Con motivo de los episodios de fuertes lluvias que está sufriendo el sureste de España (DANA, depresión aislada en niveles altos), traigo a colación una aportación personal que hice en su momento en la legislación reguladora de los campamentos de turismo de la Comunidad Valenciana. Esta normativa tuvo muy en cuenta la tragedia del camping de Biescas (Huesca) ocurrida el 7 de agosto de 1996, donde murieron 87 personas y 187 resultaron heridas. Saco este tema a la luz para resaltar la importancia de la intervención técnica y de los estudios necesarios para evitar este tipo de catástrofes. Nunca la ciencia, la técnica, la legislación y las emergencias se necesitan tanto unas de otras.
Los artículos que tienen que ver con el riesgo de inundación, en los que intervine directamente, fueron los siguientes:
Artículo 14. Cumplimiento general de la normativa
Todos los campings deberán cumplir y hacer cumplir las obligaciones que se deriven de las disposiciones vigentes en materia de accesos, accesibilidad, construcción y edificación, instalación y funcionamiento de maquinaria, sanidad, seguridad de instalaciones, medio ambiente, acústica, prevención de incendios forestales, seguridad pública y riesgo de inundación, así como cualquier otra disposición de carácter sectorial que les afecten.
Artículo 15. Sistema de seguridad y protección
Todos los campings deberán disponer de las medidas e instalaciones de prevención, protección y seguridad para casos de incendio, inundación u otras emergencias previstas en la normativa vigente en estas materias.
En particular, contarán:
1. Con un plan de emergencia y autoprotección, redactado por técnico competente y ajustado a las disposiciones vigentes, en el que se contemplen las diferentes hipótesis de emergencia y los planes de actuación para cada una de ellas, así como las condiciones de uso y mantenimiento de las instalaciones afectas al plan.
El plan de emergencia y autoprotección justificará, en todo caso, la hipótesis de riesgo de inundación de forma que, para un caudal asociado a un periodo de retorno mínimo de cien años, no se permitirá que el calado del agua supere los 0,80 metros, ni que la velocidad máxima del agua exceda los 0,50 m/seg. Asimismo, y para dicho caudal, se garantizarán las condiciones necesarias que permitan la evacuación rápida, completa y segura de las personas, indicándose expresamente el tiempo de evacuación requerido.
Artículo 35. Cumplimiento general de la normativa
Todas las áreas de pernocta en tránsito para autocaravanas deberán cumplir y hacer cumplir las obligaciones que se deriven de las disposiciones vigentes en materia de riesgo de inundación, accesibilidad, construcción y edificación, instalación y funcionamiento de maquinaria, sanidad, seguridad de instalaciones, medio ambiente y seguridad pública, así como cualquier otra disposición de carácter sectorial que les afecten.
Artículo 36. Sistema de seguridad y protección
Las áreas de pernocta en tránsito para autocaravanas deberán disponer de las medidas e instalaciones de prevención, protección y seguridad para casos de incendio, inundación u otras emergencias previstas en la normativa vigente en estas materias, tal y como indica el artículo 15 de este decreto.
Resulta evidente que este tipo de disposiciones no solo son necesarias en el ámbito de los campamentos de turismo, sino que son extrapolables a cualquier ámbito donde se ponga en riesgo a las personas. Asimismo resalto la importancia de la intervención técnica de profesionales competentes, con experiencia y bien formados. También es cierto que, este tipo de normativa, está sujeta a cambios y actualizaciones en función de las investigaciones y aportaciones técnicas y científicas que mejoren el estado de conocimiento actual.
Ayer 12 de septiembre de 2019 tuve la ocasión de participar como Presidente en el tribunal de la tesis doctoral de Andrés Coves Campos que se defendió en la Universidad de Alicante, titulada “Análisis de la durabilidad de la señalización vial horizontal atendiendo a su composición y posicionamiento en la calzada de carreteras secundarias en climas semiáridos cálidos”, dirigida por Salvador Ivorra Chorro y por Esther Perales Romero. Se le concedió la calificación de “Sobresaliente” por unanimidad. Debido al interés de la tesis, adjunto a continuación un resumen.
Resumen:
Las marcas viales constituyen la única guía óptica que en muchas ocasiones tienen los usuarios de la vía, su correcta aplicación y conservación nos puede llegar a determinar la gravedad de un accidente hasta el punto de poder llegar a evitarlo. Por tanto, el correcto mantenimiento y repintado de la señalización vial horizontal en las carreteras convencionales a nivel mundial y de la red viaria española en particular, la investigación en nuevas combinaciones de materiales y el estudio de su durabilidad dependiendo del posicionamiento que ocupa la marca vial en carretera, nos aportan, sin duda, un apoyo útil para progresar en la lucha contra la accidentalidad vial.
Por ese motivo, se ha investigado, no sólo la evolución temporal de las características fundamentales de la señalización vial horizontal como son: la visibilidad diurna, la visibilidad nocturna y la resistencia al deslizamiento de nuevas combinaciones de materiales de post-mezclado y materiales base, como es la pintura fosforescente; sino que, al mismo tiempo, se ha elaborado una relación y un estudio de la vida útil de la marca vial atendiendo a sus características fundamentales según la zona de la calzada que ocupa esa marca vial, estableciendo las pautas de comportamiento de las mismas y cuándo reemplazarlas por no cumplir con los criterios mínimos de aceptación, relacionando la sección de desgaste a cada una de las marcas viales que podemos encontrar en las carreteras convencionales de la red viaria española.
Para ello, se ha elaborado un ensayo de campo (TG1), en la carretera CV-904, con un total de 36 muestras, teniendo para cada sentido de circulación 18 combinaciones de materiales atendiendo a material base y material de post-mezclado (microesferas de vidrio, cargas antideslizantes no transparentes y grano de vidrio transparente), y a su sistema de aplicación (monocapa o bicapa).
Además, hemos ejecutado un segundo ensayo de campo (TG2), en la ronda interna de la propia Universidad de Alicante, donde, partiendo de los conocimientos obtenidos en el primer estudio, se han fabricado nuevas combinaciones de materiales incluyendo el material base, diferentes tipos de microesferas de vidrio y cargas antideslizantes como parte del material de post-mezclado, se ha añadido pintura con pigmentos fosforescentes para mejorar la visibilidad nocturna y barniz de recubrimiento premezclado con agregados antideslizantes para prolongar la vida útil de la marca vial, fabricando un total de 40 muestras analizadas en laboratorio.
No solo se han estudiado los resultados de los parámetros fundamentales de cada muestra, sino que nos hemos apoyado en la toma de fotografías in situ analizándolas cualitativamente, lo que nos ha ayudado a comprender su evolución y los resultados. Al mismo tiempo hemos tomado muestras de todas ellas para su observación en laboratorio.
Tras la comparativa entre la evolución de cada característica principal de las probetas y su análisis, hemos establecido los períodos de la vida útil de cada una de ellas según la zona de afección en la que están ubicadas atendiendo a la Norma 8.2-IC.
Cabe destacar que se ha dejado la línea de investigación relacionada con la interconexión entre el vehículo autónomo, la infraestructura viaria y la señalización vial horizontal abierta como principal futura línea de investigación.
La albañilería es el arte de construir edificios y obras en los que se emplean piedra, ladrillos, cal, etc., siendo el albañil el maestro u oficio de albañilería. Este oficio tiene una gran importancia en cualquier obra, y por ello, debe poseer una serie de conocimientos que le permitan ejercer su trabajo con la máxima autonomía, interpretar las órdenes de sus superiores, organizar el trabajo, realizar cálculos sencillos, así como interpretar los planos sobre los que realizar replanteos.
Cualquier tarea de albañilería, por sencilla que parezca, requiere de unas medidas de seguridad para evitar algún disgusto. En el desarrollo de este tipo de actividad, las personas se exponen a una serie de riesgos que a veces pasan desapercibidos o que no son suficientemente valorados, pero que en realidad entrañan peligros que pueden llegar a tener desenlaces desagradables. La información sobre ellos se puede consultar en numerosos enlaces en internet y existe una legislación precisa en cada país al respecto. Os dejo un vídeo explicativo que espero sea de interés.
Las nagolitas o ANFOS (del inglés: Ammonium Nitrate – Fuel Oil) son explosivos de tipo pulverulento compuestos por nitrato amónico en forma granular, al que se le ha añadido un combustible líquido. Se caracterizan por tener una baja potencia y velocidad de detonación debido a la inexistencia de nitroglicerina en su composición y por presentar, debido a su consistencia pulverulenta, una mala resistencia al agua. Debido a esta insensibilidad, generalmente deben ser iniciados con un explosivo multiplicador. Es necesario cebar fuertemente el barreno con detonador y cartucho de goma en fondo para producir su correcto funcionamiento, además su uso está contraindicado en barrenos con presencia de agua, a no ser que se use encartuchado. Sin embargo, presentan la importante ventaja de poder efectuar su carga de forma mecanizada con bastante seguridad durante su manipulación.
Debido a su consistencia pulverulenta, su aplicación en barrenos que la contengan está totalmente desaconsejada. Se utiliza bien sea introduciendo en los barrenos el granulado mediante aire comprimido o bien en su otra forma de presentación que es encartuchado. Por ello, se comercializan encartuchados o en sacos a granel de 25 Kg. Su aplicación más frecuente es como carga de columna en la voladura de rocas no demasiado duras y solo a cielo abierto; en labores subterráneas su empleo está desaconsejado debido a la alta toxicidad de sus humos residuales.
A partir de la nagolita, se han desarrollado otros explosivos como el alnafo o la naurita que son explosivos adecuados para la voladura de rocas semiduras y para la carga de barrenos con temperaturas elevadas en su interior. El ANFO también se suele mezclar con otros explosivos tales como hidrogeles o emulsiones para formar, en función del porcentaje de ANFO o ANFO Pesado (aproximadamente un 70% emulsión o hidrogel y 30% ANFO).
En la Tabla se resumen las características de los explosivos de este tipo.
Nombre comercial
(UEE)
Potencia relativa
(%)
Densidad encartuchado
(g/cm3)
Velocidad detonación
(m/s)
Energía específica
(Kgm/Kg)
Resistencia
al agua
Toxicidad
Aplicaciones
Nagolita
65
0’80
2.000
96.400
Mala
Muy alta
Voladuras de rocas Blandas y como carga de columna de los barrenos.
Alnafo
75
0’80
3.000
96.100
Mala
Alta
Voladuras de rocas semiduras y blandas.
Naurita
65
0’80
2.000
94.320
Mala
Alta
Diseñada para barrenos con temperaturas elevadas.
Tabla.— Características de las nagolitas o anfos
Referencias:
MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.
La Universitat Politècnica de València, en colaboración con la empresa Ingeoexpert, ha elaborado un Curso online sobre “Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación”. El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 50 horas de dedicación del estudiante. Empieza el 9 de septiembre de 2019 y termina el 21 de octubre de 2019. Hay plazas limitadas.
Os paso un vídeo explicativo y os doy algo de información tras el vídeo.
Este es un curso básico de construcción, cimentaciones y estructuras de contención en obras civiles y de edificación. Se trata de un curso que no requiere conocimientos previos especiales y está diseñado para que sea útil a un amplio abanico de profesionales con o sin experiencia, estudiantes de cualquier rama de la construcción, ya sea universitaria o de formación profesional. Además, el aprendizaje se ha escalonado de modo que el estudiante puede profundizar en aquellos aspectos que más les sea de interés mediante documentación complementaria y enlaces de internet a vídeos, catálogos, etc.
En este curso aprenderás las distintas tipologías y aplicabilidad de los cimientos y las estructuras de contención utilizados en obras de ingeniería civil y de edificación. El curso índice especialmente en la comprensión de los procedimientos constructivos y la maquinaria específica necesaria para la ejecución de los distintos tipos de cimentación (zapatas, losas de cimentación, pilotes, micropilotes, cajones, etc.) así como los distintos tipos de estructuras de contención (muros pantalla, pantallas de pilotes y micropilotes, tablestacas, entibaciones, muros, etc.). Es un curso de espectro amplio que incide especialmente en el conocimiento de la maquinaria y procesos constructivos, y por tanto, resulta de especial interés desarrollar el pensamiento crítico del estudiante en relación con la selección de las mejores soluciones constructivas para un problema determinado. El curso trata llenar el hueco que deja la bibliografía habitual donde los aspectos de proyecto, geotecnia, estructuras de hormigón, etc., oscurecen los aspectos puramente constructivos. Además, está diseñado para que el estudiante pueda ampliar por sí mismo la profundidad de los conocimientos adquiridos en función de su experiencia previa o sus objetivos personales o de empresa.
El contenido del curso está organizado en 20 unidades didácticas, que constituyen cada una de ellas una secuencia de aprendizaje completa. La dedicación aproximada para cada unidad se estima en 2-3 horas, en función del interés del estudiante para ampliar los temas con el material adicional. Además, al finalizar cada unidad didáctica, el estudiante afronta una batería de preguntas cuyo objetivo fundamental es afianzar los conceptos básicos y provocar la duda o el interés por aspectos determinados del tema abordado. Al final se han diseñado cuatro unidades didácticas adicionales cuyo objetivo fundamental consiste en afianzar los conocimientos adquiridos a través del desarrollo de casos prácticos, donde lo importante es desarrollar el espíritu crítico y la argumentación a la hora de decidir la conveniencia de un procedimiento constructivo. Por último, al finalizar el curso se realiza una batería de preguntas tipo test cuyo objetivo es conocer el aprovechamiento del curso, además de servir como herramienta de aprendizaje.
El curso está programado para una dedicación de 50 horas de dedicación por parte del estudiante. Se pretende un ritmo moderado, con una dedicación semanal de 6 a 10 horas, dependiendo de la profundidad de aprendizaje requerida por el estudiante, con una duración total de 6 semanas de aprendizaje.
Objetivos
Al finalizar el curso, los objetivos de aprendizaje básicos son los siguientes:
Comprender la utilidad y las limitaciones de las cimentaciones y estructuras de contenciónempleadas en la construcción de obras civiles y de edificación
Evaluar y seleccionar el mejor tipo de cimentación y estructura de contención necesario para una construcción en unas condiciones determinadas, considerando la economía, la seguridad y los aspectos medioambientales
Programa
– Unidad 1. Concepto y clasificación de cimentaciones
– Unidad 2. Cimentaciones superficiales. Parte 1
– Unidad 3. Cimentaciones superficiales. Parte 2
– Unidad 4. Cimentaciones por pozos y cajones
– Unidad 5. Conceptos fundamentales y clasificación de pilotes
– Unidad 6. Pilotes de desplazamiento prefabricados
– Unidad 7. Pilotes de desplazamiento hormigonados “in situ”
– Unidad 8. Pilotes perforados hormigonados “in situ”. Parte 1
– Unidad 9. Pilotes perforados hormigonados “in situ”. Parte 2
– Unidad 10. Equipos para la perforación de pilotes
– Unidad 11. Estructuras de contención de tierras. Muros
– Unidad 12. Pantallas de hormigón
– Unidad 13. Estabilidad de las excavaciones. Entibaciones.
– Unidad 14. Tablestacas y anclajes
– Unidad 15. Hinca de pilotes y tablestacas
– Unidad 16. Descabezado de pilotes y muros pantalla
– Unidad 17. Caso práctico 1
– Unidad 18. Caso práctico 2
– Unidad 19. Caso práctico 3 d
– Unidad 20. Cuestionario final del curso
Profesorado
Víctor Yepes Piqueras
Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente “cum laude”. Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València y profesor, entre otras, de las asignaturas de Procedimientos de Construcción en los grados de ingeniería civil y de obras públicas. Su experiencia profesional se ha desarrollado fundamentalmente en Dragados y Construcciones S.A. (1989-1992) como jefe de obra y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 5 proyectos de investigación competitivos. Ha publicado más de un centenar de artículos en revistas indexadas en el JCR. Autor de 8 libros, 22 apuntes docentes y más de 250 comunicaciones a congresos. Ha dirigido 14 tesis doctorales, con 4 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos. Tiene experiencia contrastada en cursos a distancia, destacando el curso MOOC denominado “Introducción a los encofrados y las cimbras en obra civil y edificación”, curso que ya ha tenido cuatro ediciones con más de 17000 estudiantes inscritos.
En la ejecución de los terraplenes son objeto de control los suelos utilizados, la extensión, la compactación y la geometría. La vigilancia de la compactación consistirá en la comprobación de que el producto final cumple las especificaciones. Ya vimos que no solo la densidad, sino otras condiciones como la deformación o el asiento máximo bajo carga pueden medir si se ha logrado o no dicho objetivo.
La medida del porcentaje de compactación, o lo que es lo mismo, de la densidad “in situ” del suelo, puede hacerse a través de la extracción de una muestra del terreno, o bien mediante el uso de aparatos nucleares, más rápidos y con menores errores debidos al operador.
Otros procedimientos suponen evaluar la deformabilidad del terreno, mediante el módulo de deformación o medidas de deflexiones del suelo al paso de cargas.
El control de calidad de esta unidad de obra puede realizarse mediante una comprobación del producto terminado, o bien por una verificación del proceso, teniendo ambos sistemas sus ventajas e inconvenientes.
Durante mucho tiempo, la filosofía subyacente en las relaciones cliente-proveedor se han basado en la desconfianza y las partes se consideraban adversarios. Resulta de interés lo que Juran y Gryna (1995) decían al respecto: “… algunos compradores veían a sus proveedores como criminales potenciales que podían tratar de que sus productos defectuosos pasaran la inspección al ser recibidos”.
En la actualidad, se va asumiendo la necesidad de que la relación entre compradores y proveedores -dirección técnica y contratista-, se base en el respeto mutuo y la cooperación, pues de esta forma se benefician las dos partes. El intercambio de información de todo tipo y la colaboración en la resolución de problemas son aspectos fundamentales en la consecución de componentes de calidad. En este sentido, el proveedor no solo suministra productos de calidad, sino que, además, facilita la información que evidencia que su Sistema de Calidad (por ejemplo, basado en ISO 9001) es eficiente. Con ello se garantiza y se asegura la calidad ganándose la confianza del comprador.
Control del producto terminado o de recepción
Es el clásico procedimiento contractual, en el cual sólo se comprueba la densidad final alcanzada en una serie de puntos. Se establecen lotes de control y el muestreo se hace de forma aleatoria. En este tipo de verificación, el constructor puede establecer el sistema de trabajo que considere adecuado, siempre que luego cumpla con las especificaciones.
El sistema está indicado cuando tanto los materiales como los métodos de compactación no son demasiado homogéneos. Ello suele coincidir con ritmos de obra de medios a bajos, permitiendo la realización de un número elevado de determinaciones de densidad.
Existen dos grandes grupos o tendencias en cuanto al control de calidad por “resultado” (remitimos a bibliografía específica la descripción de estos procedimientos de control de calidad):
1) Control por peso específico:
1.1.- Métodos directos:
1.1.1.- Clásicos: Arena, membrana, aceite, grandes catas, etc.
El PG3 resume en tres los ensayos de referencia, con las siguientes especificaciones:
Ensayo de compactación Proctor:
El Proyecto, o en su defecto el Director de las Obras, señalará, entre el Proctor normal (PN) o el Proctor modificado (PM), el ensayo a considerar como Proctor de referencia (PR). En caso de omisión se considerará como ensayo de referencia el PM.
En este sistema de control, se clasificarán los materiales a utilizar en grupos cuyas características sean similares. A estos efectos se consideran similares aquellos materiales en los que se cumpla, en un mínimo de 3 muestras ensayadas, lo siguiente:
Pertenencia al mismo tipo de clasificación definida por el PG3.
Rangos de variación de la densidad seca máxima en el PR no superiores al 3%.
Rangos de variación de la humedad óptima en el PR no superiores al 2%.
Dentro de cada grupo se establecerán los correspondientes valores medios de la densidad seca máxima y de la humedad óptima que servirán de referencia para efectuar el análisis de los resultados del control. Se determinará asimismo la zona de validez que se indica después.
El volumen de cada uno de esos grupos será mayor de 20.000 m3. En caso contrario se recurrirá a otro procedimiento de control.
En el caso de que los materiales procedentes de una misma zona de extracción no puedan agruparse de la forma anteriormente descrita ni sea posible separarlos para su aprovechamiento, no será aplicable el método de control de producto terminado mediante ensayos Proctor, debiéndose recurrir al empleo intensivo del ensayo de carga con placa según NLT 357, con alguno complementario como el de huella según NLT 256, o el método de control de procedimiento, según determine el Director de las Obras.
Ensayo de carga con placa:
Para determinar el módulo de deformación del relleno tipo terraplén se utilizará el ensayo de carga con placa. Las dimensiones de dicha placa serán tales que su diámetro o lado sea al menos 5 veces superior al tamaño máximo del material utilizado. En ningún caso la superficie de la placa será inferior a 700 cm2. El ensayo se realizará según la metodología NLT 357 aplicando la presión, por escalones, en dos ciclos consecutivos de carga.
En caso de necesidad, el Proyecto podrá fijar otras condiciones de ensayo que las de la norma indicada, en cuyo caso deberá establecer los valores correspondientes a exigir para el módulo de deformación del segundo ciclo de carga Ev2, y para la relación K entre módulos de segundo y primer ciclos de carga.
Ensayo de la huella
En el caso de realizar el ensayo de la huella se utilizará la norma NLT 256, en la que se indica el control de asientos, sobre 10 puntos separados 1 m, antes y después del paso del camión normalizado.
El ensayo de huella se efectuará correlacionado con el ensayo de placa de carga NLT 357 y por tanto los valores de huella admisibles serán aquellos que garanticen el resultado de la placa de carga. Los mismos serán establecidos por el Director de las Obras a propuesta del Contratista apoyada por los correspondientes ensayos de contraste.
En todo caso los valores de huella admisible no serán superiores a los siguientes:
En cimiento, núcleo y espaldones: 5 mm.
En coronación: 3 mm.
El artículo 330 del PG3 establece las siguientes definiciones relativas al plan de control de calidad:
Definición de lote:
Dentro del tajo a controlar se define como “lote”, que se aceptará o rechazará en conjunto, al menor que resulte de aplicar a una sola tongada de terraplén los siguientes criterios:
Una longitud de carretera (una sola calzada en el caso de calzadas separadas) igual a 500 m.
En el caso de la coronación una superficie de 3.500 m2 y en el resto de las zonas, una superficie de 5.000 m2 si el terraplén es de menos de 5 m de altura y de 10.000 m2 en caso contrario. Descontando siempre en el conjunto de estas superficies unas franjas de 2 m de ancho en los bordes de la calzada y los rellenos localizados según lo definido en el artículo 332, “Rellenos localizados” del PG3.
La fracción construida diariamente.
La fracción construida con el mismo material, del mismo préstamo y con el mismo equipo y procedimiento de compactación.
Nunca se escogerá un lote compuesto de fracciones correspondientes a días ni tongadas distintas, siendo por tanto entero el número de lotes escogido por cada día y tongada.
Muestras y ensayos a realizar en cada lote:
Dentro de la zona definida por el lote se escogen las siguientes muestras independientes:
Muestra de superficie: Conjunto de 5 puntos, tomados en forma aleatoria de la superficie definida como lote. En cada uno de estos puntos se determinará su humedad y densidad.
Muestra de borde: En cada una de las bandas de borde se fijará un punto por cada 100 m o fracción. Estas muestras son independientes de las anteriores e independientes entre sí. En cada uno de estos puntos se determinará su humedad y densidad.
Determinación de deformaciones: En coronación se hará un ensayo de carga con placa según NLT 357 por cada uno de los lotes definidos con anterioridad. En el resto de las zonas el Director de las Obras podrá elegir entre hacer un ensayo de placa de carga por cada lote o bien hacer otro tipo de ensayo en cada lote, como puede ser el de huella, de forma que estando convenientemente correlacionadas se exijan unos valores que garanticen los resultados del ensayo de placa de carga, aspecto este que se comprobará, al menos, cada 5 lotes.
La determinación de deformaciones habrá de realizarse siempre sobre material en las condiciones de densidad y grado de saturación exigidas, aspecto que, en caso de duda, y en cualquier caso que el Director de las Obras así lo indique, habrá de comprobarse. Incluso se podrá obligar a eliminar la costra superior de material desecado antes de realizar el ensayo.
Para medir la densidad seca “in situ” podrán emplearse procedimientos de sustitución (método de la arena UNE 103503, método del densímetro, etc.), o preferentemente métodos de alto rendimiento como los métodos nucleares con isótopos radiactivos. En todo caso, antes de utilizar estos últimos, se calibrarán sus resultados con las determinaciones dadas por los procedimientos de sustitución. Esta calibración habrá de ser realizada para cada uno de los grupos de materiales definidos anteriormente y se comprobará al menos una vez por cada 10 lotes ensayados. De forma análoga se procederá con los ensayos de humedad, por secado según UNE 103300 y nucleares.
Para espesores de tongada superiores a 30 cm se garantizará que la densidad y humedad medidas se corresponden con las del fondo de la tongada.
Para la aceptación de la compactación de una muestra el valor medio de la densidad de la muestra habrá de cumplir las condiciones mínimas impuestas en el PG3. Además, al menos el 60 % de los puntos representativos de cada uno de los ensayos individuales en un diagrama humedad-densidad seca, han de encontrarse dentro de la zona de validez que a continuación se define, y el resto de los puntos no podrán tener una densidad inferior en más 30 kg/m3 a las admisibles según lo indicado en el PG3, en el Proyecto o por el Director de las Obras.
La zona de validez es la situada por encima de la curva Proctor de referencia, normal o modificado según el caso, y entre las líneas de isosaturación correspondientes a los límites impuestos al grado de saturación, en el Proyecto o en su defecto en el PG3.
Dichas líneas límite, salvo indicación en contra del Proyecto, serán aquellas que pasen por los puntos de la curva Proctor de referencia correspondientes a humedades de -2 % y +1 % de la óptima. En el caso de suelos expansivos o colapsables los puntos de la curva Proctor de referencia serán los correspondientes a humedades de -1 % y +3 % de la óptima de referencia.
La humedad de las capas compactadas no será causa de rechazo, salvo cuando, por causa justificada, se utilicen suelos con características expansivas. En este caso, si no está previsto en el pliego de prescripciones técnicas, estos suelos deberán ser objeto de un estudio cuidadoso en laboratorio en el que se determinarán los valores de humedad y densidad a obtener en obra y los márgenes de tolerancia.”
Vemos que se trata de controles muestrales, de los que se pretenden inferir las características de la totalidad de la superficie ensayada. La inferencia estadística pretende obtener información de las muestras para conocer los parámetros poblacionales, cuantificando el riesgo de error en términos de probabilidad.
El lote es el conjunto del que se toma la muestra y sobre el que hay que tomar la decisión de aceptar o rechazar. Cada lote deberá haberse producido bajo condiciones homogéneas y durante un período de tiempo determinado.
Llegados a este punto es necesario hacer la siguiente consideración, basada en los fundamentos estadísticos de los planes de muestreo: no es justo realizar tamaños de muestra proporcionales a los tamaños del lote, ya que se varían las probabilidades de aceptar el lote, y ello puede ser utilizado injustamente en beneficio propio por la parte que toma la decisión. De esta forma, si quien decide el tamaño del lote es el contratista, tenderá a lotes de pequeño tamaño -y por tanto reducidos tamaños de muestra-, pues así, la casi totalidad de los lotes serán aceptados incluso -injustamente- los de baja calidad. Si, por el contrario, quien decide el tamaño es la administración, tenderá a pedir lotes de gran tamaño pues, así, se aceptarán solamente los muy buenos aunque también lotes de buena calidad serán -injustamente- rechazados. Por tanto, no es lo mismo determinar lotes de 1.000 m2 y una muestra de una unidad, que lotes de 5.000 m2 y muestras de 5 unidades, o lotes de 10.000 m2 y muestras de 10 unidades.
La muestra aleatoria simple es aquella que se toma de tal forma que todos los conjuntos de n determinaciones del lote tienen la misma probabilidad de constituir la muestra o, lo que es equivalente, que todas las determinaciones que se puedan tomar del lote tienen la misma probabilidad de formar parte de la muestra. Se deben evitar ir a los sitios “peores”, o a los que el operador que realiza los ensayos le parecen “representativos”.
Conviene tener en cuenta que un punto de porcentaje no es una cosa nimia, puesto que un material completamente suelto tiene ya una densidad del orden del 85% de la de referencia.
Los pesos específicos “in situ” y las diferencias entre humedades “in situ” y la óptima siguen una distribución normal. Para situaciones generales es corriente un coeficiente de variación inferior al 3% respecto al peso unitario e inferior al 1,5% respecto a la diferencia entre la población de humedades y la óptima. Es interesante el concepto de “homogeneidad” aplicado por la norma Suiza (SNV 640585a) en cuanto al peso específico aparente húmedo que establece un coeficiente de variación máximo del 5% para dicha variable.
Control del proceso
Con objeto de limitar el número de ensayos, que puede ser prohibitivo en algunos casos, se trata de aumentar el nivel de fiabilidad del producto introduciendo especificaciones en la forma de ejecutar la unidad de obra. Así, según el tipo de suelo, se pueden fijar unas máquinas a utilizar, unos espesores máximos de capa y delimitar el número mínimo de pasadas necesarias. Otro método sería establecer todos estos parámetros en función de los resultados obtenidos para un material en un tramo de prueba.
Su uso está indicado para fuertes ritmos de producción con materiales y sistemas de ejecución homogéneos. La rapidez de ejecución impide la realización de ensayos de producto terminado en número suficiente, y a veces hay que tomar decisiones con rapidez y agilidad, sin merma en la calidad.
El control del “proceso” requiere un conocimiento previo del comportamiento de cada material, un control exhaustivo de la capacidad de trabajo de las máquinas y un método de trabajo estrictamente controlado.
Este tipo de control, combinado con el de producto final, presenta ventajas evidentes, pero supone cierto “compromiso” por parte de la Administración contratante en el proceso de ejecución, que a veces es difícil de establecer de forma contractual. A estas dificultades administrativas se sumarían los problemas técnicos debido al clima, lo que entorpece la elaboración de procedimientos específicos de control que sean homogéneos. No obstante, es un tipo de control que se lleva a cabo en distintos países, destacando el modelo francés. A pesar de sus ventajas, este procedimiento apenas se emplea en nuestro país.
La prevención conlleva el reconocimiento de que la calidad debe generarse durante el proceso y no ser inspeccionada cuando el producto está acabado. Es mejor adelantarse a los acontecimientos en vez de reaccionar constantemente cuando los fallos se producen. Incluso desde el punto de vista de la eficiencia económica, es más barato dedicar parte de los recursos a la prevención que asumir sin más los costes de la no calidad.
Los nucleodensímetros como aparatos de medida
El empleo de ensayos tradicionales como el método de la arena han sido desplazados por el empleo de nucleodensímetros ya que éstos permiten la obtención de la densidad y la humedad de un forma casi instantánea. Son equipos que poseen una fuente radiactiva en el extremo de la sonda que se introduce en el terreno y dos detectores de radiación. La fuente se compone de Cesio 137, el cual emite fotones gamma. Estos fotones, antes de llegar a los detectores, chocan con los electrones de los átomos del suelo. Una alta densidad implica un alto número de choques, siendo menor el número de fotones que llegan a los detectores. La fuente radiactiva también posee Americio-241: Berilio, que emite neutrones. El detector de neutrones localiza la cantidad de los mismos que, debido a la presencia de átomos de hidrógeno del agua del suelo, son termalizados. Este mecanismo permite la obtención de la humedad.
Los nucleodensímetros tienen dos modos de obtener las densidades: transmisión directa (la sonda penetra en el material) y retrodispersión (en caso contrario). El modo de transmisión directa se debe emplear siempre que sea posible introducir la sonda en el material que se desea ensayar. El operador realiza un orificio en el suelo ayudándose de una pica y un mazo. La profundidad a la que debe introducirse la sonda deber ser igual o ligeramente inferior al espesor de la capa que se ensaya, para obtener una medición representativa de toda la capa.
El modo retrodispersión sólo debe utilizarse cuando la dureza de la capa impide la penetración de la sonda, como sucede en el hormigón en las mezclas bituminosas. En este caso sólo se mide la densidad de material situado hasta unos 8 cm por debajo de la superficie, perdiéndose la representatividad.
La prevención conlleva el reconocimiento de que la calidad debe generarse durante el proceso y no ser inspeccionada cuando el producto está acabado. Es mejor adelantarse a los acontecimientos en vez de reaccionar constantemente cuando los fallos se producen. Incluso desde el punto de vista de la eficiencia económica, es más barato dedicar parte de los recursos a la prevención que asumir sin más los costes de la no calidad.
A continuación dejo un vídeo sobre lo que es el densímetro nuclear.
Os dejo a continuación un vídeo sobre seguridad nuclear en el uso de medidores industriales nucleares, nucleodensímetros.
Referencias:
ABECASIS, J.; ROCCI, S. (1987). Sistematización de los medios de compactación y su control. Vol. 19 Tecnología carreteras MOPU. Ed. Secretaría General Técnica MOPU. Madrid, diciembre.
JURAN, J.M.; GRYNA, F.M. (1995). Análisis y planeación de la calidad: del desarrollo del producto al uso. McGraw Hill, 633 pp.
Os dejo en esta presentación una nueva entrevista que me ha realizado el periodista José Antonio García Muñoz, conocido como Ciudadano García, sobre temas de ingeniería. Como ya he comentado en alguna entrada anterior, la labor de divulgación de las ciencias, y en particular de la ingeniería, resulta una tarea agradable y enriquecedora.
La entrevista, en este caso, se ha centrado en la seguridad y el mantenimiento de nuestros puentes. En efecto, una noticia aparecida el 9 de diciembre de 2018 en El País con el siguiente titular “Fomento admite que hay 66 puentes con graves problemas de seguridad” abrió cierta inquietud en la opinión pública sobre la seguridad de nuestros puentes. Esta inquietud irrumpió el agosto pasado con el derrumbe de un puente en Génova (Italia). La pregunta que se hace el ciudadano de a pié es saber si cuando circula por carretera o por ferrocarril nuestras infraestructuras son lo suficientemente seguras.
Tener la oportunidad de comunicar aspectos de nuestra profesión a más de 300.000 oyentes supone todo un reto, más si lo que se busca es transmitir de forma sencilla y para todo el mundo, aspectos técnicos que, a veces, solo somos capaces de hacerlo con colegas o estudiantes. Insisto, todo un reto y una oportunidad que se agradece.
Pues de todo ello hablamos el pasado viernes 14 de diciembre de 2018. Os dejo la entrevista, realizada en directo. Espero que os guste.
Una noticia aparecida el 9 de diciembre de 2018 en El País con el siguiente titular “Fomento admite que hay 66 puentes con graves problemas de seguridad” abrió cierta inquietud en la opinión pública sobre la seguridad de nuestros puentes. Esta inquietud irrumpió el agosto pasado con el derrumbe de un puente en Génova (Italia). La pregunta que se hace el ciudadano de a pié es saber si cuando circula por carretera o por ferrocarril nuestras infraestructuras son lo suficientemente seguras. Además, este desasosiego se acentúa cuando, por una parte, la grave crisis económica que ha sufrido nuestro país ha reducido significativamente los presupuestos dedicados al mantenimiento de las infraestructuras y cuando, además, los datos que el Ministerio de Fomento dispone sobre el estado de los puentes, extraídos de su Sistema de Gestión de Puentes (SGP), no es suficientemente transparente, a diferencia de otros países, como Alemania. La que he denominado como “crisis de las infraestructuras“, en efecto, no es un problema solo de España, sino que afecta de forma generalizada a muchos países de nuestro entorno.
Pues bien, la noticia del 9 de diciembre nos decía que 66 puentes presentan graves problemas de seguridad. La justificación es que, tras la valoración de su estado por expertos, se calculan unos índices (extensión, gravedad y evolución) a los que se aplican algoritmos para obtener una clasificación final que va de 0 a 100. Esos 66 puentes obtenían más de 81 puntos, lo cual significa que presentan “patologías potencialmente graves que pueden afectar a su comportamiento resistente” y son objeto de un seguimiento especial. Teniendo en cuenta que el parque de las obras de paso en España son de casi 23000 puentes, ello supone que un 0,28% de ellos superan el umbral de los 81 puntos. Parecerían pocos puentes, pero bastaría el colapso de uno solo de ellos para que se pudiese reproducir una tragedia como la ocurrida en Génova este verano. Por tanto, no debemos restar importancia a estas cifras. De hecho, nuestro grupo de investigación, a través del proyecto DIMALIFE, está muy preocupado por investigar estos tema.
¿Significa esto que en España nuestros puentes no son seguros? En absoluto. No hay que alarmarse, pero hay que tomar medidas. Lo que le ocurre a cualquier infraestructura (puente, presa, puerto, túnel, hospital, etc.) es que todas ellas, sin excepción, presentan una disminución de sus prestaciones y funcionalidades que, pasado cierto umbral, hace que dejen de ser útiles, finalizando su vida útil. La vida de las infraestructuras se puede prolongar con un adecuado mantenimiento y acometiendo reparaciones, pero llega un momento que el coste de alargar la vida útil puede ser insostenible. Por tanto, los puentes “envejecen”.
Todo el mundo está de acuerdo en que los aviones deben someterse a exámenes periódicos y revisiones profundas, realizadas por expertos, que garanticen la seguridad en vuelo de estos aparatos. Asimismo, también resulta evidente que todas las personas deberíamos someternos a chequeos médicos periódicos para detectar a tiempo enfermedades que, sin una detección precoz, son inevitablemente mortales. Pues lo mismo le pasa a las infraestructuras, que deben acudir de vez en cuando al “médico de cabecera”, que si detecta algún problema grave, manda al paciente al “médico especialista” y éste, en caso necesario, opera al paciente o le somete al tratamiento correspondiente. Pues lo mismo le ocurre a los puentes, donde existen inspecciones básicas o rutinarias, inspecciones principales e inspecciones especiales. De ello ya hablamos en una entrada anterior. Siguiendo con la analogía médica, la “analítica” realizada a los puentes ha mostrado que su “colesterol” está por encima de 250. Ello no significa la muerte inmediata del paciente, pero sí que es necesario un cambio de hábitos (ejercicio físico, dieta alimentaria, etc.) o medicación para reducir dicho índice. En caso de no hacer nada, nuestro puente puede tener un “problema coronario” que puede acabar en un “ataque al corazón”. Por tanto, la buena noticia es que hemos detectado los problemas y ahora se trata de poner a nuestros puentes bajo un “tratamiento médico” estricto.
Para aclarar alguno de los conceptos sobre los que se ha basado la noticia de El País, voy a recoger aquí los aspectos básicos. Están basados en una monografía del Ministerio de Fomento denominada “Guía para la realización de inspecciones principales de obras de paso en la Red de Carreteras del Estado“. Tal y como indica la guía, para cada uno de los daños que existan en un determinado elemento de un puente, se recogen en campo los índices de extensión, gravedad y evolución (apartado 4.5.3). Con estos datos se obtiene, en primer lugar, un Índice de Deterioro para cada daño, que puede tomar un valor entre 0 y 100. Con todos los índices de los deterioros existentes en un puente, se puede valorar el estado de conservación con el Índice de Estado o Condición de la Estructura, que también tiene un valor entre 0 y 100. Existen también índices intermedios para valorar los elementos, componentes y zonas de la estructura, de esta forma se puede localizar rápidamente el origen de la causa de determinado índice en la condición de la estructura.
Los índices de deterioro se dividen en cinco intervalos, con los significados siguientes:
Índice entre 0 y 20: Deterioro sin consecuencias importantes “a priori”
Índice entre 21 y 40: Deterioro que puede tener una evolución patológica o reducir las condiciones de servicio o de durabilidad del elemento si no se repara en el tiempo adecuado.
Índice entre 41 y 60: Deterioro que indica una patología que supone una reducción de las condiciones de servicio o de la durabilidad del elemento.
Índice entre 61 y 80: Deterioro que se puede traducir en una modificación del comportamiento resistente o funcional.
Índice entre 81 y 100: Deterioro que compromete la seguridad del elemento.
De la misma forma, el Índice de Estado de la Estructura se divide en cinco intervalos:
Índice entre 0 y 20: Estructura sin patologías evidentes o con deterioros sin consecuencias relevantes para la durabilidad, condiciones de servicio o seguridad de la estructura.
Índice entre 21 y 40: Estructura con deterioros que pueden tener una evolución patológica que afecte a la durabilidad o a las condiciones de servicio de la estructura. Es conveniente seguir su evolución temporal para su determinación objetiva.
Índice entre 41 y 60: Estructura con deterioros que evidencian una patología que puede suponer una reducción de las condiciones de servicio o de la durabilidad de la estructura. Será necesario seguir la evolución de la patología en las posteriores inspecciones. Puede requerir una actuación a medio plazo para mejorar la durabilidad de la estructura.
Índice entre 61 y 80: Estructura con deterioros o patologías que se pueden traducir en una modificación del comportamiento resistente o una reducción importante de los niveles de servicio. Requiere una actuación a corto-medio plazo. En función de la naturaleza del daño puede requerir una inspección especial.
Índice entre 81 y 100: Estructura con deterioros o patologías que comprometen la seguridad del elemento/estructura. Requiere una inspección especial y una actuación urgente. En algunos casos puede ser necesario una limitación del uso.
Como vemos, los índices establecen pautas para que el gestor decida intervenir en una estructura, realizar estudios especiales, programar actuaciones a medio plazo o asignar presupuestos. Con todo, los inspectores tiene capacidad de ir más allá de esta cuantificación cuando detectan problemas o imponderables difíciles de cuantificar, como por ejemplo, el grado de “actualización” de la estructura a las normas vigentes.
La conclusión es clara. Al igual que los aviones requieren inspecciones periódicas minuciosas para garantizar la seguridad en el vuelo y las personas debemos realizar chequeos médicos periódicos, las infraestructuras (puentes, presas, túneles, puertos, hospitales, estadios de fútbol, etc.) deben someterse a inspecciones programadas y, sobre todo, se debe disponer de un presupuesto suficiente que garantice el mantenimiento y la rehabilitación si fuera necesario. Todo lo que no sea eso, será poner en riesgo no solo la seguridad de las personas, sino el estado de bienestar.
Durante el último congreso IALCCE, que tuvo lugar en Gante en octubre de 2018, tuve la oportunidad de escuchar la lección magistral (Fazlur R. Khan Lecture) del doctor Man-Chung Tang, denominada “Durability of bridges“. Fue una conferencia brillante, donde la gran experiencia y conocimiento de este gran ingeniero de puentes, dejó muy claros algunos conceptos de gran importancia.
El doctor Tang, nacido en Zhaoqing (China), en 1938, es el Presidente del Consejo de Administración y el Director Técnico de la firma T.Y. Lin International ubicada en San Francisco (Estados Unidos). Se trata de una empresa multinacional en el ámbito de las infraestructuras e ingeniería de todo tipo, que emplea a más de 2500 ingenieros, arquitectos y científicos. Además, recibió el premio Senior Award del IALCCE del 2018 (al igual que Tatiana García Segura recibió el Junior Award).
La lección magistral, tal y como la introduce el propio Congreso, se presentaba de la siguiente forma:
“In the past, life cycle cost of a bridge is usually defined as the sum of initial costs, operation costs, maintenance costs, rehabilitation costs and disposal costs. Today, we may add environmental costs and social costs to arrive at a more realistic “total life cycle cost”. But the total life cycle cost of a bridge by itself does not have much meaning unless we also know the service life of the bridge. The economic efficiency of the bridge is the total life cycle cost divided by the service life of the bridge. The main factor affecting the service life is the durability of the bridge.“
Lo que más me llamó la atención es la llamada internacional a que los puentes se diseñen para una vida útil de 300 años. Se trata de una opinión que suscribo plenamente y que se debería llevar lo antes posible a los foros correspondientes. Son muchos ya los problemas de durabilidad y los accidentes que presentan estas estructuras para no tomar esta valiente decisión. Para ello hay que entender lo que significa la gestión del puente a lo largo de su ciclo de vida.
En efecto, muchas normas e instrucciones prescriben actualmente para la mayoría de los puentes una vida útil de 100 años para los grandes puentes y de 75 años para el resto. En España, la vida útil nominal indicada en la Instrucción de Hormigón Estructural EHE-08 es de 100 años para puentes de longitud total igual o superior a 10 metros y otras estructuras de ingeniería civil de repercusión económica alta.
Durante su lección magistral, el doctor Tang diferenció claramente la vida de servicio (service life) de un puente de lo que sería la vida útil para la que fue diseñada la estructura (design life). La vida de servicio se considera como el tiempo durante el cual un puente se puede utilizar de forma segura, de acuerdo con los criterios de diseño establecidos. Sin embargo, cuando se proyecta un puente, es difícil saber a ciencia cierta cuánto tiempo realmente dicho puente podrá estar en servicio. La vida de servicio, por tanto, no tiene por qué coincidir con la vida útil de diseño puesto que es evidente que un puente se puede encontrar en perfectas condiciones el día posterior a la caducidad de su vida de servicio, y no por ello debe procederse a su demolición. También es posible que, antes de alcanzar el fin de su vida útil, el puente quede fuera de servicio por múltiples motivos.
Por otra parte, un puente es durable si su vida de servicio es suficientemente larga. Como un puente debe ser seguro, funcional, económico y tener una buena presencia, ello implica que un puente será durable si es durable en cuanto a su seguridad, funcionalidad, economía y buena presencia. Este concepto de durabilidad, como es fácil de entender, está asociado a la probabilidad de incumplimiento de alguna de las funciones señaladas.
Además, hoy día el concepto de sostenibilidad implica un cambio radical en la forma de proyectar, construir y mantener los puentes. Si los romanos fueron capaces de construir puentes que han durado más de dos mil años, hoy es inconcebible que se proyecten puentes para una vida útil de 100 años.
El doctor Tang, basándose en sus observaciones y experiencia, expuso claramente su propuesta de elevar a 300 años la vida útil en el proyecto de los puentes. Ello no incrementaría en exceso el coste del puente. Además, muchos de los materiales empleados pueden durar esos 300 años si se realiza un mantenimiento conveniente. Nuestro grupo de investigación ha comprobado cómo realizando una optimización multiobjetivo de un puente se puede incrementar su vida útil muy por encima de los 100 años con incrementos muy pequeños en los costes (García-Segura et al., 2017).
Habrá quien argumente que antes de lo que esperamos la tecnología cambiará tanto que no tenga sentido el aumentar la vida útil de los puentes (coches voladores, por ejemplo). Sin embargo, ya hemos visto que desde el punto de vista de la sostenibilidad de los recursos naturales, desde el punto de vista económico, y sobre todo, para tratar de evitar tragedias como las que se han vivido recientemente, está más que justificada la revisión de la vida útil de diseño de las infraestructuras (no solo puentes, sino viviendas, obras hidráulicas, carreteras, puertos, etc.).
Por tanto, suscribo plenamente la opinión bien argumentada del doctor Tang: la vida útil de los puentes debe modificarse en las normas e instrucciones para subirla a un mínimo de 300 años.
Referencias:
GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks.Structural and Multidisciplinary Optimization, 56(1):139-150.
En artículos anteriores ya hemos mencionado la necesidad de aumentar progresivamente los fondos para el mantenimiento y conservación de las infraestructuras. Estos fondos deben aplicarse de una manera eficiente, buscando la toma de decisiones basadas en los aspectos técnicos y económicos, teniendo también en cuenta los factores sociales y ambientales. Aquí vamos a prestar especial atención a los puentes.
La gestión de puentes se define, por tanto, como el conjunto de acciones a llevar a cabo para garantizar la seguridad y calidad de servicio de las estructuras gestionadas y optimizar el uso de recursos disponibles. No obstante, esta gestión no debe limitarse a la fase de servicio del puente, y debe establecerse tan pronto como sea posible, preferiblemente en la fase de diseño, proyecto y ejecución.
Los sistemas de gestión de puentes, según se puede extraer de las aplicaciones desarrolladas en los diferentes países que ya los tienen implementados, se plantean como herramientas cada vez más desarrolladas como resultado de la evolución de las computadoras y su capacidad de procesamiento. Generalmente presentan una estructura modular, con una serie de elementos comunes, que forman los siguientes módulos básicos:
Inventario
Inspección y evaluación
Apoyo a las decisiones y la gestión. Matrices de decisión
Catálogo de daños
Estos sistemas deben ayudar al gestor a tomar decisiones basadas en la información recopilada durante las inspecciones y determinación de la condición de los puentes, simulando varios escenarios de acción para poder predecir el nivel de conservación futuro de cada elemento y optimizar los recursos económicos para realizar acciones que prolonguen la vida útil de los puentes de la red y mantengan un nivel de servicio adecuado. En la siguiente figura se muestra esquemáticamente el planteamiento conceptual de los efectos de la aplicación de estrategias de conservación en mantenimiento, frente a políticas de no inversión:
Los modelos de evolución del deterioro futuro de elementos plantean una previsión de la degradación, basándose en diferentes teorías probabilísticas. Hay modelos deterministas, modelos según evolución planificada de daños o probabilístico, basado en el estado actual del elemento y probabilidad de una tasa predeterminada de deterioro en el tiempo y modelos de valoración de costes que tienen en cuenta un análisis económico a lo largo del ciclo de vida de los puentes gestionados.
Los sistemas de gestión de puentes deben aportar criterios objetivos para determinar en qué momento compensa tomar la decisión de llevar a cabo medidas de conservación, teniendo en cuenta los beneficios de la inversión y los riesgos de que los deterioros puedan crecer con el tiempo y suponer costes de reparación mucho más elevados.
Por tanto, aunque no es tarea sencilla, pues siempre hay un cierto condicionamiento del contexto económico por el que pueda atravesar la administración gestora, que pudiera tener que restringir el gasto por debajo de límites que garantizasen la optimización de las labores de gestión, se proponen las siguientes etapas generales descritas en diferentes metodologías de sistemas de gestión de puentes:
1º. Definición de los elementos estándar en un puente
2º. Inventario y creación de una base de datos de puentes y elementos existentes.
3º. La identificación mediante labores de inspección de puentes de las anomalías de cada elemento y el desarrollo modelos para predecir el futuro deterioro.
4º. Desarrollo de acciones de conservación y mantenimiento para cada conjunto de elementos y cada una de las tipologías de anomalía detectadas.
5º. Desarrollo de modelos de optimización y toma de decisiones.
En general, existe un avance importante, llevado a cabo en los últimos años en países desarrollados, en lo que a las etapas de inventariado y creación de bases de datos se refiere, existiendo lagunas y líneas de acción pendientes en lo que se refiere a las etapas finales de implementación de sistemas de gestión (modelos de predicción y toma de decisiones), siendo esta última la línea de investigación que ayudará a la optimización de los recursos disponibles, como culminación del desarrollo de la técnica en cuanto a gestión, conservación y mantenimiento de los puentes.
En las referencias os dejo algunos artículos de nuestro grupo de investigación relacionada con la gestión de los puentes a lo largo de su ciclo de vida, con la optimización multiobjetivo y la toma de decisión multicriterio.
Referencias:
GARCÍA-SEGURA, T.; YEPES, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety.Engineering Structures, 125:325-336. DOI: 10.1016/j.engstruct.2016.07.012.
GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks.Structural and Multidisciplinary Optimization, 56(1):139-150. doi:10.1007/s00158-017-1653-0
NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides.Sustainability, 10(3):845. doi:10.3390/su10030845 (link).
NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Social life cycle assessment of concrete bridge decks exposed to aggressive environments.Environmental Impact Assessment Review, 72:50-63. https://doi.org/10.1016/j.eiar.2018.05.003
NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2018). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks.Journal of Cleaner Production, 196:698-713. https://doi.org/10.1016/j.jclepro.2018.06.110
PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design.Sustainability, 8(12):1295. DOI:10.3390/su8121295
PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2018). An optimization-LCA of a prestressed concrete precast bridge.Sustainability, 10(3):685. doi:10.3390/su10030685 (link)
PENADÉS-PLÀ, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges.Sustainability, 9(10):1864. doi:10.3390/su9101864 (link)
SIERRA, L.A.; PELLICER, E.; YEPES, V. (2017). Method for estimating the social sustainability of infrastructure projects.Environmental Impact Assessment Review, 65:41-53. DOI: 10.1016/j.eiar.2017.02.004
SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Journal of Cleaner Production, 176:521-534. https://doi.org/10.1016/j.jclepro.2017.12.140
SIERRA, L.A.; YEPES, V.; PELLICER, E. (2017). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty.Environmental Impact Assessment Review, 67:61-72. DOI:10.1016/j.eiar.2017.08.003 (link)
SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures.Journal of Cleaner Production, 187:496-513. DOI: 10.1016/j.jclepro.2018.03.022.