Los residuos de construcción y demolición (RCD)

Figura 1. Demolición de edificios. https://commons.wikimedia.org/wiki/File:Seneca_County_Courthouse_01_26.JPG

La construcción de infraestructuras y edificios, la reforma de pequeñas obras en viviendas y locales, así como la demolición de infraestructuras o edificios que ya han cubierto su ciclo de vida útil generan residuos. En España estamos hablando de unos 800 m3 por persona y año (Bustillo, 2010), volumen que, en su mayor parte, pasan a vertederos controlados o incontrolados. Estos residuos de construcción y demolición (RCD) son en su mayoría inertes, pero pueden estar mezclados con otros residuos que son peligrosos, como el amianto, los cuales deben separarse y gestionarse de acuerdo con su peligrosidad. Estos residuos constituyen un importante problema ambiental, pues no solo crecen en volumen, sino que su tratamiento y gestión presentan importantes áreas de mejora. En efecto, la contaminación de suelos y acuíferos en vertederos incontrolados, el deterioro paisajístico o su eliminación sin aprovechar su posible valorización, son impactos que deberían corregirse.

La gestión de estos residuos RCD debería realizarse atendiendo a los principios de prevención, reutilización, reciclaje y eliminación. Existe, no obstante, cierta jerarquía en estos principios, siendo preferible siempre la prevención, y si no fuera posible la reutilización o el reciclaje, se procedería a su eliminación. La prevención siempre tratará de evitar la generación de residuos o reducirlos; la reutilización trata de emplear el producto usado para el mismo fin para el que se diseñó originariamente; el reciclado transforma los residuos, dentro de un proceso de producción, para su fin inicial o para otros fines; la valorización permite el aprovechamiento de los recursos contenidos en los residuos sin comprometer la salud y sin utilizar métodos que perjudiquen al medio ambiente; por último, la eliminación se dirige al vertido de los residuos o a su destrucción total o parcial (Ferrando y Granero, 2007).

En todo caso, se trataría de separar los inertes de los productos peligrosos para aprovecharlos. Sin embargo, el problema no es tanto la peligrosidad de los RCD, sino la necesidad de infraestructuras y espacio para su gestión. Según el Plan Nacional de Residuos de Construcción y Demolición 2001-2006 (ver Figura 2), el 75% de los RCD se catalogarían de escombros, donde los ladrillos, azulejos y otros productos cerámicos suponen el 54% del total de los RCD. Si a los materiales cerámicos sumamos el hormigón, con un 12% del total del RCD, tendremos 2/3 del total. Si añadimos la piedra (5%) y la arena, grava y otros áridos (4%), tenemos la totalidad de los escombros. El 25% restante ya estaría formado por otros materiales como la madera, el vidrio, el plástico, los metales, etc. Por tanto, si se es capaz de realizar una gestión completa de los escombros, especialmente de los productos cerámicos y del hormigón, podemos tendremos la mayor parte del volumen de los RCD bajo control.

Figura 2. Composición de los RCE según el Plan Nacional de Residuos de Construcción y Demolición 2001-2006. http://www.cedexmateriales.es/catalogo-de-residuos/35/residuos-de-construccion-y-demolicion/

Lo dicho nos lleva a la necesidad de comercializar los productos reciclados, especialmente los áridos. Pero aquí tropezamos con problemas cuando, a pesar de existir especificaciones técnicas voluntarias y certificados que acreditan la calidad de los áridos reciclados, se mantiene una desconfianza de profesionales y administraciones al uso de estos productos en la construcción. Resulta evidente la necesidad de promocionar el reciclaje y uso de los RCD. Sin embargo, mientras el canon de vertido en una planta de valorización sea elevado frente al de un vertedero, por ejemplo, pueden suponer barreras para la gestión de estos residuos procedentes de la demolición y la construcción.

Os dejo algún vídeo al respecto de este tema. Espero que os sea de interés.

A continuación os dejo, por su interés, el protocolo de gestión de residuos de construcción y demolición en la UE.

Descargar (PDF, 2.11MB)

Referencias:

BUSTILLO, M. (2010). Manual de RCD y áridos reciclados. Fueyo Editores. Madrid, 797 pp.

FERRANDO, M.; GRANERO, J. (2007). Gestión y minimización de residuos. FC Editorial. Madrid, 265 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Se debe controlar el espesor de tongada y el número de pasadas en la compactación?

Compactador Bomag de rodillo con patas apisonadoras. https://www.interempresas.net/ObrasPublicas/Articulos/145132-Bomag-presenta-la-quinta-generacion-de-rodillos-autopropulsados.html

Suele ser habitual en este blog hacer preguntas como título al contenido de lo que se explica a continuación. La pregunta aquí expuesta tiene que ver con el control del proceso de la compactación de los suelos. En un artículo anterior ya hablamos del control de la calidad de la compactación, distinguiendo el control de recepción del control del proceso. En España el control de recepción parece que es el que prevalece para el cliente, mientras que la empresa constructora suele ocuparse del control del proceso para no incurrir en costes innecesarios. Pero esta forma de actuar no es común en todos los países, y menos con las nuevas tecnologías.

En efecto, atendiendo al control del proceso, hoy día la tecnología incorpora un control de la compactación automático que guía al conductor de la máquina a saber si ha cumplido con las especificaciones exigidas. Se trata de una compactación inteligente que evita un número de pasadas excesivo y, por tanto, aumenta el rendimiento y reduce el coste de esta unidad de obra. Por tanto, el control del proceso claramente se puede automatizar. Pero no siempre ha sido esto así.

En España, el “control de procedimiento” queda descrito en el Pliego de Prescripciones Técnicas Generales para Obras de Carreteras y Puentes (PG-3), que establece en su artículo 330 que “cuando lo indique el Proyecto o lo aconsejen las características del material o de la obra, y previa autorización del Director de las Obras, las determinaciones “in situ” de densidad, humedad, y módulo de deformación se complementarán por otras, como los ensayos de huella ejecutados según NLT 256 o el método de “Control de procedimiento” a partir de bandas de ensayo previas. En estas últimas deberán quedar definidas, para permitir su control posterior, las operaciones de ejecución, equipos de extendido y compactación, espesores de tongada, humedad del material y número de pasadas, debiendo comprobarse en esas bandas de ensayo que se cumplen las condiciones de densidad, saturación, módulo de deformación y relación de módulos que se acaban de establecer. En estas bandas o terraplenes de ensayo el número de tongadas a realizar será, al menos, de tres (3)”. Es decir, se trata de realizar un tramo de prueba donde poder determinar, para un material con unas condiciones determinadas, el espesor de tongada, la humedad del material y el número de pasadas.

Sin embargo, la determinación del espesor de capa y número de pasadas puede ser un quebradero de cabeza. En efecto, es posible que el espesor real sea muy diferente al previsto. Suele estar asociado a la elección del equipo de transporte y extensión de tierras. Esta variabilidad obliga a recalcular cada vez el número de pasadas necesario para cada capa. Evidentemente, esto complica la ejecución de la obra, y por ello, raramente se hace este cálculo. Además, la maquinaria puede realizar a la vez la extensión y la compactación, con lo que este control se vuelve poco realista.

Las recomendaciones francesas ofrecen una alternativa inteligente a este tipo de problema. Se trata de fijar un espesor máximo de tongada para cada tipo de suelo y de maquinaria empleada. Pero en vez de exigir un número de pasadas, se recurre al parámetro Q/S, donde Q es el volumen de suelo que se compacta durante un tiempo determinado y S es la superficie cubierta por el compactador para ese tiempo. El cuentakilómetros del compactador nos indica la distancia recorrida en el tiempo de referencia. Basta saber la anchura eficaz de compactación para conocer la superficie S cubierta, pues basta multiplicar dicha anchura eficaz por la distancia indicada.

El parámetro Q/S es más sencillo de medir y controlar que la determinación del número de pasadas. De hecho, Q/S tiene la ventaja de que no hay que realizar ajustes (al menos en primera aproximación), pues el esfuerzo de compactación al que corresponde una superficie S está relacionado con el volumen total Q, en vez de estar definido por tongada elemental, tal y como sucede en el caso en el que se indica el número de pasadas (Morilla, 2012).

Os dejo a continuación varios vídeos donde se explica la solución para el control automático de la compactación. Espero que os gusten.

Referencias:

MORILLA, I. (2012). Interpretación de los ensayos geotécnicos en suelos. 627 pp., Madrid.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente n.º 97.439. Ed. Universitat Politècnica de València. 253 pág. ISBN: 84-7721-551-0.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Special Issue “2nd Edition of Trends in Sustainable Buildings and Infrastructure”

High visibility: indexed by the Science Citation Index Expanded, the Social Sciences Citation Index (Web of Science) and other databases. Impact Factor: 3.390 (2020)

JCR category rank: Q1: Public, Environmental & Occupational Health (SSCI) | Q2: Public, Environmental & Occupational Health (SCIE) | Q2: Environmental Sciences (SCIE)

Special Issue “2nd Edition of Trends in Sustainable Buildings and Infrastructure”

A special issue of International Journal of Environmental Research and Public Health (ISSN 1660-4601).

Deadline for manuscript submissions: 30 September 2022.

Special Issue Editors

Guest Editor

Prof. Dr. Víctor Yepes
Concrete Science and Technology Institute (ICITECH), Department of Construction Engineering and Civil Engineering Projects, Universitat Politècnica de València Valencia, Spain
Interests: multiobjective optimization; structures optimization; lifecycle assessment; social sustainability of infrastructures; reliability-based maintenance optimization; optimization and decision-making under uncertainty

Guest Editor

Prof. Dr. Moacir Kripka
Civil and Environmental Engineering Graduate Program (PPGEng), University of Passo Fundo, Passo Fundo CEP 99052-900, Brazil
Interests: structural analysis; optimization; building; engineering optimization; civil engineering; linear programming; mathematical programming; heuristics; structural optimization; concrete; combinatorial optimization; structural engineering; multiobjective optimization; reinforced concrete; optimization methods; discrete optimization; optimization theory; simulated annealing; optimization software

Special Issue Information

Dear Colleagues,

This Special Issue is the 2nd edition of Trends in Sustainable Buildings and Infrastructure. The recently established Sustainable Development Goals call for a paradigm shift in the way buildings and infrastructures are conceived. The construction industry is a main source of environmental impacts, given its great material consumption and energy demands. It is also a major contributor to the economic growth of regions through the provision of useful infrastructure and generation of employment, among others. Conventional approaches underlying current building design practices fall short of covering the relevant environmental and social implications derived from inappropriate design, construction, and planning. The development of adequate sustainable design strategies is therefore becoming extremely relevant with regard to the achievement of the United Nations 2030 Agenda Goals for Sustainable Development.

This Special Issue aims to increase knowledge on sustainable design practices by highlighting the actual research trends that explore efficient ways to reduce the environmental consequences related to the construction industry while promoting social wellbeing and economic development. These objectives include but are not limited to:

  • Life-cycle-oriented building and infrastructure design;
  • Design optimization based on sustainable criteria;
  • Maintenance design towards sustainability;
  • Inclusion of social impacts in the design of buildings and infrastructures;
  • Resilience and sustainability;
  • Use of sustainable materials;
  • Decision-making processes that effectively integrate economic, environmental, and social aspects.

Papers selected for this Special Issue will be subject to a rigorous peer-review procedure with the aim of rapid and wide dissemination of research results, developments, and applications.

Submission

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Environmental Research and Public Health is an international peer-reviewed open access semimonthly journal published by MDPI.

Keywords

  • Sustainable design and construction
  • Life cycle assessment
  • Sustainability in decision making
  • Green buildings
  • Sustainable maintenance
  • Resilient structures
  • Sustainable materials
  • Social life cycle assessment
  • Sustainable management of infrastructures
  • Multiobjective optimization for sustainable development

Presentación de la tercera edición del libro: Análise estrutural para Engenharia Civil e Arquitetura. Estruturas isostáticas

Es un placer y todo un honor recibir la invitación del Prof. Moacir Kripka para presentar la tercera edición de su libro “Análise estrutural para Engenharia Civil e Arquitetura. Estruturas isostáticas“. Se trata de una edición, recién publicada este año 2021 (ISBN: 978-65-86235-11-1).

El profesor Kripka, es catedrático de estructuras en la Universidade de Passo Fundo, en Brasil, donde ejerce de profesor desde el año 1991. Ha sido director del Departamento de Ingeniería Civil y del Grado en Ingeniería, siendo actualmente editor de la revista Journal of Applied and Technological Sciences – CIATEC/UPF. Su área de investigación se centra fundamentalmente en la optimización de estructuras, por lo que ha sido de gran productividad para nosotros compartir experiencias durante su estancia de investigación (septiembre a diciembre de 2018). Fruto de esta colaboración, a parte de los relacionados con la investigación, se extienden al futuro intercambio de estudiantes y profesorado entre nuestras respectivas universidades y en la participación conjunta en proyectos de investigación y de transferencia tecnológica.

Las estructuras isostáticas son el sustento de la ingeniería como el suelo es el sustento de la vida o el lenguaje lo es para la comunicación. Una lectura atenta de este libro permite comprender el comportamiento de las estructuras isostáticas y su diseño. El libro abarca los conceptos fundamentales necesarios para el funcionamiento de las estructuras y los modelos estructurales, las reacciones de apoyo, las acciones en las estructuras y los esfuerzos solicitados. Didáctico, con explicaciones paso a paso para el análisis de vigas, pórticos, cerchas y rejillas, facilitará la apropiación de los conocimientos por parte de los estudiantes. Esta tercera edición incluye un nuevo capítulo sobre el cálculo de los desplazamientos en las estructuras. La teoría y los cálculos se acompañan de ejemplos e ilustraciones de obras civiles y, al final de cada capítulo, los ejercicios ayudan a comprender y fijar los conceptos involucrados, así como su aplicación en cualquier situación que se presente. Este libro está dirigido a los estudiantes de Ingeniería Civil y Arquitectura y sirve de guía para los profesores que imparten la asignatura.

Os dejo a continuación mi presentación a la tercera edición del libro en español (el original está en portugués). Espero que os sea de interés.

La ingeniería es algo vivo que se aplica y se transmite a las futuras generaciones. Nunca se empieza desde cero y, como le dijo Isaac Newton en una carta a Robert Hook “si he visto más lejos es porque estoy sentado sobre los hombros de gigantes”. Por tanto, la labor docente en ingeniería sustenta el avance técnico. Sin embargo, este progreso no es gratuito; necesita un esfuerzo ingente para resolver los problemas cada día más complejos a los que se enfrentan los ingenieros y requiere de una fuerte dedicación. Por ello, la docencia en ingeniería es algo vivo, debe nutrirse de la actividad profesional y de la investigación.

Una de las grandes satisfacciones que permite el mundo académico es encontrar almas gemelas cuyas preocupaciones técnicas y científicas son similares a las tuyas. Es el caso del profesor Moacir Kripka. Tuvimos la ocasión de mantener largas charlas durante una estancia de investigación que realizó hace unos meses en la Universitat Politècnica de València. El amor por las estructuras, la optimización o la sostenibilidad son campos comunes que permitieron un intercambio de ideas y experiencias que se plasmaron en varios artículos científicos de impacto internacional. Lo que empezó siendo un encuentro entre colegas terminó, al cabo de unos meses, en una complicidad y amistad que pervive en el tiempo.

Ha sido esta complicidad la que me ha hecho imposible rechazar la petición que me hizo para redactar el prólogo de su nuevo libro sobre análisis estructural. Todo un honor para mí, y por ello le estoy muy agradecido, pues se trata de introducir un libro redactado por un extraordinario docente en el ámbito de las estructuras en ingeniería civil y en arquitectura. Se trata de un texto capaz de explicar de forma sencilla los a veces complejos aspectos que presenta el análisis estructural. El libro aborda mediante ilustraciones y ejemplos los conceptos fundamentales del comportamiento de las estructuras, y por tanto, de su dimensionamiento. Aunque se trata de un texto orientado a la formación universitaria en el ámbito técnico, seguro que es una guía de apoyo para aquellos otros que se encuentran desarrollando plenamente su profesión.

Por último, y antes de que el lector empiece con avidez la lectura de este libro, me gustaría reflexionar sobre la necesidad de establecer fuertes cimientos conceptuales en el ámbito del análisis estructural. En efecto, hoy día estamos inmersos en la Cuarta Revolución Industrial, también conocida como Industria 4.0. Este concepto, acuñado en 2016 por Klaus Schwab, fundador del Foro Económico Mundial, incluye las tendencias actuales de automatización y de intercambio de datos. En este contexto se incluye la inteligencia artificial, la minería de datos, el Internet de las cosas, los sistemas ciberfísicos y los gemelos digitales, entre otros.

Pues bien, la simulación numérica, la modelización y la experimentación han sido los tres pilares sobre los que se ha desarrollado la ingeniería en el siglo XX. La modelización numérica, que sería el nombre tradicional que se ha dado al “gemelo digital” presenta problemas prácticos por ser modelos estáticos, pues no se retroalimentan de forma continua de datos procedentes del mundo real a través de la monitorización continua. Estos modelos numéricos (usualmente elementos finitos, diferencias finitas, volumen finito, etc.) son suficientemente precisos si se calibran bien los parámetros que lo definen. La alternativa a estos modelos numéricos son el uso de modelos predictivos basados en datos masivos big-data, constituyendo “cajas negras” con alta capacidad de predicción debido a su aprendizaje automático “machine-learning“, pero que esconden el fundamento físico que sustentan los datos (por ejemplo, redes neuronales). Sin embargo, la experimentación es extraordinariamente cara y lenta para alimentar estos modelos basados en datos masivos.

El cambio de paradigma, por tanto, se basa en el uso de datos inteligentes “smart-data paradigm“. Este cambio se debe basar, no en la reducción de la complejidad de los modelos, sino en la reducción dimensional de los problemas, de la retroalimentación continua de datos del modelo numérico respecto a la realidad monitorizada y el uso de potentes herramientas de cálculo que permitan la interacción en tiempo real, obteniendo respuestas a cambios paramétricos en el problema. Dicho de otra forma, deberíamos poder interactuar en tiempo real con el gemelo virtual. Por tanto, estamos ante otra realidad, que es el gemelo virtual híbrido.

Pues bien, todo este cambio de paradigma no debe olvidar los fundamentos en los que se basan los modelos. En el caso de las estructuras, la comprensión de los principios básicos que fundamentan su análisis resulta clave para la modelización numérica y la experimentación. Una buena base para estos cimientos es, por tanto, este libro del profesor Kripka sobre análisis estructural. Espero que disfruten de su lectura.

Víctor Yepes

Valencia, noviembre de 2019

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Oferta contrato predoctoral para Proyecto de Investigación HYDELIFE

En el BOE del 17 de octubre, la Presidencia de la Agencia Estatal de Investigación ha publicado el anuncio de la convocatoria de  2021 de ayudas para contratos predoctorales para la formación de doctores asociadas a proyectos de investigación. Los proyectos de la Universitat Politècnica de València susceptibles de asignación de ayuda están disponibles en la web del Ministerio de  Ciencia, Innovación y Universidades, en el siguiente enlace: proyectos.

Como ya sabéis, se nos adjudicó recientemente el Proyecto de Investigación HYDELIFE, del cual soy Investigador Principal: Optimización híbrida del ciclo de vida de puentes y estructuras mixtas y modulares de alta eficiencia social y medioambiental bajo presupuestos restrictivos (PID2020-117056RB-I00). Este proyecto tiene asignado un contrato predoctoral (antiguas becas FPI), cuya convocatoria ya está en marcha.

Quien esté interesado en este contrato, puede solicitarlo hasta el 11 de noviembre de 2021, a las 14:00 horas (hora peninsular española).

Es una muy buena oportunidad para realizar, mediante un contrato, la tesis doctoral. Asimismo, también hay opción a pedir un contrato de formación de profesor universitario (antiguas becas FPU) para también estar en disposición de realizar la tesis.

Te podrás incorporar a nuestro equipo de investigación y colaborar en las líneas de trabajo que tenemos en marcha dentro del ICITECH (Instituto de Ciencia y Tecnología del Hormigón).

Requisitos para las personas solicitantes:

Podrán ser solicitantes todas aquellas personas que estén matriculadas o admitidas en un programa de doctorado para el curso 2021/2022, en el momento de presentación de la solicitud. También podrán ser solicitantes todas aquellas personas que, en el momento de presentación de la solicitud, no estando matriculadas o admitidas en un programa de doctorado, estén en disposición de estarlo en la fecha en la que se formalice el contrato.

Cada solicitante únicamente podrá presentar una solicitud y cada solicitud vendrá referida a un proyecto de investigación.

No podrán ser solicitantes, ni acceder a la contratación que se incentiva, quienes cumplan cualquiera de las siguientes circunstancias:

  • Haber disfrutado de un contrato predoctoral por tiempo superior a doce meses, previamente a la presentación de la solicitud.
  • Estar en posesión del título de Doctor, por cualquier universidad española o extranjera.
  • Haber iniciado su formación predoctoral con financiación de otras ayudas destinadas a la formación predoctoral a través del desarrollo de una tesis doctoral que se hayan otorgado en el marco del Plan Estatal de Investigación.

Toda la información la puedes consultar en el siguiente enlace:

http://www.aei.gob.es/portal/site/MICINN/menuitem.dbc68b34d11ccbd5d52ffeb801432ea0/?vgnextoid=4c6c68d98570c710VgnVCM1000001d04140aRCRD