Los puertos deportivos (marinas, en inglés) son elementos relacionados con el turismo náutico. Se ha definido como un puerto utilizado exclusiva o principalmente por embarcaciones de recreo, que presta servicios a dichas embarcaciones y a sus usuarios, y que permite establecer un tránsito entre agua y tierra en términos de confort. Mientras que los puertos comerciales están pensados para acortar la estancia portuaria de las embarcaciones, los puertos deportivos están concebidos para el ocio, por lo que se intenta proporcionar una estancia agradable, buscando un carácter de permanencia más que el mero tránsito de embarcaciones y tripulaciones.
Ya son varios los artículos desarrollados entorno a este concepto en la tesis doctoral en curso de Ricardo Martín. En este caso, se ha introducido el concepto dentro de la plataforma Encyclopedia , de acceso abierto y que se puede consultar en el siguiente enlace: https://encyclopedia.pub/14769
Os dejo a continuación la entrada completa en formato pdf, por si la queréis descargar.
MARTÍN, R.; YEPES, V.; GRINDLAY, A. (2020). Discovering the marina’s cultural heritage and cultural landscape.8th International Symposium Monitoring of Mediterranean Coastal Areas. Problems and Measurements Techniques, pp. 95-104. Firenze University Press. DOI: 10.36253/978-88-5518-147-1.11
MARTÍN, R.; YEPES, V. (2019). The concept of landscape within marinas: Basis for consideration in the management.Ocean & Coastal Management, 179: 104815. DOI:10.1016/j.ocecoaman.2019.104815
MARTÍN, R.; YEPES, V. (2017). El paisaje en la planificación y gestión de los puertos deportivos en Andalucía.Revista de Obras Públicas, 164 (3593):38-55. (link)
Próximamente se van a desarrollar dos sesiones de las I Jornadas de la gestión de las arenas en el litoral español. Se trata de un evento organizado por el Comité de Ingeniería y Gestión de la Costa de la Asociación Técnica de Puertos y Costas (ATPyC). A estas jornadas me han invitado para impartir una charla denominada “Valor económico de la costa: su peso en la economía española“, que tendrá lugar el 29 de abril de 2021, a las 10:45 horas.
¿Cabe hablar de ingeniería turística? En esta entrada os doy detalles de una actuación singular desarrollada en las playas turísticas. Se trata de la instalación y explotación integral de unas plataformas flotantes de carácter lúdico situadas en lugares de comportamiento tan complejo y dinámico como la proximidad de las rompientes de olas. Os explico brevemente cómo se desarrollan todas las tareas realizadas desde el momento en que surgió la idea, hasta los detalles de instalación, mantenimiento, seguridad, etc. que garantizaron una explotación integral de las mismas.
El problema más importante que hay que resolver es el medio hostil que es el litoral marítimo, y especialmente en una zona de disipación de energía como es la rompiente de las olas. A este respecto señalar que uno de los condicionantes básicos en la ubicación de las plataformas es que estas no se deben instalaran a más de 200 m de la línea de playa, pues a partir de este límite, podrían interferir a la seguridad del tráfico marítimo. Este factor es altamente restrictivo en la elección de la ubicación, ya que, para el correcto funcionamiento de la plataforma, necesita de al menos 2,5 m. de profundidad, haciendo prácticamente imposible encontrar, en algunas playas de máximo interés turístico, puntos donde converjan la batimetría óptima con la profundidad idónea, la distancia máxima a la línea de playa y la orientación correcta en cuanto a mareas y vientos predominantes se refiere.
A continuación os dejo un vídeo explicativo sobre las plataformas flotantes de carácter lúdico en las playas.
Aquí os dejo un vídeo sobre el montaje de este tipo de plataformas.
Referencia:
YEPES, V.; NÚÑEZ, F. (1994). Plataformas flotantes de carácter lúdico en las costas de la Comunidad Valenciana. Un ejemplo de ingeniería turística.Revista de Obras Públicas, 3335: 51-59.
Os presento un trabajo donde se explora el patrimonio cultural de los puertos deportivos y se profundiza en la relación entre su patrimonio y el paisaje cultural. El paisaje y el patrimonio son elementos relevantes en estas áreas y podrían ser ventajas competitivas en la gestión de estas instalaciones marítimas. Como instalaciones para actividades marítimas de ocio, hay muchas posibilidades de identificar su patrimonio cultural y su paisaje cultural. A través del análisis de estos conceptos se desarrolla en este estudio la relación propuesta entre el binomio patrimonio/paisaje cultural y los puertos deportivos. De esta forma, se identifican algunos elementos a considerar dentro del patrimonio cultural de los puertos deportivos y su paisaje cultural, no solo relacionados con la conservación y la reutilización de elementos del pasado. También se proponen tres modelos de relación, que van desde la integración, hasta el fortalecimiento y la evolución.
MARÍN, R.; YEPES, V.; GRINDLAY, A. (2020). Discovering the marina’s cultural heritage and cultural landscape.8th International Symposium Monitoring of Mediterranean Coastal Areas. Problems and Measurements Techniques, pp. 95-104. Firenze University Press. e-ISBN: 978-88-5518-147-1 DOI: 10.36253/978-88-5518-147-1.11
El vertido del material dragado por una draga de succión en marcha se puede realizar a través de una tubería o bien bombeándolo a distancia con una tobera curva. Es el llamado método “rainbowing” y que es muy utilizado en regeneración de playas o cuando se quiere restaurar el terreno detrás de un dique. La limitación está en que la pulpa (material + agua) no puede alcanzar más de 100 m de distancia.
A continuación os presento un vídeo para que veáis cómo se ejecuta dicha impulsión.
Referencias:
CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J.; MARTÍ, J.V. (2010). Temas de procedimientos de construcción. Equipos de dragado. Editorial de la Universitat Politècnica de València. Ref. 2010.4038.
SANZ, C. (2001). Manual de equipos de dragado. Ed. Carlos López Jimeno. Madrid, 323 pp.
Las ataguías celulares son estructuras de contención utilizadas con profundidades importantes, formadas por cilindros huecos contiguos, normalmente tablestacas de acero unidas, que soportan los empujes mediante la fricción de su base (Figura 1).
Estos cilindros son relativamente grandes, con diámetros típicos de 12 a 20 m. Se utilizan en la construcción de presas, muelles (Figura 2), pilas de puentes y recintos en general donde debe trabajarse en seco.
Los recintos construidos con ataguías celulares se pueden construir sobre terrenos firmes o de calidad media. Los depósitos de suelos blandos hasta gran profundidad pueden ser inadecuados.
En el caso de corrientes importantes, por ejemplo en un gran río, es importante conocer el campo de velocidades entorno a la zona donde se colocarán las ataguías celulares. En este caso, la propia ataguía reduce la sección del río y provoca un aumento de la velocidad del agua, con la posible erosión del fondo del cauce, en especial hacia las esquinas, por lo que conviene redondearlas.
Las celdas se rellenan con un material del mayor peso específico posible, normalmente una mezcla de arenas y gravas. En el caso de desmontar las celdas, antes debe extraerse el material de relleno. En cambio, si se rellenan de hormigón quedan como estructuras permanentes, como es el caso de la construcción de diques en obras portuarias.
El ancho medio de una ataguía celular sobre roca oscila entre el 70 y el 80% de la altura del agua exterior que retiene (Figura 3). En el caso de estar sobre suelos arenosos, al igual que ocurre con las ataguías de tablestacas de doble pared, debe tener un espaldón en el interior. Con grandes calados de agua, estas ataguías de doble pared se pueden rellenar de hormigón y sostenerse por puntales, lo cual ahorra un espacio considerable y permiten asegurar una buena impermeabilización con anchos muy pequeños.
Existen distintas configuraciones de recintos que se construyen con formas circulares de tablestacas planas, creando celdas independientes que después se unen mediante arcos de tablestacas con formas especiales. En la Figura 4a se observan arcos circulares conectados por diafragmas rectos; en la Figura 4b vemos celdas circulares conectadas por arcos circulares; en la Figura 4c vemos la estructura tipo trébol, que consta de grandes celdas circulares subdivididas por diafragmas rectos. Las ataguías de tabiques rectos requieren menos tablestacas que las celdas circulares, aunque el relleno debe hacerse con cuidado para que los tabiques de separación no sufran presiones descompensadas. Con los recintos circulares, se pueden rellenar las celdas de forma independiente. Con los recintos de diafragmas, han de hacerse los rellenos simultáneamente, utilizándose un mayor número de tablestacas. Su posible ventaja radica en menores esfuerzos en la tablestaca para un mismo calado.
Las ataguías celulares se deben diseñar para ofrecer seguridad estructural en distintos aspectos:
Se debe evitar el vuelco y su puesta fuera de alineación
Debe estar al abrigo del deslizamiento
Debe presentar seguridad a la rotura por cortante en el relleno interior de la célula
Las juntas no deben romperse, teniendo en cuenta la corrosión
Las almas de las tablestacas deben presentar un factor de seguridad razonable frente a la rotura
No deben haber distorsiones ni deformaciones fuera de límites aceptables
La ventaja de construir las ataguías celulares con tablestacas es que precisan poco andamiaje, bastando unas guías superiores e inferiores para hacer descenderlas (Figura 5). Se pueden construir desde tierra, de forma que cada célula terminada sirve de plataforma de trabajo para hincar en la siguiente (Figura 6). Sobre lechos rocosos irregulares, las longitudes de las tablestacas se adaptan al perfil de la roca. Sobre suelos arenosos o de grava, se dispone de un banco de tierra interior (Figura 3) para conseguir que la longitud de la filtración sea suficiente para evitar el colapso por surgencia.
Uno de los mayores riesgos de colapso de las ataguías celulares es el fallo de cualquier unión. Por eso no se aconseja usar estas ataguías sobre terrenos con cantos u otros obstáculos que puedan abrir las tablestacas o la ruptura de las uniones.
A continuación os dejo algunos vídeos sobre el uso de las ataguías celulares. Espero que os sean de interés.
REFERENCIAS:
CASHMAN, P.M.; PREENE, M. (2012). Groundwater Lowering in Construction: A Practical Guide to Dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
POWERS, J.P.; CORWIN, A.B.; SCHMALL, P.C.; KAECK, W.E. (2007). Construction dewatering and groundwater control: New methods and aplications. Third Edition, John Wiley & Sons.
PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
Ayer recibimos la triste noticia del fallecimiento de nuestro compañero José Javier Díez González, Catedrático de Puertos y Costas y también Director de nuestra Escuela de Ingenieros de Caminos de Valencia desde el 30 de mayo de 1981 hasta el 5 de marzo de 1984.
José Javier, nacido en La Robla (León) era en la actualidad Catedrático Emérito por la Universidad Politécnica de Madrid (UPM) en las disciplinas de Puertos y Costas y de Oceanografía e Ingeniería de Costas, en la Escuela de Ingenieros de Caminos, Canales y Puertos, en la que inició sus actividades docentes e investigadoras en 1970 y obtuvo su doctorado como Ingeniero de Caminos en 1973. Fue asimismo profesor de esas materias en Valencia entre 1977 y 1984 y de Físico-Química en la facultad de Farmacia de la Universidad Complutense entre 1974 y 1977 y ha sido profesor visitante en varias universidades del Reino Unido, EE. UU., México, Argentina y Chile. José Javier es también Licenciado en Farmacia (1969) y Licenciado en Economía (1974); títulos ambos obtenidos en la Universidad Complutense de Madrid.
Os dejo a continuación una entrevista que le realizó la Asociación Meteorológica Española.
Son muchas las actividades que está desarrollando la Escuela de Caminos, Canales y Puertos de la Universitat Politècnica de València con motivo de su 50 aniversario. Una de ellas es la elaboración de una serie de vídeos divulgativos de la Ingeniería Civil y su papel en la sociedad.
Para empezar tenemos este vídeo producido por y editado por Diodo Media. En él se describe la dinámica litoral de nuestras costas. Esperamos que lo disfrutéis.
La gran cantidad de obras marítimas que se realizan han obligado a realizar numerosos estudios sobre el comportamiento de los hormigones sometidos a la acción del agua del mar. El hormigón, como material heterogéneo que es, presenta propiedades que varían de las características de sus componentes, de sus cantidades, de la forma de poner dicho hormigón en obra, del curado y conservación, del medio donde va a estar trabajando, entre otras.
En efecto, el agua de mar provoca un proceso muy complejo sobre el hormigón en el que intervienen gran número de parámetros mecánicos, físicos, químicos, biológicos y atmosféricos. Sin embargo, la agresividad química de los componentes del agua marina sobre los productos de hidratación del cemento, en especial el hidróxido de magnesio (Mg(OH)2) y el sulfato cálcico (CaSO4), provocan expansiones debidas a la reacción álcali-árido, si hay árido reactivo, a la presión de cristalización de sales en el hormigón, a la acción del hielo en climas fríos, a la corrosión de las armaduras y a la erosión física debida al oleaje. Estas acciones aumentan la permeabilidad del hormigón, lo que retroalimenta el proceso. Son los iones sulfato del interior de la matriz los que reaccionan con el monosulfatoaluminato produciendo estringita, que es la responsable de la expansión y la rotura. Con todo, el agua de mar es menos agresiva para el hormigón que cada una de las soluciones que la componen individualmente debido a que el comportamiento expansivo asociado con formación de estringita está inhibido por la presencia de cloruros y facilita su solubilidad. Además, el CO2 disuelto en el agua carbonata gradualmente al hormigón, formando una capa superficial de carbonato cálcico que actúa como protector frente al ataque del hidróxido de magnesio y del sulfato cálcico los cuales terminan colmatando los poros restantes.
Lo anteriormente expuesto indica que, en un hormigón de razonable calidad, no suele ser un serio problema el ataque químico por el agua de mar. El parámetro esencial que determina el buen comportamiento de un hormigón es su compacidad y la morfología de sus poros. Por tanto, aunque el agua de mar podría considerarse como poco agresiva respecto de los hormigones, el ambiente marino, por sí mismo, resulta fuertemente agresivo. En efecto, el ataque químico del agua de mar depende de si el hormigón se encuentra sumergido total o parcialmente. Si está totalmente sumergido, tienen lugar fundamentalmente los procesos químicos. En la zona de oscilación, actúan los ataques químicos con otras acciones físicas como cristalizaciones de sales, heladas, etc. En la zona no sumergida, pero cercana al agua, ésta sube por capilaridad y arrastra sales que pueden cristalizar dando lugar a expansiones. Además, los cloruros del agua marina (MgCl2) solubilizan el hidróxido de calcio (Ca(OH)2) (portlandita) que se ha formado durante el fraguado y endurecimiento del cemento, formando cloruro de calcio e hidróxido de magnesio.
El tema se complica cuando tratamos con hormigón armado. Efectivamente, los cloruros (incluso los bromuros) presentes en el agua marina atacan a las armaduras. Los iones cloruro penetran por difusión por los poros del hormigón y llegan a las armaduras, donde forman un electrolito conductor que rompe su capa pasivante y se produce la oxidación llamada de “picadura”. Es por ello, que en las estructuras de hormigón armado situadas en ambiente marino, resulta fundamental respetar los recubrimientos recomendados para evitar la corrosión descrita.
Os dejo a continuación una guía técnica de IECA donde se describe con mayor detalle el comportamiento del hormigón en ambiente marino.
Esta mañana, a las 7 de la mañana, empezaron las maniobras para la instalación de un cubípodo de 45 toneladas en un jardín anexo a la Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Se trata de una de las acciones encaminadas a conmemorar el 50 aniversario de nuestra Escuela. Por cierto, esto nos hermana con la Escuela de Ingenieros de Caminos de A Coruña, que también tiene uno en sus jardines (ver la última fotografía).
Para ello se ha utilizado una grúa de 200 t. Este cubípodo se ha utilizado, entre otros sitios, en el contradique de Langosteira.
Felicito desde esta página al director de nuestra Escuela, Eugenio Pellicer y a su equipo por la iniciativa. Os dejo algunas fotografías y vídeo sobre esta instalación.
Os dejo algún vídeo explicativo de este cubípodo, desarrollado por profesores de nuestra Escuela e instalado por SATO.