservación de las infraestructuras.

Este proyecto competitivo, financiado por el Ministerio de Economía y Competitividad y los fondos FEDER (proyecto de investigación BIA2014-56574-R), tiene una duración prevista de 2015 a 2017. En este momento, superado el ecuador del proyecto, podemos dar cuenta de algunos de los resultados ya publicados en revistas de impacto, que espero sean de vuestro interés.

Como antecedentes necesarios se indican algunos trabajos previos, fruto del proyecto HORSOST, precedente al actual. La optimización de un puente de vigas artesa se abordó con algoritmos híbridos basados en el recocido simulado [1] y algoritmos meméticos [2]; se utilizaron algoritmos de enjambres de luciérnagas para optimizar el coste y las emisiones de CO₂ de vigas en I, incorporando la carbonatación en el ciclo de vida [3]; asimismo se evaluó el ciclo de vida de hormigones con distintas adiciones incluyendo la carbonatación y la durabilidad [4].

Las primeras aportaciones realizadas en el año 2015, ya dentro del proyecto, fueron la optimización de estribos abiertos mediante algoritmos híbridos de escalada estocástica [5]; la optimización del coste de puentes en vigas artesa con hormigón con fibras [6] y la optimización de las emisiones de CO₂ de pasarelas de hormigón pretensado y sección en cajón [7]. Destaca también el trabajo desarrollado, basándose en una aproximación cognitiva, de una metodología que permite la toma de decisiones tras la aplicación de técnicas de optimización multiobjetivo [8].

En el año 2016 se empezaron a realizar aportaciones realizadas, fundamentalmente con la evaluación de los impactos sociales de las infraestructuras a lo largo del ciclo su ciclo de vida [9,10]. Se avanzó con la optimización de la energía embebida en puentes de vigas artesa [11] y en la optimización multiobjetivo del coste, las emisiones de CO₂ y la seguridad a lo largo del ciclo de vida de puentes cajón [12]. Se han comparado puentes losa postesados y puentes prefabricados óptimos [13]. Otra aportación de interés se hizo con la colaboración del profesor Dan M. Frangopol, que realizó una estancia en nuestro grupo de investigación. Se comparó el coste del ciclo de vida de puentes cajón usando una aproximación basada en la fiabilidad [14].

Durante el año 2017, último del proyecto, existen trabajos ya publicados y otros en proceso de revisión. Se describen brevemente los ya publicados. Se aplicó el análisis de ciclo de vida completo atendiendo a todo tipo de impactos ambientales a muros de contrafuertes [15], introduciendo una metodología que se está aplicando a estructuras más complejas como los puentes. Se ha introducido un metamodelo basado en redes neuronales para mejorar el rendimiento en el proceso de optimización multiobjetivo de puentes en cajón [16]. También se optimizaron las emisiones de CO₂ en puentes de vigas artesa ejecutados con hormigones con fibras [17].

Aparte de estas aportaciones, directamente relacionadas con el proyecto BRIDLIFE, durante este periodo de tiempo destacan dos trabajos similares aplicados a la optimización del mantenimiento de pavimentos de carreteras desde los puntos de vista económicos y medioambientales [18,19].

Cabe destacar, por último, que durante los años 2015-2016 se han leído cinco tesis doctorales relacionadas, de forma directa o indirecta, con los objetivos desarrollados por el presente proyecto de investigación [20-24], existiendo otras cinco en estado avanzado de desarrollo.

Referencias:

[1] J.V. Martí, F. González-Vidosa, F.; V. Yepes, J. Alcalá, Design of prestressed concrete precast road bridges with hybrid simulated annealing, Engineering Structures. 48 (2013) 342-352.

[2] J.V. Martí, V. Yepes, F. González-Vidosa, A. Luz, Diseño automático de tableros óptimos de puentes de carretera de vigas artesa prefabricadas mediante algoritmos meméticos híbridos, Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería. 30(3) (2014) 145-154.

[3] T. García-Segura, V. Yepes, J.V. Martí, J. Alcalá, Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm, Latin American Journal of Solids and Structures. 11(7) (2014) 1190-1205.

[4] T. García-Segura, V. Yepes, J.V. Martí, J. Alcalá, Life-cycle greenhouse gas emissions of blended cement concrete including carbonation and durability, International Journal of Life Cycle Assessment. 19(1) (2014) 3-12.

[5] A. Luz, V. Yepes, F. González-Vidosa, J.V. Martí, Diseño de estribos abiertos en puentes de carretera obtenidos mediante optimización híbrida de escalada estocástica, Informes de la Construcción. 67(540) (2015) e114.

[6] J.V. Martí, V. Yepes, F. González-Vidosa, Memetic algorithm approach to designing of precast-prestressed concrete road bridges with steel fiber-reinforcement, Journal of Structural Engineering ASCE. 141(2) (2015) 04014114.

[7] T. García-Segura, V. Yepes, J. Alcalá, E. Pérez-López, Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges, Engineering Structures. 92 (2015) 112-122.

[8] V. Yepes, T. García-Segura, J.M. Moreno-Jiménez, A cognitive approach for the multi-objective optimization of RC structural problems, Archives of Civil and Mechanical Engineering. 15(4) (2015) 1024-1036.

[9] E. Pellicer, L.A. Sierra, V. Yepes, Appraisal of infrastructure sustainability by graduate students using an active-learning method, Journal of Cleaner Production. 113 (2016) 884-896.

[10] L.A. Sierra, E. Pellicer, V. Yepes, Social sustainability in the life cycle of Chilean public infrastructure, Journal of Construction Engineering and Management ASCE. 142(1) (2016) 05015020.

[11] J.V. Martí, T. García-Segura, V. Yepes. Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy, Journal of Cleaner Production. 120 (2016) 231-240.

[12] T. García-Segura, V. Yepes, Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety, Engineering Structures. 125 (2016) 325-336.

[13] J.V. Martí, J. Alcalá, T. García-Segura, V. Yepes, Heuristic design of precast-prestressed concrete U-beam and post-tensioned cast-in-place concrete slab road bridges, International Conference on High Performance and Optimum Design of Structures and Materials (HPSM/OPTI 216) (2016), 10 pp.

[14] T. García-Segura, V. Yepes, D.M. Frangopol, D.Y. Yang, Comparing the life-cycle cost of optimal bridge designs using a lifetime reliability-based approach, Fifth International Symposium on Life -Cycle Civil Engineering (IALCCE 2016). (2016) 1146-1153.

[15] P. Zastrow, F. Molina-Moreno, T. García-Segura, J.V. Martí, V. Yepes. Life cycle assessment of cost-optimized buttress earth-retaining walls: a parametric study, Journal of Cleaner Production. 140 (2017) 1037-1048.

[16] T. García-Segura, V. Yepes, J. Alcalá, Computer-support tool to optimize bridges automatically, International Journal of Computational Methods and Experimental Measurements. 5(2) (2017) 171-178.

[17] V. Yepes, J.V. Martí, T. García-Segura, Design optimization of precast-prestressed concrete road bridges with steel fiber-reinforcement by a hybrid evolutionary algorithm, International Journal of Computational Methods and Experimental Measurements. 5(2) (2017) 179-189.

[18] C. Torres-Machi, A. Chamorro, E. Pellicer, V. Yepes, C. Videla, Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making, Transportation Research Record. 2523 (2015) 56-63.

[19] V Yepes, C. Torres-Machí, A. Chamorro, E. Pellicer, Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm, Journal of Civil Engineering and Management. 22(4) (2016) 540-550.

[20] C. Torres-Machí, Optimización heurística multiobjetivo para la gestión de activos de infraestructuras de transporte terrestre, Tesis doctoral, Universitat Politècnica de València y Pontificia Universidad Católica de Chile, 2015.

[21] A.M. Rodriguez-Calderita, Optimización heurística de forjados de losa postesa, Tesis doctoral, Universitat Politècnica de València, 2015.

[22] A.J. Luz, Diseño óptimo de estribos abiertos de hormigón armado en puentes de carretera mediante optimización heurística, Tesis doctoral, Universitat Politècnica de València, 2016.

[23] F. Navarro-Ferrer, Modelos predictivos de las características prestacionales de hormigones fabricados en condiciones industriales, Tesis doctoral, Universitat Politècnica de València, 2016.

[24] T. García-Segura, Efficient design of post-tensioned concrete box-girder road bridges based on sustainable multi-objective criteria, Tesis doctoral, Universitat Politècnica de València, 2016.

La barca de Lambot, el «Antecessor» del hormigón armado

Lambot
Barca de Lambot

Seguimos con este post otro anterior en el que nos preguntábamos por el origen del cemento artificial. Aquí vamos a dedicar unos minutos a recordar el origen del hormigón armado. Como suele suceder, siempre existe un pionero que se adelanta a su tiempo y un empresario que pone en marcha el negocio. Aquí los dos personajes serán Lambot y Monier, ambos franceses.

La Exposición Universal de Paris de 1855 trajo consigo la presentación de una barca de carcasa metálica recubierto por un hormigón de cal hidráulica. Tenía 4 m de largo, 1.30 m de ancho y un espesor de sólo 4 cm. Este invento se construyó unos años antes, en 1848, por un francés llamado Jean-Louis Lambot (1814-1887) con la idea de utilizarlo en un lago existente de su propiedad en Miraval, al sur de Francia. Lambot se dedicó a la agricultura en la casa de su familia y en 1845 ya hizo un depósito y unas cajas de naranjas con malla recubierta de cemento y otros elementos para mobiliaria de jardín. No pasó de ser una anécdota, pero fue la primera vez que se aplicaron armaduras o flejes de hierro embebidos en el hormigón para intentar subsanar la escasa resistencia a la tracción del hormigón. Con todo, lo que realmente quería nuestro inventor era una malla de almabres trenzados que sirviera de estructura a sus creaciones, aunque se le ocurrió utilizar el cemento -material de moda- como recubrimiento para darle forma, impermeabilidad y rigidez. A este material le llamó «ferciment«, y desde luego, fue el «homo antecessor» del hormigón armado que hoy día conocemos. Continue reading «La barca de Lambot, el «Antecessor» del hormigón armado»

Encofrados deslizantes

Figura 1. Encofrado deslizante

Los encofrados deslizantes (slip form, en inglés) consisten en un molde de poca altura, capaz de configurar una sección de hormigón vertida en él de forma constante y a la misma velocidad que se eleva dicho molde.

Este se cuelga de unos marcos o caballetes de madera o metal a una serie de dispositivos de elevación soportados por barras metálicas o por otros elementos que se apoyan sobre los cimientos o sobre el hormigón endurecido. El hormigón se vierte en el encofrado y, a medida que se endurece, este se va levantando progresivamente, mientras el encofrado es arrastrado por los dispositivos de elevación de los que está colgado. Se trata de un sistema de encofrado independiente que requiere poco tiempo de grúa durante la construcción.

Los encofrados deslizantes se utilizan preferentemente en obras de gran altura, con sección constante o que varía ligeramente con la altura y con espesores también variables, como ascensores, escaleras, torres, etc. Hoy en día es posible realizar variaciones importantes en el espesor de la sección, aunque ello supone cierta dificultad añadida. En silos y estructuras que así lo permitan, suele utilizarse una grúa torre para hormigonar. Su utilización se ha extendido a estructuras inclinadas complejas y a estructuras compuestas combinables con elementos prefabricados.

El vertido del hormigón, el montaje de las armaduras, de los marcos de puertas y ventanas, de los moldes para crear aberturas, etc., se realiza conforme se eleva el encofrado, a partir de una plataforma de trabajo situada a la altura del borde superior. De esta plataforma se cuelgan, a una altura de 3 o 4 m, una o dos plataformas inferiores, desde las cuales se vigila la calidad del vertido del hormigón. El encofrado deslizante se eleva continuamente a una velocidad de entre 5 y 30 cm por hora, según el endurecimiento del hormigón, para garantizar una cadena tecnológica.

El sistema es rápido, ya que está fuertemente industrializado, pero tiene un alto coste de primera instalación, por lo que solo es rentable con alturas muy importantes (en pilas se prefieren alturas por encima de 70 m) o con alturas menores si el número de piezas que se van a deslizar en la misma obra es muy significativo. El encofrado se puede retirar entre 4 y 12 horas después de colocar el hormigón. El trabajo no se debe interrumpir, aunque es posible adoptando las medidas apropiadas, por lo que se necesitan dos o tres turnos. Esto significa que la construcción puede elevarse entre 1,5 y 6 m al día.

Por tanto, cuando se usa un encofrado deslizante, los procesos de armado, encofrado, hormigonado y desencofrado se ejecutan de forma simultánea y continua. La forma de elevar el molde, que al principio era manual, ahora se efectúa de forma mecánica mediante sistemas hidráulicos, con un ascenso automático y a la velocidad deseada. Existen dos tipos de encofrados deslizantes: los empleados para obras en vertical (silos, pozos, chimeneas, pilas, etc.) y los destinados a obras en horizontal (canales, etc.).

Normalmente, el sistema de encofrado cuenta con tres plataformas. La plataforma superior actúa como área de almacenamiento y distribución, mientras que la plataforma intermedia, situada por encima del nivel de hormigón vertido, es la zona principal de trabajo. Por último, la plataforma inferior permite el acabado del hormigón.

La secuencia básica de construcción utilizando este encofrado es la siguiente:

  1. Se ensamblan el encofrado y la plataforma de acceso en el suelo.
  2. El ensamblaje se eleva mediante gatos hidráulicos.
  3. A medida que el encofrado se eleva continuamente, se requiere un suministro constante de hormigón y armaduras hasta que la operación esté finalizada.
  4. Al culminar la operación, el encofrado se retira utilizando una grúa.

Este sistema se empezó a emplear en Estados Unidos en 1903 y en Europa en 1924 para la construcción de silos. Sin embargo, pronto se empezó a utilizar en otros tipos de obras, como pilas de puente, depósitos elevados de agua o faros. En España, las primeras realizaciones fueron en silos de grano a finales de los años cuarenta del siglo pasado.

En España destaca la realización con este método de la chimenea de la central térmica de Puentes de García Rodríguez (propiedad de ENDESA) que con una altura de 356 m y un diámetro de 36 m en la base (espesor de 1,25 m) y de 18 m en coronación (espesor de 0,25 m). Esta chimenea (Endesa Termic), que comenzó a construirse en 1972 y cuyo funcionamiento empezó en 1976, fue realizada por Entrecanales y Tavora S.A., fue en su momento la más alta de Europa y la tercera del mundo (ver nota a pie de página).

Figura 2. Endesa Termic, chimenea de la central térmica de Puentes de García Rodríguez. Wikipedia

Ventajas del sistema:

a) Se realizan de forma simultánea varias operaciones, que en otros métodos deben hacerse de forma sucesiva, lo que supone una reducción del plazo de ejecución

b) Se suprimen tiempos muertos y cuellos de botella en las operaciones

c) Se consigue una gran velocidad de ejecución (hasta 6 m/día), con una muy buena calidad de obra

d) Se logra un gran número de reutilizaciones de los paneles

e) Es posible la construcción de obras de gran altura sin andamiajes, aplicando sistemas de elevación para personal y materiales

f) Economías significativas de mano de obra, al mecanizarse gran parte de las operaciones

g) Continuidad en la ejecución, incluso en tiempo frío, tomando las medidas que garanticen el endurecimiento del hormigón

h) Muy buen acabado de obra, debido al monolitismo, sin juntas frías, y a la uniformidad

Figura 3. Esquema de encofrado deslizante

Condiciones de aplicación:

En contrapartida a las ventajas anteriores, el sistema exige:

a) Estudio y redacción de todo un proyecto de encofrado mecanizado por técnicos competentes

b) La ejecución de las obras debería ser dirigida por técnicos que hayan aplicado ya el método

c) Organización perfecta de la ejecución, con personal muy especializado, que asegure el trabajo las 24 horas

d) Fabricación y montaje de encofrados con gran exactitud, con tolerancias muy estrictas

Figura 4. Esquema de encofrado deslizante

El principio de funcionamiento:

La unidad fundamental del equipo son los gatos de trepa. Son huecos por donde pasa un tubo de acero que es la barra de trepa, que se apoya en la cimentación. El gato dispone de dos juegos de cuñas dentadas que se clavan alternativamente en la barra y hacen que el gato ascienda a lo largo de esta. Del gato cuelgan dos vigas de acero por medio de una transversal que forman lo que se denomina normalmente «yugo» o «caballete». De los yugos se suspende el encofrado y el resto de estructuras, andamios y plataformas necesarias para las tareas de ferralla, hormigonado, etc., así como los mecanismos de reducción de diámetro y espesor. Los procedimientos de hormigonado varían en función del tipo de estructura. En estructuras muy altas, como chimeneas o torres de televisión, lo más habitual es colocar un ascensor en el centro, suspendido de unas estructuras radiales y guiado mediante unos cables tensados. En él sube una tolva de hormigón y, una vez retirada esta, sirve también para el ascenso de ferralla y del personal. La vibración es normalmente con aguja.

Figura 5. Imagen del yugo en el encofrado deslizante

 Elementos de un sistema de encofrado deslizante vertical:

a) Paneles: son los tableros del encofrado propiamente dicho

b) Caballetes: para arrastrar los paneles, a los que se anclan

c) Barras de apoyo: sobre las que se transmite el esfuerzo de elevación

d) Dispositivo de elevación: normalmente gatos o crics, actúan sobre los caballetes para elevar los paneles apoyándose en las barras

e) Plataformas de trabajo: de acceso a los diversos puntos de trabajo y control

f) Redes de las diferentes instalaciones: necesarias para el funcionamiento del encofrado

Figura 6. Sección y elementos de un encofrado deslizante

A continuación dejo algunos vídeos donde se puede comprobar el funcionamiento del sistema.

Referencias:

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

_________________________________________________________________

Nota: Para la construcción de la chimenea se utilizó una torre colgada de 120 t, con gatos de trepa de 40 m de altura, de la que se atirantaban los soportes. El problema radicó en desmontar esta torre una vez finalizada la operación. Para ello, según me comenta Juan Manuel Lázaro (responsable del Departamento de Obras Singulares de Entrecanales y Tavora en aquel momento), se empleó un puente Bailey de 18 m, colgado por medio de barras Dywidag de dos pórticos apoyados sobre el fuste de hormigón sobre el que se apoyó la torre. Esta maniobra fue idea de Javier Urquijo Grijalba.

Hidrodemolición

La hidrodemolición es una técnica de demolición y extracción del hormigón que consiste en el uso de agua a alta presión. Se trata de extraer el hormigón de estructuras tales como puentes, túneles, etc. Se utiliza además para la reparación y el acondicionamiento de las estructuras dañadas.

La porosidad del hormigón permite que un chorro de agua a presión sea capaz de romperlo.  A diferencia de otros métodos, la hidrodemolición no genera microfisuras ni el despegue de las armaduras del interior de la estructura, es decir, queda una superficie rugosa que favorece claramente la adherencia ante cualquier revestimiento posterior. Las armaduras, además, quedan libre de óxido y preparadas para su protección posterior.

El rendimiento de esta técnica alcanza un valor promedio de un metro cúbico por hora, variable en función del tipo de máquina empleada. Estas máquinas cuentan con motores diésel de unos 500 caballos de vapor que proporcionan al agua una presión de unos 1.500 bares, a un caudal de unos 200 litros por minuto. Variando el tiempo que el hormigón esté expuesto al chorro de agua se conseguirá una mayor o menor profundidad de demolición. En comparación con otros métodos tradicionales de demolición del hormigón, como el uso de martillos, supone un rendimiento unas veinte veces mayor. Es además la técnica menos agresiva con el medio ambiente, aunque el residuo que genera es una suspensión agua-hormigón.

Os paso a continuación algunos vídeos al respecto. Espero que os guste.

Aportaciones al Congreso sobre Optimización de Estructuras HPSM/OPTI 2016, Siena (Italia)

200x250_hpsm16Los días 19, 20 y 21 de septiembre de 2016 se celebra en Siena (Italia) uno de los congresos más importantes sobre optimización de estructuras: «The 2016 International Conference on High Performance and Optimum Design of Structures and Materials HPSM/OPTI 2016«. Participo en dicho congreso tanto en su Comité Científico como la aportación de tres comunicaciones. A continuación os paso los resúmenes de dichas comunicaciones.

MARTÍ, J.V.; ALCALÁ, J.; GARCÍA-SEGURA, T.; YEPES, V.  (2016). Heuristic design of precast-prestressed concrete U-beam and post-tensioned cast-in-place concrete slab road bridges.

Abstract: This paper proposes simulated annealing and threshold accepting procedures for the automatic design of two different bridge types. Both cases are prestressed concrete road bridge decks typically used in public road construction. Simulated annealing is first applied to a precast beam of 30-30 meters of longitudinal spans and 12.00 m of width. The beam has a double U-shape cross-section and a beam spacing of 6 m. This problem involves 59 discrete design variables for the geometry of the beam and the slab, concrete grade, reinforcing steel and prestressing steel. The simulated annealing method indicates savings of about 5% with respect to a traditional design. The second bridge case is a 20-36-20 m post-tensioned cast-in-place concrete slab road bridge deck. This example needs 33 discrete variables to define the complete structure. The threshold accepting method is used for the optimization. Our findings indicate savings of about 7.5% with respect to the design based on experience. Finally, the results show that heuristic optimization provides other options to reduce the design costs of real prestressed bridge decks.

Keywords:  precast-prestressed concrete, post-tensioned cast-in-place, U-shape cross-section, slab deck, heuristic optimization

GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J.  (2016). Computer-Support Tool for Automatically Optimize Bridges.

Abstract:  In bridge design, many variables like material grades, cross-sectional dimensions, passive and pre-stressing steel need to be modeled to evaluate the structural performance. Efficiency gains are intended while satisfying the serviceability and ultimate limit states imposed by the structural code. In this paper, a computer-support tool is presented to analyze continuous post-tensioned concrete (PSC) box-girder road bridges, to minimize the cost, and to provide the optimum design variables. The program encompasses six modules to perform the optimization process, the finite-element analysis and the limit states verification. The methodology is defined and applied to a case study. A harmony search algorithm optimizes 32 variables that define a three-span PSC box-girder bridge located in a coastal region. However, the same procedure could be implemented to optimize any structure. This tool enables one to define the fixed parameters and the variables that are optimized by the heuristic algorithm. Moreover, the output provides useful rules to guide engineers in designing PSC box-girder road bridges.

Keywords:  post-tensioned concrete; computer-support tool; box-girder bridges; harmony search

YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2016). Design optimization of precast-prestressed concrete road bridges with steel fiber-reinforcement by a hybrid evolutionary algorithm.

Abstract: In this paper, the influence of steel fiber-reinforcement when designing precast-prestressed concrete road bridges with a double U-shape cross-section is studied through heuristic optimization. A hybrid evolutionary algorithm (EA) combining a genetic algorithm (GA) with variable-depth neighborhood search (VDNS) is formulated to minimize the economic cost and CO2 emissions, while imposing constraints on all the relevant limit states. The case study proposed is a 30-m span-length with a deck width of 12 m. The problem involved 41 discrete design variables. The algorithm requires the initial calibration. Moreover, the heuristic is run nine times so as to obtain statistical information about the minimum, average and deviation of the results. The evolution of the objective function during the optimization procedure is highlighted. Findings show that heuristic optimization is a forthcoming option for the design of real-life prestressed structures. This paper provides useful knowledge that could offer a better understanding of the steel fiber-reinforcement in U-beam road bridges.

Keywords:  steel fiber-reinforcement, precast-prestressed concrete, U-shape cross-section, hybrid evolutionary algorithm

 

¿Las hormigas nos pueden enseñar a optimizar puentes?

A veces la Naturaleza nos sorprende cada día más. ¿Es posible que el comportamiento de las hormigas pueda servirnos para optimizar estructuras complejas, como por ejemplo un puente? Pues vamos a ver que sí. Este post es continuación de otros anteriores donde hablamos de la posibilidad de optimizar estructuras de hormigón. La optimización por colonia de hormigas (ant colony optimization) va a ser una metaheurística que nos va a permitir realizar este tipo de operaciones. A continuación vamos a contar los fundamentos básicos y en las referencias os dejo, incluso, algunos artículos donde hemos podido utilizar esta técnica de forma exitosa.

Colorni, Dorigo y Maniezzo (1991) sugirieron la idea de imitar el comportamiento de los insectos para encontrar soluciones a los problemas de optimización combinatoria. El principio de la metaheurística denominada como “Ant System Optimization, ACO” se basa en el comportamiento colectivo de las hormigas en la búsqueda de alimentos para su subsistencia, que son capaces de encontrar el camino más corto entre una fuente de comida y su hormiguero. Primero las hormigas exploran el entorno de su hormiguero de forma aleatoria. Tan pronto como un individuo encuentra una fuente de comida, evalúa su cantidad y calidad y transporta un poco al hormiguero. Durante el regreso, la hormiga deja por el camino una señal odorífera, depositando una sustancia denominada feromona, para que las demás puedan seguirla. Después de un tiempo, el camino hacia el alimento se indicará por un rastro oloroso que crece con el número de hormigas que pasen por él, y que va desapareciendo en caso contrario. El resultado final es la optimización del trabajo de todo el hormiguero en su búsqueda de comida.

En la Figura se muestra cómo las hormigas encuentran el camino más corto. En a) las hormigas deben decidir un camino; en b) se toma uno al azar; en c), dado que la velocidad de una hormiga se considera aproximadamente constante, las que llegan antes vuelven eligiendo el camino con más acumulación de feromona. En d), se circula por el camino más corto, desapareciendo por evaporación el rastro en el camino más largo.

Las hormigas y el camino más corto

La analogía a una metaheurística de optimización puede establecerse de la siguiente forma:

  • La búsqueda de alimento por las hormigas es equivalente a la exploración de soluciones factibles de un problema combinatorio.
  • La cantidad de alimento hallada en un lugar es similar al valor de la función objetivo.
  • El rastro de feromona es la memoria adaptativa del método.

Un esquema básico de la metaheurística sería el siguiente:

  1. Iniciar un rastro de feromona.
  2. Mientras no se encuentre un criterio de parada:
    1. Para cada hormiga artificial, construir una nueva solución usando el rastro actual y evaluar la solución que está siendo construida.
    2. Actualizar el rastro de feromona.

El componente más importante de un Sistema de Hormigas es la gestión de las huellas odoríferas. En su versión estándar, los rastros se usan en relación con la función objetivo para construir nuevas soluciones. Una vez se ha construido, éstos se actualizan de la siguiente forma: primero todos los rastros se debilitan para simular la evaporación del feronoma; después aquellos que corresponden a los elementos que se han empleado para la construcción, se refuerzan teniendo en cuenta la calidad de la solución.

El siguiente vídeo os puede ayudar a comprender el comportamiento de las hormigas. Espero que os guste.

Referencias:

COLORNI, A.; DORIGO, M.; MANIEZZO, V. (1991). Distributed optimization by ant colonies, in VARELA, F.J.; BOURGINE, P. (eds.) Proceedings of the First European Conference on Artificial Life (ECAL-91). The MIT Press: Cambrige, MA, 134-142.

MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; ALCALÁ, J. (2011). Design of tall bridge piers by ant colony optimization. Engineering Structures, 33:2320-2329.

MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2010). Heuristic Optimization of RC Bridge Piers with Rectangular Hollow Sections. Computers & Structures, 88: 375-386. ISSN: 0045-7949.  (link)

YEPES, V. (2003). Apuntes de optimización heurística en ingeniería. Editorial de la Universidad Politécnica de Valencia. Ref. 2003.249. Valencia, 266 pp. Depósito Legal: V-2720-2003.

Hacia la sostenibilidad en la obra civil con soluciones prefabricadas de hormigón (y IV)

UNA PRIMERA APROXIMACIÓN HACIA LA SOSTENIBILIDAD EN LA OBRA CIVIL CON SOLUCIONES PREFABRICADAS DE HORMIGÓN (y IV)

Alejandro López-Vidal (ANDECE) y Víctor Yepes (Universitat Politècnica de València)

Próximos retos de la industria del prefabricado de hormigón

ala014La propia industria reconoce que no sólo tiene una responsabilidad para mejorar su comportamiento por la creciente demanda de soluciones sostenibles, sino que parte de su competitividad futura crecerá si es capaz de sacar provecho del potencial inherente que tiene el propio concepto de construcción industrializada con elementos prefabricados de hormigón, tal y como hemos ido destacando anteriormente, algo que cada vez es más apreciado por proyectistas e ingenieros, promotores, empresas constructoras, compañías aseguradoras y en general, los usuarios finales (que al fin y al cabo, acabamos siendo todos).

Una de las aparentes desventajas de los productos de hormigón es su contenido en cemento, y más en particular la cantidad de Clinker incorporada, causante de una parte importante de las emisiones globales de CO2. De esta forma, las industrias cementeras y del prefabricado deben invertir enormes esfuerzos en optimizar el uso del cemento, mejorando la hidratación del mismo y ajustando la proporción del mismo para reducir el CO2 embebido. El uso de adiciones como las escorias granuladas de altos hornos, las cenizas volantes y el humo de sílice está en pleno crecimiento, lo que supone una reducción de las emisiones de CO2 que conllevan con respecto al cemento Portland [9].

La sostenibilidad en las plantas de prefabricados se traslada a la eficiencia de los recursos, mediante la reducción de residuos o a través de la certificación bajo normas como la ISO 14001 y EMAS. Las nuevas fábricas suelen incorporar grandes sistemas de reciclado para la reutilización del agua sobrante del proceso productivo, o cualquier otro material de desecho. Nada de esto sería posible sin la aportación de una capacitación humana de gran desempeño y que se implique para el éxito de la empresa en este enfoque sostenible, que en muchos casos acaban siendo el motor de la introducción de nuevas técnicas de ahorro de energía, iniciativas de reciclaje e incluso programas con la comunidad local.

Debe destacarse por encima de todas el plan estratégico “Precast Sustainability Strategy and Charter” de la Asociación Británica de Prefabricados de Hormigón [10]. Firmado por primera vez en 2007 por 17 empresas, está incluido ya hoy dentro del programa de acción “Raising the Bar” y al que todas las compañías asociadas están comprometidas a cumplir. Este plan anima a dichas empresas a ir más allá de lo que exige la legislación vigente, de tal forma que lleven a cabo acciones voluntarias que permitan una mayor sostenibilidad en los productos y operaciones que realizan. Para cumplir estos retos, se han desarrollado un conjunto de principios sostenibles adaptados a la dinámica propia de la industria. El primer periodo se enmarcó entre 2008 y 2012, en el que 12 de los 14 objetivos fueron alcanzados. En 2013, el Consejo Británico del Prefabricado aprobó una nueva batería de medidas a cumplir en el año 2020, tomando como base algunos datos de 2012.

  • 10% de reducción de la energía total utilizada en la fabricación
  • 20% de reducción de las emisiones de CO2
  • 10% de reducción de los residuos en las fábricas
  • Reducir a menos de 0,5 kg/Tn los residuos de fábrica a enviar a vertedero
  • Incremento al 25% de la proporción de adiciones alternativas al cemento
  • Incremento al 25% de la proporción de áridos reciclados o secundarios
  • 20% de reducción del consumo total de agua
  • Reducción a la mita del riesgo de accidentes laborales entre 2015 y 2020
  • Ampliar el peso total fabricado, así como el número de centros productivos, certificados bajo algún sistema de gestión medioambiental (p.ej. ISO 14001) al 95%. Mismo objetivo para la certificación bajo algún sistema de gestión de calidad (p.ej. ISO 9001) o cubiertos por alguna norma de uso de fuentes responsables
  • Reducción de condenas por vertidos a la atmósfera y al agua a cero
  • Mejorar la captación de datos de transporte en 2015 (se fijará un Nuevo objetivo en 2016)
  • Incrementar el número de empleados cubiertos por un sistema de gestión certificado (p.ej. ISO 9001/ ISO 14001/ OHSAS 18001) al 100%
  • Incrementar el número de empleados cubiertos por el programa de formación y cualificación de la MPA al 100%
  • Mantenimiento del 100% de centros productivos que cuentan con programas de apoyo a la comunidad local

858802_331527263630484_1482261224_o

Otro asunto importante a tratar será el cumplimiento de las empresas de prefabricados con el nuevo requisito básico “Uso sostenible de los recursos naturales” que se incluyó en el Reglamento UE 305/2011 de Productos de Construcción [11]. Las obras de construcción deberán proyectarse, construirse y demolerse de tal forma que la utilización de los recursos naturales sea sostenible y garantice en particular:

  • La reutilización y la reciclabilidad de las obras de construcción, sus materiales y sus partes tras la demolición;
  • La durabilidad de las obras de construcción;
  • La utilización de materias primas y materiales secundarios en las obras de construcción que sean compatibles desde el punto de vista medioambiental.

La industria está analizando cómo presentar de la forma más clara y creíble los datos para los análisis de ciclo de vida (ACV), mediante el empleo de declaraciones ambientales de producto verificadas por tercera parte que cumplan con las nuevas normativas, como es el caso europeo. Esta información además resultará de interés porque podrá ir incluida en los sistemas BIM (Modelo de información de la Construcción). Esto permitirá a que los técnicos alcancen durante el desarrollo del proyecto un impacto reducido de los indicadores de la sostenibilidad tanto en edificios como en infraestructuras, todo ello basado en datos fiables que se ajusten a la realidad a lo largo de su vida útil. Esto además servirá para que los fabricantes optimicen sus procesos de producción, a partir de una mejora en la eficiencia de los recursos (materias primas, agua y energía), la minimización de residuos e incluso un incentivo para el empleo de materiales y fuentes de energía alternativos

Esta preocupación medioambiental (sostenible) debería ir convirtiéndose en un estímulo creciente en cualquier empresa. Este enfoque ya se está implementando en las tomas de decisiones de las compañías, motivado especialmente por la mayor apuesta de las administraciones públicas, como puede ser el caso de las políticas y procedimientos de compra verde que ya están instaurados en países como Suecia o Noruega, o ha sucedido más recientemente en el País Vasco [12], que promueve un mayor uso de elementos prefabricados como vía para la no generación de residuos.

Referencias

[1] BREEAM, Building Research Establishment Environmental Assessment

[2] LEED, Leadership in Energy and Environmental Design

[3] Draft ISO 21931-2 Sustainability in building construction — Framework for methods of assessment of the sustainability performance of construction works. Part 2: Civil Engineering Works

[4] Draft EN 15643-5 Sustainability of construction works – Sustainability assessment of buildings and civil engineering works – part 5: framework on specific principles and requirement for civil engineering works

[5] ISO 21930:2007 Sustainability in building construction – Environmental declaration of building products

[6] UNE-EN 15804:2012+A1:2014  Sostenibilidad en la construcción. Declaraciones ambientales de producto. Reglas de categoría de producto básicas para productos de construcción.

[7] «EPD Arroyo Valchano railway bridge». Acciona Infraestructuras, EPD. 2013

[8] YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49:123-134

[9] «Little Green Book of Concrete – sustainable construction with precast concrete». British Precast, 2008

[10] “Precast Sustainability Strategy and Charter”. British Precast Concrete Association, 2013

[11] Reglamento (UE) No 305/2011 del Parlamento Europeo y del Consejo por el que se establecen condiciones armonizadas para la comercialización de productos de construcción y se deroga la Directiva 89/106/CEE del Consejo

[12] «Manual práctico de compra y contratación pública verde. Modelos y ejemplos para su implantación por la administración pública vasca». ihobe. 2011

 

Sobre los autores:

Alejandro López-Vidal. Nacido en 1978. Ingeniero Industrial por la Universidad de León. Ha desempeñado diversos cargos en ANDECE (Asociación Española de la Industria del Prefabricado de Hormigón) desde 2008, pasando a ocupar el puesto de Director Técnico en 2013. Es miembro de varias organizaciones relacionadas con la industria del prefabricado de hormigón, como son las Comisiones Técnica y Medioambiental de BIBM, o siendo el delegado español en el Comité de Normalización Europeo CEN/TC 229. Es Coordinador del Primer Máster Internacional sobre Construcción con Prefabricados de Hormigón en lengua hispana. Como aspectos interesantes relativos a la construcción sostenible, es secretario técnico del comité espejo español del CEN/TC 350 para los temas de sostenibilidad en la edificación, y colabora actualmente con el Grupo de Trabajo 6.15 de la FIB que está desarrollando un nuevo documento sobre la sostenibilidad de las estructuras prefabricadas.

Víctor Yepes. Nacido en 1964. Doctor Ingeniero de Caminos, Canales y Puertos. Catedrático Acreditado por ANECA y Profesor Titular en la Universitat Politècnica de València. Actualmente está implicado en varios proyectos de investigación relacionados con la optimización y la evaluación del ciclo de vida de las estructuras de hormigón. Imparte clases sobre métodos de construcción, innovación y gestión de la calidad. Es además director del Máster en Ingeniería del Hormigón. También es investigador senior en el Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y dirige el Proyecto de investigación BRIDLIFE: “Toma de decisiones en la gestión del ciclo de vida de puentes pretensados en términos de eficiencia social y medioambiental, bajo presupuestos ajustados”.

 

Hacia la sostenibilidad en la obra civil con soluciones prefabricadas de hormigón (III)

UNA PRIMERA APROXIMACIÓN HACIA LA SOSTENIBILIDAD EN LA OBRA CIVIL CON SOLUCIONES PREFABRICADAS DE HORMIGÓN (III)

Alejandro López-Vidal (ANDECE) y Víctor Yepes (Universitat Politècnica de València)

 

Casos prácticos

Figura 4.- Construcción de un puente en el mar mediante el empleo de cajones prefabricados de hormigón para la formación del tablero
Figura 4.- Construcción de un puente en el mar mediante el empleo de cajones prefabricados de hormigón para la formación del tablero

Deben reseñarse los casos de dos compañías internacionales españolas como FCC y ACCIONA. Por parte de FCC, se ha desarrollado una metodología propia de evaluación de la sostenibilidad en obra civil denominada SAMCEW que tiene en cuenta la experiencia adquirida por la aplicación de su propio sistema interno de gestión de la sostenibilidad durante los últimos años. Se trata de una metodología de análisis flexible y ajustable en función del tipo de obra civil, la ubicación, las características del proyecto o de la etapa evaluada, que implicará que ciertos aspectos tengan mayor impacto que otros. En cuanto a ACCIONA, ha llevado a cabo iniciativas interesantes en materia de cuantificar el grado de sostenibilidad de algunas de sus obras, siendo pionera a nivel mundial en la obtención de declaraciones ambientales en infraestructuras, como son los casos de las evaluaciones realizadas sobre el viaducto ferroviario “Arroyo Valchano” [7] en la línea de AVE Madrid-Galicia y que incluye un análisis “cuna a puerta” de todos los materiales utilizados, o un tramo de carretera de la N-340 en Elche (Alicante).

 

Descripción del puente de ferrocarril “Arroyo Valchano”

El puente aloja una doble vía de ferrocarril que ha sido construida exclusivamente para el transporte de pasajeros. El tablero consta de vigas prefabricadas y una losa de hormigón hecha in situ, con la siguiente distribución de los vanos: 35 + 5×45 +35 = 295 m. La losa tiene un ancho de 14 m y tiene un espesor variable. La unidad funcional escogida es “1 m de puente”.

 

Límites del sistema y calidad de los datos

 

La EPD cubre solamente la estructura del Puente. El análisis del ciclo de vida se refiere a la producción de los distintos materiales utilizados, el transporte de éstos a la obra y la fase de ejecución del puente. No se han considerado el resto de fases como la etapa de servicio del puente o las tareas de mantenimiento.

Comportamiento ambiental

Los datos genéricos seleccionados para la producción de las materias primas y los combustibles se tomaron de la base de datos de PE utilizando el programa GaBi 6. Los resultados se indicaron para una vida útil de servicio del puente de 60 años.

Figura 3.- Categorías de impacto para la construcción de 1 m del puente “Arroyo Valchano”
Figura 3.- Categorías de impacto para la construcción de 1 m del puente “Arroyo Valchano”

 

 

 

A nivel de investigación, debe destacarse el proyecto “Optimización del coste y las emisiones de CO2 de los puentes de carretera con vigas artesas prefabricadas de hormigón pretensado en U, mediante un algoritmo híbrido de optimización por enjambre de luciérnagas” [8].  Esta investigación describe una metodología para optimizar el coste y las emisiones de CO2 cuando se diseña el puente utilizando vigas prefabricadas pretensadas con sección transversal en forma de doble artesa. Para su finalización, el algoritmo utilizado (acrónimo en inglés, SAGSO) se utiliza combinando el efecto sinérgico de una búsqueda local con el recocido simulado (SA) y una búsqueda global con la optimización por enjambre de luciérnagas (GSO). La solución de la estructura del puente se define a partir de 40 variables, que incluyen la geometría, los tipos de materiales y las armaduras de la viga y de la losa. Respecto al material, se ha utilizado hormigón de alta resistencia así como hormigón autocompactante en la fabricación de las vigas. Los resultados obtenidos proporcionan una excelente guía a los ingenieros para el diseño de puentes prefabricados de hormigón pretensado. El análisis reveló además que por cada 1€ de ahorro, se reduce la emisión de 1,75 kg de CO2. Finalmente, el estudio paramétrico indico que las soluciones óptimas económicas conllevan resultados satisfactorios medioambientalmente hablando, y que difieren muy poco de la mejor solución posible si fuese analizada exclusivamente desde la perspectiva medioambiental.

Referencias

[1] BREEAM, Building Research Establishment Environmental Assessment

[2] LEED, Leadership in Energy and Environmental Design

[3] Draft ISO 21931-2 Sustainability in building construction — Framework for methods of assessment of the sustainability performance of construction works. Part 2: Civil Engineering Works

[4] Draft EN 15643-5 Sustainability of construction works – Sustainability assessment of buildings and civil engineering works – part 5: framework on specific principles and requirement for civil engineering works

[5] ISO 21930:2007 Sustainability in building construction – Environmental declaration of building products

[6] UNE-EN 15804:2012+A1:2014  Sostenibilidad en la construcción. Declaraciones ambientales de producto. Reglas de categoría de producto básicas para productos de construcción.

[7] «EPD Arroyo Valchano railway bridge». Acciona Infraestructuras, EPD. 2013

[8] YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49:123-134

[9] «Little Green Book of Concrete – sustainable construction with precast concrete». British Precast, 2008

[10] “Precast Sustainability Strategy and Charter”. British Precast Concrete Association, 2013

[11] Reglamento (UE) No 305/2011 del Parlamento Europeo y del Consejo por el que se establecen condiciones armonizadas para la comercialización de productos de construcción y se deroga la Directiva 89/106/CEE del Consejo

[12] «Manual práctico de compra y contratación pública verde. Modelos y ejemplos para su implantación por la administración pública vasca». ihobe. 2011

 

Sobre los autores:

Alejandro López-Vidal. Nacido en 1978. Ingeniero Industrial por la Universidad de León. Ha desempeñado diversos cargos en ANDECE (Asociación Española de la Industria del Prefabricado de Hormigón) desde 2008, pasando a ocupar el puesto de Director Técnico en 2013. Es miembro de varias organizaciones relacionadas con la industria del prefabricado de hormigón, como son las Comisiones Técnica y Medioambiental de BIBM, o siendo el delegado español en el Comité de Normalización Europeo CEN/TC 229. Es Coordinador del Primer Máster Internacional sobre Construcción con Prefabricados de Hormigón en lengua hispana. Como aspectos interesantes relativos a la construcción sostenible, es secretario técnico del comité espejo español del CEN/TC 350 para los temas de sostenibilidad en la edificación, y colabora actualmente con el Grupo de Trabajo 6.15 de la FIB que está desarrollando un nuevo documento sobre la sostenibilidad de las estructuras prefabricadas.

Víctor Yepes. Nacido en 1964. Doctor Ingeniero de Caminos, Canales y Puertos. Catedrático Acreditado por ANECA y Profesor Titular en la Universitat Politècnica de València. Actualmente está implicado en varios proyectos de investigación relacionados con la optimización y la evaluación del ciclo de vida de las estructuras de hormigón. Imparte clases sobre métodos de construcción, innovación y gestión de la calidad. Es además director del Máster en Ingeniería del Hormigón. También es investigador senior en el Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y dirige el Proyecto de investigación BRIDLIFE: “Toma de decisiones en la gestión del ciclo de vida de puentes pretensados en términos de eficiencia social y medioambiental, bajo presupuestos ajustados”.

 

 

Hacia la sostenibilidad en la obra civil con soluciones prefabricadas de hormigón (II)

UNA PRIMERA APROXIMACIÓN HACIA LA SOSTENIBILIDAD EN LA OBRA CIVIL CON SOLUCIONES PREFABRICADAS DE HORMIGÓN (II)

Alejandro López-Vidal (ANDECE) y Víctor Yepes (Universitat Politècnica de València)

 

Papel de las soluciones prefabricadas de hormigón para mejorar la sostenibilidad de las obras de ingeniería civil

ph_dinteles1Es evidente que hay una demanda creciente que exige soluciones constructivas que permitan alcanzar el desarrollo sostenible. En este contexto, la industria de los prefabricados de hormigón es cada vez más consciente de que debe establecer mecanismos para una mayor eficiencia en el uso de los recursos y de qué forma los productos puedan contribuir a lograr construcciones más ecológicas.

El concepto de obra civil incluye a un amplio número de proyectos, en los cuales los productos prefabricados de hormigón ofrecen un papel cada vez más relevante:

 

Campos de la obra civil Infraestructuras Elementos prefabricados de hormigón
Infraestructuras de procesos industriales Plantas de generación eléctrica Muros o cualquier otros elemento prefabricado estructural
Instalaciones para la distribución de electricidad, gas, agua, etc. Tubos, pozos de registro y cámaras de inspección, marcos
Agua y otros sistemas de tratamiento Depósitos de aguas residuales y fosas séticas, retenedores de grasas
Generación y suministro de energía Postes para aerogeneradores, líneas eléctricas, de telecomunicaciones, iluminación, etc.
Infraestructuras lineales Puentes Prelosas, vigas, pilas, estribos
Pasarelas Cualquier elemento es prefabricable
Carreteras Barreras de seguridad, losas de calzadas, paneles acústicos
Líneas de ferrocarril Traviesas, vía en placa
Tuneles Bóvedas, dovelas
Diques y otras construcciones fluviales Canales Losas y muros prefabricados
Defensas frente a inundaciones Sistemas de contención
Construcciones marítimas Puertos Pantalanes, pavimentos
Rompeolas Bloques macizos
Otras obras de ingeniería civil Public realm works Pavimentos, mobiliario urbano

 

Tabla 1.- Productos Prefabricados de hormigón para construcciones de obra civil, acorde con la clasificación del apartado 5 del borrador de la norma ISO 21931-2 [3]

Figura 2.- Traviesas y dovelas juegan un papel fundamental en la construcción de líneas de ferrocarril y túneles, como sucede actualmente en dos de las mayores obras que se están acometiendo, como son los nuevos túneles subterráneos que cruzan el Estrecho del Bósforo en Estambul (Turquía) y la nueva línea de Londres (Inglaterra).
Figura 2.- Traviesas y dovelas juegan un papel fundamental en la construcción de líneas de ferrocarril y túneles, como sucede actualmente en dos de las mayores obras que se están acometiendo, como son los nuevos túneles subterráneos que cruzan el Estrecho del Bósforo en Estambul (Turquía) y la nueva línea de Londres (Inglaterra).

El diseño sostenible de un edificio es diferente al que tiene una infraestructura. Mientras que en los edificios son esenciales los requisitos de resistencia al fuego, aislamiento acústico o eficiencia energética, las exigencias de comportamiento de la obra civil se mueven en otros caminos distintos. De hecho, hay una clara diferenciación en cuanto a la importancia de las etapas durante el ciclo de vida de la construcción. Mientras que en la edificación la fase de uso es la más importante, ya que es responsable de aproximadamente el 80% del impacto ambiental del ciclo completo, es durante la ejecución de la infraestructura cuando resultan los mayores impactos, incluso más allá que en la fase de servicio de la misma.

Algunos de los criterios asumidos como sostenibles ya eran parte intrínseca de los procesos de producción de elementos prefabricados de hormigón en las últimas décadas, como son el uso eficiente de materiales o la mejora motivada por el empleo de hormigones de alta resistencia, aunque cabe indicar que todavía existe un amplio potencial de crecimiento:

 

Características elementos prefabricados de hormigón Medioambiental Social Económica
Durabilidad (incremento de la vida útil) Soluciones eficaces a largo plazo suponen una preservación de los recursos naturales, una reducción de los impactos, ahorro de energía y una mejora del potencial de extracción de los recursos Una vida prolongada de las infraestructuras implica menores perturbaciones a los ciudadanos Los costes iniciales se amortizan en un periodo de tiempo más lagoMenor mantenimiento (reducción de costes)
Industrialización Construcción sin apenas residuosConstrucción en seco: los elementos Prefabricados llegan a obra justo para su colocación Seguridad laboral mejorada: menor riesgo de accidentes Devolución más rápida de créditos de financiación
Eficiencia de los recursos Reducción del consume de recursos naturales mediante el uso de materiales de desecho en los productos (p.ej. áridos reciclados procedentes de residuos de hormigón de la propia planta) Eliminación parcial de un problema global Uso mayor de materiales con propiedades mejores (p.ej. hormigones de alta resistencia/prestaciones, técnica del pretensado) que implican una optimización de la relación consumo de materiales/coste
Mayor uso de hormigones autocompactantes Reduce el consumo eléctrico La eliminación de las vibraciones implica unas condiciones en fábrica mucho más confortables y seguras
Origen de las materias primas Las redes de suministro locales suponen distancias planta-obra más cortas, con lo que la huella ambiental se reduceTodos los materiales proceden de fuentes naturales, y principalmente de origen inorgánico Los materiales están disponibles de forma local, mejorando la economía y el empleo en la zona
Carbonatación Reabsorción del CO2 de la atmósfera Eliminación parcial de un problema global
Fotocatálisis Disminución de los efectos de la contaminación del aire  (NOx, etc.) Reducción de enfermedades respiratorias

Tabla 2.- Algunas ventajas de los elementos prefabricados de hormigón para obras de ingeniería civil, analizadas desde los tres dimensiones de la sostenibilidad

Referencias

[1] BREEAM, Building Research Establishment Environmental Assessment

[2] LEED, Leadership in Energy and Environmental Design

[3] Draft ISO 21931-2 Sustainability in building construction — Framework for methods of assessment of the sustainability performance of construction works. Part 2: Civil Engineering Works

[4] Draft EN 15643-5 Sustainability of construction works – Sustainability assessment of buildings and civil engineering works – part 5: framework on specific principles and requirement for civil engineering works

[5] ISO 21930:2007 Sustainability in building construction – Environmental declaration of building products

[6] UNE-EN 15804:2012+A1:2014  Sostenibilidad en la construcción. Declaraciones ambientales de producto. Reglas de categoría de producto básicas para productos de construcción.

 

Sobre los autores:

Alejandro López-Vidal. Nacido en 1978. Ingeniero Industrial por la Universidad de León. Ha desempeñado diversos cargos en ANDECE (Asociación Española de la Industria del Prefabricado de Hormigón) desde 2008, pasando a ocupar el puesto de Director Técnico en 2013. Es miembro de varias organizaciones relacionadas con la industria del prefabricado de hormigón, como son las Comisiones Técnica y Medioambiental de BIBM, o siendo el delegado español en el Comité de Normalización Europeo CEN/TC 229. Es Coordinador del Primer Máster Internacional sobre Construcción con Prefabricados de Hormigón en lengua hispana. Como aspectos interesantes relativos a la construcción sostenible, es secretario técnico del comité espejo español del CEN/TC 350 para los temas de sostenibilidad en la edificación, y colabora actualmente con el Grupo de Trabajo 6.15 de la FIB que está desarrollando un nuevo documento sobre la sostenibilidad de las estructuras prefabricadas.

Víctor Yepes. Nacido en 1964. Doctor Ingeniero de Caminos, Canales y Puertos. Catedrático Acreditado por ANECA y Profesor Titular en la Universitat Politècnica de València. Actualmente está implicado en varios proyectos de investigación relacionados con la optimización y la evaluación del ciclo de vida de las estructuras de hormigón. Imparte clases sobre métodos de construcción, innovación y gestión de la calidad. Es además director del Máster en Ingeniería del Hormigón. También es investigador senior en el Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y dirige el Proyecto de investigación BRIDLIFE: “Toma de decisiones en la gestión del ciclo de vida de puentes pretensados en términos de eficiencia social y medioambiental, bajo presupuestos ajustados”.