Algunas preguntas sobre el curado del hormigón

¿Qué es el curado del hormigón y por qué es imprescindible?

El curado del hormigón consiste en adoptar medidas para facilitar la hidratación del cemento, lo que implica evitar la pérdida de humedad por evaporación y, si es necesario, aportar humedad adicional. También se busca mantener una temperatura favorable durante el fraguado y los primeros días de endurecimiento. Es relevante porque, si el hormigón se seca al aire, su resistencia puede disminuir hasta en un 40 %, aumenta su porosidad y se incrementa la probabilidad de que se produzcan fisuras por retracción. Un curado adecuado garantiza el desarrollo óptimo de la resistencia y la durabilidad, ya que la impermeabilidad de las capas exteriores del hormigón depende en gran medida de un proceso de curado eficaz, lo que, a su vez, prolonga la vida útil de la estructura al proteger el recubrimiento de las armaduras.

¿Cuál es la importancia del agua en el proceso de hidratación del cemento y el curado?

El agua es imprescindible para la hidratación del cemento, que solo se produce en un entorno casi saturado. Para la hidratación completa del cemento Portland se requiere una cantidad de agua equivalente a 0,45 veces la masa del cemento hidratado, que se divide en agua químicamente combinada (0,25 veces la masa del cemento) y agua adsorbida en la estructura del gel (0,20 veces la masa del cemento). Durante el proceso de curado, es necesario añadir agua adicional para mantener los poros capilares saturados y permitir que el cemento continúe hidratándose. La proporción adecuada de agua y un curado húmedo son fundamentales para que los productos de la hidratación rellenen los poros existentes entre las partículas de cemento, lo que aumenta la resistencia y durabilidad del hormigón. Si la relación agua/cemento es baja (igual o inferior a 0,45), puede producirse autodesecación, por lo que se requiere un curado húmedo continuo, aunque la baja permeabilidad puede limitar la penetración de agua externa en la superficie.

¿Cuáles son las fases del curado del hormigón según la norma ACI 308 R?

El curado del hormigón se divide en tres fases principales que abarcan desde su colocación hasta que la estructura adquiere sus propiedades de diseño:

  • Curado inicial: cuando la superficie del hormigón empieza a secarse, incluso antes de que se complete el acabado. Su objetivo es evitar la pérdida de humedad superficial y prevenir la fisuración por retracción plástica. Es especialmente importante en hormigones con baja exudación o en entornos con alta evaporación, y se puede conseguir mediante nebulización, aditivos reductores de evaporación o modificando el entorno.
  • Curado intermedio: Es necesario cuando el acabado de la superficie se completa antes de que el hormigón haya fraguado por completo. Se pueden continuar las medidas del curado inicial o emplear métodos que no dañen la superficie aún blanda, como la aplicación suave de agua o compuestos de curado.
  • Curado final: Se aplican procedimientos una vez que el hormigón ha fraguado y comenzado a desarrollar resistencia, después del acabado. Es fundamental iniciarlo sin demora para evitar una pérdida significativa de agua por evaporación, sobre todo en acabados con gran superficie expuesta. Puede incluir aspersión, el uso de arpilleras húmedas o el riego con manguera, entre otros métodos.

¿Cómo influyen las condiciones ambientales y el tipo de hormigón en la duración e intensidad del curado?

La duración y la intensidad del curado dependen de varios factores:

  • Temperatura y humedad ambiental: A medida que las condiciones sean más adversas (por ejemplo, calor intenso o baja humedad), se requerirá un período de curado más prolongado.
  • Acción del viento y exposición directa al sol: Estos factores aumentan la velocidad de evaporación, exigiendo medidas de curado más rigurosas.
  • Tipo y cantidad de cemento: Diferentes cementos tienen distintas velocidades de hidratación, lo que influye en los requisitos de curado.
  • Relación agua/cemento (a/c): Una baja relación a/c puede llevar a la autodesecación, requiriendo un curado húmedo más intensivo.
  • Condiciones de exposición de la estructura en servicio: Las estructuras expuestas a ambientes más agresivos necesitan un curado más prolongado y efectivo para asegurar su durabilidad.

¿Qué problemas específicos presenta el curado de losas de hormigón sobre tierra y cómo se abordan?

Las losas de hormigón sobre tierra, ya sean pavimentos o cimentaciones, tienen una alta relación entre área superficial y volumen, por lo que son susceptibles a una evaporación rápida y significativa. Los principales problemas son:

  • Formación de gradientes de humedad: La pérdida de humedad en la cara superior provoca la curvatura de la losa, mientras que una base de tierra seca puede absorber agua del hormigón y generar una curvatura opuesta. Para evitarlo, hay que humedecer previamente la base y garantizar unas condiciones de humedad uniformes en ambas caras mediante un curado inicial, intermedio y final. Si se utiliza una lámina impermeable, la cara superior debe mantenerse húmeda para evitar la curvatura.
  • Riesgo de fisuración por retracción plástica: La rápida pérdida de humedad superficial aumenta este riesgo. Es crucial aplicar el curado inmediatamente después del acabado.

Entre los métodos recomendados se incluyen los reductores de evaporación, la nebulización, los compuestos de curado (preferiblemente pigmentados en blanco si la temperatura ambiente supera los 25 °C) y la protección con techado y cortavientos. El uso de agua por aspersión o inmersión es el más efectivo, ya que también ayuda a enfriar el hormigón y a reducir la fisuración térmica.

¿Qué es el curado al vapor y cuáles son sus aplicaciones principales?

El curado al vapor es un método muy eficaz para curar el hormigón, que se emplea casi exclusivamente en la prefabricación y acelera considerablemente su endurecimiento. Este proceso implica la aplicación de calor húmedo y se basa en el concepto de «maduración» del hormigón, en el que diferentes combinaciones de temperaturas y tiempos pueden producir resultados similares en cuanto a endurecimiento.

Se puede realizar de dos formas:

  • Curado a presión atmosférica: Se utiliza en estructuras encerradas construidas in situ o en grandes unidades prefabricadas.
  • Curado con vapor a alta presión: Se lleva a cabo en autoclaves y se aplica a pequeñas unidades prefabricadas.

El proceso consiste en elevar gradualmente la temperatura tras el prefraguado, mantenerla dentro de un rango establecido (entre 55 °C y 75 °C, sin superar los 80 °C) y, a continuación, reducirla de manera continua hasta alcanzar la temperatura ambiente, evitando cambios térmicos bruscos.

¿Cuáles son las ventajas del curado al vapor en comparación con los métodos convencionales?

El curado al vapor ofrece varias ventajas significativas:

  • Endurecimiento rápido: Facilita el proceso constructivo en climas fríos y permite una alta resistencia inicial, especialmente útil en la fabricación de unidades prefabricadas y pretensadas.
  • Aceleración de la construcción: Incrementa la velocidad de obra, lo que se traduce en mayor eficiencia y productividad.
  • Rapidez: Acorta los tiempos de construcción y permite una mayor rotación de proyectos en comparación con otros métodos de curado convencionales.
  • Control de la hidratación: Permite un control meticuloso para asegurar que el recinto de curado permanezca saturado de humedad, aunque requiere precaución para evitar cambios de volumen excesivos.

¿Cuáles son las desventajas del curado al vapor?

A pesar de sus beneficios, el curado al vapor presenta ciertas limitaciones:

  • Limitaciones en superficies extensas: No es adecuado para curar grandes áreas in situ, lo que puede requerir métodos alternativos.
  • Necesidad de personal capacitado: Requiere personal experimentado para garantizar resultados óptimos y prevenir problemas como cambios volumétricos excesivos, que pueden afectar la resistencia inicial del hormigón.
  • Coste inicial elevado: El equipo y los materiales necesarios para el curado al vapor suelen implicar un costo inicial más alto en comparación con los métodos de curado convencionales.

 

Referencias:

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

MENZEL, C.A. (1954). Causes and Prevention of Crack Development in Plastic Concrete. Proceedings of the Portland Cement Association, Vol. 130:136.

LERCH, W. (1957). Plastic shrinkage. ACI Journal, 53(8):797-802.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Cómo formar a los arquitectos del futuro? Un modelo innovador desde la educación técnica

La transformación digital y la industrialización de la construcción están generando una demanda creciente de profesionales altamente cualificados. Tanto la arquitectura, como la ingeniería civil, requieren un cambio profundo en la forma de formar a los futuros profesionales.

En este contexto, un grupo de investigadores de la Hunan University of Science and Engineering (China) y de la Universitat Politècnica de València (España) propone un nuevo modelo formativo que conecta mejor la educación superior con las necesidades reales del sector.

El artículo examina la necesidad de modernizar la educación en arquitectura y sugiere un modelo innovador para formar a los profesionales del futuro. Este modelo busca conectar la educación superior con las demandas reales de la industria de la construcción, caracterizada por la digitalización y la industrialización. La metodología empleada incluye análisis de datos, modelos matemáticos y la integración de la teoría con la práctica profesional. El objetivo principal es preparar arquitectos con competencias sólidas en construcción industrializada y tecnología digital, adaptados a las exigencias del mercado laboral contemporáneo.

Introducción: el desafío de modernizar la educación en arquitectura

El sector de la construcción está experimentando una transformación profunda impulsada por la digitalización, la automatización y la necesidad de soluciones sostenibles. Sin embargo, los sistemas educativos técnicos no siempre han sabido adaptarse a estas exigencias. En todo el mundo, los modelos educativos tradicionales en arquitectura muestran una desconexión creciente con la realidad del mercado laboral, especialmente en áreas como la prefabricación, el diseño colaborativo con BIM o el uso de tecnologías inteligentes.

El artículo revisado se enmarca en este contexto, tomando como referencia el caso chino, pero con ideas extrapolables a otras regiones. El objetivo principal es diseñar un sistema de formación profesional que responda de forma más efectiva a los retos de la construcción industrializada, incorporando criterios técnicos, sociales y pedagógicos.

Metodología: combinar datos, teoría y práctica

El estudio emplea una metodología cuantitativa que incluye:

  • Análisis de datos nacionales e internacionales sobre educación y empleo en el sector de la construcción.
  • Modelos matemáticos de predicción, como regresiones polinómicas y simulaciones con MATLAB.
  • Aplicación del modelo de evaluación educativa de Levin, ajustado mediante métodos de entropía para ponderar factores como calidad docente, entorno familiar, habilidades cognitivas y recursos institucionales.

A partir de estos datos, se diseñó un modelo de formación por etapas —llamado «optimización innovadora de múltiples módulos»— que articula mejor el aprendizaje teórico con la práctica profesional en empresas.

Aportaciones relevantes: una formación más adaptada al mercado

El artículo presenta un nuevo marco para la formación de profesionales de la arquitectura más alineado con las necesidades del sector. Sus aportaciones clave son las siguientes:

  • Propuesta de un modelo formativo escalonado, adaptable al ritmo del alumnado y al contexto institucional.
  • Inclusión de criterios de evaluación integral: desde la calidad académica hasta factores personales y sociales.
  • Análisis detallado de las políticas públicas chinas como base para la propuesta, con énfasis en la colaboración universidad-empresa.
  • Validación de la propuesta mediante simulaciones y estudios de casos reales.

Este enfoque integrador permite preparar a profesionales técnicos con competencias sólidas en construcción industrializada, tecnología digital y gestión de obra.

Discusión de resultados: mejoras observables y retos pendientes

Los resultados del estudio muestran mejoras concretas en la motivación del alumnado, su adecuación a los puestos de trabajo y su capacidad de adaptación a entornos reales. Se observa un aumento del interés por la profesión y una mejora de la empleabilidad, especialmente en sectores vinculados con tecnologías emergentes.

No obstante, el artículo reconoce desafíos importantes, como la falta de infraestructura adecuada para la formación práctica, la escasez de docentes con experiencia en obra y las dificultades para establecer colaboraciones estables con empresas.

Futuras líneas de investigación: ampliar, adaptar, evaluar

A partir del modelo propuesto, el artículo sugiere explorar:

  • Aplicación del sistema en otros países con necesidades similares de actualización en formación técnica.
  • Seguimiento longitudinal de las trayectorias laborales del alumnado.
  • Incorporación de inteligencia artificial y plataformas digitales para personalizar la enseñanza.
  • Extensión del modelo a otras ramas de la ingeniería civil, como estructuras o transporte.

Conclusión

El artículo revisado propone una reforma de la educación técnica en arquitectura con una propuesta estructurada, ambiciosa y bien fundamentada. Su valor radica en integrar múltiples factores en un solo modelo formativo con una base matemática sólida y una clara vocación práctica. En un momento en que el sector de la construcción necesita perfiles técnicos con nuevas competencias, investigaciones como esta ofrecen herramientas útiles para transformar la manera en que formamos a los futuros talentos.

Referencia:

ZHOU, Z.; TIAN, Q.; ALCALÁ, J.; YEPES, V. (2025). Research on the coupling of talent cultivation and reform practice of higher education in architecture. Computers and Education Open, 9:100268. DOI:10.1016/j.caeo.2025.100268.

Este artículo está publicado en abierto, por lo que os lo dejo para su descarga.

Pincha aquí para descargar

Glosario de términos clave

  • BIM (Building Information Modeling): Metodología de trabajo colaborativa para la creación y gestión de un proyecto de construcción. Su objetivo es centralizar toda la información del proyecto en un modelo digital.
  • Construcción industrializada: Proceso constructivo que implica la fabricación de componentes o módulos en un entorno de fábrica, bajo condiciones controladas, para luego ser ensamblados en el lugar de la obra.
  • Digitalización: Proceso de convertir información y procesos de formatos analógicos a digitales, aplicando tecnologías que permiten la automatización y mejora de la eficiencia.
  • Entropía (en evaluación educativa): Concepto utilizado en el estudio para ponderar y ajustar la importancia de diferentes factores de evaluación (calidad docente, entorno familiar, habilidades cognitivas, recursos institucionales) dentro del modelo de Levin.
  • Gestión de obra: Disciplina que abarca la planificación, organización, dirección y control de los recursos para llevar a cabo un proyecto de construcción de manera eficiente y dentro de los plazos y presupuestos establecidos.
  • MATLAB: Entorno de programación y plataforma numérica utilizada para realizar cálculos matemáticos, análisis de datos, desarrollo de algoritmos y modelado de sistemas, empleada en el estudio para simulaciones.
  • Modelo de evaluación educativa de Levin: Un marco teórico o práctico para valorar la calidad y eficacia de un sistema educativo, que en el estudio es ajustado con métodos de entropía para una ponderación más precisa de sus factores.
  • Modelos matemáticos de predicción: Herramientas que utilizan ecuaciones y algoritmos para prever comportamientos futuros o resultados basándose en datos históricos o actuales, como las regresiones polinómicas.
  • Optimización innovadora de múltiples módulos: Nombre del modelo formativo propuesto en el artículo, diseñado por etapas para integrar el aprendizaje teórico con la práctica profesional y adaptarse a diferentes contextos.
  • Prefabricación: Técnica constructiva que consiste en producir elementos o componentes de un edificio en un lugar distinto al de la obra, generalmente en una fábrica, para luego transportarlos e instalarlos en el sitio.
  • Regresiones polinómicas: Un tipo de análisis de regresión en el que la relación entre la variable independiente y la variable dependiente se modela como un polinomio de n-ésimo grado, utilizado para predicción en el estudio.
  • Sostenibilidad (en construcción): Enfoque que busca minimizar el impacto ambiental de las edificaciones a lo largo de su ciclo de vida, optimizando el uso de recursos, reduciendo residuos y promoviendo la eficiencia energética y el bienestar humano.
  • Transformación digital: El cambio integral que experimenta una organización o sector al integrar tecnologías digitales en todos los aspectos de sus operaciones, cultura y estrategias, lo que lleva a la creación de nuevos modelos de negocio y servicios.

 

Evaluación del ciclo de vida en viviendas sociales: un enfoque multicriterio para decisiones sostenibles

Acaban de publicarnos un artículo en la revista Building and Environment, revista indexada en el JCR en el primer decil. Presenta un análisis integral del impacto ambiental, económico y técnico de cinco soluciones estructurales aplicables a viviendas sociales. La investigación cobra especial relevancia en contextos como el peruano, donde la elevada demanda de vivienda y las limitaciones presupuestarias requieren soluciones eficientes, sostenibles y ampliamente replicables. Este trabajo se inscribe dentro del marco de los Objetivos de Desarrollo Sostenible (ODS), y aporta criterios objetivos para la toma de decisiones en el diseño y ejecución de programas como Techo Propio y Fondo Mi Vivienda.

El trabajo se enmarca dentro del proyecto de investigación RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València. A continuación se recoge un resumen sintético del trabajo.

Este artículo describe una investigación que evalúa la sostenibilidad de diferentes sistemas estructurales para viviendas sociales, enfocándose en su impacto ambiental, económico y técnico a lo largo de todo su ciclo de vida. La metodología empleada integra el Análisis del Ciclo de Vida (LCA), el Coste del Ciclo de Vida (LCC) y la Toma de Decisiones Multicriterio (MCDM) para proporcionar una visión completa. Los hallazgos principales indican que los sistemas de Light Steel Frame (LSF) son los más equilibrados en términos de sostenibilidad y rentabilidad, lo que ofrece criterios objetivos para la planificación de proyectos de vivienda social, especialmente en contextos como el peruano. El estudio resalta la importancia de una evaluación holística para la toma de decisiones en el sector de la construcción.

La principal aportación del artículo es la integración de tres herramientas de evaluación: el Análisis del Ciclo de Vida (LCA), el Coste del Ciclo de Vida (LCC) y la Toma de Decisiones Multicriterio (MCDM). El análisis se realiza con un enfoque cradle-to-grave, es decir, considerando todas las etapas del ciclo de vida de una vivienda: desde la extracción de materias primas hasta la demolición y el tratamiento de residuos. Esta perspectiva ofrece una visión más completa y realista del impacto de cada sistema constructivo, en contraste con los estudios más limitados comúnmente aplicados en América Latina.

Los cinco sistemas estructurales analizados fueron los siguientes: (1) estructuras de hormigón armado con muros de ladrillo (RCF-M), (2) muros hormigonados in situ (RCW), (3) sistemas industrializados de acero ligero tipo Light Steel Frame (LSF), (4) estructuras de hormigón armado con paneles sándwich prefabricados (RCF-CP) y (5) paneles sándwich de hormigón atornillados (LBSPS). Todas las alternativas se diseñaron siguiendo las normas técnicas peruanas de edificación (RNE), incluidos los requisitos sísmicos y de eficiencia energética. La unidad funcional utilizada fue el metro cuadrado de vivienda construida, con una vida útil de 50 años.

Desde el punto de vista ambiental, el sistema LSF resultó ser el de menor impacto global, incluso por debajo de soluciones convencionales como el RCF-M, que destacó por su alto consumo energético y emisiones durante la etapa de fabricación, principalmente debido a la producción de ladrillos cerámicos. En contraste, los sistemas prefabricados como LBSPS, aunque reducen los tiempos de ejecución, presentaron impactos ambientales elevados debido al uso intensivo de maquinaria y transporte especializado. El potencial de calentamiento global (GWP) fue la categoría con mayor peso ambiental, seguida del consumo de recursos naturales.

En cuanto al análisis económico, el sistema LSF también demostró ser el más competitivo. Su menor coste de construcción, el reducido mantenimiento y la facilidad de desmontaje le confieren ventajas económicas importantes. El sistema RCF-M, aunque tiene un bajo coste inicial, tiene mayores costes durante la fase de uso y al final de su vida útil debido a su elevada generación de residuos y dificultad de reciclaje. Las alternativas basadas en hormigón (RCW y RCF-CP) mostraron costes intermedios, con un mayor gasto en mantenimiento preventivo debido a la necesidad de recubrimientos anticorrosivos y anticarbonatación.

Para integrar todas estas variables, se emplearon seis métodos de decisión multicriterio (AHP, DEMATEL, TOPSIS, WASPAS, EDAS, MABAC y MARCOS), y a cada criterio se le asignaron pesos según la experiencia de un panel de expertos. Los criterios que más influyeron en la toma de decisiones fueron el coste de construcción, la necesidad de mano de obra especializada y el impacto ambiental sobre los recursos. La consistencia entre los métodos aplicados y los análisis de sensibilidad realizados confirma la solidez de los resultados: en más del 90 % de los escenarios simulados, el sistema LSF se mantuvo como la mejor opción global.

Las conclusiones del estudio son claras: ningún sistema constructivo es perfecto en todos los aspectos, pero el LSF se posiciona como la solución más equilibrada en términos de sostenibilidad, coste y eficiencia técnica. Esto tiene implicaciones directas para la planificación de proyectos de vivienda social, donde la rapidez de ejecución, la reducción de emisiones y la viabilidad económica deben ir de la mano. Además, el marco metodológico propuesto en este trabajo puede replicarse en otros países o contextos donde se busque optimizar la selección de sistemas constructivos en función de múltiples criterios.

En definitiva, este artículo supone un avance significativo en la evaluación integral de las tecnologías constructivas para la vivienda social. Proporciona a ingenieros, arquitectos y responsables de políticas públicas una herramienta sólida para fundamentar sus decisiones, superando enfoques tradicionales centrados únicamente en el coste o la rapidez constructiva. La aplicación de metodologías multicriterio, combinadas con análisis del ciclo de vida, se consolida así como un enfoque clave para impulsar una construcción social verdaderamente sostenible.

Referencia:

LUQUE-CASTILLO, X.; YEPES, V. (2025). Life Cycle Assessment of Social Housing Construction: A Multicriteria Approach. Building and Environment, 282:113294. DOI:10.1016/j.buildenv.2025.113294

Os paso el artículo, pues está publicado en abierto.

Pincha aquí para descargar

Glosario de términos clave

  • Análisis del ciclo de vida (LCA – Life Cycle Assessment): Una herramienta para evaluar los impactos ambientales asociados con todas las etapas de la vida de un producto, desde la extracción de la materia prima hasta la disposición final.
  • Coste del ciclo de vida (LCC – Life Cycle Costing): Una herramienta de evaluación económica que considera todos los costes relevantes de un producto o sistema a lo largo de su vida útil, incluyendo diseño, construcción, operación, mantenimiento y disposición.
  • Toma de decisiones multicriterio (MCDM – Multi-Criteria Decision-Making): Un conjunto de métodos y técnicas utilizados para evaluar y clasificar alternativas cuando hay múltiples criterios en conflicto, permitiendo tomar decisiones más informadas.
  • Enfoque «Cradle-to-Grave»: Una metodología de análisis que abarca todas las etapas del ciclo de vida de un producto o sistema, desde la «cuna» (extracción de materias primas) hasta la “tumba” (disposición final o reciclaje).
  • Objetivos de Desarrollo Sostenible (ODS): Un conjunto de 17 objetivos globales establecidos por las Naciones Unidas para lograr un futuro más sostenible para todos, abordando desafíos como la pobreza, la desigualdad, el cambio climático y la degradación ambiental.
  • RESILIFE: El proyecto de investigación en el marco del cual se realizó este estudio, dirigido por el investigador principal en la Universitat Politècnica de València.
  • Techo Propio y Fondo Mi Vivienda: Programas de vivienda social en Perú mencionados como contextos clave donde los hallazgos del estudio pueden aplicarse para la toma de decisiones.
  • RCF-M (Hormigón armado con muros de ladrillo): Uno de los sistemas estructurales analizados, que representa una solución constructiva convencional.
  • RCW (Muros hormigonados in situ): Uno de los sistemas estructurales analizados, caracterizado por el vertido de hormigón directamente en el lugar de la obra.
  • LSF (Light Steel Frame): Un sistema industrializado de acero ligero, destacado en el estudio por su eficiencia ambiental y económica.
  • RCF-CP (Estructuras de hormigón armado con paneles sándwich prefabricados): Un sistema que combina hormigón armado con paneles prefabricados.
  • LBSPS (Paneles sándwich de hormigón atornillados): Un sistema prefabricado de paneles sándwich de hormigón que se ensamblan mediante atornillado.
  • Unidad funcional: El parámetro de referencia utilizado en el LCA y LCC para comparar diferentes alternativas, en este caso, el metro cuadrado de vivienda construida con una vida útil de 50 años.
  • Potencial de calentamiento global (GWP – Global Warming Potential): Una medida del impacto de una sustancia en el calentamiento global, expresada en equivalentes de CO₂. Fue la categoría de mayor peso ambiental en el estudio.

De cantero a leyenda: la historia del gran Thomas Telford

Thomas Telford (1757-1834). https://es.wikipedia.org/wiki/Thomas_Telford

Thomas Telford (9 de agosto de 1757 – 2 de septiembre de 1834) fue un destacado ingeniero civil, arquitecto y cantero escocés, reconocido por sus contribuciones a la infraestructura británica mediante la construcción de caminos, puentes y canales. Nació cerca de Westerkirk, en Dumfries, en el seno de una familia humilde. Su padre, un pastor, murió poco después de su nacimiento, por lo que Thomas fue criado en condiciones de pobreza por su madre, Janet Jackson.

Comenzó su vida laboral como aprendiz de cantero a los 14 años y, de forma autodidacta, se formó en arquitectura y construcción. Todavía se conservan algunas de sus primeras obras, como un puente sobre el río Esk en Langholm. Tras pasar por Edimburgo, se trasladó a Londres en 1782, donde participó en la ampliación de Somerset House, uno de los grandes proyectos de la época, bajo la influencia de arquitectos como Robert Adam y William Chambers. En 1784 trabajó en el astillero naval de Portsmouth, donde consolidó su experiencia en grandes obras.

En 1786 fue nombrado inspector de obras públicas para el condado de Shropshire, cargo que implicaba la construcción de edificios y puentes. Durante este periodo, diseñó y construyó tres puentes sobre el río Severn: en Montford, Buildwas (de hierro fundido) y Bewdley. En esta misma época, restauró el castillo de Shrewsbury, trabajó en iglesias y prisiones y advirtió del inminente colapso de la iglesia de St Chad’s, lo que le ganó el respeto de la población local.

En 1787 se afilió a la logia masónica Salopian Lodge y, gracias al apoyo de William Pulteney, su carrera despegó. En 1788, la Sociedad Pesquera Británica lo envió a Escocia, donde diseñó el puerto de Ullapool. En 1790 fue nombrado inspector de puentes en Shropshire y, en 1793, se convirtió en agente e ingeniero de la compañía del canal Ellesmere. Su fama nacional le llegó con la construcción de los acueductos de Chirk y Pontcysyllte, en Gales, que cruzan los valles del Ceiriog y del Dee. En estas estructuras empleó por primera vez canales de planchas de hierro fundido ensambladas sobre mampostería, una innovación que revolucionó la ingeniería civil de su tiempo.

Ese mismo año, tras la muerte de Josiah Clowes, asumió el proyecto del canal de Shrewsbury, en el que destacó el acueducto de Longdon-on-Tern, uno de los primeros acueductos de hierro fundido del mundo. En 1795, reconstruyó el puente de Bewdley tras las inundaciones y reparó el de Tenbury. También participó en la mejora del abastecimiento de agua y en la reforma de los muelles de Londres.

En 1801, el Gobierno británico lo contrató para dirigir una gigantesca operación de mejora de las infraestructuras de las Tierras Altas de Escocia. Bajo su dirección se construyeron más de 1450 km de caminos, más de 1200 puentes, numerosos puertos, iglesias y servicios públicos. En este contexto, llevó a cabo el canal de Caledonia, inaugurado en 1822, y realizó importantes obras portuarias en Aberdeen, Dundee y otras localidades. Entre las obras viales más destacadas se encuentran el puente de Tongueland (34 m) y el de Cartland Crags (39 m), así como 296 km de nuevas carreteras en las Tierras Bajas.

En 1803, también inició obras de mejora en las rutas desde Chester y Shrewsbury hacia Holyhead, con el objetivo de agilizar las comunicaciones con Irlanda. Como parte de este proyecto, diseñó e inauguró dos puentes colgantes emblemáticos en Gales: el puente colgante sobre el río Conwy y su obra maestra, el puente de Menai (1819–1826), que con sus 176 m de longitud fue el más largo de su tipo en su tiempo y es considerado su logro más sobresaliente.

Puente de Menai. https://es.wikipedia.org/wiki/Puente_colgante_de_Menai

Durante este periodo también actuó como comisionado de préstamos del gobierno para obras públicas bajo la Public Works Loans Act de 1817, financiando proyectos de infraestructura y promoviendo el empleo. En paralelo, trabajó como consultor internacional y, en 1806, fue invitado por el rey de Suecia a colaborar en el canal Göta, al que viajó en 1810 para supervisar las primeras excavaciones.

Desde 1809, lideró obras en Irlanda, como la carretera de Howth a Dublín, el canal del Úlster y la formación de ingenieros como William Dargan. En las décadas siguientes, su enfoque se dirigió también a modernizar los canales para hacerles frente a los ferrocarriles, cada vez más competitivos. Entre estos proyectos destacan la construcción de un nuevo canal entre Wolverhampton y Nantwich y la construcción de un nuevo túnel en Harecastle, Staffordshire, sobre el canal Trent y Mersey.

A partir de 1815, diseñó y ejecutó mejoras en la ruta entre Glasgow y Carlisle (conocida posteriormente como A74), considerada un modelo de ingeniería vial. Entre sus trabajos más importantes en Londres se encuentra el desarrollo de los muelles de St Katharine, un proyecto fundamental para la expansión portuaria de la ciudad. También construyó puentes sobre el río Severn en Tewkesbury y Gloucester, y ejecutó diversas carreteras en las Tierras Bajas de Escocia.

En 1820 fue nombrado primer presidente de la Institución de Ingenieros Civiles, fundada en 1818, cargo que ocupó hasta su muerte. Ese mismo año fue elegido también miembro extranjero de la Real Academia de Ciencias de Suecia.

En 1823, a petición del Parlamento británico, diseñó un conjunto de iglesias y casas parroquiales para zonas rurales de Escocia. Se construyeron 32 de las 43 proyectadas, muchas de las cuales aún existen. En la década de 1830 finalizó proyectos como el puente Galton, el segundo túnel Harecastle, el canal de Gloucester y Berkeley y el canal Birmingham y Liverpool Junction, este último completado tras su fallecimiento.

Thomas Telford murió el 2 de septiembre de 1834 en su casa de Abingdon Street, Londres. Fue enterrado con honores en la abadía de Westminster, donde también hay una estatua en su memoria en la capilla de San Andrés. Nunca se casó, pero dejó una profunda huella en sus colegas y contemporáneos. Su amigo, el poeta Robert Southey, lo llamó «el coloso de las carreteras», y además de su carrera como ingeniero, también publicó poesía entre 1779 y 1784.

En su testamento dejó donaciones para bibliotecas de su región natal y para escritores como Southey y Thomas Campbell. Su legado perdura no solo en obras materiales, sino también en la educación: el Telford College de Edimburgo y la ciudad de Telford, en Shropshire, creada en el siglo XX, llevan su nombre. En 2009, su acueducto de Pontcysyllte fue declarado Patrimonio de la Humanidad por la Unesco, en reconocimiento a su ingenio técnico e innovación.

Os dejo algunos vídeos de este gran ingeniero escocés.

Seguimiento inteligente de deslizamientos en suelos de loess: aplicaciones prácticas y lecciones para el ingeniero civil

Acaban de publicar un artículo en la revista, Geomechanics for Energy and the Environment, de la editorial Elsevier, indexada en el JCR. El presente artículo examina un estudio que combina medición en pilotes de hormigón armado, tecnologías GNSS e InSAR y simulaciones de elementos finitos para entender cómo interactúan factores como la presión, la temperatura y la humedad en la evolución de taludes colapsables.

Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal, junto con el profesor Julián Alcalá, en la Universitat Politècnica de València, y es fruto de la colaboración internacional con investigadores de la Hunan University of Science and Engineering (China).

Podéis descargar el artículo de forma gratuita, hasta el 22 de julio de 2025, en la siguiente dirección: https://authors.elsevier.com/c/1lCKs8MtfNSrg1

En entornos donde los suelos de loess presentan alta susceptibilidad a deslizamientos, disponer de información precisa y temprana resulta determinante para garantizar la estabilidad de las infraestructuras y la seguridad de las comunidades.  A partir de los datos de campo y de la validación numérica, se extraen conclusiones clave sobre cómo dimensionar sistemas de refuerzo, configurar umbrales de alerta temprana y optimizar el diseño de pilotes en proyectos reales. A lo largo del texto se detallan tanto la metodología empleada como las aportaciones más relevantes, la interpretación de los resultados y las líneas futuras de investigación, de modo que el profesional del sector disponga de criterios sólidos para aplicar en obra o en la elaboración de proyectos de contención y estabilización en loess.

Metodología

El estudio combina la vigilancia de campo y simulación numérica para caracterizar el comportamiento de deslizamientos en suelos de loess. Se diseñó una red de instrumentación que incluye:

  • Pilotes de hormigón armado con sensores de presión y temperatura instalados a distintas profundidades (entre 2 m y 16 m). Estos sensores registran continuamente variaciones de tensión y temperatura, permitiendo asociar cambios térmicos con redistribuciones de fricción lateral entre pilote y suelo.
  • Receptores GNSS de alta precisión para medir desplazamientos superficiales con cadencia diaria.
  • Técnicas InSAR destinadas a generar mapas de deformación de superficie con resolución milimétrica.
  • Sensores de alambre vibrante para detectar cambios en humedad y densidad del terreno, claves para evaluar la resistencia interna del suelo y su evolución ante variaciones de carga y humedad.

En paralelo, en laboratorio se realizaron ensayos geomecánicos sobre muestras de loess. Se determinaron parámetros fundamentales: cohesión, ángulo de fricción, módulo de deformación y relación de vacíos. Estos datos alimentaron un modelo tridimensional de elementos finitos de tipo termomecánico, que incorpora:

  1. Parámetros de resistencia al corte y rigidez del suelo, calibrados mediante comparación con los desplazamientos y tensiones reales observados en campo.
  2. Condiciones de contorno tomadas de las lecturas de GNSS, InSAR y sensores en pilotes, para reproducir las condiciones de carga estática y los ciclos térmicos naturales.
  3. Proceso de optimización iterativa, ajustando el modelo hasta que las predicciones de deformación coincidieran con los datos de monitorización (diferencia inferior al 5 % entre desplazamientos numéricos y medidos) .

Este enfoque dual—campo y simulación—garantiza que las conclusiones numéricas se basen en datos reales y que los sistemas de seguimiento puedan ser validados frente a un modelo predictivo confiable.

Aportaciones relevantes

El artículo introduce un método integral de monitorización inteligente que va más allá del registro de desplazamientos superficiales. Los aspectos más destacados, con aplicación directa para el ingeniero civil, son:

  • Medición de tensiones internas en profundidad: La instalación de sensores de presión en pilotes permite identificar aumentos de carga a diferentes niveles. Los resultados mostraron que la presión tiende a incrementarse de forma monótona con la profundidad, lo que indica que los estratos inferiores soportan una mayor carga estática. Este comportamiento aporta información valiosa para dimensionar pilotes y elementos de refuerzo, pues revela en qué zonas del talud se concentran esfuerzos críticos antes de que se trasladen a la superficie.
  • Indicadores térmicos de fricción lateral: Las variaciones de temperatura registradas en los pilotes resultan ser un indicador temprano de cambios en la interacción entre el hormigón y el terreno. Aumentos de temperatura intermedios de hasta 3 °C por ciclos diurnos se correlacionaron con un incremento momentáneo de fricción lateral, lo que puede retrasar o anticipar movimientos dependientes de la descompresión del terreno. Para el ingeniero, esto significa que el seguimiento térmico aporta información adicional sobre el estado crítico del pilote antes de observar movimientos visibles.
  • Integración de GNSS e InSAR: Al combinar medidas GNSS (desplazamientos puntuales diarios) con mapas InSAR (cobertura continua de la superficie), se obtiene una visión conjunta de movimientos tanto profundos como superficiales. En el estudio, los desplazamientos de superficie máximos alcanzaron 26,2 mm, con velocidades de 0,11 mm/día, mientras que en profundidad se observaron desplazamientos de hasta 5,64 mm. Estos resultados permiten calibrar sistemas de alerta temprana sobre umbrales de desplazamiento en superficie que reflejen con mayor fiabilidad la evolución interna del talud.
  • Validación del modelo numérico: La comparación entre las simulaciones de elementos finitos y los datos de campo mostró concordancia en las tendencias de deformación. El modelo predijo con precisión que los bloques con geometría más inclinada y menor cohesión interna sufrirían desplazamientos sustanciales (hasta 6,48 m en algunos tramos simulados), mientras que bloques de forma más estable presentaron desplazamientos medios inferiores a 0,20 m. Esta validación otorga credibilidad al modelo para anticipar magnitudes de deformación en función de propiedades geomecánicas y geometría del talud.

En conjunto, estas aportaciones proveen al ingeniero civil una base sólida para diseñar sistemas de protección y refuerzo, establecer niveles de alerta basados en parámetros internos (presión y temperatura) y optimizar diseños de pilotes según las condiciones específicas del terreno de loess.

Discusión de resultados

Los registros de presión en pilotes revelaron que a profundidades superiores a 10 m los valores oscilan entre 50 kPa y 65 kPa, mientras que en los primeros metros (2 m–5 m) se sitúan entre 5 kPa y 20 kPa. Estos gradientes de presión confirman que la mayor parte de la carga estática recae en los estratos inferiores, algo habitual en suelos colapsables. Para el ingeniero, esta información práctica implica que, al diseñar pilotes de refuerzo, debe dimensionarse la sección y longitud considerando un incremento significativo de esfuerzos por debajo de 10 m de profundidad.

Asimismo, las variaciones térmicas registradas mostraron que, durante días con escasa precipitación, las temperaturas del hormigón en pilotes oscilan en un rango de 2 °C a 3 °C en zonas intermedias. Este efecto térmico se traduce en un aumento temporal de la fricción entre el pilote y el suelo, lo que actúa como un freno temporal al movimiento. Sin embargo, tras eventos de lluvia intensa, la entrada de agua reduce la temperatura y, simultáneamente, se observa una disminución de la fricción lateral, provocando repentinamente un aumento de desplazamientos en la superficie. Para el diseño práctico, esto sugiere que los sistemas de alerta temprana deben incorporar sensores de temperatura en pilotes para correlacionar descensos térmicos con posibles incrementos de desplazamiento.

Los desplazamientos superficiales medidos mediante GNSS e InSAR confirman que los movimientos más significativos (hasta 26,2 mm) se producen después de periodos de lluvia intensa, cuando la capacidad de drenaje del loess se ve limitada y presta a la saturación parcial del estrato superior. En estos momentos, los desplazamientos profundos (hasta 5,64 mm) preceden a los superficiales, lo que indica que la evolución interna puede anticipar la inestabilidad. En la práctica, esto recomienda que el seguimiento continuo de movimientos profundos—detectables por un ligero desplazamiento en pilotes o por un ligero aumento de presión de poros—sea prioridad para emitir avisos antes de observar grandes desplazamientos en la superficie.

Desde el punto de vista de la simulación numérica, el modelo de elementos finitos calibrado con los parámetros geomecánicos del loess mostró que los desplazamientos máximos simulados en bloques con ángulos de inclinación superiores a 30° podrían alcanzar valores de hasta 6,48 m en escenarios extremos de carga gradual. En contraste, bloques con inclinación por debajo de 20° presentaron apenas 0,20 m de deformación promedio. Estos resultados empíricos permiten al ingeniero estimar rangos de deformación potenciales según la geometría del talud y decidir si es necesario instalar medidas de contención adicionales (muros de mampostería, gaviones o anclajes). Asimismo, la validación numérica asegura que, en proyectos futuros, el ingeniero pueda confiar en simulaciones previamente calibradas para evaluar la viabilidad de distintas intervenciones.

Futuras líneas de investigación

Con el objetivo de mejorar la práctica profesional, se proponen las siguientes líneas de estudio:

  1. Escenarios sísmicos y precipitaciones extremas: Ampliar la investigación hacia eventos sísmicos de magnitud superior a 5,0 Ritcher y lluvias prolongadas con más de 50 mm/día. Es preciso analizar la respuesta dinámica del suelo y del hormigón en pilotes, incorporando modelos viscoelásticos que reflejen el comportamiento frente a aceleraciones y ciclos de carga rápidos. Esto permitirá definir nuevos criterios de seguridad para zonas de riesgo sísmico y diseñar pilotes con mayor ductilidad o sistemas de disipación de energía.
  2. Control de humedad y nivel freático: Incluir sensores de humedad de alta frecuencia y piezómetros para registrar en tiempo real la evolución del nivel de agua en el subsuelo. Vincular estos datos con la variación de presión de poros y temperatura en pilotes facilitará una lectura más precisa de la dinámica agua-suelo, identificando umbrales de saturación que reduzcan drásticamente la cohesión del loess. Para la práctica, esto significa instar a la instalación de estaciones meteorológicas locales y piezómetros en proyectos en zonas colapsables.
  3. Algoritmos de aprendizaje automático: Desarrollar modelos que integren todos los datos multi-sensoriales (GNSS, InSAR, presión, temperatura, vibración y humedad) para detectar patrones tempranos de reactivación. Las redes neuronales profundas o las máquinas de soporte vectorial pueden clasificar con mayor antelación estados de riesgo, automatizando alertas y permitiendo intervenciones más eficientes. El ingeniero podría disponer de una herramienta que genere notificaciones automáticas al superar umbrales críticos combinados.
  4. Durabilidad de pilotes y fatiga térmica: Investigar la resistencia a largo plazo de los pilotes de hormigón sometidos a ciclos térmicos y mecánicos. Ensayos acelerados de fatiga térmica, por ejemplo, podrían simular 10 años de degradación en semanas de laboratorio, determinando la resistencia residual del hormigón y sus revestimientos. Estos estudios serían útiles para seleccionar aditivos o recubrimientos que impidan la aparición de fisuras por dilataciones y contracciones repetidas.
  5. Interacción entre tráfico e inestabilidades de talud: Analizar cómo las vibraciones generadas por tráfico rodado intenso afectan el desarrollo de grietas y concentraciones de tensión en suelos de loess. Mediante modelos acoplados vehículo-terreno, se podría determinar si reemplazar capas de refuerzo rígido por materiales con mayor capacidad disipadora de energía reduce los efectos adversos en taludes cercanos a carreteras. Esta línea resultará de utilidad para ingenieros de firmes y geotecnia que trabajen en infraestructuras viales cercanas a zonas inestables.

Conclusión

El estudio presenta una estrategia de seguimiento inteligente que combina mediciones de presión y temperatura en profundidad, datos GNSS e InSAR, y simulaciones numéricas termomecánicas para describir con detalle el comportamiento de deslizamientos en loess. Para el ingeniero civil, los hallazgos prácticos son:

  • La presión en pilotes crece significativamente con la profundidad, por lo que el dimensionado debe contemplar refuerzos más robustos bajo los 10 m.
  • Las variaciones térmicas en pilotes anticipan cambios de fricción lateral, recomendando el uso de sensores de temperatura para mejorar sistemas de alerta.
  • Los desplazamientos profundos preceden a los superficiales tras lluvias intensas, por lo que priorizar la monitorización interna puede prevenir movimientos de gran magnitud en superficie.
  • Los bloques con ángulos de inclinación superiores a 30° son más vulnerables y requieren medidas de contención adicionales, hecho que valida la simulación numérica como herramienta predictiva.

En definitiva, la combinación de datos de campo y modelización proporciona una base sólida para diseñar soluciones de refuerzo y sistemas de alerta temprana más ajustados a la realidad del terreno. Herramientas adicionales—como el seguimiento continuo de humedad, algoritmos de inteligencia artificial y estudios de fatiga térmica—podrían perfeccionar las estrategias de diseño y mantenimiento de infraestructuras en zonas de loess, favoreciendo la seguridad y la eficiencia de las intervenciones.

Referencia:

ZHOU, Z.; WANG, Y.J.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Intelligent monitoring of loess landslides and research on multi-factor coupling damage. Geomechanics for Energy and the Environment, DOI:10.1016/j.gete.2025.100692

Valentín Vallhonrat: ingeniería estructural y modernidad técnica en los inicios del hormigón armado en España

https://www.aperos.es/2018/12/valentin-vallhonrat-y-gomez-ingeniero-y.html

A comienzos del siglo XX, el desarrollo del hormigón armado en España transformó de forma decisiva las técnicas constructivas, dando lugar a nuevas formas de proyectar y ejecutar edificios e infraestructuras. En este contexto, surgieron figuras que, aunque no siempre fueron reconocidas en el discurso oficial de la ingeniería o la arquitectura, desempeñaron un papel esencial en la consolidación del hormigón armado como material estructural preferente. Entre ellas destaca Valentín Vallhonrat y Gómez, ingeniero de formación y constructor por vocación, cuya obra anticipó muchos de los principios que rigen el diseño estructural moderno en la actualidad.

Examinamos brevemente la trayectoria técnica y profesional de Vallhonrat, poniendo énfasis en su capacidad para integrar innovación, funcionalidad y colaboración interdisciplinaria en una época de escasa estandarización normativa. Al revisar sus principales proyectos, métodos constructivos y decisiones técnicas, se pone de manifiesto que su enfoque no solo contribuyó a resolver los desafíos de su tiempo, sino también a sentar las bases de una ingeniería estructural más precisa, eficiente y adaptada a las necesidades arquitectónicas contemporáneas.

Desde sus primeros años, Vallhonrat demostró ser una persona con un talento especial para el estudio. Nacido en Almodóvar del Campo (Ciudad Real) en 1884, finalizó sus estudios de Ingeniería de Minas en 1906 como primero de su promoción. Este dato, además de reflejar su capacidad intelectual, pone de manifiesto la fuerte vocación por el conocimiento técnico de la persona que se esconde detrás del ingeniero.

Tras finalizar sus estudios, ingresó de manera inmediata en la Sociedad Hidroeléctrica Ibérica, donde inició su especialización en construcciones de hormigón, que derivó más adelante en la fundación de su propia empresa constructora. En este ámbito, desempeñó un papel destacado como uno de los introductores de esta tecnología constructiva en el panorama técnico español. El empleo del hormigón, un material que por entonces estaba surgiendo, le permitió incorporarse al sector de las grandes presas de embalse, infraestructuras estratégicas para el aprovechamiento de la energía hidráulica. En el desarrollo de estas obras, sustituyó progresivamente a los especialistas alemanes que hasta entonces monopolizaban este tipo de intervenciones y alcanzó el cargo de jefe de explotación, como señala Urrutia y Llano.

Entre las contribuciones técnicas más relevantes, destaca su papel como introductor del uso pionero del hormigón armado en varios ámbitos: estructuras en altura, rehabilitación de patrimonio histórico, edificación industrial y obras hidráulicas. Fue responsable de la ejecución de algunas de las primeras cimentaciones especiales con hormigón armado en suelos blandos, como en el edificio del Banco Pastor, y de naves industriales de gran luz, como las de Babcock & Wilcox. Asimismo, introdujo en España el hormigón seco (sand-cement) colocado por bombeo en la presa de Ordunte, lo que supuso un salto tecnológico equivalente al que se vivía en Estados Unidos en el mismo periodo.

En paralelo, impulsó sistemas constructivos propios y desarrolló patentes como la de forjados con cielo raso plano, que se aplicaron en obras emblemáticas como el hotel Nacional. Este enfoque proyectista, alejado de una ejecución meramente repetitiva, lo sitúa como un verdadero ingeniero de diseño estructural, capaz de desarrollar soluciones adaptadas al contexto y a las necesidades arquitectónicas.

Su colaboración con arquitectos como Modesto López Otero, Luis Gutiérrez Soto y Antonio Tenreiro demuestra que Vallhonrat asumía un papel activo en la definición estructural del proyecto, integrando criterios técnicos y formales, anticipando así el perfil del ingeniero contemporáneo. Así, participó en la creación de algunos de los edificios más emblemáticos de su época, como el cine Callao o el edificio de la Unión y el Fénix, ambos en Madrid.

Anuncio publicitario. Autor desconocido. 1917. Arquitectura y construcción, (1917),
p. 394

En términos empresariales, su compañía, Valentín Vallhonrat S. A., operó durante más de tres décadas, ejecutando tanto proyectos privados como grandes contratos de obra pública, incluyendo tramos ferroviarios y presas. Su capacidad para organizar equipos técnicos multidisciplinares y licitar proyectos de gran escala revela también un avanzado perfil empresarial para la época.

La obra de Valentín Vallhonrat es un conjunto coherente de soluciones técnicas adelantadas a su tiempo. No solo fue un constructor de éxito, sino también un profesional que intervino directamente en el desarrollo y aplicación de técnicas estructurales innovadoras en contextos muy diversos. El análisis de sus obras permite detectar líneas de continuidad en su método: racionalización de procesos, atención a los condicionantes del terreno, adaptación al diseño arquitectónico y mejora de la eficiencia constructiva.

En la construcción del Banco Pastor en A Coruña (1920-1922), Vallhonrat no solo resolvió con éxito la cimentación profunda en un terreno de baja capacidad portante, sino que además lo hizo con un ritmo de ejecución que evidencia una planificación rigurosa: una planta completa cada dos semanas y media. Este dato, unido a la precisión técnica de la ejecución, proyecta una imagen de modernidad organizativa muy poco común en ese momento.

Otro ejemplo significativo es la ejecución del cine Callao, donde se utilizaron vigas tipo Vierendeel con luces de hasta 22 metros. Gracias a esta solución, se pudo prescindir de diagonales estructurales, lo que permitió crear un espacio escénico libre y adaptable. Aquí, como en otras obras, se observa cómo la estructura no impone restricciones a la arquitectura, sino que la hace posible.

La rehabilitación del Palacio de Carlos V, dentro del conjunto de la Alhambra, es un caso singular. El uso de hormigón armado en un edificio renacentista evidencia una mentalidad integradora que entendía los materiales modernos como medios para recuperar condiciones de seguridad y usos sin alterar la autenticidad formal del patrimonio. Este tipo de intervenciones, que hoy son ampliamente aceptadas, eran poco frecuentes en el momento y requerían una visión técnica sensible al contexto.

El caso de la presa de Ordunte demuestra un salto técnico y logístico. La automatización parcial del proceso de producción del hormigón y su colocación mediante bombeo, junto con el uso de materiales in situ, indican un dominio avanzado del ciclo constructivo. El empleo de 220 000 m³ de hormigón, la ejecución de un túnel hidráulico de 6000 l/s de capacidad y una conducción ovoide de más de 30 km en un contexto tecnológico limitado posicionan esta obra como un hito de la ingeniería civil española de la época.

Su biografía se completa con su posterior retorno al servicio público y la docencia tras la disolución de su empresa en 1950. Como profesor de hidráulica en la Escuela de Minas de Madrid y posteriormente como presidente del Consejo de la Minería, Vallhonrat continuó ligado a la ingeniería desde una perspectiva institucional. En un contexto marcado por los efectos de la Guerra Civil y la transformación del Estado, esta trayectoria da cuenta de una figura que, más allá de sus realizaciones, encarnó una concepción amplia de la profesión.

La obra de Valentín Vallhonrat y Gómez articula una síntesis entre conocimiento técnico, capacidad ejecutiva e innovación formal que resultó determinante para el desarrollo del hormigón armado en España y anticipó prácticas y perfiles profesionales contemporáneos. Su legado no solo perdura en las estructuras que ha dejado, sino también en la manera en que enfrentó los desafíos constructivos: con un enfoque integrador, sistemático y técnicamente solvente.

Vallhonrat se posiciona como un agente clave en la transición hacia una construcción moderna en España. Desde una perspectiva contemporánea, su figura aporta también elementos valiosos para la formación de los estudiantes de ingeniería civil: capacidad crítica, rigor técnico, apertura a la innovación y voluntad de colaborar con otras disciplinas. Reivindicar a Valentín Vallhonrat no es solo un acto de memoria profesional, sino también una oportunidad para reflexionar sobre el papel del conocimiento técnico en la construcción de nuestras ciudades y territorios.

Os dejo a continuación un par de artículo que permiten profundizar en la figura de este ingeniero. Espero que os resulten de interés.

Pincha aquí para descargar

Pincha aquí para descargar

Pincha aquí para descargar

¿Cuáles son las características de una buena estimación de costes?

En la ingeniería o la arquitectura, la estimación de costes no constituye únicamente una labor técnica, sino que representa un componente esencial en la planificación, gestión y toma de decisiones de todo proyecto. Ya sea para la construcción de una presa, una carretera o una infraestructura ferroviaria, es fundamental contar con una estimación precisa, bien fundamentada y comunicada adecuadamente, ya que esto puede marcar la diferencia entre el éxito y el fracaso de una iniciativa. En el presente artículo, se aborda la evaluación de las competencias que constituyen una estimación de costes sólida y conforme a las normas profesionales y las prácticas óptimas del sector.

Una estimación de costes sólida y confiable debe cumplir con cuatro características relevantes: exhaustividad, razonabilidad, credibilidad y solidez analítica. Estos principios aseguran que el análisis sea riguroso desde el punto de vista técnico, así como útil y comprensible para quienes toman decisiones.

En primer lugar, toda estimación sólida debe basarse en el rendimiento histórico de programas anteriores. Por lo tanto, es necesario utilizar datos de proyectos análogos como referencia, ya sean similares en alcance, naturaleza o contexto, para respaldar el análisis. Estas experiencias previas deben estar claramente identificadas como fuentes de datos, aportando así transparencia y reforzando la confianza en los resultados.

Sin embargo, si bien los datos históricos constituyen el punto de partida, es imperativo considerar las posibles mejoras en diseño, materiales y procesos constructivos que puedan incorporarse en el nuevo proyecto. A pesar de la ausencia de datos empíricos que respalden estos avances, es necesario evaluar su impacto de manera rigurosa y fundamentada. En tales circunstancias, se acude al juicio profesional o conocimiento experto (también denominado subject matter expertise), cuya aplicación debe estar debidamente documentada y justificada.

Otro aspecto clave es la claridad en la comunicación. Una estimación sólida debe ser comprensible, especialmente para los responsables de programas y directivos que, si bien toman decisiones estratégicas, pueden carecer del tiempo o del perfil técnico necesario para profundizar en los detalles metodológicos. Por ello, se recomienda optar por enfoques sencillos, evitando complejidades innecesarias, para que la estimación pueda ser fácilmente interpretada por sus destinatarios.

Asimismo, es preciso identificar las reglas de base y los supuestos. Como se suele decir en el ámbito del análisis: «Permítame realizar las suposiciones, y usted podrá realizar los cálculos». Esta frase resume la enorme influencia que tienen las hipótesis en cualquier estimación. Si bien es difícil que todos los agentes implicados compartan exactamente los mismos supuestos, la mejor estrategia consiste en incorporar análisis de sensibilidad. Estos instrumentos permiten evaluar la variación de la estimación ante diferentes escenarios y contribuyen a una gestión más eficiente de la incertidumbre.

Precisamente, una buena estimación debe abordar de forma explícita los riesgos y las incertidumbres inherentes al proyecto. Si bien el resultado final se manifiesta a través de una cifra concreta —conocida como «punto estimado»—, es importante destacar que dicha cifra es el resultado de una serie de supuestos. Por lo tanto, es posible que esta haya variado si los supuestos hubiesen sido distintos. Por tanto, es esencial señalar las sensibilidades del modelo y mostrar cómo afectan al resultado final, para ofrecer una visión más completa y realista del coste previsto.

Desde una perspectiva técnica, existen otras cualidades que refuerzan la validez y utilidad de la estimación. Una de las características esenciales que debe cumplir es que esté impulsada por los requisitos del proyecto. Resulta improcedente solicitar una estimación del coste de rehabilitar una cocina sin definir previamente el alcance de dicha rehabilitación. En el ámbito de los proyectos civiles de gran envergadura, resulta imperativo que los requisitos funcionales y técnicos se encuentren debidamente documentados, ya sea a través de especificaciones técnicas, documentos de alcance, solicitudes de propuesta (RFP) o, en el caso de proyectos públicos, mediante instrumentos normalizados como el «Cost Analysis Requirements Description» (CARD).

Otra condición esencial es que el proyecto esté suficientemente definido desde el punto de vista técnico y que se hayan identificado las áreas de mayor riesgo. De este modo, se garantizará una selección meticulosa de la metodología de estimación más apropiada y una aplicación precisa de las herramientas de análisis.

En proyectos de gran envergadura, especialmente en el ámbito público, se recomienda disponer de una estimación independiente. Esta función de validación externa contribuye a reforzar la credibilidad del análisis. De igual manera, es importante contar con estimaciones independientes que respalden los presupuestos en los grandes proyectos.

Finalmente, una estimación de calidad debe ser trazable y auditable. Por lo tanto, es imperativo que sea posible reconstruirla a partir de los datos, supuestos y fuentes utilizadas. Existe un consenso tácito entre los profesionales de la estimación, según el cual cualquier individuo con conocimientos básicos de análisis cuantitativo debería estar en condiciones de seguir los pasos del cálculo, aplicar los datos y reproducir el resultado. La transparencia, por tanto, no es solo un valor añadido, sino un requisito indispensable para asegurar la fiabilidad del proceso.

En el ámbito de la ingeniería civil, donde los proyectos conllevan frecuentemente inversiones significativas y pueden afectar a miles de personas, la estimación de costes deja de ser una tarea secundaria para convertirse en una herramienta estratégica esencial. El cálculo de cifras por sí solo no es suficiente; es imperativo comprender el proyecto en su totalidad, anticipar escenarios, comunicar con claridad y tomar decisiones con fundamento.

Invito a todas las personas —ya sean profesionales con experiencia o estudiantes en proceso de formación— a considerar la estimación de costes no como un mero trámite técnico, sino como una disciplina que integra ciencia, experiencia y criterio. Reflexionar sobre el proceso de construcción de nuestras estimaciones, los supuestos que las sustentan y la manera en que las comunicamos, puede resultar fundamental para mejorar la eficiencia, la transparencia y la sostenibilidad de nuestras infraestructuras.

Glosario de términos clave

  • Estimación de costes: Proceso de predecir el coste monetario de un proyecto o iniciativa, basándose en datos disponibles, supuestos y metodologías de análisis.
  • Exhaustividad: Característica de una estimación que implica considerar todos los elementos relevantes del proyecto y sus posibles costes asociados.
  • Razonabilidad: Característica que indica que la estimación está lógicamente estructurada y los valores utilizados tienen sentido dentro del contexto del proyecto y la experiencia previa.
  • Credibilidad: Característica que denota la confianza en la estimación, basada en la solidez de la metodología, la transparencia en los datos y supuestos, y la validación (interna o externa).
  • Solidez analítica: Característica que se refiere a que la estimación se basa en métodos de análisis cuantitativos rigurosos y bien aplicados.
  • Rendimiento histórico: Datos de coste y ejecución de proyectos anteriores similares que se utilizan como base empírica para una nueva estimación.
  • Juicio profesional (o conocimiento experto): Aplicación de la experiencia y conocimiento de expertos en la materia para realizar estimaciones o tomar decisiones cuando los datos empíricos son limitados.
  • Reglas de base y supuestos: Las hipótesis fundamentales y las condiciones iniciales que subyacen a una estimación y sobre las cuales se realizan los cálculos.
  • Análisis de sensibilidad: Técnica que evalúa cómo varía el resultado de una estimación cuando se modifican los supuestos o parámetros clave, ayudando a entender el impacto de la incertidumbre.
  • Punto estimado: La cifra única que representa el resultado más probable o esperado de la estimación de costes.
  • Requisitos del proyecto: Las especificaciones funcionales, técnicas y de rendimiento que definen el alcance y los objetivos de un proyecto, y que deben impulsar la estimación de costes.
  • Cost Analysis Requirements Description (CARD): Instrumento normalizado, especialmente en proyectos públicos, que documenta los requisitos necesarios para realizar un análisis de costes.
  • Estimación independiente: Una estimación de costes realizada por un equipo o entidad separada del equipo principal del proyecto, con el fin de validar o contrastar la estimación principal.
  • Trazabilidad: La capacidad de seguir y documentar el proceso de estimación, desde los datos y supuestos iniciales hasta el resultado final.
  • Auditabilidad: La capacidad de verificar la exactitud y fiabilidad de una estimación, examinando los datos, métodos y supuestos utilizados, de modo que otro analista pueda reproducirla.

Referencias:

Mislick, G. K., & Nussbaum, D. A. (2015). Cost estimation: Methods and tools. John Wiley & Sons.

Yepes, V. (2022). Gestión de costes y producción de maquinaria de construcción. Universidad Politécnica de Valencia.

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

 

Discurso de apertura en el evento Innotransfer “Infraestructuras resilientes frente a eventos climáticos extremos”

Os anuncio que el próximo miércoles, 28 de mayo de 2025, tendré la oportunidad de dar el discurso de apertura en el evento, presencial y en línea, InnotransferInfraestructuras resilientes frente a eventos climáticos extremos” centrada en los ámbitos de carreteras, ferrocarriles e infraestructuras hidráulicas, dentro del programa INNOTRANSFER, dedicado a facilitar conexión entre demandantes y oferentes de soluciones innovadoras en la Comunitat Valenciana. Este año, en particular, estamos enfocando estos eventos a necesidades puestas de manifiesto con la DANA.

En los últimos años, la frecuencia e intensidad de los fenómenos meteorológicos extremos han aumentado de manera sostenida. Episodios como lluvias torrenciales, vientos huracanados, tornados, olas de calor y frío o temporales marítimos han provocado un incremento de las catástrofes naturales asociadas, incluyendo inundaciones, destrucción y regresión litoral, incendios forestales y sequías prolongadas.

Esta tendencia, impulsada por el cambio climático, plantea un desafío creciente que exige soluciones innovadoras en el diseño de infraestructuras resilientes. Estas infraestructuras deben abarcar la planificación y construcción de carreterasinfraestructuras hidráulicas y redes de transporte ferroviario, garantizando no solo la resistencia ante situaciones críticas, sino también la capacidad de minimizar daños y asegurar una rápida recuperación.

En la Comunitat Valenciana, esta necesidad es especialmente relevante debido al incremento de fenómenos climáticos extremos como las DANAs (Depresiones Aisladas en Niveles Altos). La jornada tiene como objetivo abordar el desarrollo de infraestructuras urbanas y rurales capaces de adaptarse al clima cambiante, reduciendo el impacto negativo en la población y en los recursos económicos locales.

Esta jornada Innotransfer reunirá a expertos, empresas e instituciones para explorar soluciones innovadoras en infraestructuras resilientes, aprovechando el potencial de la Compra Pública de Innovación como herramienta clave para facilitar su adopción por parte de las Administraciones Públicas. Dichas propuestas han sido identificadas por la Ciudad Politécnica de la Innovación (CPI), parque científico de la Universitat Politècnica de València (UPV).

El objetivo de la jornada es crear oportunidades de colaboración y un networking de alto impacto entre los diferentes actores del ecosistema valenciano de innovación, fomentando el desarrollo conjunto de proyectos de I+D+i de alto impacto.

La participación en el evento es gratuita, y se puede hacer accediendo al siguiente enlace: https://innotransfer.org/evento/infraestructuras-resilientes-frente-a-eventos-climaticos-extremos/

Os dejo el programa, por si os interesa.

Tendencias futuras y retos de la inteligencia artificial en la ingeniería civil

La ingeniería civil se encuentra inmersa en un proceso de transformación profunda, impulsada por los avances en inteligencia artificial (IA) y tecnologías digitales emergentes. Estas innovaciones están redefiniendo los procesos de diseño y la gestión y operación de las infraestructuras, lo que permite la implementación de soluciones más eficientes, sostenibles y seguras. En este contexto, resulta imperativo explorar las principales tendencias que delinearán el futuro del sector en los próximos años, así como los desafíos que deberán superarse para lograr una adopción exitosa y generalizada.

Este artículo examina el impacto transformador de la IA y las tecnologías digitales en la ingeniería civil. Se destacan tendencias futuras clave como la creación de infraestructuras inteligentes con monitorización en tiempo real, el diseño generativo y la planificación asistida por inteligencia artificial. También se aborda el uso de la IA para la construcción sostenible, la proliferación de máquinas autónomas y robótica, y la mejora de la colaboración entre humanos y máquinas mediante la inteligencia aumentada. El documento también detalla los principales desafíos para la adopción exitosa de la IA, como la calidad de los datos, la integración con sistemas existentes, las consideraciones éticas y la escasez de talento. Por último, se destaca la importancia de abordar estos desafíos para lograr una transformación integral y sostenible del sector.

Tendencias futuras

La primera gran línea de evolución es la de las infraestructuras inteligentes, donde la IA combinada con el Internet de las Cosas (IoT) permitirá monitorizar en tiempo real el estado de puentes, túneles y redes de transporte, y adaptar automáticamente parámetros como la iluminación, el drenaje o la ventilación según la demanda.

El diseño generativo y la planificación asistida por IA tienen el potencial de transformar significativamente las etapas iniciales del proceso de diseño. Mediante algoritmos capaces de explorar un amplio espectro de alternativas, se optimizarán los criterios de costo, consumo de material y rendimiento estructural, reduciendo la subjetividad y acelerando la toma de decisiones.

En el ámbito de la construcción sostenible, la IA aportará análisis avanzados de consumo energético y huella de carbono, facilitando la selección de materiales y métodos constructivos de menor impacto ambiental, así como el dimensionado óptimo de sistemas de climatización y redes de servicios.

El despliegue de las máquinas autónomas y la robótica de obra continuará su curso: excavadoras, camiones y drones operarán con escasa supervisión humana, ejecutando movimientos precisos y recolectando datos topográficos que retroalimentan modelos predictivos de rendimiento y seguridad.

La colaboración entre humanos y máquinas se potenciará a través de la inteligencia aumentada, permitiendo a los profesionales liberarse de tareas repetitivas para enfocarse en la supervisión e interpretación de los resultados generados por sistemas de IA, combinando intuición y rigor analítico.

Las analíticas predictivas alcanzarán nuevas cotas de sofisticación, ofreciendo a los gestores de proyecto visibilidad temprana de desviaciones de costes, plazos y riesgos, y sugiriendo medidas preventivas basadas en patrones históricos.

La tecnología blockchain se explorará como garante de la trazabilidad, la transparencia y la inmutabilidad de los registros de obra, contratos y certificaciones, mitigando fraudes y disputas al proteger la integridad de los datos.

El edge computing permitirá procesar la información localmente en la obra —por ejemplo, en drones o en nodos IoT—, reduciendo la latencia y garantizando una respuesta inmediata en aplicaciones críticas, como la detección de fallos estructurales.

Los gemelos digitales, réplicas virtuales permanentemente actualizadas de activos reales, se consolidarán para simular escenarios de mantenimiento, rehabilitación y operación, optimizando ciclos de vida y costes asociados.

Por último, la personalización de soluciones IA permitirá adaptar herramientas y modelos a las necesidades específicas de cada proyecto, lo que facilitará una adopción más ágil y homogénea.

Retos asociados

No obstante, la plena materialización de estas tendencias se enfrenta a múltiples desafíos. En primer lugar, es preciso señalar que la calidad y la disponibilidad de los datos siguen siendo insuficientes. Los proyectos de gran envergadura generan información dispersa y heterogénea, lo que dificulta el entrenamiento fiable de modelos.

La integración con sistemas existentes, tales como software de gestión, bases de datos heredadas o flujos de trabajo manuales, puede ocasionar interrupciones en la operativa y en los cronogramas establecidos. Por lo tanto, se hace necesario implementar estrategias de migración y adaptación progresiva.

Las consideraciones éticas y el sesgo algorítmico obligan a implementar mecanismos de transparencia y gobernanza que garanticen la rendición de cuentas y la equidad en decisiones críticas.

La escasez de talento experto en IA y construcción limita la creación, el despliegue y el mantenimiento de estas soluciones, apuntando a la necesidad de planes de formación duales en ingeniería y ciencia de datos.

La ausencia de marcos regulatorios y legales claros genera incertidumbre en cuanto a las responsabilidades, licencias y cumplimiento normativo en caso de fallos o litigios.

El coste inicial de adquisición e implementación de tecnologías IA puede resultar prohibitivo para las pequeñas y medianas empresas (PYMES) y proyectos con márgenes ajustados. Por ello, es importante demostrar el retorno de la inversión a medio y largo plazo.

La privacidad y la seguridad de los datos, cada vez más extensos y sensibles, requieren arquitecturas robustas que eviten fugas y ciberataques, especialmente cuando se integran sensores IoT y servicios en la nube.

Los problemas de interoperabilidad entre plataformas, estándares y formatos de datos comprometen la colaboración multidisciplinar y el intercambio fluido de información.

La adaptación al ritmo vertiginoso de la evolución tecnológica exige un aprendizaje continuo y revisiones frecuentes de las infraestructuras de TI para no quedarse obsoletos.

Finalmente, la resistencia al cambio por parte de profesionales y directivos puede frenar la adopción, subrayando la importancia de campañas de sensibilización y casos de éxito tangibles.

Conclusión

El futuro de la IA en ingeniería civil se perfila como un escenario de grandes oportunidades para la creación de infraestructuras más inteligentes, eficientes y sostenibles. No obstante, es imperativo que se aborden con éxito los desafíos técnicos, éticos y organizativos para evitar que la implementación de estas tecnologías se limite a proyectos aislados y, en cambio, promueva una transformación integral y sostenible del sector.

Glosario de términos clave

  • Inteligencia artificial (IA): Sistemas o máquinas que imitan la inteligencia humana para realizar tareas, aprendiendo de la información que procesan.
  • Internet de las cosas (IoT): Red de objetos físicos (“cosas”) integrados con sensores, software y otras tecnologías que les permiten recopilar e intercambiar datos.
  • Infraestructuras inteligentes: Estructuras físicas (puentes, túneles, redes) equipadas con tecnología para monitorear y adaptar su funcionamiento en tiempo real.
  • Diseño generativo: Proceso de diseño que utiliza algoritmos para explorar múltiples soluciones basadas en un conjunto de parámetros y restricciones definidos.
  • Construcción sostenible: Prácticas de construcción que minimizan el impacto ambiental, optimizan el uso de recursos y consideran el ciclo de vida completo de las estructuras.
  • Máquinas autónomas: Equipos o vehículos capaces de operar sin supervisión humana directa, utilizando sensores y software para tomar decisiones.
  • Robótica de obra: Uso de robots para ejecutar tareas en el sitio de construcción, a menudo repetitivas o peligrosas para los humanos.
  • Inteligencia aumentada: Enfoque que combina las capacidades de la inteligencia artificial con la inteligencia humana para mejorar el rendimiento y la toma de decisiones.
  • Analíticas predictivas: Empleo de datos históricos, algoritmos y técnicas de aprendizaje automático para identificar la probabilidad de resultados futuros.
  • Blockchain: Tecnología de registro distribuido que permite transacciones transparentes, seguras e inmutables.
  • Edge Computing: Procesamiento de datos cerca de donde se generan (en el “borde” de la red) en lugar de enviarlos a un centro de datos central.
  • Gemelos digitales: Réplicas virtuales de activos físicos, procesos o sistemas que se actualizan en tiempo real y pueden usarse para simulación y análisis.
  • Sesgo algorítmico: Error sistemático en un algoritmo que produce resultados injustamente discriminatorios o sesgados.
  • Interoperabilidad: Capacidad de diferentes sistemas, plataformas o software para trabajar juntos e intercambiar datos sin problemas.
  • Resistencia al cambio: Falta de disposición de individuos u organizaciones para adoptar nuevas tecnologías, procesos o formas de trabajar.

Referencias:

DONAIRE-MARDONES, S.; BARRAZA ALONSO, R.; MARTÍNEZ-PAGÁN, P.; YEPES-BELLVER, L.; YEPES, V.; MARTÍNEZ-SEGURA, M.A. (2024). Innovación educativa con realidad aumentada: perspectivas en la educación superior en ingeniería. En libro de actas: X Congreso de Innovación Educativa y Docencia en Red. Valencia, 11 – 12 de julio de 2024. DOI: https://doi.org/10.4995/INRED2024.2024.18365

GARCÍA, J.; VILLAVICENCIO, G.; ALTIMIRAS, F.; CRAWFORD, B.; SOTO, R.; MINTATOGAWA, V.; FRANCO, M.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2022). Machine learning techniques applied to construction: A hybrid bibliometric analysis of advances and future directions. Automation in Construction, 142:104532. DOI:10.1016/j.autcon.2022.104532

FERNÁNDEZ-MORA, V.; NAVARRO, I.J.; YEPES, V. (2022). Integration of the structural project into the BIM paradigm: a literature review. Journal of Building Engineering, 53:104318. DOI:10.1016/j.jobe.2022.104318.

YEPES, V.; KRIPKA, M.; YEPES-BELLVER, L.; GARCÍA, J. (2023). La inteligencia artificial en la ingeniería civil: oportunidades y desafíosIC Ingeniería Civil, 642:20-23.

¿Se puede predecir el futuro? Claves de la estimación de costes en proyectos de ingeniería

En el ámbito de la ingeniería civil, planificar correctamente no es solo deseable, sino que es imprescindible para garantizar la eficiencia y la calidad en el desarrollo de proyectos. En todas las etapas de un proyecto, ya sea la construcción de una carretera, un puente o una infraestructura hidráulica, la estimación de costes es un componente esencial. La estimación precisa del costo de una obra es fundamental para tomar decisiones informadas, optimizar recursos y reducir riesgos. Para proceder con la estimación de costes, es preciso definir de manera precisa el concepto. Para ello, es necesario establecer los fundamentos técnicos y metodológicos que rigen dicha práctica.

El físico danés Niels Bohr, distinguido con el Premio Nobel en 1922, expresó en una ocasión: «Predecir es sumamente complejo, especialmente en lo que respecta al futuro». Esta expresión, originariamente empleada en el contexto de la física, resulta de aplicación en el ámbito de la estimación de costes, dada su compatibilidad tanto con su dimensión técnica como con la naturaleza incierta inherente a todo proceso de planificación.

La estimación de costes puede definirse como el proceso mediante el cual se recopilan y analizan datos históricos, y se aplican modelos cuantitativos, técnicas, herramientas y bases de datos con el objetivo de prever el coste futuro de un producto, proyecto, programa o tarea. En esencia, se trata de una práctica que integra elementos del arte y la ciencia, con el objetivo de estimar el valor, alcance o características probables de un elemento, en función de la información disponible en un momento determinado.

Uno de los pilares fundamentales de esta disciplina son los datos históricos. Como ocurre en cualquier otra actividad científica, la estimación de costes se apoya en evidencias contrastadas. Dado que no es posible disponer de datos futuros, es imperativo recurrir a la información relevante del pasado. La búsqueda y tratamiento de datos históricos es una labor esencial del profesional de la estimación. La recopilación, organización, normalización y gestión adecuadas de los datos históricos son valiosos para sentar una base sólida para el análisis posterior.

En lo que respecta a la estimación de costes, esta se fundamenta en el empleo de modelos cuantitativos, los cuales deben caracterizarse por su transparencia, racionalidad y capacidad de revisión por parte de terceros. Este componente científico ha sido determinante para que la asignatura de estimación de costes se integre de manera habitual en los departamentos universitarios de ingeniería de sistemas, investigación operativa o administración de empresas, lo que refleja su naturaleza técnica y rigurosa.

Un aspecto central de esta profesión es la capacidad de predecir. Frecuentemente, se escucha la afirmación de que «no se puede predecir el futuro», pero esta idea es engañosa. Si alguien afirma que «mañana va a llover», podrá estar en lo cierto o equivocado, pero en cualquier caso estará realizando una predicción. De hecho, muchas de nuestras decisiones cotidianas —como la elección de un paraguas o la planificación de una inversión— se fundamentan precisamente en el intento de anticipar el futuro. Predecir, también conocido como pronosticar, es una actividad legítima y valiosa, especialmente en campos como la ingeniería civil, donde los proyectos suelen implicar plazos largos, recursos significativos y un alto grado de incertidumbre.

Algunas voces críticas señalan que la utilización de datos históricos para estimar costes futuros podría implicar la repetición de errores del pasado en la toma de decisiones. Según esta lógica, estaríamos asumiendo que los gestores actuales cometerán los mismos fallos que sus predecesores, lo cual, según afirman, carece de sentido. Sin embargo, esta objeción se fundamenta en un error de base. Por un lado, los errores del pasado no suelen deberse a la incompetencia de quienes lideraban los proyectos, sino más bien a factores externos que escapaban a su control. Por otro lado, quienes gestionan proyectos en la actualidad se enfrentarán a un contexto diferente, con nuevos retos y condicionantes que también podrían obligarles a desviarse de sus planes iniciales. Como respuesta más irónica (pero igualmente válida), podría decirse que «no cometerás los mismos errores que tus antecesores: cometerás los tuyos propios».

Por último, es fundamental tener presente que toda estimación se realiza con base en la información disponible en el momento. Si bien nos gustaría contar con datos precisos sobre las condiciones futuras en las que se ejecutará un proyecto, la realidad es que solo podemos trabajar con lo que sabemos hoy, e intentar prever las circunstancias del mañana. Es comprensible que no sea posible anticipar todos los cambios que puedan producirse, especialmente en proyectos a largo plazo. A modo ilustrativo, si se está calculando el coste para producir de 200 m³ de hormigón en una planta propia para una obra, pero más adelante el cliente quiere un modificado de obra que nos obliga a producir 2000 m³, es evidente que nuestra estimación inicial no será válida para ese nuevo escenario. Sin embargo, en su momento, la estimación se ajustó a los supuestos establecidos. Por ello, el profesional encargado de estimar costes debe contemplar posibles contingencias y estar preparado para ajustar sus cálculos a medida que evolucionen los planes o cambien las condiciones del entorno.

En definitiva, la estimación de costes constituye una disciplina de gran importancia en el ámbito de la ingeniería civil y otras ramas técnicas, pues facilita la toma de decisiones fundamentadas en entornos caracterizados por la incertidumbre. Para su correcta aplicación, se requiere una combinación de análisis histórico, rigor matemático y juicio profesional. Se trata de una herramienta fundamental para el éxito de cualquier proyecto de gran envergadura.

Glosario de términos clave

  • Estimación de costes: Proceso de prever el coste futuro de un producto, proyecto, programa o tarea mediante la recopilación y análisis de datos históricos y la aplicación de modelos cuantitativos, técnicas, herramientas y bases de datos.
  • Datos históricos: Información relevante del pasado utilizada como evidencia para fundamentar la estimación de costes, dada la imposibilidad de disponer de datos futuros.
  • Modelos cuantitativos: Herramientas matemáticas y estadísticas empleadas en la estimación de costes, caracterizadas por ser transparentes, racionales y revisables.
  • Predecir/Pronosticar: La actividad de anticipar o prever eventos o valores futuros, crucial en campos como la ingeniería civil para la planificación.
  • Incertidumbre: La falta de certeza sobre las condiciones futuras en las que se ejecutará un proyecto, un factor inherente a la planificación a largo plazo.
  • Contingencias: Posibles eventos o cambios futuros que podrían afectar la estimación inicial de costes y que deben ser contemplados por el profesional.
  • Rigor matemático: La precisión y exactitud en la aplicación de principios y cálculos matemáticos en la estimación de costes.
  • Juicio profesional: La aplicación de la experiencia, el conocimiento y la intuición del experto en el proceso de estimación, complementando el análisis de datos y modelos.
  • Ingeniería civil: Disciplina de ingeniería que se ocupa del diseño, construcción y mantenimiento de infraestructuras físicas y naturales, como carreteras, puentes y sistemas hidráulicos.
  • Optimizar recursos: Utilizar los recursos disponibles de la manera más eficiente posible para lograr los objetivos del proyecto, facilitado por una estimación precisa de costes.

 

Referencias:

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.