UPV



Resultados de la búsqueda By Etiquetas: mejora-de-terrenos


Springsol: mejora de terrenos mediante columnas de suelo-cemento

http://www.tectonica-online.com/

Springsol es una técnica especialmente útil en el tratamiento del terreno en trabajos de rehabilitación o refuerzo de estructuras, terrenos bajo losas de naves industriales, terraplenes en infraestructuras de comunicación, etc. Se encuentra a medio camino entre el pilote de mortero, las columnas de suelo-cemento realizadas mediante jet grouting y las columnas de mortero inyectado a presión controlada ejecutadas mediante intrusiones rígidas o compaction grouting.

Se trata de un procedimiento donde se crea una columna de suelo-cemento por medios mecánicos, con unas aspas o alas que giran y amasan el suelo. Utiliza equipos de tamaño reducido realizando perforaciones de pequeños diámetros (de 100 a 150 mm). Esta característica permite minimizar el efecto sobre losas, soleras o zapatas, siendo posible perforar estratos intermedios no perforables con barrenas, dejando los primeros metros sin tratamiento. Además, evita la inyección a altas presiones, susceptibles de afectar a las estructuras. Además, permite ejecutar la columna a partir de una profundidad concreta (con, por ejemplo tapones, de fondo).

Una aplicación especialmente interesante es el tratamiento de taludes ferroviarios atravesando el balasto, evitando su contaminación, con una mínima afección al servicio.

Aspecto de la columna formada. http://www.rodiokronsa.es/

A- Perforación con ligante. B- Mezcla suelo-ligante (rechazo). C- Apertura de alas bajo tubería. D- Perforación, mezcla suelo-ligante. Diámetro de columna 400 mm. http://www.tectonica-online.com/

http://actions-incitatives.ifsttar.fr/

Os paso a continuación una animación donde se puede ver con mayor claridad cómo funciona este tratamiento.

Referencias:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp.

12 enero, 2017
 
|   Etiquetas: ,  ,  ,  ,  ,  |  

La precarga como técnica para la mejora de terrenos

Precarga en dársena del puerto de Escombreras. http://opweb.carm.es/premiosingenieriacivil/faces/vervistaprevia.xhtml?codigo=E201646

Precarga en dársena del puerto de Escombreras. http://opweb.carm.es/premiosingenieriacivil/faces/vervistaprevia.xhtml?codigo=E201646

La precarga consiste en aplicar al terreno una carga igual o superior a la que producirá en servicio la estructura que se proyecta apoyar en él, provocando su consolidación, lo que se traduce en un aumento de la resistencia del terreno y una disminución de los asientos postconstructivos. En algunas ocasiones es necesario realizar la precarga cuando la obra está acabada o semiacabada, como en tanques de almacenamiento de líquidos.

Este tratamiento es un método de mejora destinado, en principio, a suelos cohesivos blandos. Estos suelos son susceptibles de sufrir asientos importantes bajo sobrecargas pequeñas, con una evolución lenta de estos asientos, y, dada su baja resistencia al corte, procesos de rotura (deslizamiento de terraplenes, hundimiento de cimentaciones superficiales, etc.).

En un suelo blando los asientos son irreversibles casi en su totalidad, aunque las cargas aplicadas sean retiradas el terreno no vuelve a su posición original. Si se vuelve a cargar hasta el mismo valor de la carga previa, o no hay asientos o son mucho menores.

La Figura 1 representa la curva de asientos de un suelo precargado bajo un terraplén. Durante la precarga el suelo asienta según la curva descrita hasta llegar al punto 1, correspondiente al instante del inicio de la retirada del terraplén. Así, la curva describe esta descarga hasta llegar al punto 2 donde el suelo ya no tiene carga, pero los asientos remanentes, son casi iguales a los producidos por la carga del terraplén.

precarga-1

Figura 1. Curva carga-asiento de un suelo precargado bajo un terraplén

Al recargar el suelo con una carga igual a la del terraplén (punto 3 de la Figura 2) el suelo describe una curva similar a la de descarga, pero de sentido contrario. Se observa como los asientos inducidos por la recarga son pequeños, debido a la memoria de carga del suelo.

Figura 2. Curva carga-asiento tras la retirada del terraplén

Figura 2. Curva carga-asiento tras la retirada del terraplén

Lo que se ha descrito es la finalidad de la precarga, preconsolidar un suelo compresible para que cuando vuelva a ser cargado por la estructura definitiva sufra los menores asientos, además de aumentar su resistencia.

Casi todos los tipos de suelos, tanto secos como saturados, pueden ser mejorados con buenos resultados por medio de la precarga. Ésta ha sido aplicada en suelos naturales, como arenas sueltas y limos, arcillas limosas blandas, limos orgánicos, turbas y depósitos aluviales erráticos, al igual que en suelos artificiales formados de materiales dragados sin compactar, residuos industriales (cenizas) y depósitos de residuos urbanos. Los suelos sobreconsolidados (sometidos a una carga mayor que la actual) no responden tan bien a la precarga, puesto que su comportamiento es más elástico que los normalmente consolidados.

El método más común de aplicar la precarga es apilar el material de relleno sobre el terreno original, usando camiones y extendedoras, y dejando la carga un cierto tiempo. Una vez alcanzada la consolidación, el material se retira con medios auxiliares similares, procediendo a continuación a la construcción de la nueva obra, considerando que las deformaciones con que responderá el terreno ya sean admisibles para su funcionamiento. El material retirado puede utilizarse para otra precarga de la obra o para la construcción de terraplenes. Existen otros métodos de precarga que consisten en bajar el nivel freático mediante pozos filtrantes, zanjas, bombeo al vacío en pozos, y el fenómeno de electroósmosis.

Como ventajas de la aplicación de este método pueden destacar:

  • Bajo coste. Entre un 10-20% respecto a otros métodos. Entre un 20-40% si la precarga se realiza con drenes.
  • Los equipos utilizados son sencillos y baratos (equipos de movimiento de tierras)
  • Se evalúan los efectos de un modo directo e inmediato. Equivale a un ensayo a escala natural.
  • En zonas sensibles a la sismicidad, se reduce el riesgo de licuefacción en suelos arenosos finos.

 

 

Figura 3. Precompresión del terreno

Figura 3. Precompresión del terreno

Uno de los factores más limitantes de esta técnica es el tiempo necesario para que se produzca la consolidación, por lo que a veces no se dispone siquiera de unos pocos meses para que funcione la precarga. Esto puede evitarse con una buena previsión del trabajo, anticipándose la ejecución de la precarga a la finalización del proyecto o comienzo de las obras. Como factores limitantes de la precarga, además del tiempo, puede considerarse: el límite de la capacidad de soporte del suelo, el efecto sobre estructuras próximas (asientos, empujes laterales del terreno, rozamiento negativo) y posibles costes elevados de auscultación y control.

Para acelerar la consolidación y así reducir el tiempo de precarga, puede ser económico realizar tratamientos adicionales que mejoren el drenaje del terreno, reduciendo el camino del agua a zonas más permeables y modificando las direcciones de flujo. Estos métodos son:

  1. Inclusiones verticales por columnas de grava. Esta técnica, además de acelerar el proceso de consolidación, supone un refuerzo del terreno.
  2. Instalación de drenes verticales en el terreno. Los fines buscados con este método son alcanzar un grado de consolidación suficiente dentro de un plazo aceptable en el proyecto, modificando las variables de consolidación y tiempo. Con ello se provocan asientos de forma anticipada, con asientos postconstructivos insignificantes.

Referencia:

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844.

 

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

5 diciembre, 2016
 
|   Etiquetas: ,  |  

Pantallas plásticas (Cutter Soil Mixing)

http://www.malcolmdrilling.com/cutter_soil_mixing/

Hidrofresa. http://www.malcolmdrilling.com/cutter_soil_mixing/

Esta técnica de mejora de suelos se emplea para generar pantallas impermeabilizantes verticales mediante el uso de hidrofresas. Consiste en excavar el terreno en paneles verticales mediante una cabeza cortadora (hidrofresa) suspendida de un brazo grúa articulado. Esta cabeza presenta dos elementos cortantes giratorios provistos de dientes de corte que giran en direcciones opuestas para expulsar el material excavado.

La cabeza también posee un inyector, en la parte central de las dos ruedas cortantes, por el cual se inyecta una mezcla de bentonita-cemento. Esta mezcla, gracias al movimiento giratorio de los dientes y de unas paletas giratorias, se amalgama con los detritos formando un nuevo material. Tras el fraguado del cemento se obtiene una pantalla impermeable. La ventaja del método es que se usa el propio material del terreno, no generando apenas residuos.

http://www.apgeotecnia.pt/en/papers/13cngmontaigne.html

http://www.apgeotecnia.pt/en/papers/13cngmontaigne.html

En pantallas poco profundas, de menos de 20 m, se ejecuta en una fase, que consiste en inyectar la bentonita-cemento según se tritura el terreno. Se usa con tiempos cortos de perforación para que no fragüe el cemento. En mayores profundidades se usan dos fases; en la primera se excava hasta la cota deseada y luego durante el ascenso se inyecta la mezcla.

Para ejecutar muros continuos, se divide la construcción en paneles primarios y secundarios, que se solapan con los anteriores con juntas frescas si los paneles primarios no han fraguado, o bien con solapes duros si ya han endurecido.

Os dejo algunos vídeos y animaciones al respecto.

Referencias:

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844.

 

2 abril, 2016
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  ,  ,  |  

Mezcla profunda de suelos (Deep Soil Mixing)

http://www.model-co.com/es/aplicaciones/aplicaciones-lechadas/wet_soil_mixing.asp

http://www.model-co.com/es/aplicaciones/aplicaciones-lechadas/wet_soil_mixing.asp

Esta técnica de mejora y refuerzo de suelos blandos o flojos consiste en el mezclado mecánico y profundo de los materiales disgregados del terreno con un aglomerante, líquido o sólido, generando un nuevo material tipo suelo-cemento. El aglomerante suele ser cemento, cal y bentonita. El terreno así estabilizado es más resistente, menos permeable y de menor compresibilidad que el terreno original.

La incorporación de los aglomerantes al terreno puede llevarse a cabo en forma de lechada (Método húmedo) o mediante aire comprimido (Método seco)Para  cada caso es necesaria la utilización de una herramienta especial que permita la ejecución de la mezcla en profundidad.

La mezcla profunda de suelos se puede clasificar en dos grupos: mezclado vertical, generando columnas o en masa horizontal, produciendo fajas o extensiones importantes en plantas.

En el caso de mezclado vertical, el diámetro de la columna es constante en profundidad y depende de la capacidad de la herramienta y el método que se utilice (húmedo o seco). Se ejecuta con una mezcladora giratoria que perfora el terreno hasta la profundidad requerida. En ese momento empieza la inyección del aglomerante mientras se extrae el varillaje.

http://jafecusa.com/?page_id=2796

http://jafecusa.com/?page_id=2796

La técnica de mezclado en masa consiste en una retroexcavadora en la que el brazo de la pala sustituye por un brazo excavador con un cabezal rotatorio que posee un inyector por el que se impulsa la mezcla aglomerante. Este método utiliza equipos no complejos: una retroexcavadora y una bomba de inyección. Es rápido en la ejecución, pero su uso se limita a la longitud del brazo, que no suele ser superior a 5 m.

A continuación os dejo varios vídeos y animaciones al respecto.

Referencias:

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844.

1 abril, 2016
 
|   Etiquetas: ,  ,  ,  ,  ,  |  

Congelación de suelos

A la hora de realizar una excavación y conseguir estabilizar el suelo, aunque sea de forma provisional, una posibilidad consiste en congelar el suelo, especialmente cuando éstos son blandos y están saturados. Ello permite disponer de una pared provisional que impide el desmoronamiento del terreno.

El estudio de la congelación artificial del suelo precisa conocimientos en relación con las técnicas de congelación existentes, así como de las propiedades térmicas y geotécnicas del terreno. Como es fácil de entender, este procedimiento constructivo requiere la presencia de empresas altamente especializadas. Aquí podéis descargar un documento donde se explica una aplicación práctica de la técnica. (más…)

3 diciembre, 2014
 
|   Etiquetas: ,  ,  ,  ,  |  

Compactación dinámica rápida

La compactación dinámica rápida constituye una técnica de mejora del terreno que se logra mediante la densificación provocada por la aplicación repetida, en puntos convenientemente espaciados de la superficie del mismo, de impactos de gran energía.  Se trata de generar golpes mediante un elevador hidráulico con pesos de 7 a 16 toneladas que se dejan caer desde una pequeña altura de 1-2 metros. Estos impactos se realizan dejando caer una pesada maza, sobre una zapata en contacto con la superficie del terreno, especialmente diseñada para tal fin.  Se suelen dar entre 40 y 80 golpes por minuto. En condiciones adecuadas se podría compactar un espesor entre 4 y 7 metros de profundidad. Normalmente se dan entre 40 y 60 golpes por punto en mallas de 2 a 3 m de lado. Os dejo un vídeo explicativo de unos 3 minutos. Espero que os guste. (más…)

¿Qué es la sustitución dinámica?

La sustitución dinámica o “puits ballastes” constituye una variante diferenciada de la compactación dinámica en la cual la energía de compactación sirve para constituir inclusiones granulares de gran diámetro, como refuerzo de los terrenos compresibles, de los que se necesitan varios metros de espesor sobre un estrato de terreno con capacidad portante suficiente.

Se punzona en este caso el terreno con una maza pequeña y pesada que se deja caer desde cierta altura. Este procedimiento crea un cráter que se rellena con material granular, que se golpea nuevamente con el objeto de desplazar el terreno y hacer penetrar dicho material granular. Con este procedimiento se consigue rigidizar el terreno creando puntos de apoyo que presentan una mayor carga admisible. Además, la ventaja adicional es que constituyen drenes verticales, aunque no muy profundos, por lo que podrían combinarse con tratamientos de mejora de precarga, de forma que se reducirían los tiempos de consolidación del suelo.

Esta técnica combina, por tanto, las ventajas de la compactación dinámica y de las columnas de grava.

Aplicaciones:

– Terrenos cohesivos (arcillas y limos blandos o muy blandos), apoyados sobre un sustrato rocoso
– Necesidad de estabilización y reducción de los asientos de terraplenes viarios y ferroviarios
– Estructuras con distribución heterogénea de grandes cargas repartidas y puntuales

Principales características:
– Tasa de incorporación de material claramente superior a la obtenida por medio de columnas de grava (hasta 20 a 25%)
– Muy alta compacidad de las inclusiones constituidas
– Cada “columna” granular puede soportar cargas importantes de hasta 150 t
– Mejora de las características mecánicas de las capas superficiales del terreno entre las columnas en un 25% y entorno al 50% en los estratos más profundos
– Funcionamento de las inclusiones como drenes verticales reduciendo así el tiempo de consolidación y acelerando los asientos antes de la construcción

Ventajas:
– Fuerte incremento del módulo de deformación, de la capacidad portante y de la capacidad drenante del terreno
– Técnica bien adaptada a grandes cargas
– Muy alta resistencia interna al corte del material granular que constituye la inclusión
– A diferencia de las columnas de grava, aplicación adaptada a suelos evolutivos (turbas, orgánicos…) debido a su reducida esbeltez.

La profundidad del terreno mejorado con esta técnica depende tanto de las características del terreno como de la energía de los impactos. A este respecto, Menard nos facilita la siguiente fórmula para calcular dicha profundidad:

D2 ≤ 10·M·h

donde:

D: Espesor a compactar (m)

M: Peso de la maza (kN)

h: Altura de caída de la maza (m)

Aunque la máxima profundidad afectada quedaría limitada por la siguiente expresión:

D = 0,44·√10Mh

Os paso a continuación un Polimedia explicativo de esta técnica que espero que os guste:

Referencias:

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844. Valencia

20 septiembre, 2013
 
|   Etiquetas: ,  ,  |  

Técnicas constructivas: Estructuras de contención y mejora de suelos

Hemos considerado interesante presentar un curso sobre “Técnicas Constructivas de la Ingeniería Civil para Profesionales de la Edificación: Estructuras de contención y procedimientos de construcción en mejora de suelos” porque pensamos que la transferencia de conocimiento y experiencia del campo de la ingeniería civil a otros profesionales centrados en la edificación puede mejorar sus competencias en la construcción de obras en general.

El link al curso de la Universidad Politécnica de Valencia es el siguiente enlace.

Os paso el contenido del curso, por si os pudiera servir de interés:

Descargar (PDF, 8KB)

Universidad Politécnica de Valencia