Necrológica: Han fallecido los profesores José Luis Ripoll García y Manuel Romana Ruiz

José Luis Ripoll (izquierda) y Manuel Romana (derecha)

La Escuela Técnica Superior de Ingeniería de Caminos, Canales y Puertos de Valencia ha perdido a dos de sus grandes catedráticos de geotecnia con un solo día de diferencia. Se trata de D. José Luis Ripoll García y D. Manuel Romana Ruiz. Tuve la suerte de tenerlos como profesores en las asignaturas de Geotecnia y Cimientos y de Cimentaciones Especiales. Estos días están siendo muy difíciles y dolorosos y como consecuencia, se nos están yendo los mejores. Voy a hacer una muy breve reseña de ambos, que seguro se quedará muy corta. Un abrazo muy fuerte y mis condolencias a familiares y amigos.

 

 

José Luis Ripoll García es Dr. Ingeniero de Caminos, Canales y Puertos, Catedrático Universidad Politécnica de Valencia, M. Sc. Ing. del terreno U. K., ex director general y consejero de Cubiertas y Mzov SA, Presidente de honor de Fundación Vodafone España, Vicepresidente de honor de la Corte de Arbitraje del Colegio de ICCP, Piloto de Aviación General. Medalla al Mérito en el Trabajo, en su categoría de Plata. Cruz de Oro de la Orden Civil de la Solidaridad Social. Miembro de la Academia Europea de Ciencias y Artes.

 

 

Manuel Romana Ruiz es Ingeniero de Caminos (1961) por la Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos de Madrid y Doctor Ingeniero de Caminos (1971) por la Universidad Politécnica de Madrid. Durante sus estudios trabaja como becario de investigación en el Departamento de Materiales del Instituto Eduardo Torroja. En 1978 asume la Cátedra de Geotecnia y Cimientos, y desde 1980 es Catedrático de Ingeniería del Terreno en la Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos de la Universidad Politécnica de Valencia, donde imparte docencia en las asignaturas de Geotecnia y Cimientos 2, Túneles y Obras Subterráneas, Mecánica de Rocas y Geotecnia aplicada a las Obras Hidráulicas. Su carrera profesional comienza en Dragados y Construcciones, a pie de obra (1961-1968) y continúa en INTECSA (1969-1986), donde desarrolla el Departamento de Geotecnia y Obras Subterráneas. En 1987 funda INGEOTEC, empresa consultora especializada en el proyecto de túneles y los estudios geotécnicos, y en 1999 STMR (Servicios Técnicos de Mecánica de Rocas). Ha sido Presidente de ambas empresas. Ha sido miembro de las Juntas Directivas de la Sociedad Española de Mecánica del Suelo (SEMSIG), Sociedad Española de Mecánica de las Rocas (SEMR) y de la Asociación Española de los Túneles (AETOS). Ha sido vicepresidente del Comité Español de Túneles de Carretera de ATC-PIARC y representante español en el Comité Internacional de Explotación de Túneles de PIARC, del que también fue Secretario de idioma español. Ha realizado numerosos proyectos de túneles de carretera, ferroviarios, de metro e hidráulicos actualmente en servicio (más de 500 km). Así mismo, ha sido autor de numerosas comunicaciones y textos sobre su especialidad.

Aquí dejo una entrevista que hicieron a D. Manuel con motivo del 50 aniversario de la Sociedad Española de Mecánica de Rocas.

 

Selección del sistema de control del nivel freático

Figura 1. Control del nivel freático. https://www.flickr.com/photos/wsdot/4997287082/

Los trabajos a cielo abierto, donde la cota de excavación se encuentra por debajo del nivel freático requieren emplear procedimientos constructivos diferentes para evitar que dicha excavación se inunde. El agua modifica el estado del terreno, pudiendo provocar desprendimientos, socavaciones, etc., complicando el trabajo de la maquinaria y del personal. Construir en estas condiciones requiere acertar con el procedimiento adecuado.

La elección del sistema de control del nivel freático depende fundamentalmente de la estabilidad y permeabilidad del terreno, del caudal a evacuar y de la geometría (profundidad y extensión del control).

La empresa constructora seleccionará aquel método más rentable que minimice el impacto ambiental y los riesgos asociados, especialmente aquellos relacionados con la seguridad del personal y de terceros. Sin embargo, hay que tener presente que las técnicas no son directamente intercambiables y solo son eficaces bajo determinadas condiciones.

La Figura 2 proporciona una orientación inicial que recoge el rango de aplicación de los sistemas de control del nivel freático en función de la permeabilidad del terreno y de la reducción requerida del nivel de agua. En dicha figura, las áreas sombreadas indican zonas donde los métodos pueden solaparse.

Figura 2.  Rango de aplicación de los sistemas de control del nivel freático (Cashman y Preene, 2012)

En la Figura 3 se muestra cómo el porcentaje de finos frente al tamaño de partícula puede utilizarse como una primera aproximación para decidir el tipo de drenaje a utilizar. La figura también muestra que el flujo por gravedad del agua se reduce cuando el tamaño de las partículas es inferior al de arena muy fina.

Figura 3. Sistemas de drenaje aplicables a diferentes tipos de terrenos (Powers et al., 2007)

En la Tabla 1 se recoge, de forma simplificada respecto a la Figura 2, los rangos de permeabilidad para los cuales es aplicable un sistema de control del nivel freático u otro.

Tabla 1. Aplicabilidad del sistema de control del nivel freático en función de la permeabilidad del terreno (Justo Alpañes y Bauzá, 2010). http://contactoetsa.us.es/descarga/Postgrado—-Doctorado/Curso-Codigo-T%C3%A9cnico/TEMA-10-DB-SE-C—Excavaciones-y-drenajes-[Modo-de-compatibilidad].pdf/
En la Figura 4 tenemos otro procedimiento para seleccionar el sistema de control teniendo en cuenta el diámetro eficaz y la profundidad. El diámetro eficaz, que es el correspondiente al 10% en la curva granulométrica, permite caracterizar la permeabilidad del suelo. En este caso, incorporamos el criterio de profundidad, a diferencia de la Figura 3.

Figura 4. Gráfico de Herth y Arnodits (1973) para seleccionar el sistema de control del nivel freático en función del diámetro eficaz (permeabilidad) y de la profundidad del rebajamiento.

La Tabla 2 resulta de gran interés para valorar qué métodos sería el más adecuado en función de la granulometría del suelo, la hidrogeología, los requerimientos técnicos y la capacidad (Powers, 1992). Según esta tabla, resulta ilustrativo comprobar cómo los drenes horizontales suele ser el método más eficaz ante cualquier naturaleza y condición.

Tabla 2. Aptitud del sistema de control del nivel freático (Powers, 1992). https://www.interempresas.net/Rehabilitacion/Articulos/133892-Innovacion-sistemas-drenaje-elevada-siniestralidad-incidencia-agua-subterranea.html

Se pueden agrupar los suelos en cuatro grupos a efectos del posible rebajamiento del nivel freático (Schulze y Simmer, 1978; Muzas, 2007):

  • Bolos y gravas gruesas: k > 1 cm/s y tamaño del árido mayor de 5 mm. Con grandes caudales es muy costoso el bombeo, por lo que se hace el trabajo sumergido o con aire comprimido. También se puede impermeabilizar el recinto antes de los trabajos con inyecciones o con una pantalla plástica realizada con una mezcla de bentonita-cemento.
  • Arenas gruesas y finas: 1 > k > 10-2 cm/s y tamaño del árido entre 0,1 a 5 mm. Se usan pozos filtrantes y bombeo, al circular el agua por gravedad, con una velocidad de 1 a 0,01 cm/s.
  • Arenas finas y limos: 10-3 > k > 10-5 cm/s y tamaño entre 0,2 y 0,008 mm. El agua no puede circular libremente entre los poros, por lo que se pueden producir sifonamiento si aumenta la presión intersticial que se pueden evitar si se recurre al método de vacío (wellpoints).
  • Limos y arcillas:  10-4 > k > 10-6 cm/s y tamaño entre 0,02 y 0,002 mm. El agua no se puede desplazar por descenso del nivel freático. Con terrenos estables se puede usar el agotamiento ordinario, permitiendo construir taludes sin entibación, excepto en el caso de suelos muy susceptibles, en cuyo caso solo se pueden drenar por electroósmosis.

En el caso de bombeos, para seleccionar el diseño adecuado, siempre es recomendable realizar una prueba de bombeo que determine, entre otras, las siguientes características:

  • Permeabilidad media o transmisividad y radio de influencia
  • Gradiente horizontal probable, cuyo efecto es importante en estructuras vecinas o pozos cercanos
  • Dificultades de instalación de los pozos, para el diseño y selección del procedimiento constructivo
  • El caudal que se puede extraer del pozo
  • Cualquier condición imprevista que pueda afectar al bombeo

Os dejo a continuación un Polimedia explicativo. Espero que os sea de interés.

REFERENCIAS:

  • CASHMAN, P.M.; and PREENE, M. (2012). Groundwater Lowering in Construction: A Practical Guide to Dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
  • HERTZ, W.; ARNDTS, E. (1973). Theorie und praxis der grundwasserabsenkung. Ernst & Sohn, Berlin.
  • JUSTO ALPAÑES, J.L.; BAUZÁ, J.D. (2010). Tema 10: Excavaciones y drenajes. Curso de doctorado: El requisito básico de seguridad estructural en la ley orgánica de la edificación. Código Técnico de la Edificación. ETS. de Arquitectura, Universidad de Sevilla.
  • MUZAS, F. (2007). Mecánica del suelo y cimentaciones, Vol. II. Universidad Nacional de Educación a Distancia, Madrid.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • SCHULZE, W.E.; SIMMER, K. (1978). Cimentaciones. Editorial Blume, Madrid, 365 pp.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Pantalla de lodo autoendurecible armado

Figura 1. Cuchara para excavar pantalla. https://www.geo-solutions.com/resource-category/slurry-walls-equipment/

La pantalla de lodo autoendurecible armado, también llamada pantalla de lechada armada (reinforced slurry wall) es una pantalla compuesta, de carácter estructural, donde colaboran unos elementos portantes resistentes a flexión y un relleno intermedio que los solidariza y que descarga los empujes recibidos hacia los elementos portantes. Se trata de una técnica a medio camino entre un muro berlinés y un muro pantalla.

Los elementos resistentes suelen ser tablestacas o perfiles metálicos de sección en “I” y el relleno intermedio, de una mezcla bentonita-cemento. Es por ello que el sistema también trabaja como elemento de contención del agua. Una variante es utilizar una mezcla de suelo-cemento en vez de la lechada, las llamadas pantallas de suelo-cemento armadas (reinforced soil-mixing wall).

El procedimiento constructivo para la pantalla de lodo armado utiliza las mismas herramientas de excavación (cuchara bivalva) que los muros pantalla (Figura 1), donde la lechada de bentonita-cemento actúa también como elemento estabilizante de las paredes. En la lechada fresca se colocan perfiles verticales (Figura 2).  La transmisión del empuje activo de las tierras y del agua se moviliza en el lodo endurecido por efecto bóveda hacia los perfiles, los cuales resisten a flexión gracias a los apoyos en anclajes, arriostramientos y el empotramiento bajo el fondo de excavación. En el caso de utilizar tablestacas, la pantalla funciona como un muro continuo convencional.

Figura 2. Procedimiento constructivo de una pantalla de lodo autoendurecible armado. https://www.rodiokronsa.es/contencion/pantalla-compuesta/

 

Figura 3.  Procedimiento constructivo de una pantalla de lodo autoendurecible armado.  https://www.raitoinc.com/technologies/soil-mixing-wall/

REFERENCIAS:

  • CASHMAN, P.M.; PREENE, M. (2012). Groundwater Lowering in Construction: A Practical Guide to Dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
  • INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA (1987). Manual de ingeniería de taludes. Serie: Guías y Manuales nº 3, Ministerio de Educación y Ciencia, Madrid, 456 pp.
  • POWERS, J.P.; CORWIN, A.B.; SCHMALL, P.C.; KAECK, W.E. (2007). Construction dewatering and groundwater control: New methods and aplications. Third Edition, John Wiley & Sons.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Conceptos básicos del agua en medio poroso

Figura 1. Esquema de acuífero. https://es.wikipedia.org/wiki/Archivo:Aquifer_es.svg

Cualquier curso de geotecnia básica dedica una parte importante de su temario a describir y caracterizar el agua en el suelo, especialmente el flujo en medios porosos y la incidencia de las presiones efectivas en la deformación de los suelos.

En este artículo vamos a recordar algunos conceptos básicos que, de una u otra forma, influyen directamente en los procedimientos constructivos, especialmente cuando se trata de controlar el agua. Se remite al lector a la bibliografía básica para profundizar más en estos temas.

  • Acuífero: terreno por donde circula el agua. Al límite impermeable inferior del acuífero se le denomina muro y al superior techo. Si el agua se encuentra en contacto con la atmósfera a través de los poros o fisuras existentes en la zona no saturada, se denomina acuífero libre. En cambio, en un acuífero confinado, el techo se encuentra a presión superior a la atmosférica.
  • Acuicludo: formación geológica que conteniendo agua en su interior, incluso hasta la saturación, no la transmite y, por tanto, no es posible su explotación (caso de terrenos arcillosos).
  • Acuitardo: formación geológica que transmiten muy lentamente el agua, por lo que tampoco son aptos para la captación. Sin embargo, en condiciones especiales, permiten una recarga vertical de otros acuíferos. Es el caso de un estrato de arcillas limosas o arenosas.
  • Nivel freático: lugar geométrico de los puntos donde la presión del agua es la atmosférica. Es el nivel que alcanza la superficie del agua en pozos de observación en libre comunicación con los vacíos del suelo in situ. Por encima del nivel freático existe el agua capilar donde su presión es menor que la atmosférica. En un punto concreto, en un pozo, se habla de nivel piezométrico, que si se encuentra por encima de la superficie del terreno, se dice que existen “condiciones artesianas”.
  • Coeficiente de almacenamiento: cantidad de agua que cede un prisma de acuífero de base cuadrada unitaria cuando se le deprime la unidad. Es adimensional. Su valor oscila normalmente entre 0,2 y 0,4 en acuíferos libres, oscilando entre 10-5 y 10-3 en los acuíferos cautivos y semiconfinados, al entrar en juego los efectos mecánicos del terreno o de la propia agua.
Figura 2. Esquema de acuífero libre y confinado (Bouwer, 1987)
  • Porosidad: porcentaje del volumen total de un suelo o roca que está ocupado por poros. Estos poros estarán rellenos de agua si el material está saturado, o de aire y agua si no lo está. Si solo se considera el volumen de los poros que están interconectados, se denomina “porosidad eficaz”. En los acuíferos libres el coeficiente de almacenamiento coincide con la porosidad eficaz.
  • Índice de poros o huecos: razón entre el volumen de poros y el volumen de sólidos.
  • Humedad: relación entre el peso del agua que contiene un suelo y el peso del suelo seco.
  • Grado de saturación: porcentaje del volumen de huecos ocupados por el agua.
  • Carga hidráulica total: también llamado potencial, es la energía por unidad de peso (expresada como una altura) en un determinado punto de un fluido en movimiento. Donde H es la carga hidráulica total, z la altura geométrica, u/γw  la altura de presión, siendo u la presión del agua en el punto considerado y  γw  el peso específico del agua y v2/2g la altura de velocidad, siendo v la velocidad del flujo en el punto considerado y g la aceleración de la gravedad. Todos estos términos tienen unidades de longitud. Si el agua está en reposo (condiciones hidrostáticas), o bien se desprecia la velocidad por ser muy baja (caso de la circulación del agua en medio poroso), la carga total es la altura piezométrica.

  • Líneas de corriente o líneas de flujo: son las curvas por las que se mueven las partículas fluidas, invariables en el transcurso del tiempo. A medida que el agua circula a través del suelo, modifica su velocidad y potencial.
  • Líneas equipotenciales: lugares geométricos del flujo donde la altura piezométrica es constante.
Figura 3. Red de flujo, formada por líneas equipotenciales (Ψ) y  líneas de corriente (Φ)
  • Teorema de Bernouilli: en el caso ideal de un fluido perfecto e incompresible sujeto a un flujo permanente y estacionario, la carga hidráulica total se mantiene constante entre dos puntos cualesquiera del fluido a lo largo de una línea de corriente. Como un fluido real no es perfecto, cualquier obstáculo al flujo produce una pérdida de carga. De hecho, existe flujo entre dos puntos si existe una diferencia en la carga hidráulica, de forma que el agua circula del punto de mayor a menor potencial. Si se añade energía H al caudal mediante una bomba, y se consideran las pérdidas hr, del punto 1 al punto 2, la ecuación queda:

  • Coeficiente de permeabilidad: k, mide la facilidad para que el agua circule a través de un suelo. También se llama conductividad hidráulica, y tiene unidades de velocidad, normalmente cm/s. La permeabilidad implica una posibilidad de recorrido y exige la existencia de vacíos o huecos continuos. La permeabilidad depende de factores intrínsecos al acuífero y extrínsecos, que dependen del fluido, y son su viscosidad y su peso específico. Según Hazen, en arenas uniformes, la permeabilidad es proporcional al cuadrado del diámetro eficaz (D10 ).
  • Permeabilidad equivalente horizontal: el flujo atraviesa horizontalmente un conjunto de n estratos, con una permeabilidad cada uno de ki  y un espesor ei .  El caudal equivalente será la suma de los caudales, por lo que la permeabilidad equivalente, kh vale lo siguiente:

  • Permeabilidad equivalente vertical: el flujo atraviesa verticalmente un conjunto de n estratos, con una permeabilidad cada uno de ki  y un espesor ei .  El caudal a lo largo de los estratos, y cada estrato tendrá un gradiente distinto ii, por lo que igualando las pérdidas de carga y despejando, obtenemos la permeabilidad equivalente kv , que vale lo siguiente:

 

  • Gradiente hidráulico: i, se define como la pérdida de carga (altura piezométrica) por unidad de longitud recorrida. Es un vector cuya dirección se orienta con los potenciales decrecientes.

  • Ley de Darcy: la velocidad del fluido en medio poroso es proporcional al gradiente hidráulico a través del coeficiente de permeabilidad. No es una propiedad intrínseca del suelo y tiene unidades de velocidad. Aquí se ha supuesto un flujo laminar en medio poroso y una velocidad media a través de una sección “macroscópica” de suelo, es decir, la velocidad aparente a lo largo de las líneas de flujo.

Figura 4. Esquema de la ley de Darcy
  • Transmisividad: caudal que se filtra a través de una franja vertical de terreno, de ancho unidad y de altura igual al espesor saturado, bajo un gradiente unidad, a una temperatura determinada y durante la unidad de tiempo. Sus unidades son las de una velocidad multiplicada por una longitud.
  • Ecuación de Laplace: modeliza un flujo estacionario en medio poroso homogéneo e isótropo de un fluido incompresible, en un suelo de peso específico constante y saturado. De difícil solución analítica, se puede resolver gráficamente dibujando dos familias de curvas ortogonales entre sí, las líneas equipotenciales (Ψ) y las líneas de corriente (Φ), que forman la red de flujo. Para dibujar la red de flujo hay que considerar que las fronteras impermeables constituyen líneas de corriente y las fronteras permeables (como una lámina de agua) es una línea equipotencial. Al cortarse ambas familias de líneas, se deben obtener “cuadrados curvilíneos”.

  • Red de flujo: una vez dibujada la red, la pérdida de carga total se distribuye de forma uniforme entre las equipotenciales, todos los canales de flujo transportan el mismo caudal, y un canal de flujo es el comprendido entre dos líneas de corriente. Las principales aplicaciones de las redes de flujo son: calcular las presiones del agua subterránea en unas determinadas líneas o superficies, estimar los caudales del agua subterránea y calcular los gradientes hidráulicos.
Figura 5. Red de flujo bajo una presa
  • Fuerzas de filtración o de arrastre: son fuerzas másicas (fuerza por unidad de volumen) que el agua ejerce sobre el terreno al circular por sus poros. El módulo de estas fuerzas por unidad de volumen es el producto del peso específico del agua por el gradiente. La fuerza de filtración tiene la dirección y el sentido del flujo.

  • Presión efectiva: es la presión que se transmite grano a grano, siendo la diferencia entre las presiones totales y las intersticiales. Según el postulado de Terzaghi, la resistencia al esfuerzo cortante y el cambio de volumen de un suelo dependen de la magnitud de la presión efectiva y sus variaciones.

Os voy a dejar algunos vídeos explicativos de estos conceptos. Espero que os sean de utilidad.

Referencias:

  • BOUWER, H. (1978). Groundwater Hidrology. Mc Graw-Hill Book Co., New York, 480 pp.
  • DAS, B. (2005). Fundamental of Geotechnical Engineering – 2nd ed, Technomic Publishing Co.
  • GONZÁLEZ DE VALLEJO, L.I. et al. (2004). Ingeniería Geológica. Pearson, Prentice Hall, Madrid.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W., DYER, M.R. (2004). Groundwater control: design and practice. CIRIA C515, London.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El problema del agua en las excavaciones

Figura 1. https://www.obrasurbanas.es/pantallas-tablestacas-excavaciones/

El flujo superficial y subterráneo del agua, así como los cambios en el nivel freático de un terreno, por causas naturales o artificiales, provocan consecuencias tanto en el terreno propio como en los colindantes. En el caso de una excavación que intercepte la capa freática va a suponer problemas tanto para la propia excavación, y posterior ejecución de las obras en el recinto, como en los terrenos y estructuras colindantes.

Los problemas del agua como factor desestabilizante se pueden resolver si se mantiene el agua lejos de las zonas donde puede causar daño o bien se controla el agua que entra mediante drenajes. Si no se controla la infiltración, entonces el agua puede hacer migrar las partículas finas del suelo hacia una salida, ocasionando sifonamientos o roturas por erosión, o bien se incrementa la saturación, la corriente interna, o se dan excesivas subpresiones o fuerzas de infiltración.

Un caso muy habitual de lo anterior ocurre cuando se realizan perforaciones bajo nivel freático para ejecutar anclajes (por ejemplo en muros pantalla) o bien en inyecciones (impermeabilización de presas y túneles, inyecciones de compensación, etc.). En estos casos, la salida de agua por la perforación puede provocar arrastre de finos o salidas abruptas de agua, fenómeno conocido como “taponazo”.

En el caso de realizar excavaciones, los principales problemas geotécnicos asociados al agua que pueden aparecer son la subsidencia, la erosión superficial, la erosión interna o tubificación, la inestabilidad de taludes, la inestabilidad del fondo o sifonamiento y el levantamiento del fondo. Sin embargo, un buen conocimiento del suelo, de las condiciones del agua del terreno y de las leyes del flujo hidráulico permite adoptar sistemas de control del agua que garanticen una construcción económica y segura. A continuación se describen brevemente estos problemas.

  • Subsidencia: En el caso de un descenso del nivel freático, el postulado de Terzaghi nos indica que el aumento de las tensiones efectivas provocará asientos. Esta disminución puede ser debida a un bombeo, previo o no, a una excavación (Figura 2). Análogamente, un aumento en el freático puede provocar asientos en un suelo arcilloso si éste disminuye su consistencia, o bien en arenas al reducir su capacidad portante. El aumento, por ejemplo, puede deberse a una fuga de la red de agua potable, a un aumento repentino de aguas superficiales por lluvias o, como se ve en la Figura 3, a la ejecución de un muro pantalla. En este caso, las grietas pueden aparecer tanto por el debilitamiento del terreno durante la excavación como cuando el muro pantalla hace de barrera al agua. Asientos del orden de 1 mm/año no exigen tratamiento de urgencia, pero si son del orden de 1 mm/mes, implican un riesgo notable. Asientos de 1 mm/año pueden provocar daños ligeros en la tabiquería, que son notables, dependiendo si el proceso se estabiliza o no, cuando son de 1 mm/mes y que llegan a graves si el asiento es de 2 mm/mes.
Figura 2. Grietas en edificios colindantes por subsidencia provocada por bombeo. Elaboración propia basado en Pérez Valcárcel (2004)
Figura 3. Grietas en edificios colindantes por modificación del nivel piezométrico debido a ejecución de muro pantalla. Elaboración propia basado en Pérez Valcárcel (2004)
  • Deslizamiento de taludes: El flujo de agua en el talud de una excavación provocan su inestabilidad, especialmente por el aumento de cargas que supone (el terreno con mayor saturación pesa más) y por la disminución de la resistencia a corte (fácilmente se reduce el ángulo de rozamiento interno del terreno a la mitad). En efecto, el criterio de rotura de Mohr-Coulomb, indica que la resistencia al corte del terreno τen un determinado plano depende del sumatorio de la cohesión efectiva c‘  y del producto de la tensión efectiva normal σ’ (diferencia entre presión total e intersticial) por la tangente del ángulo de rozamiento interno efectivo Φ‘ . Dicho de otra forma, conseguir una excavación más estable en presencia de agua supone taludes más tendidos.

Este fenómeno se combina con la erosión, especialmente cuando la excavación corta dos estratos, siendo el inferior impermeable en comparación con el superior, lo que provoca un flujo de agua entre capas que puede provocar fenómenos de erosión tanto superficial como interna (Figura 4). Se podría solucionar el problema con taludes de excavación más tendidos o bien con una barrera (tablestacado, muro pantalla, entre otros).

 

Figura 4. Peligro de deslizamiento y erosión regresiva en estrato impermeable
  • Erosión superficial: Cuando el agua aflora en los taludes de una excavación provoca cárcavas por arrastre del terreno que comprometen su estabilidad y por otra parte debilita las bermas construidas en taludes altos (Figura 5). La solución consiste en proteger la coronación y las bermas de los taludes con cunetas impermeables o drenes que reciban el agua y la conduzcan a puntos de recogida y bombeo, especialmente cuando el talud va a ser permanente. Este fenómeno erosivo también ocurre cuando la superficie freática no baja lo suficiente e intersecta la cara del talud.
Figura 5.  Erosión superficial del talud, con cunetas sin revestir o protegidas y revestidas
  • Erosión interna o tubificación (piping): El agua arrastra una partícula entre los huecos de un suelo dependiendo de la relación entre los tamaños de las partículas y los huecos y del gradiente hidráulico (Figura 6). El flujo arrastra las partículas por las líneas de corriente por el interior de la masa del terreno formándose un hueco tubular. Como el terreno es heterogéneo, si en un punto el flujo alcanza mayor velocidad, se produce un primer arrastre de partículas. Ello provoca un aumento del gradiente hidráulico y una progresión en la erosión al formarse un tubo donde el régimen es turbulento. Este fenómeno es propicio en suelos dispersables. Para evitarlo se emplean filtros graduados o bien geotextiles para evitar arrastres y medidas que reduzcan el gradiente hidráulico. Este efecto puede darse en el caso de presas de materiales sueltos, pero también podría aparecer, por ejemplo, en el flujo de agua provocado por un pozo de drenaje en una edificación contigua o en una ejecución inadecuada de los anclajes de un muro pantalla.
Figura 6. Tubificación en el interior de una presa de materiales sueltos
  • Inestabilidad del fondo o sifonamiento: Cuando existe un flujo ascendente, un terreno granular no consolidado puede perder completamente su resistencia a corte y comportarse como un fluido (arenas movedizas, partículas sueltas, como en ebullición), por lo que al fenómeno también se le conoce como fluidificación. Ello ocurre cuando un incremento de la presión intersticial anula la presión efectiva, o dicho de otra forma, cuando las fuerzas producidas por la filtración superan el peso sumergido del suelo. Este fenómeno podría aparecer en pantallas con un empotramiento reducido (Figura 7). A veces podrían provocarse sifonamientos localizados, como en el caso de un defecto puntual en un muro pantalla, pues se acorta el recorrido del flujo y aumenta el gradiente (Figura 8).
Figura 7. Sifonamiento en la base de un recinto protegido con muros pantalla
Figura 8. Sifonamiento localizado por defecto puntual en muro pantalla. Elaboración propia basado en Pérez Valcárcel (2004)
  • Levantamiento de fondo o taponazo (uplift): El fondo de la excavación se puede volver inestable cuando el peso del terreno no es capaz de equilibrar al empuje del agua (Figura 9). Es típico de un estrato de baja permeabilidad (como una arcilla o roca de baja permeabilidad sin fisuras) situado sobre un acuífero confinado de mayor conductividad hidráulica (como una grava, muy permeable). Suele resolverse el problema con pozos de alivio.
Figura 9. Rotura de fondo o tapozano

Además de los riesgos anteriores, no se debería olvidar que existen otros posibles riesgos difíciles de prever que pueden aparecer durante la ejecución de una excavación. Dentro de este capítulo se podrían citar incidencias derivadas de surgencias de una excavación ya drenada, filtraciones laterales en muros pantalla o tablestacas. En estos casos debe analizarse de inmediato las posibles consecuencias del fallo y aplicar, en su caso, las medidas correctoras oportunas. Aquí cobra especial importancia la experiencia adquirida en casos anteriores con el fin de garantizar la estabilidad de la propia obra y de las propiedades colindantes. Por último, y no menos importante, conviene recordar que el agua es el enemigo de los rendimientos de todos los tajos en una obra.

Os dejo algunos vídeos explicativos sobre aspectos que hemos comentado en el artículo. Espero que os sean de interés.

Otro vídeo de interés es éste que os dejo. En él vemos qué pasa cuando se ejecutan anclajes bajo el nivel freático.

REFERENCIAS:

  • PÉREZ VALCÁRCEL, J.B. (2004). Excavaciones urbanas y estructuras de contención. Ediciones Cat, Colegio Oficial de Arquitectos de Galicia, 419 pp.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W., DYER, M.R. (2004). Groundwater control: design and practice. CIRIA C515, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Drenaje de excavaciones mediante bombeos superficiales y sumideros

Figura 1. Sumidero para bombeo superficial. https://www.ferrersl.com/noticias/proyectos-servicios/sistema-de-bombeo-tipo-sumidero/

Un sumidero o pozo abierto (sump pit) es un foso en el que el agua se acumula antes de ser evacuada mediante un bombeo superficial (sump pumping). El sumidero se encuentra a un nivel más bajo que el terreno circundante para que el agua fluya a él por gravedad. Con estos bombeos no se provoca un descenso de la capa freática tal que permita la excavación en seco, sino que provoca la escorrentía del agua hasta alcanzar los sumideros. El agua bombeada se evacua hacia un canal de desagüe o a una conducción de drenaje. Debe eliminarse en la medida de lo posible la arena en suspensión, pues no solo ensucia las conducciones, sino que dificulta la circulación del agua.

El bombeo superficial recibe también el nombre de agotamiento ordinario. Se trata del sistema más sencillo de drenaje, económico y muy efectivo para abatimientos pequeños del nivel freático. El diseño y montaje de los bombeos superficiales se limita a preparar puntos o zanjas drenantes que concentren y faciliten el flujo del agua. Sin embargo, es su menor impacto económico el que hace que se extrapole su uso a situaciones inapropiadas, con resultados desfavorables, demoras de plazo, accidentes y posibles daños.

En efecto, la ejecución del sumidero no es aplicable en suelos granulares, puesto que su estabilidad es prácticamente nula y de riesgo alto una vez se atraviesa la capa freática, por lo que con los medios básicos y usuales a pie de obra, no es posible su implantación. Por eso solo se plantea el sistema con descensos muy pequeños del nivel freático, en el entorno de 2 m en suelos de moderada estabilidad.

Con excavaciones de alturas algo mayores, se requiere cierta cohesión del terreno para ejecutar taludes estables dentro de la parcela a vaciar. Por tanto, el bombeo abierto desde el fondo de la excavación no podrá ser utilizado en arenas, limos, arcillas limosas, o en cualquier situación en la que el agua pueda producir sifonamiento, levantamiento del fondo o inestabilidad de los taludes de la excavación.

Además, también pueden provocar problemas de desestabilización debido a la pérdida de finos del terreno circundante, así como a la elevación de las presiones efectivas y los consiguientes movimientos y asientos del terreno contiguo. Asimismo, el agua evacuada puede presentar una elevada carga de sedimentos que pueden provocar problemas medioambientales en el punto de vertido. Se pueden reducir los arrastres de finos minimizando la velocidad del flujo y colocando filtros y depósitos de decantación (areneros) a lo largo de la red de drenaje, en su caso. El arrastre de finos provocado por los agotamientos, puede también reducirse por medio de drenes de material filtrante colocados al pie de los taludes de la excavación.

Figura 2. Esquema de sumidero y bomba de achique para pequeñas excavaciones, basado en Powers (1992).

Los sumideros se plantean distribuidos a lo largo del perímetro de la excavación. Son excavaciones puntuales, de profundidades inferiores a unos 4 m, donde se dispone un árido que actúe de filtro y de una tubería metálica ranurada, de unos 450 mm, que permite alojar equipos de bombeo sumergibles de achique, de potencias de hasta 15 CV, capaces de elevar en torno a 40 l/s. Los áridos del prefiltro tienen un tamaño próximo a 15 mm y el ranurado del tubo, en el entorno de paso de 8 mm. El sumidero se debe profundizar a medida que progresa la excavación. Una vez alcanzada la profundidad definitiva debe recubrirse la solera con grava si el terreno es de grano fino y se prevé una larga utilización para evitar la posible succión de arenas.

Las bombas más utilizadas son las de membrana y las centrífugas. Estas bombas, que trabajan con rendimientos del 60-80 %, deben tener potencia suficiente para aspirar e impulsar con cierto margen, el caudal de agua mezclada de arenas y limos. Si la profundidad de la excavación supera la altura práctica de aspiración de la bomba (unos 5 m), la bomba debe quedar por debajo de la superficie del terreno y lo más próxima al nivel freático. En este caso es mejor utilizar bombas sumergibles, con lo cual ya no tiene importancia la altura de aspiración, mientras que la impulsión solo depende de la potencia del motor.

Figura 3. Aspecto del sumidero una vez colocado el material filtrante alrededor del tubo ranurado. https://www.ferrersl.com/noticias/proyectos-servicios/sistema-de-bombeo-tipo-sumidero/

La limpieza y el mantenimiento de los sumideros son tareas continuas. El sedimento se acumula en la parte superior de la grava y debe ser removido periódicamente, especialmente después de las lluvias. Si el sedimento se introduce en la grava que sirve de filtro, obstruyéndola, se debe reemplazar con grava limpia.

Os dejo un Polimedia explicativo sobre este tema. Espero que os sea de interés.

En este vídeo, cortesía de FERRER, S.L., se puede observar este sistema de bombeo superficial.

REFERENCIAS:

  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W., DYER, M.R. (2004). Groundwater control: design and practice. CIRIA C515, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Curso en línea de “Procedimientos de contención y control del agua subterránea en obras de ingeniería civil y edificación”

La Universitat Politècnica de València, en colaboración con la empresa Ingeoexpert, ha elaborado un Curso online sobre “Procedimientos de Construcción de cimentaciones y estructuras de contención y control del agua subterránea en obra civil y edificación”. El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 75 horas de dedicación del estudiante.

Toda la información la puedes encontrar en esta página: https://ingeoexpert.com/cursos/curso-de-procedimientos-de-contencion-y-control-del-agua-subterranea-en-obras/?fbclid=IwAR0d1Ga2q6tuY_AfplyREj4TIOjMztLSRsy6aykXT-X4X903Mc8ERBw6TyY

Os paso un vídeo explicativo y os doy algo de información tras el vídeo: https://www.youtube.com/watch?v=Z1mkod8SPns

Este es un curso básico de procedimientos de contención y control del agua subterránea en obras civiles y de edificación. Se trata de un curso que no requiere conocimientos previos especiales y está diseñado para que sea útil a un amplio abanico de profesionales con o sin experiencia, estudiantes de cualquier rama de la construcción, ya sea universitaria o de formación profesional. Además, el aprendizaje se ha escalonado de modo que el estudiante puede profundizar en aquellos aspectos que más les sea de interés mediante documentación complementaria y enlaces de internet a vídeos, catálogos, etc.

En este curso aprenderás las distintas tipologías y aplicabilidad de los procedimientos de contención y control del agua utilizados en obras de ingeniería civil y de edificación. El curso índice especialmente en la comprensión de los procedimientos constructivos y la maquinaria específica necesaria para la ejecución de los distintos tipos de sistemas de control del agua (ataguías, pantallas, escudos, drenajes superficiales, bombeos profundos, congelación del suelo, electroósmosis, inyecciones, etc.). Es un curso de espectro amplio que incide especialmente en el conocimiento de la maquinaria y procesos constructivos, y por tanto, resulta de especial interés desarrollar el pensamiento crítico del estudiante en relación con la selección de las mejores soluciones constructivas para un problema determinado. El curso trata llenar el hueco que deja la bibliografía habitual donde los aspectos de proyecto, geotecnia, hidrogeología, estructuras, etc., oscurecen los aspectos puramente constructivos. Además, está diseñado para que el estudiante pueda ampliar por sí mismo la profundidad de los conocimientos adquiridos en función de su experiencia previa o sus objetivos personales o de empresa.

El contenido del curso está organizado en 50 lecciones, que constituyen cada una de ellas una secuencia de aprendizaje completa. La dedicación aproximada para cada lección se estima en 1-2 horas, en función del interés del estudiante para ampliar los temas con el material adicional. Además, al finalizar cada Lección didáctica, el estudiante afronta una batería de preguntas cuyo objetivo fundamental es afianzar los conceptos básicos y provocar la duda o el interés por aspectos determinados del tema abordado. Al final se han diseñado tres unidades adicionales cuyo objetivo fundamental consiste en afianzar los conocimientos adquiridos a través del desarrollo de casos prácticos, donde lo importante es desarrollar el espíritu crítico y la argumentación a la hora de decidir la conveniencia de un procedimiento de control del agua u otro. Por último, al finalizar el curso se realiza una batería de preguntas tipo test cuyo objetivo es conocer el aprovechamiento del curso, además de servir como herramienta de aprendizaje.

El curso está programado para una dedicación de 75 horas de dedicación por parte del estudiante. Se pretende un ritmo moderado, con una dedicación semanal en torno a las 10-15 horas, dependiendo de la profundidad de aprendizaje requerida por el estudiante, con una duración total de 6 semanas de aprendizaje.

Éste curso único impartido Víctor Yepes, Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València, se presenta mediante contenidos multimedia interactivos y de alta calidad dentro de la plataforma virtual Moodle, combinado con la realización de ejercicios prácticos. Así mismo, se realizarán clases en directo mediante videoconferencias, que podrán ser vistas en diferido en caso de no poder estar presente en las mismas.

Objetivos

Al finalizar el curso, los objetivos de aprendizaje básicos son los siguientes:

  1. Comprender la utilidad y las limitaciones de los procedimientos de contención y control del agua en obras de ingeniería civil y de edificación
  2. Evaluar y seleccionar el mejor tipo de procedimiento necesario para una construcción con problemas de agua en unas condiciones determinadas, considerando la economía, la seguridad y los aspectos medioambientales

Programa

  • – Lección 1. Conceptos básicos del agua en medio poroso
  • – Lección 2. El problema del agua en las excavaciones
  • – Lección 3. La magia de las tensiones efectivas en geotecnia
  • – Lección 4. El sifonamiento en las excavaciones: el efecto Renard
  • – Lección 5. Clasificación de las técnicas de control del agua en excavaciones
  • – Lección 6. Selección del sistema de control del nivel freático
  • – Lección 7. Drenaje de excavaciones mediante bombeos superficiales y sumideros
  • – Lección 8. Drenaje de excavaciones mediante zanjas perimetrales
  • – Lección 9. Descenso del nivel freático por bombeo: fórmula de Dupuit-Thiem
  • – Lección 10. Cálculo de un agotamiento mediante pozos
  • – Lección 11. Tipología de las estaciones de bombeo
  • – Lección 12. Altura neta positiva de aspiración de una bomba
  • – Lección 13. Bombas empleadas en el control del nivel freático de una excavación
  • – Lección 14. Procedimientos constructivos de pozos profundos para drenaje
  • – Lección 15. Drenaje en excavaciones sobre acuíferos confinados: pozos de alivio
  • – Lección 16. Drenaje de excavaciones mediante bombeo desde pozos filtrantes
  • – Lección 17. Drenaje de excavaciones mediante bombeo desde pozos eyectores
  • – Lección 18. Drenajes horizontales instalados mediante zanjadoras
  • – Lección 19. Pozos horizontales ejecutados mediante perforación horizontal dirigida
  • – Lección 20. Drenes de penetración transversal: drenes californianos
  • – Lección 21. Control del nivel freático mediante lanzas de drenaje (wellpoints)
  • – Lección 22. Drenaje horizontal con pozos radiales
  • – Lección 23. Galerías de drenaje en el control del nivel freático
  • – Lección 24. Electroósmosis como técnica de drenaje del terreno
  • – Lección 25. Procedimientos para la contención del agua
  • – Lección 26. Evaluación aproximada de caudales de bombeo en excavación de solares
  • – Lección 27. Contención de aguas mediante ataguías en excavaciones
  • – Lección 28. Contención del agua mediante ataguías de tierras y escollera
  • – Lección 29. Contención del agua mediante tablestacas
  • – Lección 30. Contención del agua mediante ataguías celulares
  • – Lección 31. Contención del agua mediante cajones indios
  • – Lección 32. Contención del agua mediante cajones de aire comprimido
  • – Lección 33. Contención del agua mediante muros pantalla
  • – Lección 34. Contención del agua mediante pantallas de pilotes secantes
  • – Lección 35. Contención del agua mediante pantallas plásticas de bentonita-cemento
  • – Lección 36. Contención del agua mediante pantallas de suelo-bentonita
  • – Lección 37. Contención del agua mediante pantallas de suelo-cemento con hidrofresa
  • – Lección 38. Contención del agua mediante pantallas de lodo autoendurecible armado
  • – Lección 39. Contención del agua mediante pantallas realizadas por mezcla profunda de suelos
  • – Lección 40. Contención del agua mediante pantallas delgadas de lodo ejecutadas mediante vibración de perfiles
  • – Lección 41. Contención del agua mediante pantallas de geomembranas
  • – Lección 42. Contención del agua mediante inyección del terreno
  • – Lección 43. Contención del agua mediante inyección de lechadas de cemento
  • – Lección 44. Contención del agua mediante inyección de lechadas de arcilla
  • – Lección 45. Contención del agua mediante inyección de lechadas químicas
  • – Lección 46. Contención del agua mediante inyecciones de alta presión: jet-grouting
  • – Lección 47. Contención del agua mediante congelación de suelos
  • – Lección 48. Contención del agua mediante escudos presurizados con aire comprimido
  • – Lección 49. Contención del agua mediante escudos presurizados con lodos
  • – Lección 50. Contención del agua mediante escudos de presión de tierras
  • – Supuesto práctico 1.
  • – Supuesto práctico 2.
  • – Supuesto práctico 3.
  • – Batería de preguntas final

Profesorado

Víctor Yepes Piqueras

Doctor Ingeniero de Caminos, Canales y Puertos. Universitat Politècnica de València

Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente “cum laude”. Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València y profesor, entre otras, de las asignaturas de Procedimientos de Construcción en los grados de ingeniería civil y de obras públicas. Su experiencia profesional se ha desarrollado fundamentalmente en Dragados y Construcciones S.A. (1989-1992) como jefe de obra y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 5 proyectos de investigación competitivos. Ha publicado más de 115 artículos en revistas indexadas en el JCR. Autor de 8 libros, 22 apuntes docentes y más de 250 comunicaciones a congresos. Ha dirigido 14 tesis doctorales, con 4 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos. Tiene experiencia contrastada en cursos a distancia, destacando el curso MOOC denominado “Introducción a los encofrados y las cimbras en obra civil y edificación”, curso que ya ha tenido cuatro ediciones. También destaca el curso sobre “Procedimientos de construcción de cimentaciones y estructuras de contención en obra civil y edificación”, que ya va por su segunda edición.

Pantallas delgadas de lodo ejecutadas mediante vibración de perfiles

Figura 1. Ejecución de una pantalla delgada de lodos. https://spezialtiefbau.implenia.com/

Las pantallas delgadas de lodo (thin slurry walls) actúan como barreras verticales para contener el flujo horizontal del agua subterránea. A diferencia de los muros pantalla, donde se sustituye el terreno por bentonita, las pantallas delgadas desplazan los suelos vibrando un perfil de acero (vibrated beam slurry walls).

Se trata de un sistema que se ha utilizado con éxito y de forma económica como pantallas de contención de filtraciones en presas, como medio para controlar las aguas subterráneas durante la ejecución de obras o como elemento de contención de residuos tóxicos. Se consiguen permeabilidades en el rango de k = 10-8 cm/s. Además, como se requiere poca excavación de material, se reduce el transporte de material a vertedero, aspecto realmente importante cuando se trata de suelos contaminados.

Mientras se vibra el perfil también se inyecta una lechada autoendurecible para ayudar como lubricante. Posteriormente se extrae el perfil, creando un espacio de 10-15 cm que se rellena con dicha lechada. Este método es adecuado para arenas y gravas. El grosor de la pared de lechada depende de la forma del perfil de acero utilizado y de las condiciones del terreno. El espesor varía entre 5 cm en arenas y 20 cm en gravas. Si se combina con una inyección de alta presión (jet grouting), se pueden alcanzar espesores de pantalla de 30 cm. Las profundidades máximas habituales se encuentran entre 15-30 m.

Figura 2. Detalle del perfil de acero introducido por vibración. https://spezialtiefbau.implenia.com/

Se forma una pantalla continua superponiendo elementos individuales, instalados uno tras otro mediante la vibración del perfil de acero. Una guía fijada al ala del perfil en el panel anterior asegura el solapamiento correcto con el panel en ejecución (Figura 3).

Figura 3. Esquema de ejecución de la pantalla delgada de lodo ejecutada mediante vibración de perfiles de acero. https://spezialtiefbau.implenia.com/

Os dejo un vídeo sobre este tipo de pantalla.

Dejo un artículo sobre este procedimiento de contención.

Descargar (PDF, 645KB)

REFERENCIAS:

  • CASHMAN, P.M.; PREENE, M. (2012). Groundwater Lowering in Construction: A Practical Guide to Dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
  • POWERS, J.P.; CORWIN, A.B.; SCHMALL, P.C.; KAECK, W.E. (2007). Construction dewatering and groundwater control: New methods and aplications. Third Edition, John Wiley & Sons.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Clasificación de las técnicas de control del agua en excavaciones

Figura 1. Bajo nivel freático. https://www.keller.com.es/experiencia/soluciones/bajo-nivel-freatico

Cuando se realiza una excavación, la presencia de agua subterránea siempre provoca problemas. No solo dificulta el desarrollo de los trabajos, sino que también debilita los taludes o el fondo, comprometiendo su estabilidad.

Las aguas interfieren el desarrollo de los trabajos, por lo que hay que evitar que lleguen a los tajos mediante captaciones locales, ataguía, canaletas, drenajes, etc., evacuándolas por gravedad, y reduciendo el bombeo a lo estrictamente necesario.

El impacto del agua es de tal relevancia que condiciona el diseño de la estructura y del procedimiento constructivo, afectando consecuentemente al coste. Por tanto, no hay más remedio que impedir en lo posible la entrada de agua en la excavación (barreras físicas permanentes o provisionales) y expulsar fuera la que pudiese entrar (bombeos), o bien modificando las propiedades en el terreno y el agua (inyecciones en el terreno, congelación).

Todas las técnicas que permiten excavar en presencia de agua, tanto sea creando barreras impermeables al abrigo de las cuales es posible drenar la excavación, o bien extrayendo el agua con un caudal mayor al que el terreno puede proporcionar, se van a denominar técnicas de control del nivel freático. No obstante, y en términos estrictos, el “control del nivel freático” (dewatering) solo se debería aplicar a acuíferos libres formados por suelos de grano grueso. En acuíferos libres de grano fino o en acuíferos confinados deberíamos hablar de “control de la presión intersticial” (pore water pressure).

Figura 2. Posibilidades de control del nivel freático mediante extracción del agua o por barreras impermeables

Pérez Valcárcel (2004) clasifica las técnicas en (a) sistemas de contención de agua: tablestacas, ataguías, muros pantalla, congelación o inyección del terreno; y (b) sistemas de drenaje de excavaciones: bombeo desde zanjas perimetrales, bombeo desde pozos filtrantes, bombeo con agujas filtrantes (wellpoint) y electroósmosis. Por su parte, García Valcarce et al. (1995), además de los sistemas de contención de agua mencionados, subdivide los sistemas de drenaje en sistemas de drenaje propiamente dichos y sistemas de agotamiento, donde entrarían los drenajes profundos.

No obstante, existen más clasificaciones. Por ejemplo, Powers (1992) clasifica dichas técnicas en cuatro grupos:

  • Sistemas de bombeo abierto (sump pumping): el flujo del agua de una excavación se recoge en zanjas y sumideros y posteriormente se bombea al exterior.
  • Sistemas de predrenaje o drenaje previo del terreno (predrainage): antes de excavar se drena el suelo mediante pozos de bombeo, wellpoints, eyectores o drenes. Se pretende una excavación en seco.
  • Sistemas de diafragmas o de contención del agua (cut off): mediante tablestacas, muros pantalla, pantallas de lodos, congelación del terreno o inyecciones. Suelen usarse en combinación con los sistemas de bombeo.
  • Sistema de exclusión del agua (excluded): mediante aire comprimido, una entibación de lechada o con una entibación de presión de tierras, muy utilizados en la construcción de túneles mediante escudos presurizados.

Se podrían resumir las clasificaciones anteriores en la propuesta de la Figura 3. En esta clasificación, la contención del agua se realiza mediante barreras físicas como ataguías o pantallas, o bien mediante métodos de exclusión; mientras que el drenaje se puede realizar antes o durante la excavación, diferenciando de esta forma el agotamiento del rebajamiento del nivel freático.

Figura 3. Clasificación de las técnicas de control del agua. Elaboración propia.

En el caso de la extracción del agua, tenemos dos posibilidades en función del momento en que realiza en relación con la excavación:

  1. Agotamiento del nivel freático, cuando se evacua el agua que se filtra al recinto de la excavación conduciéndola a una zanja o un sumidero, donde se bombea. Las filtraciones se controlan y evacúan durante la excavación, sin depresión previa del freático.
  2. Rebajamiento del nivel freático, cuando se hace descender el nivel freático por debajo de los taludes y el fondo del recinto de la excavación. Se controla y evacua el agua antes de la excavación.

El procedimiento a utilizar depende de los caudales a bombear, que a su vez dependen de la importancia de los acuíferos y del coeficiente de permeabilidad del terreno. Normalmente el rebajamiento es preferible al agotamiento directo, entre otras, por las siguientes razones:

  • En el caso del agotamiento, el recinto excavado está más o menos blando y encharcado, lo cual dificulta el paso de operarios y maquinaria. Con un rebajamiento previo, la excavación puede realizarse prácticamente en seco e incluso con un terreno ligeramente cohesionado debido a las fuerzas capilares. Además, es más sencillo excavar y transportar un terreno más bien seco que empapado.
  • El agotamiento puede provocar sifonamiento y tubificación, puede descomprimir el terreno o degradarlo por arrastre de finos, convirtiéndolo en colapsable.
  • El rebajamiento contribuye a aumentar la estabilidad de los taludes y disminuye los empujes sobre las estructuras de contención (entibación, pantallas o tablestacas). El rebajamiento puede utilizarse, incluso, para aumentar la presión efectiva y provocar su consolidación.

Pero también existen algunos inconvenientes con el rebajamiento del nivel freático:

  • Si falla el dispositivo que mantiene el rebajamiento, puede entrar en poco tiempo agua en la excavación, desmoronándose taludes o levantando el fondo.
  • Como el rebajamiento no se realiza en un área muy concreta, en los alrededores se producirá un aumento de las tensiones efectivas, y por tanto, asientos que pueden producir daños en estructuras próximas.

Los métodos apropiados de control del nivel freático dependerán de la naturaleza del suelo y de la profundidad de la excavación. Así, en función de la permeabilidad del terreno, la remoción del agua puede hacerse por gravedad, por aplicación de vacío o por electroósmosis. Así, el agotamiento se utilizará en gravas, pues presentan una elevada permeabilidad, con caudales importantes y terrenos poco erosionables. Una permeabilidad entre 10-1 < k < 10 (m/s) permite el agotamiento desde la misma excavación, si ésta penetra menos de 3 m en el nivel freático. Para mayores permeabilidades o mayores profundidades de excavación, habría que recurrir a otros procedimientos constructivos. En cambio, el rebajamiento será útil en arenas o arenas limosas, con una permeabilidad entre 10-6 < k < 10-1 (m/s). En el caso de arcillas y limos, con permeabilidades entre  10-7 < k < 10-6 (m/s), el rebajamiento suele realizarse por vacío o electroósmosis, pues el caudal es bajo y el cono formado por la depresión del nivel freático se realiza lentamente. Para permeabilidades menores, comprendidas entre 10-9 < k < 10-7 (m/s)  basta con hacer algún agotamiento periódico de la excavación. Para permeabilidades menores a 10-9 (m/s), se puede excavar en seco.

Os dejo un Polimedia explicativo sobre este tema. Espero que os sea de interés.

Como complemento, os dejo también, por su interés, un artículo de Ferrer, Davila y Sahuquillo donde se analiza el proceso de drenaje en obra civil ubicada en zona urbana. Espero que os sea útil.

Descargar (PDF, 2.01MB)

REFERENCIAS:

  • GARCÍA VALCARCE, A. et al. (1995). Manual de Edificación. Derribos y demoliciones. Actuaciones sobre el terreno. Ediciones Universidad de Navarra, Pamplona, 472 pp.
  • PÉREZ VALCÁRCEL, J.B. (2004). Excavaciones urbanas y estructuras de contención. Ediciones Cat, Colegio Oficial de Arquitectos de Galicia, 419 pp.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Contención de agua mediante pantallas de suelo-bentonita

Figura 1. Construcción de una pantalla de suelo-bentonita.  https://www.geo-solutions.com/services/slurry-walls/soil-cement-bentonite/

Las pantallas de suelo-bentonita son barreras muy utilizadas para impedir el paso del agua o para aislar un residuo o zona contaminada del agua subterránea. La construcción de estas trincheras o zanjas de lodo, que usan el suelo-bentonita como material de relleno, se empezaron a utilizar en Estados Unidos en 1945, siendo una técnica mucho más utilizada que en Europa, donde predomina la bentonita-cemento.

Durante la excavación se utiliza bentonita para contener las paredes de la excavación, aunque a veces también se utilizan aditivos. La bentonita se agrega para mantener un nivel constate de lechada cerca de la parte superior de la zanja y asegurar su estabilidad. La zanja presenta una anchura que oscila entre 0,6 y 1,5 m, anchura que se calcula para que el gradiente hidráulico no sea excesivo, normalmente entre 10 y 30. Una vez se alcanza la profundidad deseada, se introduce la mezcla final de suelo y bentonita. El peso específico de la mezcla, entre 12,6 y 13,1 kN/m3, debe ser mayor que el del lodo de la zanja, para poder desplazarla. La experiencia indica que el desplazamiento ocurrirá si el lodo tiene un peso específico 2,4 kN/m3 menor que el del material de relleno.

Si se quiere una mezcla suelo-bentonita de calidad, ésta se debe elaborar en unos tanques de homogeneización, en un estado semifluido, de forma que se tenga la suficiente fluidez para desplazar al lodo de la zanja. Las pendientes de la zanja por las que fluye la mezcla varían entre 1:5 a 1:10 (Figura 2). Estos tanques requieren de un espacio suficiente para su instalación. No obstante, también es posible realizar la mezcla de una forma más grosera con un buldócer en superficie. En este último caso, el material de relleno se prepara regando el suelo con lodo y mezclando y batiendo hasta que la mezcla sea homogénea y alcance la consistencia adecuada. Este material se empuja en la zanja donde el relleno ya colocado aparece en la superficie de la zanja; de esta forma se evita la segregación causada por la caída libre a través del lodo. Se deben tomar medidas cuidadosas en la parte superior del relleno y en la parte inferior de la zanja para asegurar que el frente del relleno no invada la excavación o para que el material excavado no se mezcle con el relleno y como consecuencia queden bolsas sin mezclar.

Figura 2. Construcción de zanja de lodo con suelo-bentonita como material de relleno. Adaptado de Cashman y Preene (2012)

Este procedimiento requiere que el terreno sea relativamente estable para evitar cortes de la pantalla. La ventaja es que se puede trabajar incluso con un nivel freático alto, si bien la bentonita debe permanecer entre 1 y 2 m por encima de dicho nivel para garantizar la estabilidad de la excavación. En casos de que el freático se encuentre más superficial, deberá realizarse una plataforma de trabajo.

Con retroexcavadoras convencionales, se podría llegar a una profundidad de 10 m, pero con brazos largos pueden llegar fácilmente a 25 m, aunque para profundidades mayores se utilizan cucharas bivalvas, hasta profundidades económicas de unos 30 m. En ocasiones también se han utilizado las dragalinas hasta los 25 m. Algo menos habitual es el uso de zanjadoras de brazo inclinado, útiles hasta unos 8 m de profundidad (Figura 3).

Figura 3. Zanjadora en la ejecución de una pantalla de suelo-bentonita. http://www.dewindonepasstrenching.com/slurry-walls-and-cement-bentonite-walls

El método de excavación no tiene tanta importancia como tener la seguridad de que la pantalla se extienda por todo el estrato permeable de forma continua. Por tanto, es importante succionar el sedimento del fondo de la zanja, especialmente si los sedimentos son arena y gravas limpias. Es una buena práctica tratar que la colocación del relleno y la excavación estén lo más cercanas posibles.

Entre las ventajas de las pantallas de suelo-bentonita cabe destacar que es la tipología de barrera más económica, pues en la mayoría de los casos se permite el uso de todo o gran parte del material excavado de la zanja; además, se trata de un procedimiento constructivo bien conocido y utilizado, con altos rendimientos. La permeabilidad de la pantalla suele ser del orden de 10-7 cm/s, pero puede bajar incluso a 5 x 10-9 cm/s. Sin embargo, hay que tener presente que el procedimiento necesita un área para la mezcla y puede generar material que debe llevarse a vertedero; además, la pantalla puede deteriorarse frente a ciclos prolongados de humedad/sequedad o de congelación/descongelación. Son barreras que solo se pueden utilizar en su configuración vertical y a veces resulta complicado conseguir la absoluta impermeabilidad. Por otra parte, la mezcla de suelo-bentonita se puede degradar por contaminantes o por la presencia de ácidos orgánicos e inorgánicos, aumentando la porosidad de la barrera. Además, las sales inorgánicas y algunos compuestos orgánicos pueden provocar la contracción de las partículas de la bentonita.

Os paso un par de vídeos para que podáis ver cómo se realiza este tipo de pantalla impermeable.

Os paso también un artículo donde se explica la construcción de una pantalla de suelo-bentonita de gran profundidad.

Descargar (PDF, 1.18MB)

REFERENCIAS:

  • CASHMAN, P.M.; PREENE, M. (2012). Groundwater lowering in construction. A practical guide to dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
  • INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA (1987). Manual de ingeniería de taludes. Serie: Guías y Manuales nº 3, Ministerio de Educación y Ciencia, Madrid, 456 pp.
  • POWERS, J.P.; CORWIN, A.B.; SCHMALL, P.C.; KAECK, W.E. (2007). Construction dewatering and groundwater control: New methods and aplications. Third Edition, John Wiley & Sons.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W., DYER, M.R. (2004). Groundwater control: design and practice. CIRIA C515, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.