UPV



Puentes


Publicada By  Víctor Yepes Piqueras - estructuras, procedimientos de construcción, Puentes    

Puente construido por empuje

El procedimiento consiste en fabricar o montar el tablero detrás del estribo y después empujarlo deslizándolo sobre las pilas hasta alcanzar su posición definitiva al llegar al otro estribo. Este tablero, también puede componerse mediante dovelas prefabricadas u hormigonadas “in situ”. El método del empuje ha permitido resolver satisfactoriamente la construcción de puentes sobre obstáculos importantes situados por debajo del tablero. Este procedimiento es particularmente ventajoso en los puentes muy largos, pues permiten aplicar la construcción industrializada -es rentable a partir de los 600 metros de longitud-.

Este sistema constructivo fue desarrollado en la segunda mitad del siglo XIX para ubicar en su situación definitiva grandes viaductos metálicos de celosía. De hecho, la ligereza de los tableros metálicos y mixtos es una ventaja sobre los de hormigón, mucho más pesados; sin embargo es habitual la construcción de estos puentes con hormigón pretensado. Los puentes de ferrocarril, en particular, son estructuras idóneas para construirlas mediante empuja, pues han de soportar, además de su peso propio, unas cargas de servicio elevadas que obligan a dimensionar secciones con una gran capacidad resistente. Al construir el puente, donde sólo actúa el peso propio, el exceso de capacidad puede aprovecharse sin sobredimensionar la estructura.

Pescante de lanzamiento en Papiol (Barcelona). http://www.cemetasa.com/

El primer viaducto de hormigón empujado fue el Puente de Ager en Austria en 1959, donde se usaban dovelas cortas prefabricadas; sin embargo, muchos autores citan el puente sobre el río Caroní (Venezuela), terminado en 1964, de Leonhardt y Baur como iniciadores de esta técnica con el hormigón. Posteriormente se consolidó el método de dovelas largas hormigonadas “in situ” en una instalación industrializada que se monta detrás del estribo, aunque sigue siendo habitual el empleo de dovelas de entre 10 y 25 metros de longitud, tanto fabricadas “in situ” como prefabricadas.

El campo de luces óptimo para los tableros empujados se encuentra entre los 30 y 60 metros, aunque de forma excepcional dicho intervalo se amplia desde los 20 a los 90 metros.

Muchas empresas españolas han realizado puentes empujados (Ferrovial, Dragados, FCC, etc.), y seguro que me dejo a alguien por nombrar. Como ejemplo de construcción de puentes empujados, os dejo un vídeo sobre la construcción de uno de los puentes más largos empujados del mundo. Lo construyó ACCIONA para el Ministerio de Transporte de Quebec (Canadá). La autopista consta de 42 kilómetros de longitud y dos carriles por sentido. La obra incluye la ejecución de dos puentes -uno de 1.860 metros sobre el río St.Lawrence y otro de 2.550 metros sobre el canal Beauharnois- el segundo puente empujado más largo del mundo; donde se ha conseguido superar la dificultad de la traza en cambio de altura y dirección horizontal. Os dejo un enlace a las características técnicas. Ha obtenido dos de los premios más relevantes del sector concesional el Gold Award concedido por The Canadian Council for Public-Private Partnerships y el North America Deal of the Year, por PFI.

Dejo aquí el cómo se realizó el lanzamiento en el viaducto de Millau.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

2 noviembre, 2017
 
|   Etiquetas: ,  ,  |  

Publicada By  Víctor Yepes Piqueras - estructuras, hormigón, prefabricación, Puentes    

D. Carlos Fernández Casado junto al puente de Castejón, sobre el Ebro

D. Carlos Fernández Casado junto al puente de Castejón, sobre el Ebro. http://www.cfcsl.com/

Las dovelas prefabricadas utilizadas en la construcción de puentes por voladizos sucesivos se colocan mediante un aparato de elevación y se unen entre sí mediante un adhesivo de alta resistencia a base de resinas epoxi. Para encolar las dovelas, se mantiene la dovela suspendida sobre el tablero y próxima a la dovela anterior y se coloca la resina. La junta de la dovela se trata en acopio con chorro de arena o agua para eliminar desconchones, polvo, aceites y similares. La junta debe estar seca, aplicándose si fuera necesario calor. Se extiende la resina, como si fuera una pintura o un enlucido, en la cara posterior de la dovela suspendida, con un consumo entre 3 y 4 kg/m2, que corresponde a una capa de unos 2 mm de espesor. Este procedimiento de construcción de grandes luces mediante el sucesivo encolado de dovelas requiere la intervención de personal altamente especializado.

En las fotografías se muestra el Puente de Castejón (1972), de la oficina de proyectos Carlos Fernandez Casado S.L, construido por dovelas prefabricadas de 10 toneladas  montadas con blondin; desde una pila se avanzó en voladizo único a partir de un vano lateral construido sobre cimbra, y desde la otra se avanzó en voladizos compensados de 50 metros de longitud. Las dovelas se pegaron  con resina epoxi en vez de mortero, solución que se utilizó en todos los puentes siguientes. Cada voladizo estaba formado por dos cajones que se montaban con dovelas unicelulares unidas in situ con la losa superior.

Puente de Castejón, construido con dovelas prefabricadas encoladas. http://www.cfcsl.com/

Puente de Castejón, construido con dovelas prefabricadas encoladas. http://www.cfcsl.com/

Las resinas presentan las siguientes características:

  1. Se forman por dos componentes, la resina (base) y en endurecedor (reactor).
  2. Existen resinas de acción rápida, media y lenta, correspondientes a la temperatura ambiente en la aplicación: 5-15ºC, 15-25ºC y 25-40ºC, respectivamente.
  3. El tipo de resina determina el tiempo de aplicación, es decir, el transcurrido entre la terminación de la mezcla y el instante en que no se puede aplicar, variando de unos 18 minutos a 35ºC, a un máximo de 40 minutos a 5ºC.
  4. Se dispone entre 45 y 60 minutos, dependiendo de la temperatura, para comprimir las dovelas entre sí y expulsar la resina.
  5. Aunque la resina presenta una resistencia a tensión tangencial superior a 4 MPa y de 75 MPa a compresión, esta resistencia no se considera en el cálculo, relegando la función de la resina a su actuación como lubricante durante el acoplamiento de las dovelas y como impermeabilizante de la junta.

 

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

27 octubre, 2017
 

Publicada By  Víctor Yepes Piqueras - estructuras, procedimientos de construcción, Puentes    

Puente Ingeniero Carlos Fernández Casado, en embalse de Barrios de Luna (León)

Puente Ingeniero Carlos Fernández Casado, en embalse de Barrios de Luna (León). Fotografía de V. Yepes.

La construcción del tablero de un puente atirantado puede realizarse mediante voladizos parciales que pueden construirse en obra o bien pueden ser prefabricados. El procedimiento constructivo es similar al de la construcción de tableros de puentes tipo viga, con la diferencia de que aquí se van montando los tirantes para fijar las estructuras parciales, que se van montando con grúas o similar.

En este tipo de procedimiento constructivo es necesario considerar que la estructura parcial formada por el voladizo en el frente de avance provoca en numerosas ocasiones esfuerzos sobre el tablero mayores de los que va a tener cuando el puente esté en servicio. Es por ello que estos voladizos se reducen en su dimensión lo máximo posible, aumentando con ello el número de tirantes necesarios.

Atirantado momentos 1

Ley de flectores antes de tesar la dovela. Dibujo: V. Yepes.

La diferencia de esfuerzos entre la estructura parcial y la definitiva son, entre otros, los siguientes:

  1. La estructura final tiene presenta un tablero continuo, que muestra un comportamiento estructural diferente al caso de tener los extremos en voladizo durante la construcción.
  2. El tablero definitivo se encuentra en un estado de compresión axil importante, superior al tablero en proceso de construcción, a excepción del centro del vano principal y de los extremos de los vanos de compensación, el tablero presenta un estado.
  3. El voladizo en construcción debe soportar al siguiente elemento hasta que se monta, además del peso de los medios auxiliares si el montaje se realiza desde la parte ya construida.
  4. El momento flector del voladizo se prolonga más allá de la ménsula libre, con un máximo que se sitúa varios tirantes atrás, dependiendo del peso del tablero, de los medios auxiliares y de las rigideces del dintel y tirantes.

 

Para solucionar este efecto contraproducente del voladizo se pueden aplicar varios procedimientos constructivos:

  1. Se puede reforzar el voladizo mediante un pretensado adicional para reducir los momentos máximos del voladizo. Este exceso de carga debe retirarse en cuanto pase el efecto del voladizo para evitar sobreesfuerzos en la estructura. Este proceso de tesado y destesado puede complicar la construcción, por lo que a veces se sobredimensionan los materiales en el dintel o se sobretesan los tirantes, tal y como se hizo en el puente de Barrios de Luna.
  2. Se puede reducir peso en el voladizo si se construye una parte del tablero. Una vez se atiranta, y tras un desfase en el ciclo de avance, se completa su construcción. Este método se ha utilizado mucho, por ejemplo en el puente de Oberkassel, en Düsseldorf, que presenta tirantes muy separados. Aquí se avanzó sólo con la célula central del cajón, procedimiento que también se utilizó en el puente Flehe, cerca de la misma ciudad. En el puente de Annancis (Canadá) se avanzaba con vigas metálicas laterales y transversales, hormigonándose después la losa.
  3. Otra posibilidad es cimbrar el voladizo hasta que se atirante. Se puede atirantar provisionalmente el carro de avance hasta el hormigonado, tal y como se hizo en el puente sobre el río Waal (Holanda). Otra posibilidad menos costosa y fácil es la cimbra convencional que obliga a inmovilizar el extremo de la zona construida, lo que obliga a soportar una gran parte del peso de la dovela anterior. Esta solución se ha empleado en el puente de Sama.
  4. Cuando la distancia entre tirantes es grande, se pueden colocar tirantes provisionales desde la torre definitiva o mediante torres auxiliares. Las torres provisionales se apoyan en el mismo lugar de los anclajes definitivos anteriormente montados para evitar flexiones adicionales. El atirantamiento se traslada sucesivamente según avanza la construcción. Este procedimiento se usó en el puente Kniebrucke en Düsseldorf.
  5. Otra posibilidad que se aleja del procedimiento de construcción por voladizos sucesivos consiste en disponer apoyos provisionales bajo el tablero, o bien un único apoyo en el extremo del voladizo que se eliminará al colocar los tirantes. Así se construyó el puente de Bratislava sobre el Danubio.

Puente de Oberkassel sobre el Rhin, en Düsseldorf. Fuente: https://commons.wikimedia.org/wiki/File:Oberkassel_Bruecke.jpg

 

Puente Flehe sobre el Rhin, cerca de Düsseldorf. Fuente: https://commons.wikimedia.org/wiki/File:Fleher_Br%C3%BCcke-2.jpg

 

Puente Kniebrucke en Düsseldorf sobre el Rhin. Fuente: https://de.wikipedia.org/wiki/Rheinkniebr%C3%BCcke#/media/File:Duesseldorf_1915.JPG

 

Puente de Bratislava, sobre el Danubio. Fuente: https://en.wikipedia.org/wiki/Cable-stayed_bridge#/media/File:Novy_Most_d.JPG

Referencias:

FERNÁNDEZ-TROYANO, L. (1999). Tierra sobre el agua. Visión histórica universal de los puentes. Colegio de Ingenieros de Caminos, Canales y Puertos. Colección de Ciencias, Humanidades e Ingeniería nº 55, Madrid.

 

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

23 octubre, 2017
 

Publicada By  Víctor Yepes Piqueras - estructuras, hormigón, investigación, optimización, Puentes, sostenibilidad    

Acaban de publicarnos un artículo en la revista del JCR (Q2) Sustainability que compara dos puentes postesados óptimos de sección en cajón atendiendo a su ciclo de vida. Creemos que la metodología empleada puede ser de interés para casos de estructuras de hormigón similares a las presentadas. El artículo forma parte del proyecto de investigación BRIDLIFE “Puentes pretensados de alta eficiencia social y medioambiental bajo presupuestos restrictivos“.

Os paso a continuación el resumen y el artículo propiamente dicho, pues está publicado en abierto.

 

 

Abstract:

The goal of sustainability involves a consensus among economic, environmental and social factors. Due to climate change, environmental concerns have increased in society. The construction sector is among the most active high environmental impact sectors. This paper proposes new features to consider a more detailed life-cycle assessment (LCA) of reinforced or pre-stressed concrete structures. Besides, this study carries out a comparison between two optimal post-tensioned concrete box-girder road bridges with different maintenance scenarios. ReCiPe method is used to carry out the life-cycle assessment. The midpoint approach shows a complete environmental profile with 18 impact categories. In practice, all the impact categories make their highest contribution in the manufacturing and use and maintenance stages. Afterwards, these two stages are analyzed to identify the process which makes the greatest contribution. In addition, the contribution of CO2fixation is taken into account, reducing the environmental impact in the use and maintenance and end of life stages. The endpoint approach shows more interpretable results, enabling an easier comparison between different stages and solutions. The results show the importance of considering the whole life-cycle, since a better design reduces the global environmental impact despite a higher environmental impact in the manufacturing stage.

Keywords:

sustainabilityenvironmental impactlife-cycle assessmentconstruction LCAbridge LCAReCiPe;sustainable construction

Reference:

PENADÉS-PLÀ, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.;  YEPES, V. (2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10):1864. doi:10.3390/su9101864 (link)

Descargar (PDF, 802KB)

18 octubre, 2017
 

Publicada By  Víctor Yepes Piqueras - estructuras, hormigón, Puentes    

Puente Shibanpo (China). Construcción original: 1980, desdoblamiento: 2005. Foto: 山城崽儿. Fuente: https://commons.wikimedia.org/wiki/File:Shibanpo_Bridge_in_Chongqing.jpg

Uno de los ingenieros que más contribuyó al desarrollo del hormigón armado, y que tuvo una actuación más destacada en el origen y desarrollo del hormigón pretensado fue el francés Freyssinet. Sin embargo, no fue hasta después de la Segunda Guerra Mundial cuando los puentes viga de hormigón pretensado adquirieron toda su potencia y desarrollo. El hormigón pretensado ha demostrado sus ventajas económicas y técnicas tanto para puentes de luces medias (vigas prefabricadas, por ejemplo), como en grandes luces (puentes empujados y atirantados, entre otros). El récord de luz mundial para un puente cajón de hormigón pretensado es de 330 m en Shibanpo (China), terminado en 2005.

Tal es la importancia de que el proceso constructivo de un puente sea sencillo y económico, que los puentes viga se clasifican en función de dichos procedimientos. En general se pueden construir los puentes “in situ”, con piezas prefabricadas, o de una forma mixta. Además, salvo que el puente sea muy pequeño, los puentes viga se construyen por partes, o bien en subdivisiones longitudinales (vigas independientes que se unen mediante una losa, por ejemplo) o en subdivisiones transversales (dovelas de sección completa, que dan lugar a una gran variedad de métodos constructivos).

Los procedimientos constructivos de los puentes viga de hormigón pretensado pueden clasificarse en: (a) construcción sobre cimbra, (b) construcción por voladizos sucesivos, y (c) construcción por traslación horizontal o vertical.

Os dejo a continuación un pequeño vídeo explicativo al respecto.

 

 

 

 

17 octubre, 2017
 
|   Etiquetas: ,  ,  ,  ,  |  

Publicada By  Víctor Yepes Piqueras - estructuras, ferrocarril, Puentes    

Viaducto de Martín Gil, construcción: 1934-1942

Los puentes arco pueden construirse mediante cimbras, sin embargo si estas cimbras no se reutilizan, puede optarse por dejarlas en el propio arco formando parte de su armadura. De esta forma la cimbra pasa de ser un medio auxiliar a ser parte de la estructura definitiva. Esta idea de usar una armadura rígida portante la empezó a utilizar el ingeniero austriaco Joseph Melan a finales del XIX, con la cual se podían construir bóvedas de hormigón sin necesidad de cimbras. Los encofrados se colgaban de una estructura metálica, portante durante el hormigonado, que quedaba finalmente embebida en el hormigón.

Este procedimiento lo utilizó en 1939 Eduardo Torroja en el viaducto de ferrocarril Martín Gil. Este puente se empezó a construir suspendiendo una cimbra de madera mediante cables, pero aparecieron muchos inconvenientes durante el hormigonado. Además, el desgraciado accidente ocurrido en el puente de Sandö en Suecia en agosto de ese mismo año, donde la cimbra para un arco de 264 m, que iba a ser el arco de hormigón más grande del mundo, costó la vida a 18 personas. La solución fue ejecutar una autocimbra metálica con sus componentes unidos mediante soldadura. Destaca el hormigonado como un proceso muy concienzudo para no entrar en situaciones de carga no admisibles por la propia cimbra. Se empezó por la parte inferior del cajón, después las almas y por último la parte superior. Este arco, de 202 m constituyó en su tiempo récord mundial de luz, hasta 1943, en que se acabó el puente de Sandö.

Un procedimiento constructivo más complejo se ejecutó en el puente de Echelsbacher, en el cual la autocimbra era total. En vez de construir sólo la autocimbra del arco, se realizó en la totalidad del puente para crear una estructura metálica triangulada que pudiese avanzar por voladizos sucesivos. El vertido de hormigón en el arco se realizó cuidadosamente para evitar situaciones inadmisibles para la cimbra. Se subdividió la sección transversal en fases, completando en cada una de ellas el hormigonado.

Puente de Echelsbacher

Os dejo a continuación un artículo sobre el sistema Melan y la invención paralela de José Eugenio Ribera.

Descargar (PDF, 1.08MB)

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

11 octubre, 2017
 

Publicada By  Víctor Yepes Piqueras - estructuras, procedimientos de construcción, Puentes    

858802_331527263630484_1482261224_oUna forma interesante de construir un puente con dovelas prefabricadas es mediante un pórtico auxiliar que permite la sujección de estas dovelas en un vano determinado. Las cimbras autoportantes suelen emplearse en puentes con muchos vanos de luces moderadas. Se trata de una viga metálica que se apoya en las pilas del puente y que permite la construcción completa de uno o varios vanos. Posteriormente la cimbra se traslada horizontalmente apoyándose el las pilas del puente hasta el vano siguiente. Este procedimiento permite un ritmo elevado de construcción, similar al de las vigas prefabricadas. La amortización de estos medios exige aproximadamente cuatro usos de los mismos en obras de similares características con longitudes superiores a los 300 metros, aunque existe la posibilidad para el contratista de alquilar estos equipos posteriormente.

Para ver este procedimiento constructivo, os dejo la siguiente animación que creo es de interés:

A continuación podemos ver un vídeo realizado por voxelestudios del proceso constructivo del tablero de los viaductos de Contreras, que con autocimbras se ejecutaron tramos de luces de 66 m.

5 octubre, 2017
 
|   Etiquetas: ,  ,  ,  |  

Publicada By  Víctor Yepes Piqueras - estructuras, ingeniería civil, procedimientos de construcción, Puentes    

Pont Antig Regne de València

Vista inferior del Pont Antig Regne de València, de Salvador Monleón. Imagen: V. Yepes (2013)

Seguimos en este post con la divulgación de los aspectos básicos de la construcción de puentes viga de hormigón pretensado, completando otros posts anteriores sobre este mismo tema.

Uno de los ingenieros que más contribuyó al desarrollo del hormigón armado, y que tuvo una actuación más destacada en el origen y desarrollo del hormigón pretensado fue el francés Freyssinet. Sin embargo, no fue hasta después de la Segunda Guerra Mundial cuando los puentes viga de hormigón pretensado adquirieron toda su potencia y desarrollo. El hormigón pretensado ha demostrado sus ventajas económicas y técnicas tanto para puentes de luces medias (vigas prefabricadas, por ejemplo), como en grandes luces (puentes empujados y atirantados, entre otros). El récord de luz mundial para un puente cajón de hormigón pretensado es de 330 metros en Shibanpe (China), terminado en 2005.

Tal es la importancia de que el proceso constructivo de un puente sea sencillo y económico, que los puentes viga se clasifican en función de dichos procedimientos. En general se pueden construir los puentes “in situ”, con piezas prefabricadas, o de una forma mixta. Además, salvo que el puente sea muy pequeño, los puentes viga se construyen por partes, o bien en subdivisiones longitudinales (vigas independientes que se unen mediante una losa, por ejemplo) o en subdivisiones transversales (dovelas de sección completa, que dan lugar a una gran variedad de métodos constructivos).

Los procedimientos constructivos de los puentes viga de hormigón pretensado pueden clasificarse en: (a) construcción sobre cimbra, (b) construcción por voladizos sucesivos, y (c) construcción por traslación horizontal o vertical.

1. Construcción sobre cimbra

Un puente viga de hormigón pretensado puede construirse sobre una cimbra hormigonando “in situ”, o bien con dovelas prefabricadas. Las cimbras pueden apoyarse directamente sobre el suelo o ser cimbras móviles autoportantes.

La cimbra también puede emplearse en la construcción con dovelas prefabricadas. Las dovelas se montan sobre la cimbra y se unen entre sí mediante juntas húmedas (ejecutadas con mortero) o bien juntas secas (adosando las dovelas y pegándolas normalmente con resina epoxi). Posteriormente se solidarizan las piezas mediante un pretensado.

Las luces cubiertas por la construcción sobre cimbra oscilan entre 20 y 50 metros. Por encima de los 20 metros, se recomienda reducir el peso propio de la losa con voladizos laterales o con aligeramientos. Por encima de los 25 metros, convendría adoptar una variación longitudinal de la inercia. Por encima de los 20 metros, la competitividad frente a las vigas prefabricadas sólo se justifica si las condiciones de ejecución permiten abaratar el encofrado. Se pueden alcanzar mayores luces (por encima de 100 metros) con losas hormigonadas “in situ” de secciones en cajón.

 1.1 Cimbra apoyada sobre el terreno

Cimbra de losa de puente pretensado apoyada sobre el terreno

 Hoy día se emplean cimbras metálicas reutilizables, de fácil montaje y desmontaje. En el caso de cimbras altas, se emplean apoyos de gran capacidad y vigas trianguladas de gran canto; son cimbras huecas que permiten el paso de vehículos durante la construcción del puente. Las losas aligeradas construidas sobre cimbra convencional tienen un campo económico de luces entre los 10 y 40 metros. Con sección celular, el campo óptimo oscila entre los 30 y los 90 metros.

1.2    Cimbras autoportantes

 Las cimbras autoportantes suelen emplearse en puentes con muchos vanos de luces moderadas. Se trata de una viga metálica que se apoya en las pilas del puente y que permite la construcción completa de uno o varios vanos. Posteriormente la cimbra se traslada horizontalmente apoyándose el las pilas del puente hasta el vano siguiente. Este procedimiento permite un ritmo elevado de construcción, similar al de las vigas prefabricadas.

Cimbra autoportante lanzadora de vigas

Cimbra autoportante lanzadora de vigas

 A veces se ha sustituido la viga auxiliar bajo el tablero por un procedimiento por suspensión con pórticos móviles. La secuencia de las operaciones requiere que la parte trasera del pórtico de avance esté apoyada sobre el tablero construido previamente, estando el otro apoyo en la pila siguiente, sobre una base provisional que se suprime posteriormente y se hormigona con el tablero. La viga central de todo el conjunto se extiende sobre dos tramos completos para facilitar el avance por etapas.

 La amortización de estos medios exige aproximadamente cuatro usos de los mismos en obras de similares características con longitudes superiores a los 300 metros, aunque existe la posibilidad para el contratista de alquilar estos equipos posteriormente.

 La principal ventaja de este sistema respecto al de avance por voladizos sucesivos reside en el ahorro de pretensado al no crear en la estructura construida esfuerzos de voladizo durante las sucesivas fases de la obra.

 Los vanos abordables por este método oscilan entorno a los 40 metros, para conseguir resultados económicamente competitivos. Se puede duplicar la luz empleando atirantamientos o apoyos provisionales intermedios.

  2    Construcción por voladizos sucesivos

 La construcción por dovelas, prefabricadas o ejecutadas “in situ”, que avanzan en voladizo sobre las ya erigidas es un procedimiento muy adecuado para las grandes luces, o bien cuando las pilas son muy altas. Las dovelas prefabricadas se izan con medios de elevación potentes y se unen a las anteriores. Si se ejecutan “in situ”, existe un carro de avance que se apoya en las dovelas anteriores. La estabilidad de cada etapa se asegura con el pretensado de cables.

 El primer puente construido por voladizos sucesivos fue el de Santa Catalina, sobre el río Peixe, cerca de Herval (Brasil), en el año 1931, siendo su autor el ingeniero Baumgarten; se trata de un puente de hormigón armado de dintel continuo de tres vanos, con 68 metros de luz en el central. En 1951 Finsterwalder aplica esta tecnología ya con el pretensado en el puente de Balduinstein, sobre el Lahn, con 62.10 metros de luz libre. En España (ver Fernández Casado et al., 1970), fue empleado en sus orígenes en el puente de Almodóvar (1962) y el de Castejón (1968)

 En la construcción con dovelas prefabricadas se pueden distinguir tres etapas (ver Pérez Fadón, 1990). La primera generación, en los años sesenta, las dovelas llevaban juntas de mortero de cemento, llave única a cortante y cables anclados en la propia junta. La segunda se caracteriza por la prefabricación conjugada, el empleo de resinas epoxi en las juntas, las llaves múltiples para el cortante y el anclaje de los cables en el interior de la dovela en unos bloque dispuestos al efecto. La tercera generación, iniciada en Francia, emplea el pretensado exterior y las almas de celosía (puente de Bubiyán en Kuwait, 1983).

La construcción por voladizos sucesivos puede realizarse con una única dirección de avance, la denominada construcción evolutiva; o bien con crecimiento simétrico del tablero a ambos lados de las pilas, voladizos compensados. En el primer caso se suprime uno de los inconvenientes de la progresión simétrica del tablero, con la consecuente multiplicación de equipos (uno por cada frente de avance) o su traslado.

 El campo habitual de aplicación de los puentes construidos por voladizos sucesivos abarca luces entre 50 y 150 metros. Sin embargo, y de forma excepcional, pueden encontrarse puentes con luces de 250 metros construidos por voladizos sucesivos con dovelas atirantadas de forma provisional. Entre los 30 y 50 metros de luz tampoco es muy habitual. A partir de los 200 metros, se entra en competencia con los puentes atirantados.

 3    Construcción por traslación horizontal o vertical

 Se construye el puente, total o parcialmente, fuera de su posición definitiva y después se traslada a su posición definitiva. Dentro de esta familia de procedimientos constructivos se puede distinguir la construcción de puentes con vigas prefabricadas, los puentes empujados, los puentes girados y los trasladados por flotación. Asimismo, y una vez colocado una parte del puente en su posición definitiva, éste puede servir de apoyo para completar la sección mediante la construcción “in situ” o mediante elementos prefabricados del resto de elementos (por ejemplo, el hormigonado de la losa sobre vigas prefabricadas).

 3.1    Puentes de vigas prefabricadas

 La industrialización en la fabricación de vigas de hormigón pretensado permite la construcción de puentes de tramos simples. Son vigas de sección normalmente en T, en I o incluso en cajón que permiten un intervalo amplio de luces. Los cantos de estas secciones varían según la luz y la disponibilidad de elementos prefabricados en el mercado, entre L/18 y L/23. La luz óptima se sitúa entre los 30 y 40 metros, puesto que por encima de 50 metros los medios auxiliares de colocación deben estar ampliamente sobredimensionados. De forma excepcional podría llegarse a los 70 metros de luz. Esta tipología resulta de gran interés cuando el número de vigas a colocar es elevado (40 como mínimo).

Puente de vigas prefabricadas

Puente de vigas prefabricadas

Sobre las vigas prefabricadas se coloca una losa de unos 15 a 20 cm de espesor. Dicho elemento, además de aumentar la capacidad de la sección, cumple la función de rigidizar a la superestructura tanto en el sentido vertical, para repartir las cargas, como en el horizontal, para evitar movimientos relativos entre las vigas y hacer las funciones de un diafragma rígido. Estas losas se construyen normalmente “in situ”, aunque también pueden ser prefabricadas (ver Burón et al., 2000).

 También se hace necesario, en ocasiones, un diafragma que proporcione rigidez lateral a las vigas y a la superestructura en general. Éstos se colocan en los extremos del puente y en puntos intermedios. Los diafragmas intermedios tienen como función primordial restringir el pandeo lateral de las vigas principales garantizando el trabajo en conjunto y un adecuado funcionamiento a flexión.

 Para luces muy pequeñas (menores a 8 metros) pueden emplearse vigas prefabricadas de sección rectangular aligerada. Con luces entre 6 y 20 metros, son el campo óptimo para las vigas de sección en “pi”. Cuando las luces están comprendidas entre los 10 y 25 metros, la sección T es muy efectiva. Para luces mayores, son más eficientes las secciones en I (rango útil entre 15 y 35 metros) o en cajón con aletas (entre 20 y 40 metros).

 En particular, las vigas en cajón con alas o voladizos laterales deben su gran eficiencia a los siguientes factores: (1) mayor rigidez torsional que evita, en la mayoría de los casos, el uso de diafragmas intermedios; (2) ancho inferior para albergar más torones y así proporcionar mayor excentricidad al pretensado aumentando los esfuerzos y el momento resistente de la sección; (3) la presencia de las alas elimina el uso de la cimbra para hormigonar la losa, permitiendo un menor canto (unos 15 cm) frente al requerido por una viga I (unos 18 cm).

 Las secciones prefabricadas tipo cajón de grandes dimensiones de una sola pieza o en dovelas, son muy eficientes debido a su bajo peso y a su rigidez. Estas secciones se emplean en puentes atirantados y empujados. En ocasiones, presentan un doble pretensado, uno longitudinal y otro transversal, éste último para resistir la flexión de las alas.

 Las vigas prefabricadas también pueden dar lugar a tipologías hiperestáticas si se da continuidad mediante un postesado posterior que las cosa al resto de la estructura. Un ejemplo es un tramo hiperestático de 58 metros de luz ejecutado con vigas prefabricadas en cajón para un tramo de tren de alta velocidad (Millanes et al., 2002).

 3.2    Tableros empujados

 El procedimiento consiste en fabricar o montar el tablero detrás del estribo y después empujarlo deslizándolo sobre las pilas hasta alcanzar su posición definitiva al llegar al otro estribo. Este tablero, también puede componerse mediante dovelas prefabricadas u hormigonadas “in situ”. El método del empuje ha permitido resolver satisfactoriamente la construcción de puentes sobre obstáculos importantes situados por debajo del tablero. Este procedimiento es particularmente ventajoso en los puentes muy largos, pues permiten aplicar la construcción industrializada -según Pérez-Fadón (2004), es rentable a partir de los 600 metros de longitud-.

Puente construido por empuje

Puente construido por empuje

 Este sistema constructivo fue desarrollado en la segunda mitad del siglo XIX para ubicar en su situación definitiva grandes viaductos metálicos de celosía. De hecho, la ligereza de los tableros metálicos y mixtos es una ventaja sobre los de hormigón, mucho más pesados; sin embargo es habitual la construcción de estos puentes con hormigón pretensado. Los puentes de ferrocarril, en particular, son estructuras idóneas para construirlas mediante empuja, pues han de soportar, además de su peso propio, unas cargas de servicio elevadas que obligan a dimensionar secciones con una gran capacidad resistente. Al construir el puente, donde sólo actúa el peso propio, el exceso de capacidad puede aprovecharse sin sobredimensionar la estructura.

 El primer viaducto de hormigón empujado fue el Puente de Ager en Austria en 1959, donde se usaban dovelas cortas prefabricadas; sin embargo, muchos autores citan el puente sobre el río Carona (Venezuela), terminado en 1963, de Leonhardt y Baur como iniciadores de esta técnica con el hormigón. Posteriormente se consolidó el método de dovelas largas hormigonadas “in situ” en una instalación industrializada que se monta detrás del estribo, aunque sigue siendo habitual el empleo de dovelas de entre 10 y 25 metros de longitud, tanto fabricadas “in situ” como prefabricadas.

 Millanes y Matute (1999) describen la construcción de un viaducto con un tramo continuo singular compuesto por dos vanos de 40 metros y un vano central de 80 metros que se construyó mediante lanzamiento de las vigas mediante un carro. Se emplearon dos pilas provisionales y se tesó la losa para darle continuidad antes de eliminar dichas pilas.

 El campo de luces óptimo para los tableros empujados se encuentra entre los 30 y 60 metros, aunque de forma excepcional dicho intervalo se amplia desde los 20 a los 90 metros.

3.3    Puentes girados

 Constituye una alternativa a la traslación longitudinal del tablero en el que el giro se efectúa tras construir el puente generalmente en la orilla de un río. Una opción es la construcción de un semipuente en cada lado y luego girarlos sobre las pilas hasta situarlos en prolongación y cerrar la clave, o bien construir la totalidad en una orilla y girarlo apoyando la punta en una barcaza o llevándolo en voladizo.

 3.4    Puentes trasladados por flotación

 Supone un método constructivo empleado con frecuencia en zonas martítimas o grandes ríos. Se trata de trasladar las vigas por flotación y luego izarlas mediante grandes grúas flotantes o con gatos.

 Con este procedimiento se han elevado grandes vigas, como en el caso del puente Nanco del puerto de Osaka (Japón), un puente cantilever construido en 1974 con una viga central de 186 metros y 4500 toneladas, que se llevó por flotación y se elevó mediante cables. El puente de Ohshima, también en Japón, es una viga continua triangulada de 200+325+200 metros de luz, una de las mayores del mundo, y se montó en tres partes, mediante unas grúas flotantes gigantes con capacidad de 3000 toneladas, empalmándose “in situ”.

 Sin embargo, las realizaciones con hormigón pretensado se reducen a vanos de 56 metros de luz y 22 metros de ancho como el cajón bicelular de los vanos laterales del viaducto Jamestown-Verrazzano en Rhode Island (Estados Unidos). En primer lugar se montaba la dovela sobre la pila y después el vano completo, subiéndolo mediante gatos de pretensado.

Referencias

  • AGUILÓ, M. (2003). Cien años de diseño de puentes. Revista de Obras Públicas, 3438: 27-32.
  • ASENCIO, J. (1990). Algunas artes o técnicas en la construcción de puentes. Primera parte. Sigma. Revista editada por la Dirección Técnica de Dragados y Construcciones, 1:7-34.
  • ASENCIO, J. (1990). Algunas artes o técnicas en la construcción de puentes. Segunda parte. Sigma. Revista editada por la Dirección Técnica de Dragados y Construcciones, 2:9-42.BURÓN, M.; FERNÁNDEZ-ORDOÑEZ, D.; PELÁEZ, M. (2000). Tableros prefabricados para puentes de ferrocarril. Revista Técnica Cemento Hormigón, 813: 802-810.
  • FERNÁNDEZ-CASADO, C. (1965). Puentes de hormigón armado pretensado. Editorial Dossat. Madrid
  •  FERNÁNDEZ-CASADO, C.; MANTEROLA, J.; FERNÁNDEZ-TROYANO, L. (1970). Construcción de puentes por voladizos sucesivos mediante dovelas prefabricadas. Revista de Obras Públicas, 3063: 715-730.
  •  FERNÁNDEZ-CASADO, C.; MANTEROLA, J.; FERNÁNDEZ-TROYANO, L. (1983). Viaductos de las autopistas AU-1 y AU-6 en Buenos Aires. Hormigón y Acero, 146.
  •  FERNÁNDEZ-TROYANO, L. (1999). Tierra sobre el agua. Visión histórica universal de los puentes. Colegio de Ingenieros de Caminos, Canales y Puertos. Colección de Ciencias, Humanidades e Ingeniería, nº 55. 1ª Edición. Madrid, 798 pp. ISBN: 84-380-0148-3.
  • GERWICK, B. C. (1997). Construction of Prestressed Concrete Structures. Wiley-IEEE. 616 pp. ISBN: 0471181137.
  • GRATTESAT, G. (1981). Concepción de puentes. Tratado general. Editores Técnicos Asociados, S.A. Barcelona, 495 pp. ISBN: 84-7146-226-5.
  • HARDING, J.E.; PARKE, G.A.R.; RYALL, M.J. (2000). The Manual of Bridge Engineering. Thomas Telford. Great Britain, 1012 pp. ISBN: 0727725912.
  • HARRIS, F. (1992). Maquinaria y métodos modernos en construcción. Bellisco e Hijos Librería Editorial. 1ª Edición española. Madrid, 568 pp. ISBN: 84-85198-57-3.
  • LLAGO, R.; RODRÍGUEZ, G. (2002). Alta velocidad: Nuevas tendencias en el empuje de puentes. Revista de Obras Públicas, 3418: 51-60.
  • MILLANES, F.; MATUTE, L. (1999). Viaducto sobre el río Lambre. Hormigón y Acero, 213: 33-39.
  • MILLANES, F.; MATUTE, L.; ORTEGA, M.; DÍAZ DE ARGOTE, J.I. (2002). Tramo hiperestático entre las pilas P-32 a P-35 del Viaducto sobre el río Jarama en la L.A.V. Madrid-Frontera Francesa. Subtramo II. Actas II Congreso de ACHE. Puentes y estructuras de Edificación. Noviembre, Madrid.
  • MONLEÓN, S. (1986). Curso de puentes. Vol. 1. Colegio de Ingenieros de Caminos, Canales y Puertos. Valencia, 216 pp. ISBN: 84-600-4325-8.
  • MURCIA, J.; COELHO, L.H. (1994). Análisis en el tiempo de puentes continuos de hormigón construido a partir de elementos prefabricados. Hormigón y Acero, 192: 55-71.
  • PÉREZ-FADÓN, S. (1990). Voladizos sucesivos por dovelas prefabricadas. Viaducto de Cruzul. Revista de Obras Públicas, 3285: 21-30.
  • PÉREZ-FADÓN, S. (2004). Construcción de viaductos para líneas de FFCC. Tableros empujados. Revista de Obras Públicas, 3445: 47-52.
  • PODOLNY, W.; MULLER, J.M. (1982). Construction and design of prestressed concrete segmental bridges. John Wiley and Sons. New York, 562 pp. ISBN: 0471056588.
  • TONIAS, D.E. (1994). Bridge Engineering: Design, Rehabilitation and Modern Highway Bridges. McGraw-Hill Professional. 470 pp. ISBN: 007065073X.
  • TROITSKY, M.S. (1994). Planning and Design of Bridges. John Wiley and Sons. 318 pp. ISBN: 0471028533.
  • XANTHAKOS, P. P. (1994). Theory and Design of Bridges. Wiley-IEEE. 1464 pp. ISBN: 0471570974.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

2 octubre, 2017
 
|   Etiquetas: ,  ,  |  

Publicada By  Víctor Yepes Piqueras - estructuras, medios auxiliares, procedimientos de construcción, Puentes    

Esquema del principio de la construcción por voladizos

Esquema del principio de la construcción por voladizos

La construcción por tramos o dovelas, prefabricadas o ejecutadas “in situ”, que avanzan en voladizo sobre las ya erigidas. El tablero avanza por tramos sucesivos soportando la parte construida el peso propio del tramo siguiente. La construcción en voladizo permite liberarse de cimbras y andamios, adaptándose especialmente a puentes con pilas muy altas, con valles extensos y profundos, en ríos con crecidas violentas y repentinas o bien cuando hay que dejar libre un gálibo para la circulación o la navegación.

Este procedimiento se puede usar en puentes rectos, arco y atirantados, de hormigón o metálicos. Las dovelas prefabricadas se izan con medios de elevación potentes y se unen a las anteriores. Si se ejecutan hormigonando “in situ”, existe un carro de avance que se apoya en las dovelas anteriores, asegurando la estabilidad de cada etapa con el pretensado de cables cuando la nueva dovela adquiere la resistencia suficiente.

La técnica del voladizo se utilizó en el siglo XIX en el lanzamiento de obras metálicas, en la construcción de grandes arcos y “cantilever”. Con la llegada del hormigón armado este procedimiento empezó a interesal a los constructores. El primer puente construido por voladizos sucesivos fue el puente sobre el río Peixe en Herval (Brasil), data de 1930, siendo su autor Emilio Henrique Baumgart; se trata de un puente de hormigón armado de dintel continuo de tres vanos, con 68 m de luz en el central. En este puente las armaduras del tablero se extendían mediante manguitos roscados a medida que avanzaba el hormigonado. Sin embargo con hormigón armado se necesitaban muchas armaduras para asegurar la resistencia de las ménsulas y aparecía una fuerte fisuración en el extradós del tablero, lo que provocó que el sistema no tuviese mucho éxito.

Puente de Balduinstein, sobre el Lahn (Alemania). Foto: Claudia Lenau. Fuente: http://structurae.net/photos/132164-balduinstein-bridge

Puente de Balduinstein, sobre el Lahn (Alemania). Foto: Claudia Lenau. Fuente: http://structurae.net/photos/132164-balduinstein-bridge

Sin embargo, con el hormigón pretensado el sistema empezó a desarrollarse plenamente. Así, Freyssinet empezó a utilizar el pretensado para el montaje en voladizo en las primeras dovelas del puente de Luzancy en 1945 y de los cinco puentes sobre el Marne, anclados en los estribos por pretensado. Pero es Finsterwalder quien inicia definitivamente la técnica del voladizo en 1950 en el puente de Balduinstein, sobre el Lahn, con 62,10 m de luz libre, cuando aplica esta tecnología con un pretensado a base de barras que se unían entre sí mediante un sistema roscado. En España, fue empleado en sus orígenes en el puente de Almodóvar (1962) y el de Castejón (1968).

En la construcción con dovelas prefabricadas se pueden distinguir tres etapas. La primera generación, en los años sesenta, las dovelas llevaban juntas de mortero de cemento, llave única a cortante y cables anclados en la propia junta. La segunda se caracteriza por la prefabricación conjugada, el empleo de resinas epoxi en las juntas, las llaves múltiples para el cortante y el anclaje de los cables en el interior de la dovela en unos bloque dispuestos al efecto. La tercera generación, iniciada en Francia, emplea el pretensado exterior y las almas de celosía (puente de Bubiyán en Kuwait, 1983).

La construcción por voladizos sucesivos puede realizarse con una única dirección de avance, la denominada construcción evolutiva; o bien con crecimiento simétrico del tablero a ambos lados de las pilas, voladizos compensados. En el primer caso se suprime uno de los inconvenientes de la progresión simétrica del tablero, con la consecuente multiplicación de equipos (uno por cada frente de avance) o su traslado.

El campo habitual de aplicación de los puentes construidos por voladizos sucesivos abarca luces entre 50 y 250 m. Sin embargo, y de forma excepcional, pueden encontrarse puentes con luces de 400 m construidos por voladizos sucesivos con dovelas atirantadas de forma provisional. Por debajo de 50 m de luz tampoco es muy corriente. A partir de los 200-300 m, se entra en competencia con los puentes atirantados. El rango de luces habitual para dovelas “in situ” es de 125 a 175 m, mientras que para las prefabricadas es algo menor, de 60 a 130 m.

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

28 septiembre, 2017
 

Publicada By  Víctor Yepes Piqueras - Puentes    

apoyo deslizante

Apoyo deslizante, con almohadillas de neopreno-teflón. Fuente: Óscar Ramos, 2010

El procedimiento de tableros empujados consiste en fabricar o montar el tablero detrás del estribo y después empujarlo deslizándolo sobre las pilas hasta alcanzar su posición definitiva al llegar al otro estribo. Para que ello sea posible, el tablero del puente debe deslizarse en todos los puntos donde se apoya, ya sean pilas, estribos o en el parque de fabricación. Estos apoyos, que en principio eran rodillos, hoy son de neopreno-teflón, que ofrecen poca fricción y una excelente distribución de las cargas verticales. Los apoyos pueden ser provisionales o definitivos. Los primeros se usan sobre apoyos auxiliares o en el parque de fabricación. Sobre las pilas pueden ser también provisionales, en cuyo caso se sustituyen posteriormente, o bien definitivos, con un segundo nivel deslizante que se utiliza durante el lanzamiento del tablero.

Apoyo

Apoyos de neopreno-teflón. Fuente: http://nisee.berkeley.edu/leonhardt/html/incrementally_launched_bridges.html

El apoyo provisional se monta sobre un bloque de hormigón de unos 15-35 cm de espesor, fuertemente armado y nivelado. Sobre el hormigón se dispone una chapa de acero inoxidable pulida y plana sobre la que se disponen las almohadillas de neopreno-teflón, de 10-13 mm de espesor. El teflón se apoya sobre el acero inoxidable y el neopreno contacta con el tablero. Además, el apoyo dispone de una guía lateral, también con almohadillas de neopreno-teflón, que encarrila al tablero en su movimiento longitudinal.

El movimiento del tablero arrastra la almohadilla, que cae por delante y se vuelve a introducir por detrás. Esta operación se realiza manualmente, por lo que se debe prestar especial atención a los posibles errores durante las 2-3 horas que dura la operación del lanzamiento del tramo correspondiente.

El coeficiente de rozamiento entre la almohadilla y el acero inoxidable, en el momento del arranque, puede llegar al 5% en tiempo frío, pero una vez en movimiento, baja al 3-3,5%. Para reducir la carga horizontal sobre el apoyo, se reducen al máximo las almohadillas, pues el rozamiento se reduce con la presión. Para soportar la carga vertical, se zuncha intensamente el neopreno para soportar unos 20 MPa. Además, conviene lubricar las almohadillas con silicona y mantenerlas limpias, con lo que se puede bajar el rozamiento al 1-2%.

Los apoyos provisionales se sustituyen por los definitivos subiendo el tablero con gatos. Esto mismo se debe hacer incluso cuando los apoyos deslizantes son definitivos, puesto que se debe bloquear el nivel de deslizamiento usado durante el lanzamiento, quitar las almohadillas y soldar la parte superior del apoyo a chapas metálicas dejadas en el tablero.

Os dejo a continuación un vídeo donde se observa el lanzamiento del tablero.

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

25 septiembre, 2017
 
|   Etiquetas: ,  ,  |  

Página siguiente »

Universidad Politécnica de Valencia