Optimización de la vía en placa mediante metamodelos para mejorar la sostenibilidad de la construcción ferroviaria

Acaban de publicarnos un artículo en el Journal of Construction Engineering and Management-ASCE, revista indexada en el primer cuartil del JCR. Se trata de optimizar la vía en placa mediante metamodelos para mejorar la sostenibilidad de la construcción ferroviaria. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Este artículo no está publicado en abierto, pero podéis encontrarlo, solicitándolo, en esta dirección: https://www.researchgate.net/publication/360243758_Slab_Track_Optimization_Using_Metamodels_to_Improve_Rail_Construction_Sustainability o bien descargarlo directamente de la página web de ASCE: https://ascelibrary.org/doi/full/10.1061/%28ASCE%29CO.1943-7862.0002288

El ferrocarril es un medio de transporte eficaz, sin embargo, la construcción y el mantenimiento de las vías férreas tienen un impacto medioambiental importante en términos de emisiones de CO2 y uso de materias primas. Esto es especialmente cierto en el caso de la vía en placa, pues necesitan grandes cantidades de hormigón. También son más caras de construir que las vías convencionales con balasto, pero requieren menos mantenimiento y presentan otras ventajas que las convierten en una buena alternativa, especialmente para las líneas de alta velocidad. Para contribuir a un ferrocarril más sostenible, este trabajo pretende optimizar el diseño de una de las tipologías de vía en placa más comunes: RHEDA 2000. El objetivo principal es reducir la cantidad de hormigón necesaria para construir la losa sin comprometer su rendimiento y durabilidad. Para ello, se utilizó un modelo basado en el método de los elementos finitos (MEF) de la vía, emparejado con un metamodelo de kriging que permite analizar múltiples opciones de espesor de la losa y resistencia del hormigón de forma puntual. Mediante kriging, se obtuvieron soluciones óptimas que se validaron a través del modelo MEF para garantizar el cumplimiento de las restricciones mecánicas y geométricas predefinidas. Partiendo de una configuración inicial con una losa de 30 cm de hormigón con una resistencia característica de 40 MPa, se llegó a una solución optimizada, consistente en una losa de 24 cm de hormigón con una resistencia de 45 MPa, que arroja una reducción de costes del 17,5%. Este proceso puede aplicarse ahora a otras tipologías de losas para obtener diseños más sostenibles.

Abstract:

Railways are an efficient transport mode, but building and maintaining railway tracks have a significant environmental impact in terms of CO2 emissions and the use of raw materials. This is particularly true for slab tracks, which require large quantities of concrete. They are also more expensive to build than conventional ballasted tracks, but require less maintenance and have other advantages that make them a good alternative, especially for high-speed lines. To contribute to more sustainable railways, this paper aims to optimize the design of one of the most common slab track typologies: RHEDA 2000. The main objective is to reduce the amount of concrete required to build the slab without compromising its performance and durability. To do so, a model based on the finite-element method (FEM) of the track was used, paired with a kriging metamodel to allow analyzing multiple options of slab thickness and concrete strength in a timely manner. By means of kriging, optimal solutions were obtained and then validated through the FEM model to ensure that predefined mechanical and geometrical constraints were met. Starting from an initial setup with a 30-cm slab made of concrete with a characteristic strength of 40 MPa, an optimized solution was reached, consisting of a 24-cm slab made of concrete with a strength of 45 MPa, which yields a cost reduction of 17.5%. This process may be now applied to other slab typologies to obtain more sustainable designs.

Keywords:

Slab track; Optimization; Latin hypercube; Kriging; Finite-element method (FEM).

Reference:

MARTÍNEZ FERNÁNDEZ, P.; VILLALBA SANCHIS, I.; INSA FRANCO, R.; YEPES, V. (2022). Slab track optimisation using metamodels to improve rail construction sustainabilityJournal of Construction Engineering and Management, 148(7):04022053. DOI:10.1061/(ASCE)CO.1943-7862.0002288

Optimización de tableros de puentes mixtos con metaheurística de trayectoria

Variables de la sección transversal del puente mixto

La optimización de puentes es un problema complejo debido al gran número de variables que intervienen. En este trabajo se ha realizado la optimización de un puente mixto en cajón considerando el coste como función objetivo. Para ello se ha aplicado el Recocido Simulado (SA) como ejemplo de algoritmo basado en la búsqueda de soluciones mediante trayectorias para la optimización de la estructura. Se observa que la adición de celdas a las secciones transversales del puente mejora no sólo el comportamiento de la sección sino también los resultados de la optimización. Finalmente, se observa que el diseño propuesto de doble acción compuesta materializando losas en el ala inferior sobre apoyos, permite eliminar los rigidizadores longitudinales continuos. Este método automatiza el proceso de optimización de un diseño inicial de un puente de material compuesto, que tradicionalmente se ha basado en la propia experiencia del técnico, permitiendo alcanzar resultados de forma más eficiente.

Referencia:

MARTÍNEZ-MUÑOZ, D.; SÁNCHEZ-GARRIDO, A.J.; MARTÍ, J.V.; YEPES, V. (2021). Composite bridge deck optimization with trajectory-based algorithms. 6th International Conference on Mechanical Models in Structural Engineering, CMMoST 2021, 1-3 December, Valladolid, Spain, pp. 174-187. ISNB: 978-84-09-39323-7

Descargar (PDF, 589KB)

 

Hacia un mapa de conocimiento algorítmico de optimización de la industria AEC-AI (Arquitectura, Ingeniería, Construcción e Inteligencia Artificial)

Acaban de publicarnos un artículo en la revista IEEE Access, revista de alto impacto indexada en el JCR. En este caso se ha realizado un análisis conceptual macroscópico de la industria AEC-AI (Arquitectura, Ingeniería, Construcción e Inteligencia Artificial). El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La industria de la arquitectura, la ingeniería y la construcción (AEC) constituye uno de los sectores productivos más relevantes, por lo que también produce un alto impacto en los equilibrios económicos, la estabilidad de la sociedad y los desafíos globales en el cambio climático. En cuanto a su adopción de tecnologías, aplicaciones y procesos también se reconoce por su status-quo, su lento ritmo de innovación, y los enfoques conservadores. Sin embargo, una nueva era tecnológica -la Industria 4.0 alimentada por la IA- está impulsando los sectores productivos en un panorama sociopolítico y de competencia tecnológica global altamente presionado. En este trabajo, desarrollamos un enfoque adaptativo para la minería de contenido textual en el corpus de investigación de la literatura relacionada con las industrias de la AEC y la IA (AEC-AI), en particular en su relación con los procesos y aplicaciones tecnológicas. Presentamos un enfoque de primera etapa para una evaluación adaptativa de los algoritmos de IA, para formar una plataforma integradora de IA en la industria AEC, la industria AEC-AI 4.0. En esta etapa, se despliega un método adaptativo macroscópico para caracterizar la “Optimización”, un término clave en la industria AEC-AI, utilizando una metodología mixta que incorpora el aprendizaje automático y el proceso de evaluación clásico. Nuestros resultados muestran que el uso eficaz de los metadatos, las consultas de búsqueda restringidas y el conocimiento del dominio permiten obtener una evaluación macroscópica del concepto objetivo. Esto permite la extracción de un mapeo de alto nivel y la caracterización de la estructura conceptual del corpus bibliográfico. Los resultados son comparables, a este nivel, a las metodologías clásicas de revisión de la literatura. Además, nuestro método está diseñado para una evaluación adaptativa que permita incorporar otras etapas.

Abstract:

The Architecture, Engineering, and Construction (AEC) Industry is one of the most important productive sectors, hence also produce a high impact on the economic balances, societal stability, and global challenges in climate change. Regarding its adoption of technologies, applications and processes is also recognized by its status-quo, its slow innovation pace, and the conservative approaches. However, a new technological era – Industry 4.0 fueled by AI- is driving productive sectors in a highly pressurized global technological competition and sociopolitical landscape. In this paper, we develop an adaptive approach to mining text content in the literature research corpus related to the AEC and AI (AEC-AI) industries, in particular on its relation to technological processes and applications. We present a first stage approach to an adaptive assessment of AI algorithms, to form an integrative AI platform in the AEC industry, the AEC-AI industry 4.0. At this stage, a macroscopic adaptive method is deployed to characterize “Optimization,” a key term in AEC-AI industry, using a mixed methodology incorporating machine learning and classical evaluation process. Our results show that effective use of metadata, constrained search queries, and domain knowledge allows getting a macroscopic assessment of the target concept. This allows the extraction of a high-level mapping and conceptual structure characterization of the literature corpus. The results are comparable, at this level, to classical methodologies for the literature review. In addition, our method is designed for an adaptive assessment to incorporate further stages.

Keywords:

Architecture, engineering and construction, AEC, artificial intelligence, literature corpus, machine learning, optimization algorithms, knowledge mapping and structure

Reference:

MAUREIRA, C.; PINTO, H.; YEPES, V.; GARCÍA, J. (2021). Towards an AEC-AI industry optimization algorithmic knowledge mapping. IEEE Access, 9:110842-110879. DOI:10.1109/ACCESS.2021.3102215

Descargar (PDF, 6.14MB)

Open Access Book: Optimization for Decision Making II

Tengo el placer de compartir con todos vosotros, totalmente en abierto, un libro que he editado junto con el profesor de la Universidad de Zaragoza, José María Moreno Jiménez. La labor de editar libros científicos es una oportunidad de poder seleccionar aquellos autores y temas que destacan en un ámbito determinado. En este caso, la optimización en la toma de decisiones.

Este libro forma parte de una serie sobre toma de decisiones. Podéis descargar también el primer libro de la serie en la siguiente dirección: https://victoryepes.blogs.upv.es/2020/10/09/open-access-book-optimization-for-decision-making/

Además, resulta gratificante ver que el libro se encuentra editado en abierto, por lo que cualquiera de vosotros os lo podéis descargar sin ningún tipo de problema en esta entrada del blog. También os lo podéis descargar, o incluso pedirlo en papel, en la página web de la editorial MPDI: https://www.mdpi.com/books/pdfview/book/3129

 

Referencia:

YEPES, V.; MORENO-JIMÉNEZ, J.M. (Eds.) (2020). Optimization for Decision Making II. MPDI, 302 pp., Basel, Switzerland. ISBN 978-3-03943-607-1

 

Preface to ”Optimization for Decision Making II”

Decision making is one of the distinctive activities of the human being; it is an indication of the degree of evolution, cognition and freedom of the species. In the past, until the end of the 20th century, scientific decision making was based on the paradigms of substantive rationality (normative approach) and procedural rationality (descriptive approach). Since the beginning of the 21st century and the advent of the Knowledge Society, decision making has been enriched with new constructivist, evolutionary and cognitive paradigms that aim to respond to new challenges and needs; especially the integration into formal models of the intangible, subjective and emotional aspects associated with the human factor, and the participation in decision-making processes of spatially distributed multiple actors that intervene in a synchronous or an asynchronous manner. To help address and resolve these types of questions, this book comprises 16 chapters that present a series of decision models, methods and techniques and their practical applications in the fields of economics, engineering and social sciences. The chapters collect the papers included in the “Optimization for Decision Making II” Special Issue of the Mathematics journal, 2020, 8(6), first decile of the JCR 2019 in the Mathematics category. We would like to thank both the MDPI publishing and editorial staff for their excellent work, as well as the 51 authors who have collaborated in its preparation. The papers cover a wide spectrum of issues related to the scientific resolution of problems; in particular, related to decision making, optimization, metaheuristics, and multi-criteria decision making. We hope that the papers, with their undoubted mathematical content, can be of use to academics and professionals from the many branches of knowledge (philosophy, psychology, economics, mathematics, decision science, computer science, artificial intelligence, neuroscience and more) that have, from such diverse perspectives, approached the study of decision making, an essential aspect of human life and development.

Víctor Yepes, José M. Moreno-Jiménez
Editors

About the Editors

Víctor Yepes Full Professor of Construction Engineering; he holds a Ph.D. degree in civil engineering. He serves at the Department of Construction Engineering, Universitat Politecnica de Valencia, Valencia, Spain. He has been the Academic Director of the M.S. studies in concrete materials and structures since 2007 and a Member of the Concrete Science and Technology Institute (ICITECH). He is currently involved in several projects related to the optimization and life-cycle assessment
of concrete structures as well as optimization models for infrastructure asset management. He is currently teaching courses in construction methods, innovation, and quality management. He authored more than 250 journals and conference papers including more than 100 published in the journal quoted in JCR. He acted as an Expert for project proposals evaluation for the Spanish Ministry of Technology and Science, and he is the Main Researcher in many projects. He currently serves as the Editor-in-Chief of the International Journal of Construction Engineering and Management and a member of the editorial board of 12 international journals (Structure & Infrastructure Engineering, Structural Engineering and Mechanics, Mathematics, Sustainability, Revista de la Construcción, Advances in Civil Engineering, and Advances in Concrete Construction, among others).

José María Moreno-Jiménez Full Professor of Operations Research and Multicriteria Decision Making, received the degrees in mathematics and economics as well as a Ph.D. degree in applied mathematics from the University of Zaragoza, Spain; where he is teaching from the course 1980–1981. He is the Head of the Quantitative Methods Area in the Faculty of Economics and Business of the University of Zaragoza from 1997, the Chair of the Zaragoza Multicriteria Decision Making Group from 1996, a member of the Advisory Board of the Euro Working Group on Decision Support Systems from 2017, and an Honorary Member of the International Society on Applied Economics ASEPELT from 2019. He has also been the President of this international scientific society (2014–2018) and the Coordinator of the Spanish Multicriteria Decision Making Group (2012–2015). His research interests are in the general area of Operations Research theory and practice, with an emphasis on multicriteria decision making, electronic democracy/cognocracy, performance analysis, and industrial and technological diversification. He has published more than 250 papers in scientific books and journals in the most prestigious editorials and is a member of the Editorial Board of several national and international journals.

Descargar (PDF, 5.32MB)

Special Issue “Optimization for Decision Making III”

 

 

 

 

 

Mathematics (ISSN 2227-7390) is a peer-reviewed open access journal which provides an advanced forum for studies related to mathematics, and is published monthly online by MDPI.

  • Open Access – free for readers, with article processing charges (APC) paid by authors or their institutions.
  • High visibility: Indexed in the Science Citation Indexed Expanded – SCIE (Web of Science) from Vol. 4 (2016), Scopus, and Zentralblatt MATH from Vol. 3 (2015).
  • Rapid publication: manuscripts are peer-reviewed and a first decision provided to authors approximately 21.7 days after submission; acceptance to publication is undertaken in 5.3 days (median values for papers published in this journal in the second half of 2018).
  • Recognition of reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.

Impact Factor: 1.747 (2019)  (First decile JCR journal)

Special Issue “Optimization for Decision Making III”

Deadline for manuscript submissions: 30 June 2021.

Special Issue Editors

Guest Editor 

Prof. Víctor Yepes
Universitat Politècnica de València, Spain
Website | E-Mail
Interests: multiobjective optimization; structures optimization; lifecycle assessment; social sustainability of infrastructures; reliability-based maintenance optimization; optimization and decision-making under uncertainty

Guest Editor 

Prof. José M. Moreno-Jiménez
Universidad de Zaragoza
Website | E-Mail
Interests: multicriteria decision making; environmental selection; strategic planning; knowledge management; evaluation of systems; logistics and public decision making (e-government, e-participation, e-democracy and e-cognocracy)

Special Issue Information

Dear Colleagues,

In the current context of the electronic governance of society, both administrations and citizens are demanding greater participation of all the actors involved in the decision-making process relative to the governance of society. In addition, the design, planning, and operations management rely on mathematical models, the complexity of which depends on the detail of models and complexity/characteristics of the problem they represent. Unfortunately, decision-making by humans is often suboptimal in ways that can be reliably predicted. Furthermore, the process industry seeks not only to minimize cost, but also to minimize adverse environmental and social impacts. On the other hand, in order to give an appropriate response to the new challenges raised, the decision-making process can be done by applying different methods and tools, as well as using different objectives. In real-life problems, the formulation of decision-making problems and application of optimization techniques to support decisions is particularly complex, and a wide range of optimization techniques and methodologies are used to minimize risks or improve quality in making concomitant decisions. In addition, a sensitivity analysis should be done to validate/analyze the influence of uncertainty regarding decision-making.

Prof. Víctor Yepes
Prof. José Moreno-Jiménez
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Mathematics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI’s English editing service prior to publication or during author revisions.

Keywords

  • Multicriteria decision making
  • Optimization techniques
  • Multiobjective optimization

Open Access Book: Optimization for Decision Making

Tengo el placer de compartir con todos vosotros, totalmente en abierto, un libro que he editado junto con el profesor de la Universidad de Zaragoza, José María Moreno Jiménez. La labor de editar libros científicos es una oportunidad de poder seleccionar aquellos autores y temas que destacan en un ámbito determinado. En este caso, la optimización en la toma de decisiones.

Además, resulta gratificante ver que el libro se encuentra editado en abierto, por lo que cualquiera de vosotros os lo podéis descargar sin ningún tipo de problema en esta entrada del blog. También os lo podéis descargar, o incluso pedirlo en papel, en la página web de la editorial MPDI: https://www.mdpi.com/books/pdfview/book/2958

Referencia:

YEPES, V.; MORENO-JIMÉNEZ, J.M. (Eds.) (2020). Optimization for Decision Making. MPDI, 277 pp., Basel, Switzerland. ISBN: 978-3-03943-221-9

 

 

Preface to ”Optimization for Decision Making”

Decision making is one of the distinctive activities of the human being; it is an indication of the degree of evolution, cognition, and freedom of the species. In the past, until the end of the 20th century, scientific decision-making was based on the paradigms of substantive rationality (normative approach) and procedural rationality (descriptive approach). Since the beginning of the 21st century and the advent of the Knowledge Society, decision-making has been enriched with new constructivist, evolutionary, and cognitive paradigms that aim to respond to new challenges and needs; especially the integration into formal models of the intangible, subjective, and emotional aspects associated with the human factor, and the participation in decision-making processes of spatially distributed multiple actors that intervene in a synchronous or asynchronous manner. To help address and resolve these types of questions, this book comprises 13 chapters that present a series of decision models, methods, and techniques and their practical applications in the fields of economics, engineering, and social sciences. The chapters collect the papers included in the “Optimization for Decision Making” Special Issue of the Mathematics journal, 2019, 7(3), first decile of the JCR 2019 in the Mathematics category. We would like to thank both the MDPI publishing editorial team, for their excellent work, and the 47 authors who have collaborated in its preparation. The papers cover a wide spectrum of issues related to the scientific resolution of problems; in particular, related to decision making, optimization, metaheuristics, simulation, and multi-criteria decision-making. We hope that the papers, with their undoubted mathematical content, can be of use to academics and professionals from the many branches of knowledge (philosophy, psychology, economics, mathematics, decision science, computer science, artificial intelligence, neuroscience, and more) that have, from such diverse perspectives, approached the study of decision-making, an essential aspect of human life and development.

Víctor Yepes, José María Moreno-Jiménez
Editors

About the Editors

Víctor Yepes Full Professor of Construction Engineering; he holds a Ph.D. degree in civil engineering. He serves at the Department of Construction Engineering, Universitat Politecnica de Valencia, Valencia, Spain. He has been the Academic Director of the M.S. studies in concrete materials and structures since 2007 and a Member of the Concrete Science and Technology Institute (ICITECH). He is currently involved in several projects related to the optimization and life-cycle assessment
of concrete structures as well as optimization models for infrastructure asset management. He is currently teaching courses in construction methods, innovation, and quality management. He authored more than 250 journals and conference papers including more than 100 published in the journal quoted in JCR. He acted as an Expert for project proposals evaluation for the Spanish Ministry of Technology and Science, and he is the Main Researcher in many projects. He currently serves as the Editor-in-Chief of the International Journal of Construction Engineering and Management and a member of the editorial board of 12 international journals (Structure & Infrastructure Engineering, Structural Engineering and Mechanics, Mathematics, Sustainability, Revista de la Construcción, Advances in Civil Engineering, and Advances in Concrete Construction, among others).

José María Moreno-Jiménez Full Professor of Operations Research and Multicriteria Decision Making, received the degrees in mathematics and economics as well as a Ph.D. degree in applied mathematics from the University of Zaragoza, Spain; where he is teaching from the course 1980–1981. He is the Head of the Quantitative Methods Area in the Faculty of Economics and Business of the University of Zaragoza from 1997, the Chair of the Zaragoza Multicriteria Decision Making Group from 1996, a member of the Advisory Board of the Euro Working Group on Decision Support Systems from 2017, and an Honorary Member of the International Society on Applied Economics ASEPELT from 2019. He has also been the President of this international scientific society (2014–2018) and the Coordinator of the Spanish Multicriteria Decision Making Group (2012–2015). His research interests are in the general area of Operations Research theory and practice, with an emphasis on multicriteria decision making, electronic democracy/cognocracy, performance analysis, and industrial and technological diversification. He has published more than 250 papers in scientific books and journals in the most prestigious editorials and is a member of the Editorial Board of several national and international journals.

Descargar (PDF, 3.61MB)

Sesión temática en CMN2021: Optimization, metaheuristics and evolutionary algorithms in civil engineering

En el marco del próximo congreso CMN2021 (Congress on Numerical Methods in Engineering) que se celebrará en Las Palmas de Gran Canaria del 28 al 30 de junio de 2021, hemos organizado una sesión temática coordinada por David Greiner, Diogo Ribeiro y Víctor Yepes que versa sobre optimización, metaheurísticas y algoritmos evolutivos en ingeniería civil. Os dejo a continuación una breve descripción del congreso y un resumen de la sesión temática propuesta.

El objetivo del Congreso de Métodos Numéricos en Ingeniería (CMN) es actuar como un foro en que se recopilen los trabajos científicos y técnicos más relevantes en el área de los métodos numéricos y la mecánica computacional, así como sus aplicaciones prácticas. CMN 2021, organizado conjuntamente por las sociedades de métodos numéricos española (SEMNI), portuguesa (APMTAC) y por el Instituto Universitario de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería (SIANI) de la Universidad de Las Palmas de Gran Canaria (ULPGC). Los anteriores congresos conjuntos de ambas sociedades fueron celebrados en Madrid (2002), en Lisboa (2004), en Granada (2005), Porto (2007), Barcelona (2009), Coimbra (2011), Bilbao (2013), Lisboa (2015), Valencia (2017) y Minho (2019). Habiendo sido Las Palmas de Gran Canaria la sede del Primer Congreso CMN organizado por SEMNI en 1990, (General Chairs: Gabriel Winter y Miguel Galante), retorna 31 años después a su primera sede. El programa científico del CMN 2021 estará estructurado en sesiones temáticas según las distintas especialidades de los métodos numéricos. Las comunicaciones presentadas en el congreso constituirán una referencia de los avances recientes y de las líneas de trabajo futuras. Asimismo, investigadores internacionales de reconocido prestigio impartirán una serie de conferencias plenarias. El enlace a la web del congreso es la siguiente: https://congress.cimne.com/cmn2021

Descargar (PDF, 129KB)

Optimización del mantenimiento del pavimento en carreteras mediante GRASP

La insuficiente inversión en el sector público junto con programas ineficaces de infraestructura de mantenimiento conducen a altos costos económicos a largo plazo. Por lo tanto, los responsables de la infraestructura necesitan herramientas prácticas para maximizar la eficacia a largo plazo de los programas de mantenimiento. En el artículo que os presento se describe una herramienta de optimización basada en un procedimiento híbrido de búsqueda aleatoria y adaptativa (GRASP) considerando la aceptación del umbral (TA) con restricciones relajadas. Esta herramienta facilita el diseño de programas de mantenimiento óptimos sujetos a restricciones presupuestarias y técnicas, explorando el efecto de diferentes escenarios presupuestarios en el estado general de la red. La herramienta de optimización se aplica a un estudio de caso, demostrando su eficiencia para analizar datos reales. Se demuestra que los programas de mantenimiento optimizado rinden un 40% más a largo plazo que los programas tradicionales basados en una estrategia reactiva. Para ampliar los resultados obtenidos en este estudio de caso, también se optimizaron un conjunto de escenarios simulados, basados en el rango de valores encontrados en el ejemplo real. El trabajo concluye que este algoritmo de optimización mejora la asignación de los fondos de mantenimiento con respecto a la obtenida con una estrategia reactiva tradicional. El análisis de sensibilidad de una gama de escenarios presupuestarios indica que el nivel de financiación en los primeros años es un factor impulsor a largo plazo de los programas de mantenimiento óptimo.

Referencia:

YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550. DOI:10.3846/13923730.2015.1120770

Os dejo a continuación la versión autor del artículo.

Descargar (PDF, 568KB)

 

 

 

Algoritmo híbrido de búsqueda del cuco para optimizar muros de contrafuertes

Acaban de publicarnos un artículo en la revista Mathematics,  revista indexada en el primer cuartil del JCR. En este artículo se presenta un algoritmo híbrido de búsqueda del cuco y de clasificación no supervisada para optimizar el coste y las emisiones de CO2 de un muro de contrafuertes. El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La Búsqueda Cuco se basa en la estrategia de reproducción de algunas especies de pájaros cucos. Éstos pájaros dejan sus huevos en los nidos de otros pájaros de otras especies para que éstas los críen, expulsando incluso los huevos del nido invadido. Si el pájaro anfitrión se percata que el huevo no es el propio, lo sacará del nido o directamente lo abandonará y construirá otro nido.

Por su parte, K-means es un algoritmo de clasificación no supervisada (clusterización) que agrupa objetos en k grupos basándose en sus características. El agrupamiento se realiza minimizando la suma de distancias entre cada objeto y el centroide de su grupo o cluster.

En este artículo se propone un algoritmo híbrido, en el que la metaheurística de búsqueda del cuco se utiliza como mecanismo de optimización en espacios continuos y la técnica de aprendizaje no supervisada k-means para discretizar las soluciones. Se diseña un operador aleatorio para determinar la contribución del operador k-means en el proceso de optimización. Se comparan los mejores valores, los promedios y los rangos intercuartiles de las distribuciones obtenidas. Los resultados muestran que el operador k-means contribuye significativamente a la calidad de las soluciones y que nuestro algoritmo es altamente competitivo.

Abstract

The counterfort retaining wall is one of the most frequent structures used in civil engineering. In this structure, optimization of cost and CO2 emissions are important. The first is relevant in the competitiveness and efficiency of the company, the second in environmental impact. From the point of view of computational complexity, the problem is challenging due to the large number of possible combinations in the solution space. In this article, a k-means cuckoo search hybrid algorithm is proposed where the cuckoo search metaheuristic is used as an optimization mechanism in continuous spaces and the unsupervised k-means learning technique to discretize the solutions. A random operator is designed to determine the contribution of the k-means operator in the optimization process. The best values, the averages, and the interquartile ranges of the obtained distributions are compared. The hybrid algorithm was later compared to a version of harmony search that also solved the problem. The results show that the k-mean operator contributes significantly to the quality of the solutions and that our algorithm is highly competitive, surpassing the results obtained by harmony search.

Keywords

CO2emission; earth-retaining walls; optimization; k-means; cuckoo search

Referencia:

GARCÍA, J.; YEPES, V.; MARTÍ, J.V. (2020). A hybrid k-means cuckoo search algorithm applied to the counterfort retaining walls problem. Mathematics,  8(4), 555. DOI:10.3390/math8040555

Descargar (PDF, 1.24MB)

 

 

Optimización de emisiones de CO2 y costes de muros de contrafuertes con el algoritmo del agujero negro

Acaban de publicarnos un artículo en la revista Sustainability,  revista indexada en JCR. En este artículo minimizamos las emisiones de CO2 en la construcción de un muro de contrafuertes de hormigón armado usando la metaheurística del agujero negro (Black Hole Algorithm). El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La optimización del costo y de las emisiones de CO2 en los muros de contención de tierras es relevante, pues estas estructuras se utilizan muy frecuentemente en la ingeniería civil. La optimización de los costos es esencial para la competitividad de la empresa constructora, y la optimización de las emisiones es relevante en el impacto ambiental de la construcción. Para abordar la optimización se utilizó la metaheurística de los agujeros negros, junto con un mecanismo de discretización basado en la normalización mínimo-máxima. Se evaluó la estabilidad del algoritmo con respecto a las soluciones obtenidas; se analizaron los valores de acero y hormigón obtenidos en ambas optimizaciones. Además, se compararon las variables geométricas de la estructura. Los resultados muestran un buen rendimiento en la optimización con el algoritmo de agujero negro.

Abstract

The optimization of the cost and CO 2 emissions in earth-retaining walls is of relevance, since these structures are often used in civil engineering. The optimization of costs is essential for the competitiveness of the construction company, and the optimization of emissions is relevant in the environmental impact of construction. To address the optimization, black hole metaheuristics were used, along with a discretization mechanism based on min–max normalization. The stability of the algorithm was evaluated with respect to the solutions obtained; the steel and concrete values obtained in both optimizations were analyzed. Additionally, the geometric variables of the structure were compared. Finally, the results obtained were compared with another algorithm that solved the problem. The results show that there is a trade-off between the use of steel and concrete. The solutions that minimize CO 2 emissions prefer the use of concrete instead of those that optimize the cost. On the other hand, when comparing the geometric variables, it is seen that most remain similar in both optimizations except for the distance between buttresses. When comparing with another algorithm, the results show a good performance in optimization using the black hole algorithm.

Keywords

CO2 emission; earth-retaining walls; optimization; black hole; min–max discretization

Reference:

YEPES, V.; MARTÍ, J.V.; GARCÍA, J. (2020). Black hole algorithm for sustainable design of counterfort retaining walls. Sustainability, 12, 2767. DOI:10.3390/su12072767

Descargar (PDF, 770KB)