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Preface to ”Optimization for Decision Making”

Decision making is one of the distinctive activities of the human being; it is an indication of

the degree of evolution, cognition, and freedom of the species. In the past, until the end of the 20th

century, scientific decision-making was based on the paradigms of substantive rationality (normative

approach) and procedural rationality (descriptive approach). Since the beginning of the 21st century

and the advent of the Knowledge Society, decision-making has been enriched with new constructivist,

evolutionary, and cognitive paradigms that aim to respond to new challenges and needs; especially

the integration into formal models of the intangible, subjective, and emotional aspects associated with

the human factor, and the participation in decision-making processes of spatially distributed multiple

actors that intervene in a synchronous or asynchronous manner.

To help address and resolve these types of questions, this book comprises 13 chapters that

present a series of decision models, methods, and techniques and their practical applications in the

fields of economics, engineering, and social sciences. The chapters collect the papers included in the

“Optimization for Decision Making” Special Issue of the Mathematics journal, 2019, 7(3), first decile of

the JCR 2019 in the Mathematics category.

We would like to thank both the MDPI publishing editorial team, for their excellent work,

and the 47 authors who have collaborated in its preparation. The papers cover a wide spectrum

of issues related to the scientific resolution of problems; in particular, related to decision making,

optimization, metaheuristics, simulation, and multi-criteria decision-making.

We hope that the papers, with their undoubted mathematical content, can be of use to academics

and professionals from the many branches of knowledge (philosophy, psychology, economics,

mathematics, decision science, computer science, artificial intelligence, neuroscience, and more) that

have, from such diverse perspectives, approached the study of decision-making, an essential aspect

of human life and development.

Vı́ctor Yepes, José Marı́a Moreno-Jiménez

Editors
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Abstract: Probabilistic dual hesitant fuzzy set (PDHFS) is an enhanced version of a dual hesitant
fuzzy set (DHFS) in which each membership and non-membership hesitant value is considered
along with its occurrence probability. These assigned probabilities give more details about the level
of agreeness or disagreeness. By emphasizing the advantages of the PDHFS and the aggregation
operators, in this manuscript, we have proposed several weighted and ordered weighted averaging
and geometric aggregation operators by using Einstein norm operations, where the preferences
related to each object is taken in terms of probabilistic dual hesitant fuzzy elements. Several desirable
properties and relations are also investigated in details. Also, we have proposed two distance
measures and its based maximum deviation method to compute the weight vector of the different
criteria. Finally, a multi-criteria group decision-making approach is constructed based on proposed
operators and the presented algorithm is explained with the help of the numerical example.
The reliability of the presented decision-making method is explored with the help of testing criteria
and by comparing the results of the example with several prevailing studies.

Keywords: probabilistic dual hesitant fuzzy sets; distance measures; aggregation operators;
consumer behavior; multi-criteria decision-making; maximum deviation method

1. Introduction

With growing advancements in economic, socio-cultural as well as technical aspects of the world,
uncertainties have started playing a dominant part in decision-making (DM) processes. The nature
of DM problems is becoming more and more complex and the data available for the evaluation of
these problems is increasingly having uncertain pieces of unprocessed information [1,2]. Such data
content leads to inaccurate results and increase the risks by many folds. To decrease the risks and to
reach the accurate results, decision-making has attained the attention of a large number of researchers.
In the complex decision-making systems, often large cost and computational efforts are required to
address the information, to evaluate it to form accurate results. In such situations, the major aim of the
decision makers remain to decrease the computational overheads and to reach the desired objective in
less space of time.

Time-to-time such DM techniques are framed which captures the uncertain information in an
efficient way and results are calculated in such a manner that they comply easily to the real-life
situations. From the crisp set theory, an analysis was shifted towards the fuzzy sets (FSs) and further
Atanassov [3] extended the FS theory given by Zadeh [4] to Intuitionistic FSs (IFSs) by acknowledging
the measures of disagreeness along with measures of agreeness. Afterward, Atanassov and Gargov [5]
extended the IFS to the Interval-valued intuitionistic fuzzy sets (IVIFSs) which contain the degrees
of agreeness and disagreeness as interval values instead of single digits. As it is quite a common

Mathematics 2018, 6, 280; doi:10.3390/math6120280 www.mdpi.com/journal/mathematics1
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phenomenon that different attributes play a vital part during the selection of best alternative among
the available ones, so suitable aggregation operators to evaluate the data are to be chosen carefully
by the experts to address the nature of the DM problem. In these approaches, preferences are given
as falsity and truth membership values in the crisp or interval number respectively such that the
corresponding degrees altogether sum to be less than or equal to one. In above-stated environments,
various researchers have constructed their methodologies for solving the DM problems focussing on
information measures, aggregation operators etc. For instance, Xu [6] presented some weighted
averaging aggregation operators (AOs) for intuitionistic fuzzy numbers (IFNs). Wang et al. [7]
presented some AOs to aggregate various interval-valued intuitionistic fuzzy (IVIF) numbers (IVIFNs).
Garg [8,9] presented some improved interactive AOs for IFNs. Wang and Liu [10] gave interval-valued
intuitionistic fuzzy hybrid weighted AOs based on Einstein operations. Wang and Liu [11] presented
some hybrid weighted AOs using Einstein norm operations. Garg [12] presented a generalized AOs
using Einstein norm operations for Pythagorean fuzzy sets. Garg and Kumar [13] presented some
new similarity measures for IVIFNs based on the connection number of the set pair analysis theory.
However, apart from these, a comprehensive overview of the different approaches under the IFSs
and/or IVIFSs to solve MCDM problems are summarized in [14–24]. In the above theories, it is difficult
to capture cases where the preferences related to different objects are given in the form of the multiple
numbers of possible membership entities. To handle it, Torra [25] came up with the idea of hesitant
fuzzy sets (HFSs). Zhu et al. [26] enhanced it to the dual hesitant fuzzy sets (DHFSs) by assigning
equal importance to the possible non-membership values as that of possible membership values in the
HFSs. In the field of AOs, Xia and Xu [27] established different operators to aggregated their values.
Garg and Arora [28] presented some AOs under the dual hesitant fuzzy soft set environment and
applied them to solve the MCDM problems. Wei and Zhao [29] presented some induced hesitant AOs
for IVIFNs. Apart from these, some other kinds of the algorithms for solving the decision-making
problems are investigated by the authors [30–38] under the hesitant fuzzy environments.

Although, these approaches are able to capture the uncertainties in an efficient way, yet these
works are unable to model the situations in which the refusal of an expert in providing the decision
plays a dominant role. For example, suppose a panel of 6 experts is approached to select the
best candidate during the recruitment process and 2 of them refused to provide any decision.
While evaluating the informational data using the existing approaches, the number of decision
makers is considered to be 4 instead of 6 i.e., the refusal providing experts are completely ignored
and the decision is framed using the preferences given by the 4 decision-providing experts only.
This cause a significant loss of information and may lead to inadequate results. In order to address
such refusal-oriented cases, Zhu and Xu [39] corroborated probabilistic hesitant fuzzy sets (PHFSs).
Wu et al. [40] gave the notion of AOs on interval-valued PHFSs (IVPHFSs) whereas Zhang et al. [41]
worked on preference relations based on IVPHFSs and accessed the findings by applying to real life
decision scenarios. Hao et al. [42] corroborated the concept of PDHFSs. Later on, Li et al. [43] presented
the concept of dominance degrees and presents a DM approach based on the best-worst method
under the PHFFSs. Li and Wang [44] comprehensively expressed way to address their vague and
uncertain information. Lin and Xu [45] determined various probabilistic linguistic distance measures.
Apart from them, several researchers [46–52] have shown a keen interest in applying probabilistic
hesitant fuzzy set environments to different decision making approaches. Based on these existing
studies, the primary motivation of this paper is summarized as below:

(i) In the existing DHFSs, each and every membership value has equal probability. For instance,
suppose a person has to buy a commodity X, and he is confused that either he is 10% sure or
20% sure to buy it, and is uncertain about 30% or 40% in not buying it. Thus, under DHFS
environment, this information is captured as ({0.10, 0.20}, {0.30, 0.40}). Here, in dual hesitant
fuzzy set, each hesitant value is assumed to have probability 0.5. So, mentioning the same
probability value repeatedly is omitted in DHFSs. But, if the buyer is more confident about
10% agreeness than that of 20% i.e., suppose he is certain that his agreeness towards buying the
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commodity is 70% towards 10% and 30% towards 20% and similarly, for the non-membership
case, he is 60% favoring to the 40% rejection level and 40% favoring the 30% rejection level. Thus,
probabilistic dual hesitant fuzzy set is formulated as

({0.10
∣∣0.70, 0.20

∣∣0.30}, {0.30
∣∣0.4, 0.40

∣∣0.6}) .
So, to address such cases, in which even the hesitation has a some preference over the another
hesitant value, DHFS acts as an efficient tool to model them.

(ii) In the multi-expert DM problems, there may often arise conflicts in the preferences given
by different experts. These issues can easily be resolved using DHFSs. For example, let A
and B be two experts giving their opinion about buying a commodity X. Suppose opinion
provided by A is noted in form of DHFS as ({0.20, 0.30}, {0.10, 0.15}) and similarly B gave
opinion as ({0.20, 0.25}, {0.10}). Now, both the experts are providing different opinions
regarding the same commodity X. This is a common problem that arises in the real
life DM scenarios. To address this case, the information is combined into PDHFS by
analyzing the probabilities of decision given by both the experts. The PDHFS, thus formed,
is given as

({
0.20

∣∣ 0.5+0.5
2 , 0.30

∣∣ 0.5
2 , 0.25

∣∣ 0.5
2
}

,
{

0.10
∣∣ 0.5+1

2 , 0.15
∣∣ 0.5

2

})
. In simple form, it is({

0.20
∣∣0.5, 0.30

∣∣0.25, 0.25
∣∣0.25

}
,
{

0.10
∣∣0.75, 0.15

∣∣0.25
})

. Thus, this paper is motivated by the
need of capturing the more favorable values among the hesitant values.

(iii) The existing decision-making approaches based on DHFS environment are numerically more
complex and time consuming because of redundancy of the membership (non-membership)
values to match the length of one set to another. This manuscript is motivated by the fact of
reducing this data redundancy and making the DM approach more time-efficient.

Motivated by the aforementioned points regarding shortcomings in the existing approaches,
this paper focusses on eradicating them by developing a series of AOs. In order to do so, the supreme
objectives are listed below:

(i) To consider the PDHFS environment to capture the information.
(ii) To propose two novel distance measures on PDHFSs.

(iii) To capture some weighted information regarding the available information by solving a non-linear
mathematical model.

(iv) To develop average and geometric Einstein AOs based on the PDHFS environment.
(v) To propose a DM approach relying on the developed operators.

(vi) To check numerical applicability of the approach to a real-life case and to compare the outcomes
with prevailing approaches.

To achieve the first objective and to provide more degrees of freedom to practitioners, in this article,
we consider PDHFS environment to extract data. For achieving the second objective, two distance
measures are proposed; one in which the size of two PDHFSs should be the same whereas in the
second one the size may vary. For achieving the third objective, a non-linear model is solved to capture
the weighted information. For achieving fourth objective average and geometric Einstein AOs are
proposed. To attain the fifth and sixth objective a real-life based case-study is conducted and its
comparative analysis with the prevailing environments is carried out.

The rest of this paper is organized as follows: Section 2 highlights the basic definitions related
to DHFSs, PHFSs, and PDHFSs. Section 3 introduces the two distance measures for PDHFSs along
with their desirable properties. Section 4 introduces some Einstein operational laws on PDHFSs
with the investigation of some properties. In Section 5, some averaging and geometric weighted
Einstein AOs are proposed. A non-linear programming model for weights determination is elicited
in Section 6. In Section 7, an approach is constructed to address the DM problems and includes
the real-life marketing problem including a comparative analysis with the existing ones. Finally,
concluding remarks are given in Section 8.

3
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2. Preliminaries

This section emphasizes on basic definitions regarding the DHFSs, PHFSs and PDHFSs.

Definition 1. On the universal set X, Zhu et al. [26] defined dual hesitant fuzzy set as:

α = {(x, h(x), g(x)) | x ∈ X} (1)

where the sets h(x) and g(x) have values in [0, 1], which signifies possible membership and non-membership
degrees for x ∈ X. Also,

0 ≤ γ, η ≤ 1; 0 ≤ γ+ + η+ ≤ 1 (2)

in which, γ ∈ h(x); η ∈ g(x) ; γ+ ∈ h+(x) =
⋃

γ∈h(x)
max{γ} and η+ ∈ g+(x) =

⋃
η∈g(x)

max{η}

Definition 2. Let X be a reference set, then a probabilistic hesitant fuzzy set (PHFS) [39] P on X is given as

P = {〈x, hx(px)〉 | x ∈ X} (3)

Here, the set hx contains several values in [0, 1], and described by the probability distribution px.
Also, hx denotes membership degree of x in X. For simplicity, hx(px) is called a probabilistic hesitant fuzzy
element (PHFE), denoted as h(p) and is given as

h(p) = {γi(pi) | i = 1, 2, . . . , #H},

where pi satisfying
#H
∑

i=1
pi ≤ 1, is the probability of the possible value γi and #H is the number of all γi(pi).

Definition 3 ([49]). A probabilistic dual hesitant fuzzy set (PDHFS) on X is defined as:

α = {(x, h(x)|p(x), g(x)|q(x)) | x ∈ X} (4)

Here, the sets h(x)|p(x) and g(x)|q(x) contains possible elements where h(x) and g(x) represent the
hesitant fuzzy membership and non-membership degrees x ∈ X, respectively. Also, p(x) and q(x) are their
associated probabilistic information. Moreover,

0 ≤ γ, η ≤ 1; 0 ≤ γ+ + η+ ≤ 1 (5)

and

pi ∈ [0, 1], qj ∈ [0, 1],
#h

∑
i=1

pi = 1,
#g

∑
j=1

qj = 1 (6)

where γ ∈ h(x); η ∈ g(x); γ+ ∈ h+(x) =
⋃

γ∈h(x)
max{γ}; η+ ∈ g+(x) =

⋃
η∈g(x)

max{η}. The symbols #h

and #g are total values in (h(x)|p(x)) and (g(x)|q(x)) respectively. For sake of convenience, we shall denote it
as (h|p, g|q) and name it as probabilistic dual hesitant fuzzy element (PDHFE).

4
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Definition 4 ([49]). For a PDHFE α, defined over a universal set X, the complement is defined as

αc =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⋃
γ∈h,η∈g

({
η
∣∣ qη

}
,
{

γ
∣∣ pγ

})
, if g �= φ and h �= φ

⋃
γ∈h

({1 − γ} , {φ}) , if g = φ and h �= φ⋃
η∈g

({φ} , {1 − η}) , if h = φ and g �= φ

(7)

Definition 5 ([49]). Let α = (h|p, g|q) be a PDHFE, then the score function is defined as:

S(α) =
#h

∑
i=1

γi · pi −
#g

∑
j=1

ηj · qj (8)

where #h and #g are total numbers of elements in the components (h|p) and (g|q) respectively and γ ∈ h,
η ∈ g. For two PDHFEs α1 and α2, if S(α1) > S(α2), then the PDHFE α1 is regarded more superior to α2 and
is denoted as α1 � α2.

3. Proposed Distance Measures for PDHFEs

In this section, we propose some measures to calculate the distance between two PDHFEs
defined over a universal set X = {x1, x2, . . . , xn}. Throughout this paper, the main notations used are
listed below:

Notations Meaning Notations Meaning

n number of elements in the universal set NA number of elements in gA
hA hesitant membership values of set A pA probability for hesitant membership of set A
gA hesitant non-membership values of set A qA probability for hesitant non-membership of set A
MA number of elements in hA ω weight vector

Let A =
{(

x, hAi (x)
∣∣pAi (x), gAj(x)

∣∣qAj(x)
)
| x ∈ X

}
and B ={(

x, hBi′ (x)
∣∣pBi′ (x), gBj′ (x)

∣∣qBj′ (x)
)
| x ∈ X

}
where i = 1, 2, . . . , MA; j = 1, 2, . . . , NA; i′ =

1, 2, . . . , MB and j′ = 1, 2, . . . , NB, be two PDHFSs. Also, let M = max{MA, MB}, N = max{NA, NB},
be two real numbers, then for a real-number λ > 0, we define distance between A and B as:

d1(A, B) =

⎛⎜⎜⎜⎜⎝
n

∑
k=1

1
n

⎛⎜⎜⎜⎜⎝ 1
M + N

⎛⎜⎜⎜⎜⎝
M

∑
i=1

∣∣γAi (xk)pAi (xk)− γBi (xk)pBi (xk)
∣∣λ

+
N

∑
j=1

∣∣ηAj(xk)qAj(xk)− ηBj(xk)qBj(xk)
∣∣λ
⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠

1
λ

(9)

where γAi ∈ hAi , γBi ∈ hBi′ , ηAi ∈ gAi , ηBi ∈ gBi′ . It is noticeable that, there may arise the cases in
which MA �= MB as well as NA �= NB. Under such situations, for operating distance d1, the lengths
of these elements should be equal to each other. To achieve this, under the hesitant environments,
the experts repeat the least or the greatest values among all the hesitant values, in the smaller set,
till the length of both A and B becomes equal. In other words, if MA > MB, then repeat the smallest
value in set hB till MB becomes equal to MA and if MA < MB, then repeat the smallest value in set
hA till MA becomes equal to MB. Alike the smallest values, the largest values may also be repeated.
This choice of the smallest or largest value’s repetition entirely depends on decision-makers optimistic
or pessimistic approach. If the expert opts for the optimistic approach then he will expect the highest
membership values and thus will repeat the largest values. However, if the expert chooses to follow
the pessimistic approach, then he will expect the least favoring values and will go with repeating the
smallest values till the same length is achieved. But sometimes, length of A and B cannot be matched

5
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by increasing the numbers of elements, then in such cases, the distance d1 can be unappropriate for the
data evaluations. To handle such cases, we propose another distance measure d2 in which there is no
need to repeat the values for matching the length of the elements under consideration. This distance
d2 is calculated as:

d2(A, B) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
n

∑
k=1

1
n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∣∣∣∣∣ 1
MA

MA
∑

i=1

(
γAi (xk)pAi (xk)

)− 1
MB

MB
∑

i′=1

(
γB′

i
(xk)pB′

i
(xk)

)∣∣∣∣∣
λ

2

+

∣∣∣∣∣ 1
NA

NA
∑

j=1

(
ηAj(xk)qAj(xk)

)
− 1

NB

NB
∑

j′=1

(
ηB′

j
(xk)qB′

j
(xk)

)∣∣∣∣∣
λ

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
λ

(10)

The distance measures proposed above satisfy the axiomatic statement given below:

Theorem 1. Let A and B be two PDHFSs, then the distance measure d1 satisfies the following conditions:

(P1) 0 ≤ d1(A, B) ≤ 1;
(P2) d1(A, B) = d1(B, A);
(P3) d1(A, B) = 0 if A = B;
(P4) If A ⊆ B ⊆ C, then d1(A, B) ≤ d1(A, C) and d1(B, C) ≤ d1(A, C).

Proof. Let X = {x1, x2, . . . , xn} be the universal set and A, B be two PDHFSs defined over X. Then for
each xk, k = 1, 2, . . . , n, we have

(P1) Since, 0 ≤ γAi (xk) ≤ 1 and 0 ≤ pAi (xk) ≤ 1, for all i = 1, 2, . . . , M,
this implies that 0 ≤ γAi (xk)pAi (xk) ≤ 1 and 0 ≤ γBi (xk)pBi (xk) ≤ 1.

Thus, for any λ > 0, we have 0 ≤ ∣∣γAi (xk)pAi (xk)− γBi (xk)pBi (xk)
∣∣λ ≤ 1.

Further,
M
∑

i=1
0 ≤ M

∑
i=1

∣∣γAi (xk)pAi (xk)− γBi (xk)pBi (xk)
∣∣λ ≤ M

∑
i=1

1 which leads

to 0 ≤ M
∑

i=1

∣∣γAi (xk)pAi (xk)− γBi (xk)pBi (xk)
∣∣λ ≤ M. Similarly, for j = 1, 2, . . . , N,

0 ≤ N
∑

j=1

∣∣∣ηAj(xk)qAj(xk)− ηBj(xk)qBj(xk)
∣∣∣λ ≤ N which yields

0 ≤
M

∑
i=1

∣∣γAi (xk)pAi (xk)− γBi (xk)pBi (xk)
∣∣λ +

N

∑
j=1

∣∣∣ηAj(xk)qAj(xk)− ηBj(xk)qBj(xk)
∣∣∣λ ≤ M + N.

Thus,

0 ≤

⎛⎜⎜⎜⎜⎝
n

∑
k=1

1
n

⎛⎜⎜⎜⎜⎝ 1
M + N

⎛⎜⎜⎜⎜⎝
M

∑
i=1

∣∣γAi (xk)pAi (xk)− γBi (xk)pBi (xk)
∣∣λ

+
N

∑
j=1

∣∣ηAj(xk)qAj(xk)− ηBj(xk)qBj(xk)
∣∣λ
⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠

1
λ

≤ 1,

which clearly implies that 0 ≤ d1(A, B) ≤ 1.

6
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(P2) Since

d1(A, B) =

⎛⎜⎜⎜⎜⎝
n

∑
k=1

1
n

⎛⎜⎜⎜⎜⎝ 1
M + N

⎛⎜⎜⎜⎜⎝
M

∑
i=1

∣∣γAi (xk)pAi (xk)− γBi (xk)pBi (xk)
∣∣λ

+
N

∑
j=1

∣∣∣ηAj(xk)qAj(xk)− ηBj(xk)qBj(xk)
∣∣∣λ
⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠

1
λ

=

⎛⎜⎜⎜⎜⎝
n

∑
k=1

1
n

⎛⎜⎜⎜⎜⎝ 1
M + N

⎛⎜⎜⎜⎜⎝
M

∑
i=1

∣∣γBi (xk)pBi (xk)− γAi (xk)pAi (xk)
∣∣λ

+
N

∑
j=1

∣∣∣ηBj(xk)qBj(xk)− ηAj(xk)qAj(xk)
∣∣∣λ
⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠

1
λ

= d1(B, A)

Hence, the distance measure d1 possess a symmetric nature.
(P3) For A = B, we have γAi (xk) = γBi (xk) and pAi (xk) = pBi (xk). Also, ηAj(xk) = ηBj(xk)

and qAj(xk) = qBj(xk). Thus, we have
∣∣γAi (xk)pAi (xk)− γAi (xk)pAi (xk)

∣∣λ = 0 and∣∣∣ηAj(xk)qAj(xk)− ηAj(xk)qAj(xk)
∣∣∣λ = 0. Hence, it implies that

⎛⎜⎜⎜⎜⎝
n

∑
k=1

1
n

⎛⎜⎜⎜⎜⎝ 1
M + N

⎛⎜⎜⎜⎜⎝
M

∑
i=1

∣∣γAi (xk)pAi (xk)− γBi (xk)pBi (xk)
∣∣λ

+
N

∑
j=1

∣∣∣ηAj(xk)qAj(xk)− ηBj(xk)qBj(xk)
∣∣∣λ
⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠

1
λ

= 0

⇒ d1(A, B) = 0.

(P4) Since, A ⊆ B ⊆ C, then γAi (xk)pAi (xk) ≤ γBi (xk)pBi (xk) ≤ γCi (xk)pCi (xk)

and ηAj(xk)qAj(xk) ≥ ηBj(xk)qBj(xk) ≥ ηCj(xk)qCj(xk). Further,∣∣γAi (xk)pAi (xk)− γBi (xk)qBi (xk)
∣∣λ ≤ ∣∣γAi (xk)pAi (xk)− γCi (xk)qCi (xk)

∣∣λ and∣∣∣ηAj(xk)qAj(xk)− ηBj(xk)qBj(xk)
∣∣∣λ ≥

∣∣∣ηAj(xk)qAj(xk)− ηCj(xk)qCj(xk)
∣∣∣λ. Therefore,

d1(A, B) ≤ d1(A, C) and d1(B, C) ≤ d1(A, C).

Theorem 2. Let A and B be two PDHFSs, then the distance measure d2 satisfies the following conditions:

(P1) 0 ≤ d2(A, B) ≤ 1;
(P2) d2(A, B) = d2(B, A);
(P3) d2(A, B) = 0 if A = B;
(P4) If A ⊆ B ⊆ C, then d2(A, B) ≤ d2(A, C) and d2(B, C) ≤ d2(A, C).

Proof. The proof is similar to Theorem 1, so we omit it here.

4. Einstein Aggregation Operational laws for PDHFSs

In this section, we propose some operational laws and the investigate some of their properties
associated with PDHFEs.

Definition 6. Let α, α1 and α2 be three PDHFEs such that α =
(
h|ph, g|qg

)
, α1 =

(
h1|ph1 , g1|qg1

)
and

α2 =
(
h2|ph2 , g2|qg2

)
. Then, for λ > 0, we define the Einstein operational laws for them as follows:

7
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(i) α1 ⊕ α2 =
⋃

γ1∈h1,η1∈g1
γ2∈h2,η2∈g2

({
γ1 + γ2

1 + γ1γ2

∣∣∣ pγ1 pγ2

}
,
{

η1η2

1 + (1 − η1)(1 − η2)

∣∣∣ qη1 qη2

})
;

(ii) α1 ⊗ α2 =
⋃

γ1∈h1,η1∈g1
γ2∈h2,η2∈g2

({
γ1γ2

1 + (1 − γ1)(1 − γ2)

∣∣∣ pγ1 pγ2

}
,
{

η1 + η2

1 + η1η2

∣∣∣ qη1 qη2

})
;

(iii) λα =
⋃

γ∈h,
η∈g

({
(1+γ)λ−(1−γ)λ

(1+γ)λ+(1−γ)λ

∣∣ pγ

}
,
{

2(η)λ

(2−η)λ+(η)λ

∣∣ qη

})
;

(iv) αλ =
⋃

γ∈h,
η∈g

({
2(γ)λ

(2−γ)λ+(γ)λ

∣∣ pγ

}
,
{

(1+η)λ−(1−η)λ

(1+η)λ+(1−η)λ

∣∣ qη

})

Theorem 3. For real value λ > 0, the operational laws for PDHFEs given in Definition 6 that is α1 ⊕ α2 ,
α1 ⊗ α2, λα, and αλ are also PDHFEs.

Proof. For two PDHFEs α1 and α2, we have

α1 ⊕ α2 =
⋃

γ1∈h1,η1∈g1
γ2∈h2,η2∈g2

({
γ1 + γ2

1 + γ1γ2

∣∣∣ pγ1 pγ2

}
,
{

η1η2

1 + (1 − η1)(1 − η2)

∣∣∣ qη1 qη2

})

As 0 ≤ γ1, γ2, η1, η2 ≤ 1, thus it is evident that 0 ≤ γ1 + γ2 ≤ 2 and 1 ≤ 1 + γ1γ2 ≤ 2, thus it
follows that 0 ≤ γ1+γ2

1+γ1γ2
≤ 1. On the other hand, 0 ≤ η1η2 ≤ 1 and 1 ≤ 1 + (1 − η1)(1 − η2) ≤ 2. Thus,

0 ≤ η1η2
1+(1−η1)(1−η2)

≤ 1 Also, since 0 ≤ pγ1 , pγ2 , qη1 , qη2 ≤ 1, thus 0 ≤ pγ1 pγ2 ≤ 1 and 0 ≤ qη1 qη2 ≤ 1.

Similarly, α1 ⊗ α2 , λα and αλ are also PDHFEs.

Theorem 4. Let α1, α2, α3 be three PDHFEs and λ, λ1, λ2 > 0 be three real numbers, then following
results hold:

(i) α1 ⊕ α2 = α2 ⊕ α1;
(ii) α1 ⊗ α2 = α2 ⊗ α1;

(iii) (α1 ⊕ α2)⊕ α3 = α1 ⊕ (α2 ⊕ α3);
(iv) (α1 ⊗ α2)⊗ α3 = α1 ⊗ (α2 ⊗ α3);
(v) λ(α1 ⊕ α2) = λα1 ⊕ λα2;

(vi) αλ
1 ⊗ αλ

1 = (α1 ⊗ α2)
λ.

Proof. Let α1 =
(
h1|ph1 , g1|qg1

)
, α2 =

(
h2|ph2 , g2|qg2

)
, α3 =

(
h3|ph3 , g3|qg3

)
be three PDHFEs. Then,

we have

(i) For two PDHFEs α1 and α2, from Definition 6, we have

α1 ⊕ α2 =
⋃

γ1∈h1,η1∈g1
γ2∈h2,η2∈g2

({
γ1 + γ2

1 + γ1γ2

∣∣∣ pγ1 pγ2

}
,
{

η1η2

1 + (1 − η1)(1 − η2)

∣∣∣ qη1 qη2

})

=
⋃

γ1∈h1,η1∈g1
γ2∈h2,η2∈g2

({
γ2 + γ1

1 + γ2γ1

∣∣∣ pγ2 pγ1

}
,
{

η2η1

1 + (1 − η2)(1 − η1)

∣∣∣ qη2 qη1

})

= α2 ⊕ α1

(ii) Proof is obvious so we omit it here.

8
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(iii) For three PDHFEs α1, α2 and α3, consider L.H.S. i.e.,

(α1 ⊕ α2)⊕ α3

=

⎛⎜⎜⎝ ⋃
γ1∈h1,η1∈g1
γ2∈h2,η2∈g2

({
γ1 + γ2

1 + γ1γ2

∣∣∣ pγ1 pγ2

}
,
{

η1η2

1 + (1 − η1)(1 − η2)

∣∣∣ qη1 qη2

})⎞⎟⎟⎠⊕ α3

=
⋃

γ1∈h1,η1∈g1
γ2∈h2,η2∈g2
γ3∈h3,η3∈g3

({
γ1 + γ2 + γ3 + γ1γ2γ3

1 + γ1γ2 + γ2γ3 + γ3γ1

∣∣∣ pγ1 pγ2 pγ3

}
,
{

η1η2η3

4 − 2η1 − 2η2 − 2η3 + η1η2 + η2η3 + η1η3

∣∣∣ qη1 qη2 qη3

})
(11)

Also, on considering the R.H.S., we have

α1 ⊕ (α2 ⊕ α3)

= α1 ⊕

⎛⎜⎜⎝ ⋃
γ2∈h2,η2∈g2
γ3∈h3,η3∈g3

({
γ2 + γ3

1 + γ2γ3

∣∣∣ pγ2 pγ3

}
,
{

η2η3

1 + (1 − η2)(1 − η3)

∣∣∣ qη2 qη3

})⎞⎟⎟⎠

= ⋃
γ1∈h1,η1∈g1
γ2∈h2,η2∈g2
γ3∈h3,η3∈g3

({
γ1 + γ2 + γ3 + γ1γ2γ3

1 + γ1γ2 + γ2γ3 + γ3γ1

∣∣∣ pγ1 pγ2 pγ3

}
,
{

η1η2η3

4 − 2η1 − 2η2 − 2η3 + η1η2 + η2η3 + η1η3

∣∣∣ qη1 qη2 qη3

})
(12)

From Equations (11) and (12), the required result is obtained.
(iv) Proof is obvious so we omit it here.
(v) For λ > 0, consider

λ(α1 ⊕ α2) = λ

⎛⎜⎜⎝ ⋃
γ1∈h1,η1∈g1
γ2∈h2,η2∈g2

({
(1 + γ1)(1 + γ2)− (1 − γ1)(1 − γ2)

(1 + γ1)(1 + γ2) + (1 − γ1)(1 − γ2)

∣∣∣ pγ1 pγ2

}
,
{

2η1η2

(2 − η1)(2 − η2) + η1η2

∣∣∣ qη1 qη2

})⎞⎟⎟⎠

For sake of convenience, put (1 + γ1)(1 + γ2) = a ; (1 − γ1)(1 − γ2) = b; η1η2 = c and
(2 − η1)(2 − η2) = d. This implies

λ(α1 ⊕ α2) = λ
⋃

γ1∈h1,η1∈g1
γ2∈h2,η2∈g2

({
a − b
a + b

∣∣∣ pγ1 pγ2 ,
}{

2c
d + c

∣∣∣ qη1 qη2

})

=
⋃

γ1∈h1,η1∈g1
γ2∈h2,η2∈g2

⎛⎜⎜⎜⎝
⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

1 +
a − b
a + b

)λ

−
(

1 − a − b
a + b

)λ

(
1 +

a − b
a + b

)λ

+
(

1 − a − b
a + b

)λ

∣∣∣∣∣ pγ1 pγ2

⎫⎪⎪⎪⎬⎪⎪⎪⎭,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2
(

2c
d + c

)λ

(
2 − 2c

d + c

)λ

+
(

2c
d + c

)λ

∣∣∣∣∣ qη1 qη2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎞⎟⎟⎟⎠

=
⋃

γ1∈h1,η1∈g1
γ2∈h2,η2∈g2

⎛⎜⎜⎜⎝
⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

2a
a + b

)λ

−
(

2b
a + b

)λ

(
2a

a + b

)λ

+
(

2b
a + b

)λ

∣∣∣∣∣ pγ1 pγ2

⎫⎪⎪⎪⎬⎪⎪⎪⎭,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2
(

2c
d + c

)λ

(
2d

d + c

)λ

+
(

2a
d + c

)λ

∣∣∣∣∣ qη1 qη2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎞⎟⎟⎟⎠

=
⋃

γ1∈h1,η1∈g1
γ2∈h2,η2∈g2

({
(aλ − bλ)

(aλ + bλ)

∣∣∣ pγ1 pγ2

}
,
{

2cλ

dλ + cλ

∣∣∣ qη1 qη2

})

Re-substituting a, b, c and d we have

= ⋃
γ1∈h1,η1∈g1
γ2∈h2,η2∈g2

({
(1 + γ1)

λ (1 + γ2)
λ − (1 − γ1)

λ (1 − γ2)
λ

(1 + γ1)
λ (1 + γ2)

λ + (1 − γ1)
λ (1 − γ2)

λ

∣∣∣ pγ1 pγ2

}
,

{
2 (η1η2)

λ

(2 − η1)
λ (2 − η2)

λ + η1η2

∣∣∣ qη1 qη2

})

= λα1 ⊕ λα2

9
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(vi) For λ > 0,

(α1 ⊗ α2)
λ =

⎛⎜⎝ ⋃
γ1∈h1,η1∈g1
γ2∈h2,η2∈g2

({
2γ1γ2

1 + (1 − γ1)(1 − γ2)

∣∣∣ pγ1 pγ2

}
,
{
(1 + η1) (1 + η2)− (1 − η1) (1 − η2)

(1 + η1) (1 + η2) + (1 − η1) (1 − η2)

∣∣∣ qη1 qη2

})⎞⎟⎠
λ

For sake of convenience, put

γ1γ2 = a; (2 − γ1) (2 − γ2) = b; (1 + η1) (1 + η2) = c and (1 − η1) (1 − η2) = d

So we obtain

(α1 ⊗ α2)
λ =

⎛⎜⎜⎝ ⋃
γ1∈h1,η1∈g1
γ2∈h2,η2∈g2

({
2a

b + a
∣∣ pγ1 pγ2

}
,
{

c − d
c + d

∣∣∣ qη1 qη2

})⎞⎟⎟⎠
λ

=
⋃

γ1∈h1,η1∈g1
γ2∈h2,η2∈g2

⎛⎜⎜⎜⎝
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2
(

2a
b + a

)λ

(
2 − 2a

b + a

)λ

+
(

2a
b + a

)λ

∣∣∣∣∣ pγ1 pγ2

⎫⎪⎪⎪⎬⎪⎪⎪⎭,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

1 +
c − d
c + d

)λ

−
(

1 − c − d
c + d

)λ

(
1 +

c − d
c + d

)λ

+
(

1 − c − d
c + d

)λ

∣∣∣∣∣ qη1 qη2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎞⎟⎟⎟⎠

=
⋃

γ1∈h1,η1∈g1
γ2∈h2,η2∈g2

⎛⎜⎜⎜⎝
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2
(

2a
b + a

)λ

(
2b

b + a

)λ

+
(

2a
b + a

)λ

∣∣∣∣∣ pγ1γ2

⎫⎪⎪⎪⎬⎪⎪⎪⎭,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

2c
c + d

)λ

−
(

2d
c + d

)λ

(
2c

c + d

)λ

+
(

2d
c + d

)λ

∣∣∣∣∣ qη1 qη2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎞⎟⎟⎟⎠

=
⋃

γ1∈h1,η1∈g1
γ2∈h2,η2∈g2

({
2aλ

bλ + aλ

∣∣∣ pγ1 pγ2

}
,
{

cλ − dλ

cλ + dλ

∣∣∣ qη1 qη2

})

Re-substituting values of a, b, c and d we get

= ⋃
γ1∈h1,η1∈g1
γ2∈h2,η2∈g2

({
2 (γ1γ2)

λ

(2 − γ1)
λ (2 − γ2)

λ + (γ1γ2)
λ

∣∣∣ pγ1 pγ2

}
,

{
(1 + η1)

λ (1 + η2)
λ − (1 − η1)

λ (1 − η2)
λ

(1 + η1)
λ (1 + η2)

λ + (1 − η1)
λ (1 − η2)

λ

∣∣∣ qη1 qη2

})

= αλ
1 ⊗ αλ

2

Theorem 5. Let α =
(
h|ph, g|qg

)
α1 =

(
h1|ph1 , g1|qg1

)
, and α2 =

(
h2|ph2 , g2|qg2

)
be three PDHFEs,

and λ > 0 be a real number, then

(i) (αc)λ = λαc;
(ii) λ(αc) = (αλ)c;

(iii) αc
1 ⊕ αc

2 = (α1 ⊗ α2)
c;

(iv) αc
1 ⊗ αc

2 = (α1 ⊕ α2)
c.

Proof. (i) Let α =
(
h|ph, g|qg

)
be a PDHFE, then using Definition 4, the proof for the three possible

cases is given as:

(Case 1) If h �= φ; g �= φ then for a PDHFE α =
(
h|ph, g|qg

)
, from Equation (7) we have

(αc)λ =

⎛⎜⎝⋃
γ∈h
η∈g

({
η
∣∣∣ qη

}
,
{

γ
∣∣∣ pγ

})⎞⎟⎠
λ

=
⋃
γ∈h
η∈g

({
2(η)λ

(2 − η)λ + (η)λ

∣∣∣ qη ,
}

,
{
(1 + γ)λ − (1 − γ)λ

(1 + γ)λ + (1 − γ)λ

∣∣∣ pγ

})

10
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=

⎛⎜⎝⋃
γ∈h
η∈g

({
(1 + γ)λ − (1 − γ)λ

(1 + γ)λ + (1 − γ)λ

∣∣∣ pγ

}
,
{

2(η)λ

(2 − η)λ + (η)λ

∣∣∣ qη

})⎞⎟⎠
c

=

⎛⎜⎝λ

⎛⎜⎝⋃
γ∈p
η∈q

{
γ
∣∣∣ pγ

}
,
{

η
∣∣∣ qη

}⎞⎟⎠
⎞⎟⎠

c

= (λα)c

(Case 2) If g = φ, h �= φ, then

(αc)λ =

⎛⎝⋃
γ∈h

({
1 − γ

∣∣∣ pγ

}
, {φ}

)⎞⎠λ

=
⋃

γ∈h

({
2(1 − γ)λ

(2 − (1 − γ))λ + (1 − γ)λ

∣∣∣ pγ

}
, {φ}

)
= (λα)c

(Case 3) If h = φ, g = φ, then

(αc)λ =

(⋃
η∈g

(
{φ} ,

{
1 − η

∣∣∣ qη

}))λ

=
⋃

η∈g

(
{φ} ,

{
(1 + (1 − η))λ − (1 − (1 − η))λ

(1 + (1 − η))λ + (1 − (1 − η))λ

∣∣∣ qη

})

=

(⋃
η∈g

({
(2 − η)λ − (η)λ

(2 − η)λ + (η)λ

∣∣∣ qη

}
, {φ}

))c

=

(
λ
⋃

η∈g

{
(1 − η)

∣∣∣ qη

}
, {φ}

)c

= (λα)c

(ii) Similar to above, so it is omitted.
(iii) For two PDHFEs α1, α2 and a real number λ > 0, using Definitions 4 and 6 we have,

(Case 1) If h1 �= φ, g1 �= φ, h2 �= φ and g2 �= φ

αc
1 ⊕ αc

2

=
⋃

γ1∈h1
η1∈g1

({
η1

∣∣∣ qη1

}
,
{

γ1

∣∣∣ pγ1

})
⊕ ⋃

γ2∈h2
η2∈g2

({
η2

∣∣∣ qη2

}
,
{

γ2

∣∣∣ pγ2

})

=
⋃

γ1∈h1,η1∈g1
γ2∈h2,η2∈g2

({
η1 + η2

1 + η1η2

∣∣∣ qη1 qη2

}
,
{

γ1γ2

1 + (1 − γ1)(1 − γ2)

∣∣∣ pγ1 pγ2

})

=
⋃

γ1∈h1,η1∈g1
γ2∈h2,η2∈g2

({
γ1γ2

1 + (1 − γ1)(1 − γ2)

∣∣∣ pγ1 pγ2

}
,
{

η1 + η2

1 + η1η2

∣∣∣ qη1 qη2

})c

= (α1 ⊗ α2)
c

11
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(Case 2) If h1 �= φ, g1 = φ, h2 �= φ and g2 = φ, then

αc
1 ⊕ αc

2 =
⋃

γ1∈h1,
η1∈g1

({
1 − γ1

∣∣∣ pγ1

}
, {φ}

)
⊕ ⋃

γ2∈h2,
η2∈g2

({
1 − γ2

∣∣∣ pγ2

}
, {φ}

)

=
⋃

γ1∈h1,η1∈g1
γ2∈h2,η2∈g2

({
(1 − γ1) + (1 − γ2)

1 + (1 − γ1)(1 − γ2)

∣∣∣ pγ1 pγ2

}
, {φ}

)

= (α1 ⊗ α2)
c

(Case 3) If h1 = φ, g1 �= φ, h2 = φ, g2 �= φ

αc
1 ⊕ αc

2 =
⋃

γ1∈h1
η1∈g1

(
{φ} ,

{
1 − η1

∣∣∣ qη1

})
⊕ ⋃

γ2∈h2
η2∈g2

(
{φ} ,

{
1 − η2

∣∣∣ qη2

})

=
⋃

γ1∈h1,η1∈g1
γ2∈h2,η2∈g2

(
{φ} ,

{
(1 − η1)(1 − η2)

1 + η1η2

∣∣∣ qη1 qη2

})

= (α1 ⊗ α2)
c

(iv) Similar, so we omit it here.

5. Probabilistic Dual Hesitant Weighted Einstein AOs

In this section, we have defined some weighted aggregation operators by using aforementioned
laws for a collection of PDHFEs. For it, let Ω be the family of PDHFEs.

Definition 7. Let Ω be the family of PDHFEs αi (i = 1, 2, . . . , n) with the corresponding weights

ω = (ω1, ω2, . . . , ωn)T, such that ωi > 0 and
n
∑

i=1
ωi = 1. If PDHFWEA: Ωn → Ω, is a mapping defined by

PDHFWEA(α1, α2, . . . , αn) = ω1α1 ⊕ ω2α2 ⊕ . . . ⊕ ωnαn (13)

then, PDHFWEA is called probabilistic dual hesitant fuzzy weighted Einstein average operator.

Theorem 6. For a family of PDHFEs αi =
(

hi

∣∣∣ phi
, gi

∣∣∣ qgi

)
, (i = 1, 2, . . . , n), the aggregated value obtained

by using PDHFWEA operator is still a PDHFE and is given as

PDHFWEA(α1, α2, . . . , αn) =
⋃

γi∈hi
ηi∈gi

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎨⎪⎪⎩
n
∏
i=1

(1 + γi)
ωi − n

∏
i=1

(1 − γi)
ωi

n
∏
i=1

(1 + γi)ωi +
n
∏
i=1

(1 − γi)ωi

∣∣∣∣∣ n

∏
i=1

pγi

⎫⎪⎪⎬⎪⎪⎭ ,

⎧⎪⎪⎨⎪⎪⎩
2

n
∏
i=1

(ηi)
ωi

n
∏
i=1

(2 − ηi)ωi +
n
∏
i=1

(ηi)ωi

∣∣∣∣∣ n

∏
i=1

qηi

⎫⎪⎪⎬⎪⎪⎭

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(14)

where ω = (ω1, ω2, . . . , ωn)T is a weight vector such that
n
∑

i=1
ωi = 1 where 0 < ωi < 1.

Proof. We will prove the Equation (14) by following the steps mathematical induction on n, and the
proof is executed as below:

12
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(Step 1) For n = 2, we have α1 =
(

h1

∣∣∣ ph1 , g1

∣∣∣ qg1

)
and α2 =

(
h2

∣∣∣ ph2 , g2

∣∣∣ qg2

)
. Using operational

laws on PDHFEs as stated in Definition 6 we get

ω1α1 =
⋃

γ1∈h1,η1∈g1

⎛⎜⎜⎝
{
(1 + γ1)

ω1 − (1 − γ1)
ω1

(1 + γ1)ω1 + (1 − γ1)ω1

∣∣∣ pγ1

}
,{

2(η1)
ω1

(2 − η1)ω1 + (η1)ω1

∣∣∣ qη1

}
⎞⎟⎟⎠

and ω2α2 =
⋃

γ2∈h2,η2∈g2

⎛⎜⎜⎝
{
(1 + γ2)

ω2 − (1 − γ2)
ω2

(1 + γ2)ω2 + (1 − γ2)ω2

∣∣∣ pγ2

}
,{

2(η2)
ω2

(2 − η2)ω2 + (η2)ω2

∣∣∣ qη2

}
⎞⎟⎟⎠

Hence, by addition of PDHFEs, we get

PDHFWEA(α1, α2) = ω1α1 ⊕ ω2α2

=
⋃

γ1∈h1,η1∈g1
γ2∈h2,η2∈g2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2

∏
i=1

(1 + γi)
ωi − 2

∏
i=1

(1 − γi)
ωi

2
∏
i=1

(1 + γi)ωi +
2

∏
i=1

(1 − γi)ωi

∣∣∣∣∣ 2

∏
i=1

pγi

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2

2
∏
i=1

(ηi)
ωi

2
∏
i=1

(2 − ηi)ωi +
2

∏
i=1

(ηi)ωi

∣∣∣∣∣ 2

∏
i=1

qηi

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Thus, the result holds for n = 2.

(Step 2) If Equation (14) holds for n = k, then for n = k + 1, we have

PDHFWEA(α1, α2, . . . , αk+1) =

(
k⊕

i=1

ωiαi

)
⊕ (ωk+1αk+1)

=
⋃

γi∈hi ,ηi∈gi

⎛⎜⎜⎜⎝
⎧⎪⎪⎪⎨⎪⎪⎪⎩

k
∏
i=1

(1 + γi)
ωi − k

∏
i=1

(1 − γi)
ωi

k
∏
i=1

(1 + γi)ωi +
k

∏
i=1

(1 − γi)ωi

∣∣∣∣∣ k

∏
i=1

pγi

⎫⎪⎪⎪⎬⎪⎪⎪⎭,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2

k
∏
i=1

(ηi)
ωi

k
∏
i=1

(2 − ηi)ωi +
k

∏
i=1

(ηi)ωi

∣∣∣∣∣ k

∏
i=1

qηi

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎞⎟⎟⎟⎠

⊕ ⋃
γk+1∈hk+1,
ηk+1∈gk+1

({
(1 + γk+1)

ωk+1 − (1 − γk+1)
ωk+1

(1 + γk+1)
ωk+1 + (1 − γk+1)

ωk+1

∣∣∣ pγk+1 ,
}

,
{

2(ηk+1)
ωk+1

(2 − ηk+1)
ωk+1 + (ηk+1)

ωk+1

∣∣∣ qηk+1

})

=
⋃

γi∈hi ,ηi∈gi

⎛⎜⎜⎜⎝
⎧⎪⎪⎪⎨⎪⎪⎪⎩

k+1
∏
i=1

(1 + γi)
ωi − k+1

∏
i=1

(1 − γi)
ωi

k+1
∏
i=1

(1 + γi)ωi +
k+1
∏
i=1

(1 − γi)ωi

∣∣∣∣∣ k+1

∏
i=1

pγi

⎫⎪⎪⎪⎬⎪⎪⎪⎭,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2

k+1
∏
i=1

(ηi)
ωi

k+1
∏
i=1

(2 − ηi)ωi +
k+1
∏
i=1

(ηi)ωi

∣∣∣∣∣ k+1

∏
i=1

qηi

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎞⎟⎟⎟⎠

Thus,

PDHFWEA(α1, α2, . . . , αn)

=
⋃

γi∈hi
ηi∈gi

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎨⎪⎪⎩
n
∏
i=1

(1 + γi)
ωi − n

∏
i=1

(1 − γi)
ωi

n
∏
i=1

(1 + γi)ωi +
n
∏
i=1

(1 − γi)ωi

∣∣∣∣∣ n

∏
i=1

pγi

⎫⎪⎪⎬⎪⎪⎭ ,

⎧⎪⎪⎨⎪⎪⎩
2

n
∏
i=1

(ηi)
ωi

n
∏
i=1

(2 − ηi)ωi +
n
∏
i=1

(ηi)ωi

∣∣∣∣∣ n

∏
i=1

qηi

⎫⎪⎪⎬⎪⎪⎭

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

13
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which completes the proof.

Further, it is observed that the proposed PDHFWEA operator satisfies the properties of
boundedness and monotonicity, for a family of PDHFEs αi, (i = 1, 2, . . . , n) which can be demonstrated
as follows:

Property 1. (Boundedness) For αi =
(

hi

∣∣∣ phi
, gi

∣∣∣ qgi

)
where i = (1, 2, . . . , n),

let α− =
(

min(hi)
∣∣∣ min(phi

) , max(gi)
∣∣∣ max(qgi )

)
=
({

γmin

∣∣∣ pmin

}
,
{

ηmax

∣∣∣ qmax

})
and

α+ =
(

max(hi)
∣∣∣ max(phi

), min(gi)
∣∣∣ min(qgi )

)
=
({

γmax

∣∣∣ pmax

}
,
{

ηmin

∣∣∣ qmin

})
be PDHFEs,

then α− ≤ PDHFWEA(α1, α2, . . . , αn) ≤ α+.

Proof. Since each αi is a PDHFE, it is obvious that min(hi) ≤ hi ≤ max(hi), min(gi) ≤ gi ≤
max(gi), pmin ≤ pi ≤ pmax and qmin ≤ qi ≤ qmax. Let f (x) = 1−x

1+x , x ∈ [0, 1], f ′(x) = −2
(1+x)2 < 0

i.e., f (x) is a decreasing function. Since, γmin ≤ γi ≤ γmax, for all i, then f (γmax) ≤ f (γi) ≤ f (γmin)

i.e., 1−γmax
1+γmax

≤ 1−γi
1+γi

≤ 1−γmax
1+γmax

. Let ω = (ω1, ω2, . . . , ωn)T be the weight vector of (α1, α2, . . . , αn) such

that each ωi ∈ (0, 1) and
n
∑

i=1
ωi = 1, then we have

(
1 − γmax

1 + γmax

)ωi

≤
(

1 − γi
1 + γi

)ωi

≤
(

1 − γmin

1 + γmin

)ωi

Thus, we get

1 +
(

1 − γmax

1 + γmax

)
≤ 1 +

n

∏
i=1

(
1 − γi
1 + γi

)ωi

≤ 1 +
(

1 − γmin

1 + γmin

)

⇒ 2
1 + γmax

≤

n
∏
i=1

(1 + γi)
ωi +

n
∏
i=1

(1 − γi)
ωi

n
∏
i=1

(1 + γi)ωi

≤ 2
1 + γmin

⇒ γmin ≤
1 − n

∏
i=1

(
1−γi
1+γi

)ωi

1 +
n
∏
i=1

(
1−γi
1+γi

)ωi
≤ γmax

⇒ γmin ≤

n
∏
i=1

(1 + γi)
ωi − n

∏
i=1

(1 − γi)
ωi

n
∏
i=1

(1 + γi)ωi +
n
∏
i=1

(1 − γi)ωi

≤ γmax

Hence, we obtain the required result for membership values.
Now, for non-membership, let c(y) = 2−y

y , y ∈ (0, 1], then c′(y) < 0 i.e., c(y) is the decreasing

function. Since, ηmin ≤ ηi ≤ ηmax, then for all i, we have c(ηmax) ≤ c(ηi) ≤ c(ηmin), that is 2−ηmax
ηmax

≤
2−ηi

ηi
≤ 2−ηmin

ηmin
. Let ω = (ω1, ω2, . . . , ωn)T be the weight vector of (α1, α2, . . . , αn) such that ωi ∈ (0, 1)

and
n
∑

i=1
ωi = 1, then

14
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(
2 − ηmax

ηmax

)ωi

≤
(

2 − ηi
ηi

)ωi

≤
(

2 − ηmin

ηmin

)ωi

Thus,
n

∏
i=1

(
2 − ηmax

ηmax

)ωi

≤
n

∏
i=1

(
2 − ηi

ηi

)ωi

≤
n

∏
i=1

(
2 − ηmin

ηmin

)ωi

⇒ 2
ηmin

≤ 1

1 +
n
∏
i=1

(
2−ηi

ηi

)ωi
≤ 2

ηmax

⇒ ηmin ≤
2

n
∏
i=1

(ηi)
ωi

n
∏
i=1

(ηi)ωi +
n
∏
i=1

(2 − ηi)ωi

≤ ηmax

Hence, the required for non-membership values is obtained.
Now, for probabilities, since pmin ≤ pi ≤ pmax and qmin ≤ qi ≤ qmax this implies that

n
∏
i=1

pmin ≤ n
∏
i=1

pi ≤ n
∏
i=1

pmax and
n
∏
i=1

qmin ≤ n
∏
i=1

qi ≤ n
∏
i=1

qmax. According to the score function,

as defined in Definition 5, we obtain S(α−) ≤ S(α) ≤ S(α+). Hence, from all the above notions,
α− ≤ PDHFWEA(α1, α2, . . . , αn) ≤ α+.

Property 2. (Monotonicity) Let αi =
(

hi

∣∣∣ phi
, gi

∣∣∣ qgi

)
and α∗i =

(
h∗i
∣∣∣ ph∗i , g∗i

∣∣∣ qg∗i

)
, for all

i = (1, 2, . . . , n) be two families of PDHFEs where for each element in αi and α∗i , there are γαi ≤ γα∗i and
ηαi ≥ ηα∗i while the probabilities remain the same i.e., phi

= ph∗i , qgi = qg∗i then PDHFWEA(α1, α2, . . . , αn) ≤
PDHFWEA(α∗1, α∗2, . . . , α∗n).

Proof. Similar to that of Property 1, so we omit it here.

However, the PDHFWEA operator does not satisfy the idempotency. To illustrate this, we give
the following example:

Example 1. Let α1 = α2 =
({

0.3
∣∣0.25, 0.4

∣∣0.75
}

,
{

0.2
∣∣0.4, 0.3

∣∣0.6
})

be two PDHFEs and ω = (0.2, 0.8)T

be the weight vector, then for (i = 1, 2) the aggregated value using PDHFWEA operator is obtained as

PDHFWEA(α1, α2) =
⋃

γi∈hi
ηi∈gi

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2

∏
i=1

(1 + γi)
ωi − 2

∏
i=1

(1 − γi)
ωi

n
∏
i=1

(1 + γi)ωi +
2

∏
i=1

(1 − γi)ωi

∣∣∣∣∣ n

∏
i=1

pγi

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2

2
∏
i=1

(ηi)
ωi

2
∏
i=1

(2 − ηi)ωi +
2

∏
i=1

(ηi)ωi

∣∣∣∣∣ 2

∏
i=1

qηi

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎝
{

0.3
∣∣0.625, 0.3807

∣∣0.1875, 0.3206
∣∣0.1875, 0.4

∣∣0.5625
}

,{
0.2
∣∣0.16, 0.2772

∣∣0.24, 0.2173
∣∣0.24, 0.30

∣∣0.36
}

⎞⎟⎠
which clearly shows that PDHFWEA(α1, α1) �= α1. Thus, it does not satisfy idempotency.

Definition 8. Let αi (i = 1, 2, . . . , n) be the collection of PDHFEs, and PDHFOWEA: Ωn → Ω, if

PDHFOWEA(α1, α2, . . . , αn) = ω1ασ(1) ⊕ ω2ασ(2) ⊕ . . . ⊕ ωnασ(n) (15)
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where Ω is the set of PDHFEs and ω = (ω1, ω2, . . . , ωn)T is the weight vector of αi such that ωi > 0

and
n
∑

i=1
ωi = 1. (σ(1), σ(2), . . . , σ(n)) is a permutation of (1, 2, . . . , n) such that ασ(i−1) ≥ ασ(i) for

(i = 2, 3, . . . , n), then PDHFOWEA is called probabilistic dual hesitant fuzzy ordered weighted Einstein AO.

Theorem 7. For a family of PDHFEs αi =
(

hi

∣∣∣ phi
, gi

∣∣∣ qgi

)
, (i = 1, 2, . . . , n), the combined value obtained

by using PDHFOWEA operator is given as

PDHFOWEA(α1, α2, . . . , αn) =
⋃

γσ(i)∈hσ(i) ,
ησ(i)∈gσ(i)

⎛⎜⎜⎝
⎧⎪⎪⎨⎪⎪⎩

n
∏
i=1

(1 + γσ(i))
ωσ(i) − n

∏
i=1

(1 − γσ(i))
ωσ(i)

n
∏
i=1

(1 + γσ(i))
ωσ(i) +

n
∏
i=1

(1 − γσ(i))
ωσ(i)

∣∣∣∣∣ n

∏
i=1

pγσ(i)

⎫⎪⎪⎬⎪⎪⎭,

⎧⎪⎪⎨⎪⎪⎩
2

n
∏
i=1

(ησ(i))
ωσ(i)

n
∏
i=1

(2 − ησ(i))
ωσ(i) +

n
∏
i=1

(ησ(i))
ωσ(i)

∣∣∣∣∣ n

∏
i=1

qησ(i)

⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎠

(16)

where ω = (ω1, ω2, . . . , ωn)T is a weight vector such that
n
∑

i=1
ωi = 1 where 0 < ωi < 1.

Proof. Similar to Theorem 6.

Property 3. For all PDHFEs, αi =
(

hi

∣∣∣ phi
, gi

∣∣∣ qgi

)
where i = (1, 2, . . . , n) and for an associated weight

vector ω = (ω1, ω2, . . . , ωn)T, such that each ωi > 0 and
n
∑

i=1
ωi = 1, we have

(P1) (Boundedness) For αi =
(

hi

∣∣∣ phi
, gi

∣∣∣ qgi

)
where i = (1, 2, . . . , n), let α− =(

min(hi)
∣∣∣ min(phi

), max(gi)
∣∣∣ max(qgi )

)
=

({
γmin

∣∣∣ pmin

}
,
{

ηmax

∣∣∣ qmax

})
and α+ =(

max(hi)
∣∣∣ max(phi

), min(gi)
∣∣∣ min(qgi )

)
=

({
γmax

∣∣∣ pmax

}
,
{

ηmin

∣∣∣ qmin

})
be PDHFEs,

then α− ≤ PDHFOWEA(α1, α2, . . . , αn) ≤ α+.

(P2) (Monotonicity) Let αi =
(

hi

∣∣∣ phi
, gi

∣∣∣ qgi

)
and α∗i =

(
h∗i
∣∣∣ ph∗i , g∗i

∣∣∣ qg∗i

)
, for all i = (1, 2, . . . , n)

be two families of PDHFEs where for each element in αi and α∗i , there are γαi ≤ γα∗i and ηαi ≥ ηα∗i
while the probabilities remain the same i.e., phi

= ph∗i , qgi = qg∗i then PDHFOWEA(α1, α2, . . . , αn) ≤
PDHFOWEA(α∗1, α∗2, . . . , α∗n).

Proof. Similar to Properties 1 and 2.

Definition 9. Let Ω be a family of all PDHFEs αi (i = 1, 2, . . . , n) with the corresponding weights

ω = (ω1, ω2, . . . , ωn)T, such that ωi > 0 and
n
∑

i=1
ωi = 1. If PDHFWEG: Ωn → Ω, is a mapping defined by

PDHFWEG(α1, α2, . . . , αn) = α
ω1
1 ⊗ αω2

2 ⊗ . . . ⊗ αωn
n (17)

then, PDHFWEG is called probabilistic dual hesitant fuzzy weighted Einstein geometric operator.

Theorem 8. For a collection of PDHFEs αi =
(

hi

∣∣∣ phi
, gi

∣∣∣ qgi

)
, (i = 1, 2, . . . , n), the combined value

obtained by using PDHFWEG operator is still a PDHFE and is given as

16
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PDHFWEG(α1, α2, . . . , αn)

=
⋃

γi∈hi ,ηi∈gi

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎨⎪⎪⎩
2

n
∏
i=1

(γi)
ωi

n
∏
i=1

(2 − γi)ωi +
n
∏
i=1

(γi)ωi

∣∣∣∣∣ n

∏
i=1

pγi

⎫⎪⎪⎬⎪⎪⎭ ,

⎧⎪⎪⎨⎪⎪⎩
n
∏
i=1

(1 + ηi)
ωi − n

∏
i=1

(1 − ηi)
ωi

n
∏
i=1

(1 + ηi)ωi +
n
∏
i=1

(1 − ηi)ωi

∣∣∣∣∣ n

∏
i=1

qηi

⎫⎪⎪⎬⎪⎪⎭

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(18)

where ω = (ω1, ω2, . . . , ωn)T is a weight vector such that
n
∑

i=1
ωi = 1 where 0 < ωi < 1.

Proof. Same as Theorem 6.

Also, it has been seen that the PDHFWEG operator satisfies the properties of boundedness
and monotonicity.

Definition 10. Let αi (i = 1, 2, . . . , n) be the family of PDHFEs, and PDHFOWEG: Ωn → Ω, if

PDHFOWEG(α1, α2, . . . , αn) = αω1
σ(1) ⊕ αω2

σ(2) . . . ⊕ αωn
σ(n) (19)

where Ω is the set of PDHFEs and ω = (ω1, ω2, . . . , ωn)T is the weight vector of αi such that ωi > 0

and
n
∑

i=1
ωi = 1. (σ(1), σ(2), . . . , σ(n)) is a permutation of (1, 2, . . . , n) such that ασ(i−1) ≥ ασ(i) for

(i = 2, 3, . . . , n), then PDHFOWEG is called probabilistic dual hesitant fuzzy ordered weighted Einstein
geometric operator.

Theorem 9. For a family of PDHFEs αi =
(

hi

∣∣∣ phi
, gi

∣∣∣ qgi

)
, (i = 1, 2, . . . , n), the combined value obtained

by using PDHFOWEG operator is given as

PDHFOWEG(α1, α2, . . . , αn)

⋃
γσ(i)∈hσ(i) ,
ησ(i)∈gσ(i)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎨⎪⎪⎩
2

n
∏
i=1

(γσ(i))
ωσ(i)

n
∏
i=1

(2 − γσ(i))
ωσ(i) +

n
∏
i=1

(γσ(i))
ωσ(i)

∣∣∣∣∣ n

∏
i=1

pγσ(i)

⎫⎪⎪⎬⎪⎪⎭ ,

⎧⎪⎪⎨⎪⎪⎩
n
∏
i=1

(1 + ησ(i))
ωσ(i) − n

∏
i=1

(1 − ησ(i))
ωσ(i)

n
∏
i=1

(1 + ησ(i))
ωσ(i) +

n
∏
i=1

(1 − ησ(i))
ωσ(i)

∣∣∣∣∣ n

∏
i=1

qησ(i)

⎫⎪⎪⎬⎪⎪⎭

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(20)

where ω = (ω1, ω2, . . . , ωn)T is a weight vector such that
n
∑

i=1
ωi = 1 where 0 < ωi < 1.

Proof. Similar to Theorem 6.

Also, it has been seen that the PDHFOWEG operator satisfies the properties of boundedness
and monotonicity.

6. Maximum Deviation Method for Determination the Weights

The choice of weights directly affects the performance of weighted aggregation operators. For this
purpose, in this subsection, the effective maximizing deviation method is adapted to calculate the
weights in MCDM when the weights are unknown or partially known.
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Given the set of alternatives A = {A1, A2, . . . , Am} and the set of criteria C = {C1, C2, . . . , Ct}
which is being evaluated by a decision maker under the PDHFS environment over the universal set
X = {x1, x2, . . . , xn}. Assume that the rating values corresponding to each alternative is expressed in
terms of PDHFEs as

Ar =

{
(C1, sr1) , (C2, sr2) , . . . , (Ct, srv)

}
, (21)

where srv =
(
hrv(xk)

∣∣prv(xk), grv(xk)
∣∣qrv(xk)

)
, where r = 1, 2, . . . , m; v = 1, 2, . . . , t, k = 1, 2, . . . , n.

Assume that the importance of each criterion are given in the form of weights as (ω1, ω2, . . . , ωt)

respectively such that 0 < ωv ≤ 1 and
t

∑
v=1

ωv = 1. Now, by using the proposed distances d1 in

Equation (9) or d2 in (10) ; the deviation measure between the alternative Ar and all other alternatives
with respect to the criteria Cv is given as:

Drv(ω) =
m

∑
b=1

wvD(srv, sbv) r = 1, 2, . . . , m; v = 1, 2, . . . , t (22)

In accordance to the notion of maximizing deviation method, if the distance between the
alternatives is smaller for a criteria, then it should have smaller weight. This one shows that the
alternatives are homologous to the criterion. Contrarily, it should have larger weights. Let,

Dv(ω) =
m

∑
r=1

Drv(ω) =
m

∑
r=1

m

∑
b=1

wvD(srv, sbv), v = 1, 2, . . . , t (23)

Here Dv(ω) represents the distance of all the alternatives to the other alternatives under the
criteria Cv ∈ C. Moreover, ‘D’ represents either distance d1 or d2 as given in Equations (9) and (10)
respectively. Based on the concept of maximum deviation, we have to choose a weight vector ‘ω’ to
maximize all the deviations measures for the criteria. For this, we construct a non-linear programming
model as given below:⎧⎪⎪⎨⎪⎪⎩

max D(ω) =
t

∑
v=1

m
∑

r=1
Drv(ω) =

t
∑

v=1

m
∑

r=1

m
∑

b=1
D(srv, sbv)ωv

s.t. ωv > 0;
t

∑
v=1

ωv = 1; v = 1, 2, . . . , t
(24)

where ‘D’ can be either d1 or d2.
If D = d1, then for λ > 0, we have

D(ω) =
t

∑
v=1

m

∑
r=1

m

∑
b=1

ωv

⎛⎜⎜⎜⎜⎝
n

∑
k=1

1
n

⎛⎜⎜⎜⎜⎝ 1
M + N

⎛⎜⎜⎜⎜⎝
M

∑
i=1

∣∣(γAi (xk)pAi (xk))(xrv)− (γBi (xk)pBi (xk))(xbv)
∣∣λ

+
N

∑
j=1

∣∣∣(ηAj(xk)qAj(xk))(xrv)− (ηBj(xk)qBj(xk))(xbv)
∣∣∣λ
⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠

1
λ

;

and if D = d2, then

D(ω) =
t

∑
v=1

m
∑

r=1

m
∑

b=1
ωv

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
n
∑

k=1

1
n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∣∣∣∣∣ 1
MA

MA
∑

i=1

(
γAi (xk)pAi (xk)

)
(xrv)− 1

MB

MB
∑

i′=1

(
γBi′ (xk)pBi′ (xk)

)
(xbv)

∣∣∣∣∣
λ

2

+

∣∣∣∣∣ 1
NA

NA
∑

j=1

(
ηAj(xk)qAj(xk)

)
(xrv)− 1

NB

NB
∑

j′=1

(
ηBj′ (xk)qBj′ (xk)

)
(xbv)

∣∣∣∣∣
λ

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
λ
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If the information about criteria weights is completely unknown, then another programming
method can be established as:⎧⎪⎪⎨⎪⎪⎩

max D(ω) =
t

∑
v=1

m
∑

r=1
Drv(ω) =

t
∑

v=1

m
∑

r=1

m
∑

b=1
D(srv, sbv)ωv

s.t. ωv ≥ 0;
n
∑

v=1
ω2

v = 1; v = 1, 2, . . . , t
(25)

To solve this, a Lagrange’s function is constructed as

L(ω, ζ) =
t

∑
v=1

m

∑
r=1

m

∑
b=1

D(srv, sbv)ωv +
ζ

2

(
t

∑
v=1

ω2
v − 1

)
(26)

where ζ is the Lagrange’s parameter. Computing the partial derivatives of Lagrange’s function w.r.t
ωv as well as ζ and letting them equal to zero.⎧⎪⎪⎨⎪⎪⎩

∂L
∂ωv

=
m
∑

r=1

m
∑

b=1
D(srv, sbv) + ζωv = 0; v = 1, 2, . . . , t

∂L
∂ζ =

t
∑

v=1
ω2

v − 1 = 0
(27)

Solving, Equation (27) we can obtain,

ωv =

m
∑

r=1

m
∑

b=1
D(srv, sbv)√

t
∑

v=1

(
m
∑

r=1

m
∑

b=1
D(srv, sbv)

)2
; v = 1, 2, . . . , t (28)

Normalizing Equation (28) we get

ωv =

m
∑

r=1

m
∑

b=1
D(srv, sbv)

t
∑

v=1

m
∑

r=1

m
∑

b=1
D(srv, sbv)

(29)

In DM process, the data values for evaluation are available as DHFSs or PDHFSs which are
integrated to form the PDHFSs. In order to gather the information, the probability values are assigned
to each possible membership or non-membership value. An algorithm followed for this information
fusion is outlined in Algorithm 1.
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Algorithm 1 Aggregating probabilities for more than one Probabilistic fuzzy sets.

Input: α(1), α(2), . . . , α(d) where α(d) =
(

h(d)
∣∣p(d)) where d = 1, 2, . . . , D such that D is the total

number of elements to be fused together.
Output: α(out) =

(
h(out)

∣∣p(out)
)

1: Let u = 1
D , be the normalized unit.

2: List all the probabilistic membership values in a set and represent it as M = {ml
∣∣sl}, where

ml
∣∣sl = h(d)

∣∣p(d), ∀d = 1, 2, . . . , D, and l = 1, 2, . . . , #L, such that #L is the total number of
probabilistic membership values of all the considered elements.

3: Set i = 1
4: Set me = mi

5: f (l)
(mem)

=

{
1, if me = ml

0, if me �= ml

6: Set l = l + 1 and repeat 5, until l = #L
7: Set h(out) =

⋃
i

me

8: p(out) =

(
∑
l

(
f (l)
(mem)

· sl

)
· u
)

9: Set i = i + 1 and goto 4, until i = #L

To demonstrate the working of aforementioned algorithm, an example is given below.

Example 2. Let α(1) =
({0.1

∣∣0.1, 0.2
∣∣0.5, 0.3

∣∣0.4}, {0.5
∣∣1}); α(2) =

({0.2
∣∣0.4, 0.3

∣∣0.6} ,
{0.5

∣∣0.2, 0.6
∣∣0.8}) and α(3) =

({0.1
∣∣0.4, 0.2

∣∣0.4, 0.6
∣∣0.2}, {0.1

∣∣1}) be three

PDHFEs to be fused together. Since,
(

h(1), p(1)
)

=
({0.1

∣∣0.1, 0.2
∣∣0.5, 0.3

∣∣0.4}),(
h(2), p(2)

)
=
({0.2

∣∣0.4, 0.3
∣∣0.6}) and

(
h(3), p(3)

)
=

({0.1
∣∣0.4, 0.2

∣∣0.4, 0.6
∣∣0.2}), so we get

M = {0.1
∣∣0.1, 0.2

∣∣0.5, 0.3
∣∣0.4, 0.2

∣∣0.4, 0.3
∣∣0.6, 0.1

∣∣0.4, 0.2
∣∣0.4, 0.6

∣∣0.2} where #L = 8 and thus
l = 1, 2, . . . , 8. Clearly, here D = 3. Now, by following Algorithm 1 for both membership and
non-membership degrees, we obtained the final PDHFE as:

α(out) =
({0.1

∣∣0.1667, 0.2
∣∣0.4333, 0.3

∣∣0.3333, 0.6
∣∣0.066}, {0.5

∣∣0.4, 0.6
∣∣0.2666, 0.1

∣∣0.3333})
7. Decision Making Approach Using the Proposed Operators

In this section, a DM approach based on proposed AOs is given followed by a numerical example.

7.1. Approach Based on the Proposed Operators

Consider a set of m alternatives A = {A1, A2, . . . , Am} which are evaluated by the experts
classified under criteria information C = {C1, C2, . . . , Ct}. The ratings for each alternative in PDHFEs
are given as:

Ar =

{
(C1, αr1) , (C2, αr2) , . . . , (Ct, αrv)

}
, (30)

where αrv =
(
hrv
∣∣prv, grv

∣∣qrv
)
, where r = 1, 2, . . . , m; v = 1, 2, . . . , t. In order to get the best

alternative(s) for a problem, DM approach is summarized in the following steps by utilizing proposed
AOs as:

20



Mathematics 2018, 6, 280

Step 1: Construct decision matrices R(d) for ‘d’ number of decision makers in form of PDHFEs as:

R(d) =

C1 C2 . . . Ct⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠
A1

(
h(d)11

∣∣p(d)11 , g(d)11

∣∣q(d)11

) (
h(d)12

∣∣p(d)12 , g(d)12

∣∣q(d)12

)
. . .

(
h(d)1t

∣∣p(d)1t , g(d)1t

∣∣q(d)1t

)
A2

(
h(d)21

∣∣p(d)21 , g(d)21

∣∣q(d)21

) (
h(d)22

∣∣p(d)22 , g(d)22

∣∣q(d)22

)
. . .

(
h(d)2t

∣∣p(d)2t , g(d)2t

∣∣q(d)2t

)
...

...
...

. . .
...

Am

(
h(d)m1

∣∣p(d)m1 , g(d)m1

∣∣q(d)m1

) (
h(d)m2

∣∣p(d)m2 , g(d)m2

∣∣q(d)m2

)
. . .

(
h(d)mt

∣∣p(d)mt , g(d)mt
∣∣q(d)mt

)

where
(

h(d)rv
∣∣p(d)rv , g(d)rv

∣∣q(d)rv

)
=
({

γ
(d)
rv
∣∣p(d)rv

}
,
{

η
(d)
rv
∣∣q(d)rv

})
, such that r = 1, 2, . . . , m and

v = 1, 2, . . . , t .
Step 2: If d = 1, then

(
h(d)rv

∣∣p(d)rv , g(d)rv
∣∣q(d)rv

)
is equal to

(
hrv
∣∣prv, grv

∣∣qrv
)

, where
(
hrv
∣∣prv, grv

∣∣qrv
)

=
({

γrv
∣∣prv

}
,
{

ηrv
∣∣qrv
})

; such that r = 1, 2, . . . , m and v = 1, 2, . . . , t and goto Section 7.1
Step 3. If d ≥ 2, then a matrix is formed by combining the probabilities in accordance to the
Algorithm 1. The comprehensive matrix so obtained is given as:

R =

C1 C2 . . . Ct⎛⎜⎜⎝
⎞⎟⎟⎠

A1
(
h11
∣∣p11, g11

∣∣q11
) (

h12
∣∣p12, g12

∣∣q12
)

. . .
(
h1t
∣∣p1t, g1t

∣∣q1t
)

A2
(
h21
∣∣p21, g21

∣∣q21
) (

h22
∣∣p22, g22

∣∣q22
)

. . .
(
h2t
∣∣p2t, g2t

∣∣q2t
)

..
.

..
.

..
.

... ..
.

Am
(
hm1
∣∣pm1, gm1

∣∣qm1
) (

hm2
∣∣pm2, gm2

∣∣qm2
)

. . .
(
hmt
∣∣pmt, gmt

∣∣qmt
)

where
(
hrv
∣∣prv, grv

∣∣qrv
)
=
({

γrv
∣∣prv

}
,
{

ηrv
∣∣qrv
})

, where r = 1, 2, . . . , m and v = 1, 2, . . . , t.
Step 3: Choose the appropriate distance measure among d1 or d2 as given in Equations (9) and (10),

on the basis of need the expert. If the repeated values of the largest or smallest dual-hesitant
probabilistic values can be repeated according to the optimistic or pessimistic behavior of
the expert then choose measure d1 otherwise choose measure d2 and determine the weights
of different criteria using Equation (29).

Step 4: Compute the overall aggregated assessment ‘Qr’ of alternatives using PDHFWEA
or PDHFOWEA or PDHFWEG or PDHFOWEG operators as given below in
Equations (31)–(34) respectively.

Qr = PDHFWEA(αr1, αr2, . . . , αrv)

=
⋃

γrv∈hrv
ηrv∈grv

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎨⎪⎪⎩
t

∏
v=1

(1 + γrv)ωv − t
∏

v=1
(1 − γrv)ωv

t
∏

v=1
(1 + γrv)ωv +

t
∏

v=1
(1 − γrv)ωv

∣∣∣∣∣ t

∏
v=1

pγrv

⎫⎪⎪⎬⎪⎪⎭ ,

⎧⎪⎪⎨⎪⎪⎩
2

t
∏

v=1
(ηrv)ωv

t
∏

v=1
(2 − ηrv)ωv +

t
∏

v=1
(ηrv)ωv

∣∣∣∣∣ t

∏
v=1

qηrv

⎫⎪⎪⎬⎪⎪⎭

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(31)
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or

Qr = PDHFOWEA(αr1, αr2, . . . , αrv)

=
⋃

γσ(rv)∈hσ(rv)
ησ(rv)∈gσ(rv)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎨⎪⎪⎩
t

∏
v=1

(1 + γσ(rv))
ωσ(v) − t

∏
v=1

(1 − γσ(rv))
ωσ(v)

t
∏

v=1
(1 + γσ(rv))

ωσ(v) +
t

∏
v=1

(1 − γσ(rv))
ωσ(v)

∣∣∣∣∣ t

∏
v=1

pγσ(rv)

⎫⎪⎪⎬⎪⎪⎭ ,

⎧⎪⎪⎨⎪⎪⎩
2

t
∏

v=1
(ησ(rv))

ωσ(v)

t
∏

v=1
(2 − ησ(rv))

ωσ(v) +
t

∏
v=1

(ησ(rv))
ωσ(v)

∣∣∣∣∣ t

∏
v=1

qησ(rv)

⎫⎪⎪⎬⎪⎪⎭

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(32)

or

Qr = PDHFWEG(αr1, αr2, . . . , αrv)

=
⋃

γrv∈hrv
ηrv∈grv

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎨⎪⎪⎩
2

t
∏

v=1
(γrv)ωv

t
∏

v=1
(2 − γrv)ωv +

t
∏

v=1
(γrv)ωv

∣∣∣∣∣ t

∏
v=1

pγrv

⎫⎪⎪⎬⎪⎪⎭ ,

⎧⎪⎪⎨⎪⎪⎩
t

∏
v=1

(1 + ηrv)ωv − t
∏

v=1
(1 − ηrv)ωv

t
∏

v=1
(1 + ηrv)ωv +

t
∏

v=1
(1 − ηrv)ωv

∣∣∣∣∣ t

∏
v=1

qηrv

⎫⎪⎪⎬⎪⎪⎭

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(33)

or

Qr = PDHFOWEG(αr1, αr2, . . . , αrv)

=
⋃

γσ(rv)∈hσ(rv)
ησ(rv)∈gσ(rv)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎨⎪⎪⎩
2

t
∏

v=1
(γσ(rv))

ωσ(v)

t
∏

v=1
(2 − γσ(rv))

ωσ(v) +
t

∏
v=1

(γσ(rv))
ωσ(v)

∣∣∣∣∣ t

∏
v=1

pγσ(rv)

⎫⎪⎪⎬⎪⎪⎭ ,

⎧⎪⎪⎨⎪⎪⎩
t

∏
v=1

(1 + ησ(rv))
ωσ(v) − t

∏
v=1

(1 − ησ(rv))
ωσ(v)

t
∏

v=1
(1 + ησ(rv))

ωσ(v) +
t

∏
v=1

(1 − ησ(rv))
ωσ(v)

∣∣∣∣∣ t

∏
v=1

qησ(rv)

⎫⎪⎪⎬⎪⎪⎭ ,

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(34)

Step 5: Utilize Definition 5 to rank the overall aggregated values and select the most desirable
alternative(s).

7.2. Illustrative Example

An illustrative example (based on consumer’s buying behavior) for eliciting the numerical
applicability of our proposed approach is given below:

In a company’s production oriented decision-making processes, consumers or buyers play a vital
role. In order to increase sales and to be in good books of every customer, every production company
pays a great attention to customer’s buying behavior. This consumer behavior is the main driving force
behind the change of trends, need of updation in the products etc., to which the production company
must remain in contact to have a great mutual relationship with the customers and to maintain a strong
position in the competitive market environment.

Suppose a multi-national company wants to launch the new products on the basis of different
consumers in different countries. For that, they have delegated works to the company heads of three
different countries viz. India, Canada, and Australia. The company heads of these countries have to
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analyze the customer’s buying behavior and for that, they have information available in the form of
PDHFEs. Each expert (d = 1, 2, 3) from the three different countries accessed the available information
oriented to four company products Ai’s where (i = 1, 2, 3, 4) classified under four criteria determining
the customer’s buying behavior namely C1 : ‘Suitability to cultural environment’; C2 : ‘Global trend
accordance’; C3 : ‘Suitability to weather conditions’ ; C4 : ‘Good quality after-sale services’. The aim of
the company is to access the main criteria which affect the customer’s buying behavior so as to figure
out which product among Ai’s (i = 1, 2, 3, 4) has to be launched first. Following steps are adopted to
find the most suitable product for the first launch.

Step 1: The preference information corresponding to three decision-makers (d = 1; 2; 3) is given in
Tables 1–3.

Table 1. Preference values provided by decision-maker 1.

C1 C2 C3 C4

A1

({
0.2
∣∣0.4, 0.3

∣∣0.6
}{

0.4
∣∣1}

) ({
0.45

∣∣0.42, 0.60
∣∣0.58

}{
0.2
∣∣0.4, 0.3

∣∣0.6
} ) ({

0.9
∣∣1}{

0.1
∣∣1}
) ({

0.6
∣∣1}{

0.3
∣∣1}
)

A2

({
0.8
∣∣0.9, 0.6

∣∣0.1
}{

0.1
∣∣1}

) ({
0.30

∣∣1}{
0.6
∣∣1}

) ( {
0.6
∣∣1}{

0.2
∣∣0.5, 0.1

∣∣0.5
}) ({

0.2
∣∣1}{

0.8
∣∣1}
)

A3

({
0.05

∣∣0.7, 0.2
∣∣0.3
}{

0.5
∣∣1}

) ({
0.50

∣∣1}{
0.5
∣∣1}

) ({
0.8
∣∣0.6, 0.6

∣∣0.4
}{

0.15
∣∣1}

) ( {
0.12

∣∣1}{
0.7
∣∣0.9, 0.6

∣∣0.1
})

A4

( {
0.4
∣∣1}{

0.3
∣∣0.5, 0.2

∣∣0.5
}) ( {

0.50
∣∣1}{

0.2
∣∣0.3, 0.4

∣∣0.7
}) ({

0.3
∣∣1}{

0.65
∣∣1}
) ( {

0.5
∣∣1}{

0.2
∣∣0.3, 0.4

∣∣0.7
})

Table 2. Preference values provided by decision-maker 2.

C1 C2 C3 C4

A1

({
0.3
∣∣0.5, 0.5

∣∣0.5
}{

0.4
∣∣1}

) ({
0.20

∣∣1}{
0.7
∣∣0.1
}) ( {

0.2
∣∣1}{

0.4
∣∣0.8, 0.6

∣∣0.2
}) ({

0.6
∣∣0.7, 0.7

∣∣0.3
}{

0.25
∣∣1}

)

A2

({
0.2
∣∣1}{

0.7
∣∣1}
) ({

0.30
∣∣0.5, 0.2

∣∣0.5
}{

0.20
∣∣0.5, 0.15

∣∣0.5
}) ({

0.2
∣∣1}{

0.6
∣∣1}
) ({

0.2
∣∣0.3, 0.3

∣∣0.7
}{

0.6
∣∣1}

)

A3

({
0.4
∣∣0.4, 0.5

∣∣0.6
}{

0.5
∣∣1}

) ({
0.45

∣∣1}{
0.5
∣∣1}

) ({
0.8
∣∣0.4, 0.6

∣∣0.6
}{

0.2
∣∣0.7, 0.1

∣∣0.3
}) ( {

0.1
∣∣1}{

0.6
∣∣0.6, 0.8

∣∣0.4
})

A4

({
0.4
∣∣0.2, 0.5

∣∣0.8
}{

0.3
∣∣1}

) ({
0.2
∣∣0.4, 0.5

∣∣0.6
}{

0.4
∣∣0.2, 0.3

∣∣0.8
}) ({

0.4
∣∣0.1, 0.5

∣∣0.9
}{

0.3
∣∣1}

) ({
0.4
∣∣1}{

0.6
∣∣1}
)

Table 3. Preference values provided by decision-maker 3.

C1 C2 C3 C4

A1

({
0.75

∣∣1}{
0.2
∣∣1}

) ( {
0.50

∣∣1}{
0.2
∣∣0.5, 0.5

∣∣0.5
}) ({

0.3
∣∣1}{

0.6
∣∣1}
) ({

0.6
∣∣1}{

0.3
∣∣1}
)

A2

({
0.6
∣∣0.6, 0.8

∣∣0.4
}{

0.1
∣∣1}

) ({
0.20

∣∣1}{
0.7
∣∣1}

) ({
0.9
∣∣1}{

0.1
∣∣1}
) ( {

0.3
∣∣1}{

0.5
∣∣0.4, 0.6

∣∣0.6
})

A3

({
0.9
∣∣1}{

0.1
∣∣1}
) ( {

0.6
∣∣1}{

0.25
∣∣0.5, 0.1

∣∣0.5
}) ({

0.8
∣∣1}{

0.2
∣∣1}
) ({

0.2
∣∣1}{

0.8
∣∣1}
)

A4

({
0.3
∣∣0.7, 0.5

∣∣0.3
}{

0.4
∣∣0.6, 0.5

∣∣0.4
}) ({

0.1
∣∣1}{

0.8
∣∣1}
) ({

0.3
∣∣1}{

0.3
∣∣1}
) ({

0.35
∣∣1}{

0.6
∣∣1}

)
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Step 2: Since number of decision makers i.e., d ≥ 2, therefore, using Algorithm 1, the comprehensive
matrix obtained after integrating all the preferences given by the panel of experts is given in
Table 4.

Table 4. Comprehensive matrix.

C1 C2 C3 C4

A1

⎛⎜⎝
{

0.2
∣∣0.1333, 0.3

∣∣0.3667

0.5
∣∣0.1667, 0.75

∣∣0.3333

}
,{

0.4
∣∣0.6667, 0.2

∣∣0.3333
}

⎞⎟⎠
⎛⎜⎜⎜⎜⎝
{

0.45
∣∣0.14, 0.6

∣∣0.1934

0.2
∣∣0.3333, 0.5

∣∣0.3333

}
,{

0.2
∣∣0.3, 0.3

∣∣0.2

0.7
∣∣0.3333, 0.5

∣∣0.1667

}
⎞⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝
{

0.9
∣∣0.3333, 0.2

∣∣0.3333

0.3
∣∣0.3334

}
,{

0.1
∣∣0.3333, 0.4

∣∣0.2667

0.6
∣∣0.4

}
⎞⎟⎟⎟⎟⎠

({
0.6
∣∣0.9, 0.7

∣∣0.1
}

,{
0.3
∣∣0.6667, 0.25

∣∣0.3333
})

A2

⎛⎜⎝
{

0.8
∣∣0.4333, 0.6

∣∣0.2334

0.2
∣∣0.3333

}
,{

0.1
∣∣0.6667, 0.7

∣∣0.3333
}
⎞⎟⎠

⎛⎜⎝
{

0.30
∣∣0.75, 0.2

∣∣0.5
}

,{
0.6
∣∣0.3333, 0.2

∣∣0.1667

0.15
∣∣0.1667, 0.7

∣∣0.3333

}⎞⎟⎠
⎛⎜⎜⎜⎜⎝
{

0.6
∣∣0.3333, 0.2

∣∣0.3334

0.9
∣∣0.3333

}
,{

0.2
∣∣0.1667, 0.1

∣∣0.6667

0.6
∣∣0.1666

}
⎞⎟⎟⎟⎟⎠

⎛⎜⎝
{

0.2
∣∣0.4333, 0.3

∣∣0.5667
}

,{
0.8
∣∣0.3333, 0.6

∣∣0.3333

0.5
∣∣0.1333

}⎞⎟⎠

A3

⎛⎜⎜⎜⎜⎝
⎧⎪⎨⎪⎩

0.05
∣∣0.2334, 0.2

∣∣0.1

0.4
∣∣0.1333, 0.5

∣∣0.2

0.9
∣∣0.3333

⎫⎪⎬⎪⎭ ,

{
0.5
∣∣0.6667, 0.1

∣∣0.3333
}

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
{

0.5
∣∣0.3333, 0.45

∣∣0.3333

0.6
∣∣0.3334

}
,{

0.5
∣∣0.6667, 0.2

∣∣0.1667

0.1
∣∣0.1666

}
⎞⎟⎟⎟⎟⎠

⎛⎜⎝
{

0.8
∣∣0.6667, 0.6

∣∣0.3333
}

,{
0.15

∣∣0.3333, 0.2
∣∣0.5666

0.1
∣∣0.1

}⎞⎟⎠
⎛⎜⎜⎜⎜⎝
{

0.12
∣∣0.3333, 0.1

∣∣0.3333

0.2
∣∣0.3334

}
,{

0.7
∣∣0.3, 0.6

∣∣0.2333

0.8
∣∣0.4667

}
⎞⎟⎟⎟⎟⎠

A4

⎛⎜⎜⎜⎜⎝
{

0.4
∣∣0.4, 0.5

∣∣0.3667

0.3
∣∣0.2333

}
,{

0.3
∣∣0.5, 0.2

∣∣0.1667

0.4
∣∣0.2, 0.5

∣∣0.1333

}
⎞⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝
{

0.5
∣∣0.5333, 0.2

∣∣0.1333

0.1
∣∣0.3334

}
,{

0.2
∣∣0.1, 0.4

∣∣0.3

0.3
∣∣0.2667, 0.8

∣∣0.3333

}
⎞⎟⎟⎟⎟⎠

⎛⎜⎝
{

0.30
∣∣0.6667, 0.4

∣∣0.0333

0.5
∣∣0.3

}
,{

0.65
∣∣0.3333, 0.3

∣∣0.6667
}
⎞⎟⎠

⎛⎜⎜⎜⎜⎝
{

0.5
∣∣0.3333, 0.4

∣∣0.3333

0.35
∣∣0.3334

}
,{

0.2
∣∣0.1, 0.4

∣∣0.2334

0.6
∣∣0.6666

}
⎞⎟⎟⎟⎟⎠

Step 3: The experts chose to have an optimistic behavior towards the analysis and
thus utilizing distance d1 in Equation (29), the weights are determined as
ω = (0.4385, 0.1986, 0.1815, 0.1814)T .

Step 4: The aggregated values for each alternative Ai, i = (1, 2, 3, 4) by using PDHFWEA operator
as given in Equation (31) are :

Q1 =

⎛⎜⎜⎝
⎧⎪⎪⎨⎪⎪⎩

0.5213
∣∣0.0056, 0.5439

∣∣0.0006,

0.5546
∣∣0.0154, 0.5760

∣∣0.0017,

. . . . . . . . . . . . , 0.6347
∣∣0.0037

⎫⎪⎪⎬⎪⎪⎭ ,

⎧⎪⎪⎨⎪⎪⎩
0.2617

∣∣0.0444, 0.2531
∣∣0.0222,

0.1909
∣∣0.0222, 0.1844

∣∣0.0111,

. . . . . . . . . . . . , 0.3120
∣∣0.0074

⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎠

Q2 =

⎛⎜⎜⎝
⎧⎪⎪⎨⎪⎪⎩

0.6080
∣∣0.0469, 0.6201

∣∣0.0614,

0.4838
∣∣0.0253, 0.4985

∣∣0.0331,

. . . . . . . . . . . . , 0.4240
∣∣0.0157

⎫⎪⎪⎬⎪⎪⎭ ,

⎧⎪⎪⎨⎪⎪⎩
0.2531

∣∣0.0123, 0.2359
∣∣0.0198,

0.2266
∣∣0.0049, 0.5372

∣∣0.0062,

. . . . . . . . . . . . , 0.6427
∣∣0.0025

⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎠

Q3 =

⎛⎜⎜⎝
⎧⎪⎪⎨⎪⎪⎩

0.3384
∣∣0.0173, 0.3352

∣∣0.0173,

0.3515
∣∣0.0173, 0.3963

∣∣0.0074,

. . . . . . . . . . . . , 0.7379
∣∣0.0123

⎫⎪⎪⎬⎪⎪⎭ ,

⎧⎪⎪⎨⎪⎪⎩
0.4391

∣∣0.0444, 0.4251
∣∣0.0346,

0.4256
∣∣0.0691, 0.2226

∣∣0.0222,

. . . . . . . . . . . . , 0.1540
∣∣0.0026

⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎠

Q4 =

⎛⎜⎜⎝
⎧⎪⎪⎨⎪⎪⎩

0.4225
∣∣0.0474, 0.4036

∣∣0.0474,

0.3947
∣∣0.0474, 0.4667

∣∣0.0435,

. . . . . . . . . . . . , 0.3110
∣∣0.0078

⎫⎪⎪⎬⎪⎪⎭ ,

⎧⎪⎪⎨⎪⎪⎩
0.3016

∣∣0.0017, 0.3413
∣∣0.0039,

0.3698
∣∣0.0111, 0.2533

∣∣0.0006,

. . . . . . . . . . . . , 0.5259
∣∣0.0197

⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎠

Step 5: The score values are obtained as S(Q1) = 0.1810, S(Q2) = 0.1799, S(Q3) = 0.1739 and
S(Q4) = −0.0002

Step 6: Since, the ranking order is S(Q1) > S(Q2) > S(Q3) > S(Q4), thus the ranking is obtained
as A1 � A2 � A3 � A4.

Thus, it is clear that according to the experts product A1 should be launched first.
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However, on the other hand, if we utilize the PDHFWEG operator instead of PDHFWEA operator
to aggregate the different preferences, then the following steps of the proposed approach are executed
to reach the optimal alternative(s) as.

Step 1: Similar as above Section 7.2 Step 1.
Step 2: Similar as above Section 7.2 Step 2.
Step 3: Similar as above Section 7.2 Step 3.
Step 4: The aggregated values for each alternative Ai, i = (1, 2, 3, 4) by using PDHFWEG operator

as given in Equation (33) are :

Q1 =

⎛⎜⎜⎝
⎧⎪⎪⎨⎪⎪⎩

0.3959
∣∣0.0056, 0.4092

∣∣0.0006,

0.4642
∣∣0.0154, 0.4792

∣∣0.0017,

. . . . . . . . . . . . , 0.5908
∣∣0.0037

⎫⎪⎪⎬⎪⎪⎭ ,

⎧⎪⎪⎨⎪⎪⎩
0.2917

∣∣0.0444, 0.2827
∣∣0.0222,

0.2008
∣∣0.0222, 0.1913

∣∣0.0111,

. . . . . . . . . . . . , 0.3541
∣∣0.0074

⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎠

Q2 =

⎛⎜⎜⎝
⎧⎪⎪⎨⎪⎪⎩

0.5090
∣∣0.0469, 0.5415

∣∣0.0614,

0.4391
∣∣0.0253, 0.4685

∣∣0.0331,

. . . . . . . . . . . . , 0.2959
∣∣0.0157

⎫⎪⎪⎬⎪⎪⎭ ,

⎧⎪⎪⎨⎪⎪⎩
0.3950

∣∣0.0123, 0.3312
∣∣0.0198,

0.3078
∣∣0.0049, 0.6376

∣∣0.0062,

. . . . . . . . . . . . , 0.6516
∣∣0.0025

⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎠

Q3 =

⎛⎜⎜⎝
⎧⎪⎪⎨⎪⎪⎩

0.1667
∣∣0.0173, 0.1615

∣∣0.0173,

0.1828
∣∣0.0173, 0.2950

∣∣0.0074,

. . . . . . . . . . . . , 0.6164
∣∣0.0123

⎫⎪⎪⎬⎪⎪⎭ ,

⎧⎪⎪⎨⎪⎪⎩
0.4890

∣∣0.0444, 0.4646
∣∣0.0346,

0.5203
∣∣0.0691, 0.3256

∣∣0.0222,

. . . . . . . . . . . . , 0.2742
∣∣0.0026

⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎠

Q4 =

⎛⎜⎜⎝
⎧⎪⎪⎨⎪⎪⎩

0.4150
∣∣0.0474, 0.3981

∣∣0.0474,

0.3886
∣∣0.0474, 0.4580

∣∣0.0435,

. . . . . . . . . . . . , 0.2774
∣∣0.0078

⎫⎪⎪⎬⎪⎪⎭ ,

⎧⎪⎪⎨⎪⎪⎩
0.3395

∣∣0.0017, 0.3744
∣∣0.0039,

0.4157
∣∣0.0111, 0.2974

∣∣0.0006,

. . . . . . . . . . . . , 0.5656
∣∣0.0197

⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎠

Step 5: The score values are obtained as S(Q1) = 0.0937, S(Q2) = −0.0073, S(Q3) = −0.0202 and
S(Q4) = −0.0545

Step 6: Since, the ranking order is S(Q1) > S(Q3) > S(Q2) > S(Q4), thus the ranking is obtained
as A1 � A2 � A3 � A4.

The most desirable alternative is A1.
If we analyze the impact of the all the proposed operators along with the distance d1 and d2 onto

the final ranking order of the alternative, we perform an experiment where the steps of the proposed
algorithms are executed. The final score values of each alternative Ai (i = 1, 2, 3, 4), are obtained and
are summarized in Table 5. It is seen that utilizing different distance measures i.e., d1 and d2 do not
affect the best alternative A1 in most of the cases. Moreover, the score values obtained by the proposed
operators namely: PDHFWEA, PDHFWEG, and PDHFOWEG represent the same alternative A1 as the
best alternative which is to be launched first while the operator PDHOWEA represents the alternative
A3 as the best one. However, it can be seen that corresponding average PDHFWEA, PDHFOWEA
score values are greater than that of PDHFWEG, PDHFOWEG aggregation operators showing that the
average aggregation operators offer the decision maker more optimistic score-values as compared to
the geometric ones. Also, it can be seen that both the distances, despite providing, a huge variation in
numerical evaluation and data processing flexibility lead to the same result as A1 as the best choice in
most of the cases among the alternatives to be launched first.
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Table 5. Score values of proposed approach.

Operator A1 A2 A3 A4 Ranking

D
is

ta
nc

e
d 1 PDHFWEA 0.1810 0.1799 0.1739 −0.0002 A1 � A2 � A3 � A4

PDHFOWEA 0.2293 0.2239 0.2940 0.0013 A3 � A1 � A2 � A4
PDHFWEG 0.0937 −0.0073 −0.0202 −0.0545 A1 � A2 � A3 � A4

PDHFOWEG 0.1458 0.0283 0.0856 −0.0515 A1 � A3 � A2 � A4

D
is

ta
nc

e
d 2 PDHFWEA 0.1968 0.0754 0.1213 −0.0459 A1 � A3 � A2 � A4

PDHFOWEA 0.1684 0.0832 0.0971 −0.0472 A1 � A3 � A2 � A4
PDHFWEG 0.1006 −0.1189 −0.1072 −0.1056 A1 � A4 � A3 � A2

PDHFOWEG 0.0691 −0.1118 −0.1268 −0.1091 A1 � A4 � A2 � A3

7.3. Comparative Studies

In order to analyze the alignment of the proposed approach’s results with the existing theories
and to validate our proposed results, the score values corresponding to different operators are given
in Table 6. The operators in the considered existing theories are: probabilistic dual hesitant fuzzy
weighted average (PDHFWA) by Hao et al. [42], hesitant probabilistic fuzzy Einstein weighted average
and Einstein weighted geometric (HPFEWEA, HPFEWEG) by Park et al. [50] and hesitant probabilistic
fuzzy weighted average (HPFWA), hesitant probabilistic fuzzy weighted geometric (HPFWG),
hesitant probabilistic fuzzy ordered weighted average (HPFOWA) , hesitant probabilistic fuzzy ordered
weighted geometric (HPFOWG) aggregation operators by Xu and Zhou [48]. Noticeably, the approach
outlined by Hao et al. [42] by utilizing PDHFWA operator figures out A2 as the best alternative and the
least preferred alternative A4 remains same as that of our proposed approach. However, if we consider
only the probabilistic hesitant fuzzy information and ignores the non-membership probabilistic
hesitant values, then the best alternative starts fluctuating among A1 and A3 by varying the different
aggregation operators and the least preferred alternative remains same as A4, which coincides the
outcomes of our proposed approach. This variation is due to the negligence of the non-membership
values and their corresponding probabilities. Thus, the proposed approach is advantageous among
the traditional approaches because it remains firm on the same output ranking for different operators.
Moreover, the best alternative chosen by the proposed approach remains the same as that with that of
the existing approaches signifies that the proposed approach is the valid one.

Further, a deep insight into the comparison of our method with the existing ones is given by
comparing the characteristics of all the approaches with the proposed one. In Table 7, it can be seen
that the approaches put-forth by Hao et al. [42] and Xu and Zhou [48] considers multiple experts in
analysis process whereas Park et al. [50] does not consider the multi-expert problems. All the existing
approaches are the probabilistic approaches so they consider probabilities corresponding to their
considered membership or non-membership values. Moreover, it is analyzed that the method proposed
by [42] considers the non-membership probabilistic information but the rest two only considers the
hesitant values and their probabilities. In all the three existing approaches, the weights are not
derived by using any non-linear technique such as maximum deviation method for determination
of weights but the weights corresponding to two different distance measures are considered in the
proposed methodology.

In addition to above comparison studies, we elicit some characteristic comparison of our approach
with existing DM methods proposed in [42,48,50] which are tabulated in Table 7.

In Table 7, the symbol ‘�’ describes that the corresponding DM approach considers more than
one decision maker, handles probabilities, accounts for non-membership entities and has weights
derived by the non-linear approach, whereas the symbol ‘×’ means that the associated method
fails. The symbols tabulated in Table 7 depicts that the MCDM mentioned in [42] as well as [48]
consider multiple multiple decision-makers whereas the approach utilized by [50] consists of preference
evaluations through single expert. It is seen that all the three considered approaches considers the
probabilities along with their respective fuzzy environments whereas only [42] considers only the
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non-membership values along with the membership ones while the other two considers only the
membership value ratings. On the other hand, none of the existing approach among the specified ones,
adopt a non-linear weight determination technique. Thus, it is analyzed that our proposed approach
consists of all the four said characteristics and thus it deals with the real life situations, more efficiently
as compared to the existing approaches [42,48,50].

Table 6. Comparison of overall rating values and ranking order of alternatives.

Existing Approaches Operators
Score Values

A1 A2 A3 A4 Ranking

Hao et al. [42] PDHFWA 0.1985 0.2135 0.2061 0.0098 A2 � A3 � A1 � A4

Park et al. [50] HPFEWA 0.5131 0.4915 0.5243 0.3917 A3 � A1 � A2 � A4
HPFEWG 0.4569 0.4094 0.4056 0.3723 A1 � A2 � A3 � A4

Xu and Zhou [48]

HPFWA 0.5253 0.5091 0.5445 0.3953 A3 � A1 � A2 � A4
HPFWG 0.4457 0.3937 0.3837 0.3685 A1 � A2 � A3 � A4

HPFOWA 0.5585 0.5215 0.6078 0.3957 A3 � A1 � A2 � A4
HPFOWG 0.4826 0.3998 0.4385 0.3699 A1 � A3 � A2 � A4

Table 7. Characteristic comparison of the proposed approach with different methods.

Methods
Whether Consider More Whether Considers Whether Considers Weights Derived By

Than One Decision Maker Probabilities Non-Membership Non-Linear Approach

Hao et al. [42] � � � ×
Park et al. [50] × � × ×

Xu and Zhou [48] � � × ×
Our proposed approach � � � �

8. Conclusions

In this manuscript, we have utilized the concept of PDHFS to handle the uncertainty in the data
so as to capture the information with some more degree of freedom. For it, we have defined some new
distance measures based on the size of two PDHFSs. Further, by focussing on the advantages of the
aggregation operators into the decision-making process, we propose some series of weighted averaging
and geometric aggregation operators by using Einstein norm operations. The major advantages of the
proposed operators are that it considers the probability information to each dual hesitant membership
degrees which give more information and help for the decision maker to take a decision more clearly.
Further, since the decision makers are more sensitive to the loss and their bounded rationality, so there
is a need for the probabilistic information into the analysis to solve the related MCDM problems.
Also, its prominent characteristic is that it can consider the decision makers psychological behavior.
The primary contribution of this paper is summarized as follows:

(1) To introduce the two new distance measures between the pairs of the PDFHEs and explore their
properties. Further, some basic operational laws for this proposed structure are discussed and
explore the various relationships among them using Einstein norm operations.

(2) To obtain the optimal selection in the group decision making (GDM) under the probabilistic dual
hesitant fuzzy environment, we have proposed a maximum deviation method (MDM) algorithm
and developed several weighted aggregation operators. In this case, the MDM method has been
used to determine the optimal weight of each criterion.

(3) Four new aggregation operators, namely, the PDHFWEA, PDHFOWEA, PDHFWEG,
and PDHFOWEG operators have been developed to aggregate the PDHFE information.
In addition to it, on a comprehensive scrutiny of DHFSs and PDHFSs, we have devised an
algorithm to formulate PDHFSs from the given probabilistic fuzzy information. Based on the
decision maker preferences in order to optimize their desired goals, the person can choose the
required proposed distance measures and/or aggregation operators.
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(4) Finally, the presented group decision-making approach is explained with the help of numerical
example and an extensive comparative analysis has been conducted with the existing decision
making theories [42,48,50] to show the advantages of the proposed approach.

Thus, we can conclude that the proposed notion about the PDHFSs is widely used in the different
scenarios such as when a person provides the information about the fact that ‘how much he/she sure
about the uncertain information evaluated by him/her?’; in the situations, when the evaluators
have no knowledge of the importance of their decision as well the considered criteria. Thus,
the proposed concepts are efficaciously applicable to the situation under uncertainties and expected
to have wide applications in complex DM problems. In the future, there is a scope of extending the
proposed method to some different environment and its application in the various fields related to
decision-theory [53–63].
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Abstract: Urban transportation planning is important for a metropolitan city. Route selection, which is
among the decisions of urban transportation planning, is also important in terms of developing the
urban transportation. This study contains the route selection for the planned monorail transport
system that is a new system in Ankara. The most suitable monorail route was selected among the
determined eight alternative monorail routes. In this decision process, we used the Analytic Network
Process (ANP) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method,
which is one of the multi-criteria decision-making methods. Finally, we provided the most suitable
ranking and planning with the selection process for the development of urban transportation.

Keywords: Monorail; urban transportation planning; Analytic Network Process; Technique for Order
Preference by Similarity to Ideal Solution

1. Introduction

Transport systems are complex socio-technical systems that affect the social, economic,
and environmental dimensions of a community [1]. In this context, transport planning is typically
a decision-making process that based on rationality, aimed at defining and implementing transport
system operations [2]. Transportation planning is now a fundamental support to a rational and
sustainable development of the territorial system due to the increase of environmental issues and
constraints, the worldwide financial crisis, and the numerous interactions of the transportation system
with the social and economic contexts [3]. Strategic planning involves decisions on long-term nearly
10–20 years, capital investment programs for the realization of new infrastructures such as roads,
railways, and ports, and the acquisition of vehicles and technologies [4]. So, the route selection problem
is important in the metropolitan city for urban transportation planning processes, involving decisions
on a medium- or long-term basis.

On the other hand, transportation development plays an essential role in a society’s economy and
has long-lasting effects on the financial, social, and political life of individuals and the community. It is
essential to develop a transportation network that best suits the public’s needs, to build a contemporary
city [5]. Public transportation is one of the most important systems in transportation, especially in
metropolis cities. So, evaluation of public transportation systems is a strategic decision-making
problem for urban area [6]. At the same time, public transport is an essential element of urban life
since it reduces car traffic and gives mobility to city residents. In addition, more use of public transport
reduces emissions such as carbon dioxide. This feature has become more important due to the Kyoto
Protocol came into effect [7]. It is important to consider the multifactorial evaluation of transportation
projects due to these reasons.

The assessment of projects, meant here as capital investments that create transport infrastructure,
supports the activity of decision makers. The assessment is deal with achieving social objectives, such as
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improvement of economic efficiency, reduction of the damage on the environment, improvement of
safety. In the case of public decision makers, the assessment is used as a tool to assist the
process of planning transport infrastructure. Multicriteria analysis are widely used due to the
simplicity it’s in taking into account nonmarketable effects and qualitative criteria for these aims [8].
Multicriteria decision-making methods (MCDM) are widely used in transport planning to include
in a comparative assessment of alternative projects their contributions to different evaluation
criteria [9]. MCDM has gained importance as an evaluation method for transport projects and
use of these methods increase day by day to evaluating transport projects such as passenger and
freight transport, infrastructure investments, location decisions, etc. [10,11]. MCDM methodologies
are rapidly growing in the various transportation problems [12–14]. At the same time, there are some
studies using multi-objective optimization about transportation subjects [15] and solving multicriteria
transportation-location problems [16]. Besides, these methods also have been applied in various area
such as supply chain management and supply chain performance measurement [17,18].

Route selection is one of the most important activity for the planning of the urban traffic that needs
MCDM process. Because constructing a new structure or installing new systems are big investments
and require large budget, there should be good planning. Briefly, route selection is a process in
which selection or ranking are carried out among the alternative routes. At the same time, the route
selection is named by some names such as “investment project selection” [19], “project selection” [20],
“transportation planning” [21], “infrastructure projects selection” [22] or “corridor selection” [23].
The aim of route selection is to provide maximum benefit for traffic and the developing urban
transportation. So, it will provide livable urban environment and city center. These investments
need big resources such as large budget. Planned investments should be addressed in a wide
range by the executives. Otherwise, it will be inevitable that the investment will become a waste.
Therefore, this process is dependent on lot of criteria such as social effect, environmental effect, cost,
demand level etc.

The monorail, which is one of the rail system investments, is also one of the major investment
projects. The monorail is one of the urban public transportation systems that acts on its own line.
This new system for Turkey is used in various countries such as Japan and China. But Turkey does not
have this technology yet. However, this system is planned for various cities in Turkey and studies on
this subject are still ongoing. Monorail has a lot of advantages such as to be independent of vehicle
traffic, to be safe, to be fast, to be comfortable, to use low area, to be environmentally friendly and to
have its own road among the other rail systems. Therefore, monorails have been becoming common
day by day in the urban transportation worldwide. In terms of environment, it is environmentally
friendly because of quietness and usage of energy. This system is alternative to the other rail systems
and public mass transportation vehicles due to all these reasons. But it also has some negative aspects,
such as high initial investment costs and the electric is not free. This system has high visual impact.
This situation can be developed with high construction cost. It is important to select this technology,
but the planning process is the most important of all. Therefore, selecting the best or the most suitable
route is needed as the first step. This process is difficult due to the effects of many factors.

Selecting a route and a new system are complex problems which involve and effect the
development of urban areas, use of land, future of the city or various other criteria and sub-criteria.
There are various transportation types used for urban transportation such as bus, metro, private vehicle,
taxi, subway, tramway and monorail etc. Monorail has been being applied in the European countries,
the USA, in Asia (especially Japan and Chine) and Middle East countries such as Saudi Arabia and
United Arab Emirates (UAE).

There are various studies about monorail in the literature. Kuwabara et al. [24] mentioned that
monorail is an effective vehicle for urban transportation due to the short construction time and low-cost
advantages. Wang [25] also talked about the short construction processes of monorail projects, the cost
and the quality of the transportation. Kato et al. [26] talked about the advantages of a saddle-type
monorail system and pointed out that in the coming years, driverless monorail systems would be used
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more and more and system costs would be even lower. With simulation application, Sadatugu et al. [27]
talked about alternative policies and scenarios for monorail. Sekitani et al. [28] mentioned a thrust-type
monorail system for the solution of rugged roads, traffic congestion and air pollution, and they
also described the technical characteristics of the line. Considering the rapid transportation of
monorail, Kennedy [29] defined and mentioned their types and features. Kimijima et al. [30] gave
information about the monorail by mentioning its active use in the place where the monorail was
installed. Ghafooripour et al. [31] examined the countries with metro and monorail applications for
developing countries and evaluated them in terms of cost-effectiveness. By evaluating its effectiveness
in terms of user satisfaction, Das et al. [32] offered suggestions for the monorail transportation systems.
Marathe and Hajian [33] pointed out that the monorail was ideal for the use in urban transportation
in terms of economy, security and environmental sensitivity. Parekh et al. [34] discussed the features
of the monorails which are popular in urban areas. Liu et al. [35] compared the conventional rail
transport systems with the monorail system and discussed the advantages and disadvantages of
monorail systems. Hussien [36] made a comparison between the monorail system and other public
transportation vehicles. Li et al. [37] made a technical feasibility of suspended monorail type by
analyzing the urban adaptation, capacity, specifications and construction costs. Timan [38] emphasized
that monorail systems would be a suitable solution for the traffic problems in metropolitan cities. In his
study, He [39] mentioned about the features of straddle-type monorail and noted the increase in its
popularity day by day.

In the literature, related to this subject, there are a lot of studies focusing on route planning,
route selection, local selection, station site selection, project selection and transportation planning.
These studies have been carried out in various area and they examined different vehicle types. At the
same time, authors of this research have conducted some studies related to this subject and they
have contributed the literature with those studies. Hamurcu and Eren [40] proposed the monorail
mass transportation for Turkey as first. Hamurcu and Eren [41] used multicriteria decision-making
methods for monorail route selection in Ankara. Hamurcu et al. [42] used analytic hierarchy process
(AHP) and 0-1 goal programming (GP) in the monorail project selection under the capacity constraints.
Gür et al. [20] carried out monorail project selection for different route alternatives by using AHP
and goal programming methods. Hamurcu and Eren [43], in their conference paper, used Analytic
Network Process (ANP) and Similarity to Ideal Solution (TOPSIS) in order to carry out the monorail
route selection in Ankara. Besides, selection of monorail technology [44], rail system projects selection
in Istanbul [45], prioritization of high-speed rail projects [46], transportation planning [21] and
decision-making for rail systems projects with MCDM and GP [47] are some of the studies of the
authors of this article. So, multicriteria decision-making methods are today widely used in transport
project studies commissioned by public bodies and city ad transportation planners.

Decision-making processes in transportation can be grouped different topic in terms of subject.
Some of them and study areas are route planning for tramway [48], high-speed rail [49,50], railway [51],
for highway [52]; route selection for light rail system [53–55], metro line [56,57], and bicycle [14];
location selection for metro [58]; station location selection for rail system network [59]; project selection
for rail systems network [11]; transportation planning for transport network [60–65].

These studies show that transportation planning decisions are very important processes for
planners and managers, are need analytic methods. Transportation planning is the process of
identifying and incorporating stakeholder concerns, needs and values in the transport decision-making
process. MCDM makes it possible to incorporate, account and quantify human opinion and preferences;
solve decision problems taking into account tangible and intangible aspects; provide a methodology to
calibrate the numeric scale for the measurement of quantitative as well as qualitative performances.
In this study, using the analytic network process and TOPSIS from MCDMs, the challenges faced
by planners in route design these decision processes were eliminated in this study. Use of ANP and
TOPSIS hybrid from multi-criteria decision-making methods which are effective in terms of analysis,
selection and ranking, are effective tools for quantitatively considering qualitative concepts.
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In this study, we focus on the selection of monorail route. Sections of this study are as follows:
In Section 2, research methodology is shown. In Section 3, the multi-criteria decision-making methods
used in this study are explained. In Section 4, application of the route selection in Ankara is presented.
Finally, the ranking of the best route selection is shown in Section 5.

2. Materials and Methods

Multicriteria decision analysis has seen frequently used the last several decades. Its application
in different areas has increased significantly, especially as new methods develop and as old methods
improve.it has allowed for more complex decision analysis methods with technology advancement
over the past couple of decades to be developed in addition to applying single MCDM methods to
real-world decisions. This process with hybrid multi-criteria decision-making methods and their
application has provided a whole new approach to decision analysis [66].

In this study, the research was carried out on eight monorail routes in Ankara, the capital city of
Turkey. This study involved two methods related to the multi-criteria decision-making. These methods
were ANP and TOPSIS which were used for the determination of the criteria and alternative routes
for urban public transportation in Ankara. Ankara hasn’t got a monorail technology for urban
transportation yet. Considered monorail projects were selected from expert opinions for urban
transport planning. In the implementation of this research, there were four main parts (Figure 1),
which were;

- Identification of the goal and criteria
- Use of the multi-criteria decision-making methods
- Determination of alternative eight route
- Selection of the best route and evaluation at the end of the selection

Figure 1. Research methodology.

This process was used in order to select the best monorail route. The alternative route
characteristics were taken from Ankara metropolitan municipality and the criteria were determined by
expert opinions and literature research.

The contribution of this study to the state-of-the-art can be summarized as follows: This study
presents new example application and proposes a comprehensive multicriteria decision-making model
for the route selection problem, which accounts for the criterion components reported in the literature.
The proposed work is one of the first few works to investigate application of ANP and TOPSIS for
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evaluation of monorail projects under various criteria. Besides, this new system for Ankara will be first.
Thus, selection of the best alternative route by using MCDM play an important role for sustainability
and public transportation in Ankara metropolitan area.

2.1. Analytic Network Process (ANP)

There ANP can improve communication and resolve conflicts, help diffusion of responsibility,
and assist decision makers in understanding other members’ viewpoints. These characteristics are
attractive when a good decision calls for actions that may not be well-liked, such as outsourcing.
The ANP can evaluate a wide range of criteria including tangible and intangible factors related to the
outcome. Because ANP allows for complex interactions and influences among the various components
of the decision problem, it can be seen as a better choice for studying more complex decision
problems [67]. ANP brings all the decision objectives, criteria, alternatives and actors (such as decision
makers, stakeholder, and influencers) into a single unified framework, and it facilitates interaction
and feedback of elements (alternatives, criteria and actors) within groups (inner dependence) and
between groups (outer dependence) [68]. Briefly, ANP is more concerned with network structure.
In terms of advantages, it allows for dependence and includes independence and has the ability to
prioritize groups or clusters of elements. Besides, it can support complex, networked decision-making
with various intangible criteria [69]. ANP is often utilized in project selection, product planning,
green supply chain management, and optimal scheduling problems and also transportation.

Most of the complex real-world decision problems have numerous inter-dependent elements
that can be captured and processed by utilizing the feedback and interaction capabilities of an ANP
model. In this regard, the ANP method was used directly or indirectly by Lee and Kim [70] in the
information system project, by Meade and Presley [71] for the selection of research and development
projects, by Ravi et al. [72] for the selection of the reverse logistics projects, by Büyüközkan and
Öztürkcan [73] in six sigma projects selection, by Wey and Wu [74] for the selection of projects
among transportation systems, by Begičević et al. [75] for the selection of projects at higher education
institutions, by El-Abbasy et al. [76] for the selection of highway projects and by Tuzkaya and
Yolver [77] for the selection of research and development projects.

To derive the global priorities of the criteria by using ANP, it is necessary first to carry out the
pairwise comparison of the criteria with respect to the node representing their category and to all other
criteria with which they interact or on which they have effect. Next, the principal right eigenvector of
each comparison matrix is computed to obtain the local priority of every criterion [78]. In the last step,
a super-matrix consisting of all the local-limiting matrices is formed for overall criteria prioritization
and alternative ranking. The weighted super matrix is taken to the limit for the results.

2.2. TOPSIS

This technique, developed by Hwang and Yoon [79], is based on the selection of the shortest
distance from the positive ideal solution and the longest distance alternative from the negative ideal
solution. The positive-ideal solution is the best possible combination of the criteria. The negative ideal
solution consists of the worst criterion values that can be reached. The only assumption in this method
is the assumption that each measure is either a monotone increasing or monotonously decreasing
one-way benefit. The steps of the TOPSIS method will be shown on the handling problem.

TOPSIS is an approach for identifying an alternative that is closest to the ideal solution and farthest
to the negative ideal solution [80]. It has numerous advantages such as a simple process and easy to
use and programmable. The number of steps remains the same regardless of the number of alternatives
and criteria [81]. This method has a wide range of application areas such as multi-criteria inventory
planning [82], freight transport selection [83], selection of the scholarship with the AHP [84], selection of
the service providers [85], performance evaluation [86], personnel selection [87], reverse logistics
supplier selection [88].

35



Mathematics 2019, 7, 16

In addition, ANP and TOPSIS methods have been used together in some studies. Ersoz and his
colleagues determined the weights of the criteria that were effective in the course selection of graduate
students by the ANP method and alternative courses were ranked by using the TOPSIS method [89].
ANP and TOPSIS methods have been used together to evaluate the supplier’s selection process [90]
and to rank strategies in the mining industry [91].

3. Using the ANP and TOPSIS Approach for Route Selection

Firstly, the criteria and alternatives were identified for selection. Then, the interdependence
between criteria, sub-criteria and alternatives was determined. The pairwise comparisons were carried
out between these criteria and sub-criteria by using Super Decision program. The pairwise comparisons
were made by expert opinions. By this way, weights of the criteria were found for TOPSIS method.
In the other step, TOPSIS method were applied by using ANP weights. Then the negative and positive
ideal solution and separation were calculated in the TOPSIS steps. At the end of the solution process,
the best ranking was created among the alternative routes. This process:

Step_1. Identify criteria and alternatives
Step_2. Determination interdependence relationship between criteria and sub-criteria. Then finding

the criteria weight with ANP.
Step_3. Using the ANP weights for TOPSIS method
Step_4. Calculate the negative-positive ideal solution and separation.
Step_5. The best ranking for among the alternative route

4. An Application in ANKARA

In this study, a route selection was applied for Ankara. Monorail is a new urban mass
transportation system. It will be the first example of this system in urban transportation in Turkey
with its implementation in Ankara. Ankara is a region covered with plains formed by confined the
Kızılırmak and Sakarya rivers in the north-western part of Central Anatolia. The population of Ankara
is 5,045,083 according to the results of the 2013 census using Address-Based Population Registration
System. The largest districts of Ankara in terms of population are Cankaya, Keciören, Yenimahalle,
Mamak, Sincan, Etimesgut, Altındag, Pursaklar and Polatli. The largest district in terms of surface
area is Polatli. The main determinant of Ankara’s socio-economic structure is the fact that the city
of Ankara is the administrative center of the country at the same time. For this reason, the public
service sector has an important place in Ankara’s economic life. Economical, technological and political
developments have initiated the population migration to Ankara from other settlements.

Due to the increasing population and migration, public transportation systems have to be used
for urban transportation in Ankara. Public transportation services are provided municipal buses,
private buses, minibuses, subways and suburban in this city. Efforts are continuing to establish the
monorail system in Ankara.

4.1. Determination of the Alternatives

Ankara is a big city and its population density is very high. For this reason, it has traffic problems.
Therefore, municipal administrators have been producing projects for the solution of traffic problems.
The first of their projects is urban mass transportation projects. Therefore, monorail technology, one of
the types of public transportation, was considered. And 8 alternative routes were identified within the
scope of this study.

Table 1 shows characteristic of the routes in terms of distance, number of stations, number of
vehicles, number of series, total number of vehicles and approximate total cost of the routes. In this
study eight monorail routes were used to determine the best route. These routes and their pictures are
shown in Figure 2.
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Table 1. Characteristic features of the routes.

Route
Distance

(m)
Number of

Stations
Number of

Vehicles
Number of

Series
Total Number
of Vehicles

Approximate
Total Cost ($)

Route_1 11140 11 4 20 80 412,180,000
Route_2 5020 5 4 10 40 185,740,000
Route_3 8076 8 4 15 60 298,812,000
Route_4 7763 7 4 15 60 287,231,000
Route_5 11596 10 4 22 88 429,052,000
Route_6 11426 10 4 22 88 422,762,000
Route_7 4069 4 4 8 32 150,553,000
Route_8 19168 18 4 36 144 709,216,000

    

Route_1: AOÇ (Tema 
Park), stanbul road, 

Opera, K z lay, 
Bakanl k, TBMM, 

Dikmen Street, Konya 
road 

Route_2: Akay 
Junction, 

Ku ulupark,  
Atakule, Y ld z 

Route_3: 
Güvenpark,TBMM, 

EGM, Dikmen Valley, 
Ho dere Street, 

Atakule, Turan Güne  
Boulevard, Panora 

AVM, Oran 

Route_4: K z lay-
Yukar  Ayranc -

Çankaya-Y ld z-Oran 

    
Route_5: Opera, Ulus, 
Çank r  Street, rfan 

Ba tu  Street, Turgut 
Özal Boulevard, 

Ayd nl kevler, Siteler, 
Do antepe 

Route_6: Ulus, 
Çank r  Street, 

D kap , Etlik Street, 
City Hospital Region, 

Etlik, Yükseltepe, 

Route_7: Ulus-Kolej-
Seyranba lar  

Route_8: Ulus-
Kurtulu -Türközü-

Natoyolu 

Figure 2. Alternative routes and their pictures in the map.

4.2. Determination of the Criteria

Criteria and sub-criteria were determined by taking the expert opinions and as a result of the literature
review. Some of the experts were personnel of Ankara Metropolitan Municipality and they were working
in urban planning and traffic planning sections. Other experts were academicians studying in the related
field. The determined criteria, sub-criteria and their explanations are shown in Table 2.

Economic: Refers to the use of monetary resources. This criterion deal with construction costs,
infrastructure investment, fuel costs. Social impact: This type of criteria refers to both benefits and
negative impacts on society because of decisions made regarding the transport system such as the access
to shopping-employment-resistant. In addition, the criterion deal with mobility, population density
and visual impact for urban area. Engineering: These criteria are related with issues technical of
transportation planning such as travel time, demand, accessibility, traffic capacity, ability to develop
and to improve, the integration of transport. Environmental impact: This set of criteria is associated
to the impacts on the natural environment and historical-cultural area. In this category, we find the
sensitive areas and use of land. The attribute of criteria K14 influences criteria K15, the attribute of
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criteria K9 influences criteria K10, K11, K12 and K13, and criteria K3 influences criteria K4, K5, K7, K1,
K2, K14, K15 and sub-criteria of engineering.

4.3. Determination of the Weights of the Criteria by ANP Technique

One of the most important parts is to determine the criteria and measuring indicators in
decision-making models. To be determined criteria and their interdependence for this purpose
that the important aspects and characteristics of alternatives being measured. Therefore, the design
for decision-making model has a direct impact on model efficiency. The criteria and sub-criteria
affecting on selection processes differ based on objectives, in this study, we used expert opinion
(academic and engineer planners) in order to identify criteria, with regard to municipality strategic
goals. For evaluation of the monorail projects, we need quantitative data on environmental impact,
engineering, economic and social impact main criteria. Since these projects are new and implemented
for the first time in Ankara context, there is very limited quantitative data available, thereby making
the evaluation process difficult. At the same time, these projects have yet been considered and have
in the process of being planned. To address this situation, a decision-making committee comprising
of subject matter experts (4 academic researchers from industrial engineering and civil engineering,
2 transportation experts as rail system planner and transportation planner from Ankara Metropolitan
Municipality) made qualitative ratings by using Saaty’s 1–9 importance scale for assessing the
alternatives and the criteria. In the TOPSIS method, the criterion values of the alternatives were
found by using ANP with this scale according to expert opinions.

In this research, to be able to identify the relationship and degree of interdependency among
the criteria, opinions of the experts from academia and from metropolitan municipality staff were
consulted. Those experts were working and studying in the urban planning and traffic planning area.
The relationship having interdependence among the four essential criteria and fifteen sub-criteria taken
in this research is shown in Figure 3. There is an interdependence relationship among these criteria in
the route selection problem. For example, population density criterion would result in an increase in
public mobility and increase the demand level for the selection of alternative routes. All the criteria are
linearly related to each other under the engineering criterion. And these criteria also related to the
other essential 3 criteria. Likewise, sensitive areas increase the construction cost and these areas affect
the current situation such as traffic capacity, ability to develop and to improve, the total travel time,
the integration of transport. Thus, there is an interdependency among these criteria and sub-criteria,
economy, environmental impact, social impact and engineering.

Comparing the structure of AHP hierarchy, there is the same level relationship among factors in
the solution of ANP. At the same time, “Super Decision” program was used in this study.

In order to create pairwise comparisons in the direction of determining the relationships between
criteria and alternatives and present them to the user, this program was used. In Table 3, the pairwise
comparison of sub-criteria under the engineering factor is shown. This process was carried out for
other criteria and sub-criteria. The interrelated criteria is made with ANP using 1–9 Saaty’scale to
compare two alterative with respect to attribute.
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Figure 3. Strategic decision framework.

Table 2. Criteria for the route selection.

Criteria Sub-Criteria Explanation

Economic
(K1) Construction cost Refers to the use of monetary resources such as implementation costs,

infrastructure investments, operational costs, maintenance costs,
infrastructure and others(K2) Expropriation

Social impact

(K3) Access to shopping and
residential areas

This type of criteria refers to the effects on the society because of decisions
made regarding the transportation system.

(K4) Access to employment
and education

(K5) Aesthetic and visual impact

(K6) Population density

(K7) Public mobility

(K8) Accessibility

Engineering

(K9) Ability to develop and
to improve

These criteria are related to the issues regarding technical requirements and
prudential situations of the city. They were not explicitly computed like

monetary functions and they are possible predictions about the city.

(K10) The total travel time

(K11) The integration of transport

(K12) Traffic capacity

(K13) Demand level

Environmental impact
(K14) Sensitive area This set of criteria is associated to the impact(s) on the natural environment

and sensitive areas such as cultural and historical or other.(K15) Land structure

This decision process is done for every pair of among the each other as shown in Table 3. A basic
questionnaire has been prepared and feedback has been taken from academics and planner experts
to find out the relative importance of the selected criteria. The pairwise comparison for population
density is also shown in this table.

Table 3. Comparisons between population density and social impact.

Comparisons wrt “Population density” Node in “Social impact” Cluster

1 Access to employment and educ . . . 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 Access to shopping and res . . .
2 Access to employment and educ . . . 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 Accessibility
3 Access to employment and educ . . . 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 Public mobility
4 Access to shopping and residen . . . 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 Accessibility
5 Access to shopping and residen . . . 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 Public mobility
6 Accessibility 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 Public mobility
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Then, for each criterion, comparisons were carried out with each alternative. Prioritization of the
weight of the criteria is ranked in Table 4. In the table, weights of the criteria found with ANP are
seen. The criteria having the highest weight values are construction cost, sensitive area, land structure,
population density, and ability to develop and to improve, respectively.

Table 4. Weights of the criteria.

Name of the Criteria Grap Normalized 
by Cluster Limiting 

(K1) Construction cost   0.89436 0.06841 
(K2) Expropriation   0.10564 0.00808 

(K3) Access to shopping and residential areas   0.06914 0.02289 
(K4) Access to employment and education   0.15248 0.05056 

(K5) Aesthetic and visual impact   0.15663 0.05194 
(K6) Population density   0.3877 0.12855 

(K7) Public mobility   0.12976 0.04303 
(K8) Accessibility   0.10438 0.03462 

(K9) Ability to develop and to improve   0.37311 0.10872 
(K10) The total travel time   0.07499 0.02185 

(K11) The integration of transport   0.27847 0.08114 
(K12) Traffic capacity   0.04108 0.01197 
(K13) Demand level   0.23235 0.0677 
(K14) Sensitive area  0.53773 0.16162 
(K15) Land structure   0.46227 0.13894 

4.4. Ranking Monorail Route Alternatives by Using TOPSIS

The In this step, TOPSIS technique played role for ranking the routes. The weights were obtained
by the ANP technique using Equations (1) and (2). Table 5 shows the normalized weighted matrix by
using Equation (1).

Table 5. Normalized weighted matrix.

Alternatives K1 K2 K3 K4 . . . K12 K13 K14 K15

R1 0.014 0.184 0.224 0.426 . . . 0.031 0.331 0.26 0.042
R2 0.363 0.092 0.107 0.018 . . . 0.155 0.03 0.127 0.153
R3 0.037 0.148 0.216 0.056 . . . 0.144 0.11 0.132 0.141
R4 0.036 0.101 0.228 0.11 . . . 0.132 0.157 0.17 0.134
R5 0.109 0.139 0.072 0.059 . . . 0.119 0.071 0.066 0.139
R6 0.126 0.102 0.059 0.144 . . . 0.188 0.114 0.066 0.149
R7 0.252 0.121 0.042 0.114 . . . 0.091 0.046 0.068 0.155
R8 0.041 0.114 0.053 0.073 . . . 0.142 0.141 0.113 0.086

TOPSIS method was applied by using weights of the criteria that are results of the ANP method
in the ANP-TOPSIS combine model. The used standard decision matrix in TOPSIS is found at the end
of the comparisons of the alternatives with each criterion.

The weights of the evaluation criteria using ANP is shown in Table 6. In addition, the weighted
normalized decision matrix by TOPSIS is shown in Table 7. The vector normalization technique is
used for computing the element (aij) of the normalized decision matrix, which is given as:

aij =
rij√

∑m
i=1 rij

(1)
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The weighted normalized decision matrix can be calculated by multiplying each row (rij) of the
normalized decision matrix with its associated attribute weight ND. The weighted normalized value
vij is calculated as below:

Vij = ND ∗ rij where j = 1, 2, . . . , n; i = 1, 2, . . . , m. (2)

Table 6. The weights of the evaluation criteria using ANP.

Important Weight

Criteria
K1 K2 K3 K4 K5 K6 K7 K8

0.8944 0.1056 0.0691 0.1525 0.1566 0.3877 0.1298 0.1044
K9 K10 K11 K12 K13 K14 K15

0.3731 0.75 0.2785 0.0411 0.2324 0.5377 0.4623

Table 7. The weighted normalized decision matrix.

Alternatives K1 K2 K3 K4 . . . K12 K13 K14 K15

R1 0.013 0.019 0.015 0.065 . . . 0.001 0.077 0.14 0.02
R2 0.325 0.01 0.007 0.003 . . . 0.006 0.007 0.068 0.071
R3 0.033 0.016 0.015 0.009 . . . 0.006 0.026 0.071 0.065
R4 0.032 0.011 0.016 0.017 . . . 0.005 0.036 0.091 0.062
R5 0.117 0.015 0.005 0.009 . . . 0.005 0.016 0.035 0.064
R6 0.113 0.011 0.004 0.022 . . . 0.008 0.026 0.035 0.069
R7 0.225 0.013 0.003 0.017 . . . 0.004 0.011 0.036 0.072
R8 0.037 0.012 0.004 0.011 . . . 0.006 0.033 0.061 0.04

Then, using Equations (3) and (4) positive and negative ideal solutions were obtained.
The obtained results are shown in Table 8. Compute the positive ideal solution (PIS/A+) and the
negative ideal solution (NIS/A−) for each criterion:

A+ =
{(

max Xij
∣∣j ∈ J∗

)
,
(
min Xij

∣∣j ∈ J−
)}

= {X+
1 , X+

2 , . . . ., X+
n } (3)

A− =
{(

min Xij
∣∣j ∈ J∗

)
,
(
max Xij

∣∣j ∈ J−
)}

= {X−
1 , X−

2 , . . . ., X−
n } (4)

where J* is the set of benefit attributes and J− is the set of cost attributes.

Table 8. The ideal solution and negative solution.

Criteria K1 K2 K3 K4 K5 K6 K7 K8

A+ 0.013 0.01 0.016 0.065 0.027 0.057 0.031 0.043
A− 0.325 0.019 0.003 0.003 0.013 0.035 0.007 0.002

Criteria K9 K10 K11 K12 K13 K14 K15

A+ 0.129 0.002 0.069 0.008 0.077 0.035 0.02
A− 0.015 0.025 0.011 0.001 0.007 0.14 0.072

The ideal solution which maximizes the benefit criteria (criteria of K3, K4, K5, K6, K7, K8,
K9, K11 and K12 in this study) and minimizes the cost criteria (criteria of K1, K2, K10, K14 and
K15 in this study), whereas the negative ideal solution criteria in this study maximizes the cost
criteria/attributes and minimizes the benefit criteria/attributes. The negative ideal solution consists of
the worst performance values whereas the best alternative is the one that is nearest to the ideal solution.

The next step of TOPSIS technique is to calculate the Euclidean distance of each alternative.
For the positive and negative ideals, the Euclidean distance of each alternative was calculated by using
Equations (5) and (6). The distance (di+, di−) of each weighted alternative i = 1, 2 . . . , m from the
PIS(d+i ) and the NIS(d−i ) is computed as follows:

d+i =
{
∑n

j=1 (Xij − X+
j )

2
}0.5

i = 1, 2, . . . , m; j = 1, 2, . . . , n (5)
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d−i =
{
∑n

j=1 (Xij − X−
j )

2
}0.5

i = 1, 2, . . . , m; j = 1, 2, . . . , n (6)

In the final stage, relative closeness of suppliers to ideal solution was obtained by using
Equation (7) and the results were ranked in terms of relative approximately descending order of
routes. Table 9 presents the ranking of alternative routes based on combination of ANP and TOPSIS
techniques. The closeness coefficient CL+

i represents the distances to the positive ideal solution (A+)
and the negative ideal solution (A−) simultaneously. The closeness coefficient of each alternative is
calculated as:

CL+
i =

d−i(
d+i + d−i

) , 0 ≤ CL+
i ≤ 1, i = 1, 2, . . . .., m (7)

Table 9. Final ranking in two-phase ANP-TOPSIS approaches.

Route A+ A− Ci(S-/S-+S*) Ranking

R1 0.1061 0.3585 0.7716 1
R2 0.3476 0.0897 0.2052 8
R3 0.1438 0.305 0.6796 4
R4 0.1366 0.3035 0.6897 3
R5 0.1885 0.2353 0.5553 6
R6 0.1744 0.2404 0.5795 5
R7 0.2713 0.1454 0.349 7
R8 0.1302 0.3059 0.7014 2

As it is shown in Table 9, route R1 can give the best score among all alternative routes.
The order of alternative monorail routes according to the obtained closeness coefficients is
R1 > R8 > R4 > R3 > R6 > R5 > R7 > R2. According to this ranking, the best monorail route is
"Route_1(R1): AOÇ (Tema Park), İstanbul road, Opera, Kızılay" which has the highest closeness
coefficient. The results are also shown graphically in Figure 4.

 

Figure 4. Alternatives’ rank.

In the study, the criteria with the highest importance levels are sensitive areas, land structure,
population density, ability to expand and develop, and construction cost. As a result, this line,
which was selected first, became the foreground in terms of being the longest route and having
high population.

5. Results

Route selection and evaluation are very important in terms of the success of metropolitan
municipality and urban planning. The objective of this paper is to present an integrated different
approach for effective route decisions and determination of the suitable route. Therefore, an integrated
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approach of ANP- TOPSIS is proposed in order to select the best route and define the relation among
the criteria used to select the best route. Urban transportation planning is an important decision
for planners and it is the most important activity for managers. Therefore, there are a lot of criteria
effecting this selection process. All this criterion should be evaluated with various dimensions.
In this study, for 8 route alternatives, four criteria and 15 sub-criteria were evaluated, and the model
solution was established with multi-criteria decision-making. Finally, the most suitable routes were
ranked. Results show that application of the ANP-TOPSIS methods together provide some important
advantages such as the establishing relationship, evaluation of the various factors at the same time
and use of tangible and intangible criteria.

In other studies, for the transportation planners and other public institutes in other decision
process, the ANP-TOPSIS integrated model can help transport infrastructure project or project
selection/ranking. The other MCDM methods such as analytic hierarchy process (AHP),
VIKOR (Vise Kriterijumska Optimizacija I Kompromisno Resenje), AHP-TOPSIS, or fuzzy methods
can be used, and this model can be also used in the other urban planning processes related
to decision-making. In addition, group decision-making approaches can be developed using
various MCDM techniques such as AHP or PROMETHEE for selection of transportation projects
or route selection in public institutions. Besides, this study can be extended via a mathematical
programming-decision model for transport infrastructure projects with resource constraints such
as budget.

Public participation in transport planning is important factor for society and it is, therefore,
emerging as a basic component in the decision process for rationality [4]. We don’t deal with public
participation factors in this study. So, in future studies, alternative projects or routes can be evaluated
to take account of factors and criteria such as public participation and “community acceptance”.
The community acceptance can be researched with surveys. Survey-based MCDM techniques can be
used to reproduce a participatory process where territorial communities acts as key stakeholders.
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42. Hamurcu, M.; Alağaş, H.M.; Eren, T. Selection of rail system projects with analytic hierarchy process and
goal programming. J. Eng. Nat. Sci. 2017, 8, 291–302.

43. Hamurcu, M.; Eren, T. Using ANP-TOPSIS methods for route selection of monorail in Ankara. In Proceedings
of the 28th European Conference on Operational Research, Poznan, Polland, 3–6 July 2016.

44. Hamurcu, M.; Eren, T. Selection of monorail technology by using multicriteria decision making. Sigma J. Eng.
Nat. Sci. 2017, 8, 303–314.
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Abstract: Shift scheduling problems (SSPs) are advanced NP-hard problems which are generally
evaluated with integer programming. This study presents an applicable shift schedule of workers
in a large-scale natural gas combined cycle power plant (NGCCPP), which realize 35.17% of the
total electricity generation in Turkey alone, as at of the end of 2018. This study included 80 workers
who worked three shifts in the selected NGCCPP for 30 days. The proposed scheduling model was
solved according to the skills of the workers, and there were nine criteria by which the workers were
evaluated for their abilities. Analytic network process (ANP) is a method used for obtaining the
weights of workers’ abilities in a particular skill. These weights are used in the proposed scheduling
model as concepts in goal programming (GP). The SSP–ANP–GP model sees employees’ everyday
preferences as their main feature, bringing high-performance to the highest level, and bringing an
objective functionality, and lowering the lowest success of daily choice. At the same time, the model
introduced large-scale and soft constraints that reflect the nature of the shift requirements of this
program by specifying the most appropriate program. The required data were obtained from the
selected NGCCPP and the model solutions were approved by the plant experts. The SSP–ANP–GP
model was resolved at a reasonable time. Monthly acquisition time was significantly reduced, and
the satisfaction of the employees was significantly increased by using the obtained program. When
past studies were examined, it was determined that a shift scheduling problem of this size in the
energy sector had not previously been studied.

Keywords: shift scheduling; goal programming; ANP; natural gas combined cycle power plant;
energy sector

1. Introduction

Personnel efficiency and productivity is one of the basic objectives of many companies and
organizations. While trying to find all the existing elements that can affect efficiency and productivity,
personnel scheduling is an important problem that must be attentively steered. Personnel scheduling
problems can be even more complicated by shifts in plans for industries in which shift personnel work
seven days a week, and specific personnel have to work non-routine working hours. Some service
providers must continuously operate, such as power plants, hospitals, and security and safety-related
units while serving mostly the common good, and scheduling problems such as the above are
further complicated.

Electricity generation in power plants and maintenance or repair work require complex structured,
specialized, and labor-intensive activities. When considering the high impact and indispensability of
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electrical energy in daily human life, the process of assigning suitable employees to such specialized
work and improving the performance of these employees comes to the fore with the impact on society,
in addition to the economic value added. Power plants are continuous generation facilities with the
main purpose of achieving uninterrupted, reliable, efficient, economical, and environmentally-friendly
energy generation called sustainable energy supply, therefore, it is an indispensable requirement
to manage the generation, manpower, material, and maintenance processes within this system by
operating the plants in accordance with the operating rules in the direction of this five-legged
comprehensive target. In other words, maximizing employee performance related to personnel
management through balanced work distribution, appointment of the appropriate employees for the
appropriate jobs, etc. has critical importance in terms of sustainable energy supply. With today’s
constantly developing technology, power plants are operated by shift personnel from a main control
center or supervisory control and data acquisition (SCADA) system, which distributes control to the
power plant (DCS) remotely. Throughout the world, as in Turkey, although not with the SCADA system
currently, personnel-operated power plants are still existing. Compared to advanced technology, the
number of shift personnel working in these old plants is naturally higher than that of modern plants,
and the probability of operator errors from shift personnel is higher than that of SCADA. Put differently,
shift personnel may experience faulty operations due to fatigue, lack of concentration, experience,
fair working order, and thus lack of motivation in these power plants. As a result, long-term failures
and thus millions of kWh of energy and income loss may occur. In addition, a negative social impact
may occur due to the lack of sustainable energy supply. From this point of view, it can be said that
personnel scheduling models used for fair and appropriate assignments have critical importance in
electricity generation facilities.

In spite of the various models proposed and resolved in SSPs, shift scheduling studies involving
personnel in power plants or other related areas are still insufficient. Previous works on SSPs have
mainly focused on factory or security personnel, health personnel (i.e., doctors and nurses), teachers,
and police officers. For this reason, this study is a new application of models for shift scheduling
problems (SSPs) and will be relevant to solving SSPs.

When the distribution of resources used in electricity generation in the world is examined, it is
seen that the most widely-used resource for electricity generation is coal, after which natural gas is
the second most common resource. When we look at the resources with the largest share of electrical
energy generation in the countries with the largest economies, coal is predominantly used in the United
States, China, India, and Germany, natural gas in Russia, nuclear energy in France, and renewable
energy resources in Canada. Natural gas is the number one resource to generate electricity in Turkey,
and this has not changed in the last 10 years. Over the last 10 years in Turkey, power was generated on
average of 40% due to natural gas, and the share of this resource in Turkey’s energy mix was 35.17%
as at of the end of 2018. According to these data, natural gas is the most widely used resource in
electricity generation in Turkey [1]. Although there is no resource availability in Turkey for natural gas,
NGCCPPs are the most widely used power plants, because these large-scale facilities have important
advantages such as having high capacities, low setup times, low installation costs, low environmental
impacts, short run times, high yields, ease of operation and maintenance, and long economic lifespans,
compared to other fossil-fueled-based power plants. The high share of natural gas in Turkey’s total
electricity generation with the above-mentioned advantages of the NGCCPPs and the importance of
the personnel scheduling in the power plants are taken into consideration together, and the objective
of the study is to schedule the shift personnel fairly and according to their capabilities in the large-scale
NGCCPP in Turkey.

NGCCPPs consist of generation blocks, and each combined cycle generation block includes two
gas turbines, two compressors, two gas turbine generators, two waste heat boilers, two condenser units,
one steam turbine and one steam turbine generator. In addition to these, dry-type or sea water-cooled
wet type cooling towers, water treatment plant, switchgear, and control and control systems are located
in the plant.
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Generation blocks operate independently of each other in NGCCPPs. However, blocks use some
facilities that are in common. Electricity generation in these plants is carried out in two different
stages, as shown in Figure 1. The natural gas is mixed with air and it is been burned in gas turbines.
Burned gas turns the gas turbine on the same shaft as a generator and generates electricity in the
first stage. Simultaneously, the hot gases generated from this combustion are sent to the waste heat
boiler, and steam is generated by this heat. Steam reaching the required pressure and temperature
is sent to the steam turbine and the turbine is rotated to generate the second stage electricity by the
generator means located on the same shaft as the steam turbine. Steam from the steam turbine is
condensed in the condensers with the cooling water from the cooling towers and converted into water.
The condensation water, which accumulates in the lower part of the condensers, is sent to the waste
heat boilers for reheating. Steam produced in the boiler is sent to the steam turbine and the cycle is
completed. There are three different pressure levels (low, medium, high pressure) in the boilers, which
is produced by steam force in order to keep the efficiency at maximum level. Thus, the hot gases in the
boilers are utilized as much as possible [2].

 
Figure 1. Schematic representation of the working principle of the combined cycle power plant.

Turbines are the most important of the systems mentioned in NGCCPPs. This is, as the basic
reasons explain, that electricity is produced in gas-turbine steam turbines. If the turbines are
deactivated, the corresponding block disables the unit (each gas turbine is called a unit) and the
system stops. On the other hand, some NGCCPPs have by-pass lines, and the hot gas from an
accidental gas turbine, which is formed in the waste heat boilers of the steam turbine, can be directly
discharged to the atmosphere by means of a by-pass chute and only electricity generation can be
continued in gas turbines (single operation). In addition, these systems are structurally more complex
than other systems in the plant.

When previous studies were examined, SSP with this size (30 days for 80 personnel) within the
energy sector has not been studied before. The problem of the scheduling of worker’s shift known
as SSP can be complicated, especially in the case of multiple shifts and multiple employees with
many employees and skills, due to the sophisticated constraints and solution alternatives. Preparing
the schedules of staffs manually is thus infertile and time consuming. Therefore, a methodical
approximation for initiating a useful schedule is required within a short period of time. Currently, the
scheduling of the operation of the shifts of the NGCCPP is carried out manually. This paper deals with
the formulation of a model for the shift scheduling problem for NGCCPP employees working with
newly defined constraints that define the structure of the industry, organizational policies, and shift
schedules, and the requirements that determine the daily preferences of workers. The model seeks to
produce the most appropriate monthly shift plan that maximizes employees’ job satisfaction. In this
way, stoppages caused by operator error are reduced from 53 hours to 4 hours, and both financial gain
is achieved, and the target of sustainable energy supply is reached at this power plant. Furthermore,
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with this study which provides multi-objective scheduling on the basis of the capabilities of a large
group of 80 employees working in NGCCPP for the first time in the literature, a shortcoming in the
SSP literature is eliminated.

The paper is shaped as follows: After a brief introduction, the next section gives a literature
overview around the problems of shift scheduling. The next section gives information about
the perspectives and applications of the study. The last section gives related discussions of the
computational results and the conclusion of the study.

2. Shift Scheduling Problem (SSP)

Coordination of workload plans and assignment of personnel and staff planning and personnel
scheduling in order to meet the demand for resources that change with time. These problems occur
in service industries, such as police officers, call center operators, hospital nurses, transportation
personnel (aircraft crews, bus drivers) and so on. It is a very important topic for personnel scheduling.
These environments are often prolonged and unsteady, and personnel needs undulate over time.
Schedules typically include equipment requirements, trade union rules, etc. It is the subject of various
restrictions dictated by inherent features of personnel scheduling problems. The problems that arise
tend to be combinatorically difficult. For personnel scheduling problems, Baker proposed one of the
first classification methods [3]. In the study of Baker [3] and Pinedo [4] SSP is a brand of the personnel
scheduling problem. Personnel scheduling problem’s structure can be divided into several categories.
General solution method is with integer programming. This method contains a large class of personnel
scheduling problem solutions. Besides, there is a specific category of integer programming problems,
namely cyclical personnel problems. This problem can be used in terms of class and a combinatorial
viewpoint. Apart from these, crew and operator scheduling problems have a different model structure.
In the personnel scheduling problem, there are assignment models. In spite of the fact that every
assignment mold belongs to a financial reason, it is a reason why the cost is relatively easy. A cycle
structure is thinking of a beforehand. With annotative adjustments, the cycle can be a single day,
another week or a few weeks. Part of the previous episode is limited to a loop.

In general, the SSP deals with the assignments of employees to each shift determining the number
and criteria. Each shift is getting shaped to specific start and finish times. The number and placement
of moats time or the long and the short lengths of the shifts are limiting with legal and business
rules. The main goal of scheduling shifts is to optimize employee allocations. Besides, it also helps to
minimize the total cost. This requires that each shift be precisely assigned to personnel, qualified by
several constraints that must be satisfied. SSP is key to ensuring that services continuously operate
without any timeframes in specific service sectors, as well as hospitals, police stations, seizure centers,
railway stations and airports [5].

One of the main difficulties of shift scheduling concerns with requirements and limitations of
existing personnel while a work pattern of each shifts depending on the number of certain regulations.
This planning is getting more difficult when multiple shifts and break or idle times and/or lots of
skilled and variable shifts are involved, where every shift needs a combination of these to fulfill the
request for that shift. When highly skilled employees can accomplish many different activities during
the same shift, the problem becomes more difficult. The shift programming problem’s mathematical
models are formulated to solve, subject to several constraints such as one shift per day, number of
permits per day, shift order, gap between shifts, rest day after day and night shifts, consecutive days,
and working consecutive night regulations, fixed hours for shifts, restricted working hours, number
of workers based on skill or skill, etc. Restrictions taken into account in the SSP may include the
ordering or preference of consecutive shifts or preferred shifts to be followed, forbidden shift sequences,
constraints on demand, and minimum rest periods between shift changes. For this reason, various SSP
variations can be found depending on the restrictions applied. A type of SSP is the Day-off SSP (D-SSP)
that focuses on determining the most suitable rest days for an employee’s planning horizon. This
problem is that the cost of closed molds on different days is different and the goal is to minimize the
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total labor cost. In this study, model formulation is considered preferences of the workers presented
through its objective function and constraints.

In this paper, the SSP is formulated as Analytic Network Process (ANP) and Goal Programming
(GP) model for personnel of power plant, referred to as the SSP-ANP-GP model. However, the
recommended goal programming model is different from other models for scheduling shift personnel
described above because of the different goals. The objective of the SSP-ANP-GP model is to maximize
the personnel’s needs, which is determined with four goals in the proposed model.

Mathematical programming models for the SSP can be solved using precise algorithms, intuitive
approaches, and top-level information. Our model gives an optimal solution, but in the case of
large-scale problems, it is hard to apply in terms of operation time and complexity. Because of
that reason, metaheuristics and intuitive approaches are more hopeful options for these situations.
It is much better in big-size problems when an intuitive, optimization is sufficient as a solution
and has optimal solutions in reasonable time. Approximate optimization algorithm frameworks
are meta-analyses that can be defined as a primary strategy or a general algorithmic framework
that can be applied to a variety of problems with only a few changes. They are commonly used
when they are confronted with a complex problem that cannot be resolved by certain algorithms [6].
The SSP-ANP-GP model of our paper is solved using the integer linear programming algorithm of
IBM ILOG optimization tool (IBM, Armonk, New York, NY, USA), which employs the heuristics and
exact approaches.

In our paper, a different SSP approach is used for the literature review in shift scheduling studies
apart from other studies. It shows that our SSP application area is different from other data and
application areas. The energy sector is a new sector for the SSP problems. According to the results of
the investigated papers, shift scheduling studies are done for the main production or service personnel.
In other words, there is a gap in scheduling of people working in auxiliary and complementary
processes in the energy sector for personnel scheduling literature.

On the other hand, these processes may directly affect the quality levels of output of production
and service systems, customer satisfaction levels, even sectoral positions of enterprises and social
welfare level. The most important examples of this are continuous production systems such as
electricity generation, petrochemical and cement production, telecommunication, and health services.
However, personnel performing auxiliary and complementary processes may be partly or entirely
engaged in the same work with the shift team directly involved in the main processes. The most
important example in this situation is the power generation plants. Personnel operating and
maintaining these facilities, especially those with electrical and electronic origins, can be operated as
both shift and maintenance personnel. This provides significant advantages in terms of productivity,
quality, uninterrupted production, and costs in terms of the establishment that owns the plant. Because
of that reason, shift scheduling studies are very important in the energy sector, and above all, in power
generation facilities.

3. Related Works

According to the observations on personnel scheduling, most studies focused on creating
appropriate shift schedules or work programs for workers, considering a deterministic workload.
The research process of this paper started with an investigation of the review articles [7,8]. After that
point, the cited paper was investigated, which were given in the review articles. The whole reference
list was checked and completed in related articles. Search phrase combinations were stated: Workforce
scheduling, personnel scheduling and staffing.

Personnel scheduling literature showed a variety of investigation methodologies that brought
together a specific analytical approach with a solution or evaluation technique. A number of studies,
mathematical programming categories such as goal programming, linear programming, dynamic
programming, and integer programming or optimization were classified as intuitive. Queuing,
constraint programming and simulation were other categories for solution technique.
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In general, scheduling has an important role in the production and service sector [9]. Most popular
studies are done in the shift scheduling area. Shift scheduling is a widely studied area, which
is a process that plays an important role in manufacturing and service industries. SSPs can be
very complicated, especially in the case of multiple shifts with a large number of employees due to
multiple constraints and skill-based works. Shift scheduling problem is a complex NP-hard integer
programming problem. There are some examples about large-scale scheduling problems in the
literature. As a literature observation, the SSP study in the energy sector has not been encountered in
previous studies before. The SSP can be complex, especially in the case of several shifts, with many
employees and skills, due to complex constraints and solution alternatives. Especially in most of the
shift scheduling studies, the application results were not given. At this point, our study reveals its
difference from other studies. Considering all of these, it is thought that shift scheduling studies on
energy facilities are a new area waiting to be explored.

In Figure 2, a general literature overview is shown. Those studies are the most related studies
to this paper. As is shown in Figure 2, solution methods and objectives/criteria are investigated.
Generally; heuristic methods [10–24], integer programming [25–38] and goal programming [39–49]
are the most used techniques for solving SSP. Within the scope of all the studies in Figure 2, some
studies which were thought to be most similar to the model structure of our study were selected and
explained in detail below.

Aickelin et. al. [10] have studied a heuristic technique which is called Improved Squeaky Wheel
Optimization (ISWO) for scheduling problems of the drivers in their work. This method develops the
main Squeaky Wheel Optimization (SWO) method.

Aickelin et al. [11] developed a solution to two different staff scheduling problems by discussing
and analyzing a heuristic method. The new model improves the effectiveness and execution speed.
The results are presented on two different areas of staff scheduling. These are: Bus and train driver
shift schedules and nurse shift schedules.

Yunes et. al. [13] have dealt with the issue of shift scheduling for a firm using hybrid algorithms
and integer programming methods in their work. In this article, the general team management problem
has been discussed, which derives from the daily operation of an urban transit bus company serving
the public area. They divided the problem into two distinct subproblems: Shift scheduling and crew
rostering. They studied each of these problems using constraint logic programming and mathematical
programming approaches. Moreover, hybrid column generation algorithms are developed for solving
problems, with combining constraint logic programming methods and mathematical programming.

Akjiratikarl et al. [14], the problem of scheduling home caregivers was solved by the Particle-based
Swarm Optimization (PSO), the meta-intuitive technique for population. The proposed methodology
is applied, tested and compared with existing solutions on various real problem examples. With these
aspects of the study revealed, it showed the difference between the others.

Abbink et. al. [24] have successfully implemented a complex SSP model in their work. The authors
described the corresponding analysis methods for scheduling the personnel. The authors have
developed an alternative heuristic model that satisfies personnel. New schedules produced according
to the alternative production model have reduced personnel costs.

In Alfares [27]’s study, a four day-off scheduling problem for three weeks were resolved.
A mathematical model of this problem has been formulated and solved efficiently by setting a limit on
the workforce dimension.

Trilling et al. [28] have studied the SSP of the nurses at the hospital in their work. Their study
focuses two methods to solve the staff scheduling problem based on constraint and integer
programming. Maximization of the fairness of the schedule is the main objective. They tested
two techniques in order to be compared.
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Authors Methods Criteria / Objective 
Aickelin et. al. [10] Heuristic Method Fair Scheduling 
Aickelin et al. [11] Heuristic Method Balanced Assignment 

Aickelin and Dowsland [12] Genetic Algorithm Getting Faster Results 
Yunes et. al. [13] Hybrid Algorithms and Integer Programming Getting Faster Results 

Akjiratikarl et al. [14] Partial Swarm Optimization Systematic Scheduling 
Ásgeirsson [15] Hybrid Algorithm Fast Scheduling 
Lei et. al. [16] Heuristic Method Personnel Scheduling 

Smet et. al. [17] Hybrid Algorithm Shift Sch. with Skill-Based 
Mısır et. al. [18] Heuristic Method Shift Scheduling 
Mısıt et. al. [19] Heuristic Method Personnel Scheduling 

Smet and Vanden Berghe [20] Metaheuristic Method Personnel Scheduling 
Lee et. al. [21] Heuristic Method Personnel Scheduling 

Veen et. al. [22] Heuristic Method Shift Scheduling 
Smet et. al. [23] Heuristic Method Shift Scheduling 

Abbink et. al. [24] Heuristic Method Balanced Assignment 
Aickelin and White [25] Integer Programming Getting Fair Schedules 

Alfares [26] Integer Programming Effective Assignment 
Alfares [27] Integer Programming Workforce Allocation 

Trilling et al. [28] Constraint and Integer Programming Fair Scheduling 
Lezaun et al. [29] Integer Programming Workforce Scheduling 

Al-Yakoob and Sherali [30] Mixed Integer Programming Meeting Workers’ Demands 
Al-Yakoob and Sherali [31] Mixed Integer Programming Cost Minimization 

Alfares [32] Integer Programming Cost Minimization 
Lezaun et al. [33] Mixed Integer Programming Production Scheduling 

Corominas et al. [34] Mixed Integer Programming Fair Scheduling 
Bard et al. [35] Integer Linear Programming Fair Scheduling 

Corominas et al. [36] Mixed Integer Programming Balanced Assignment 
Henao et. al. [37] Mixed Integer Programming Cost Minimization and Fair Sch. 

Veldhoven et. al. [38] Integer Programming Effective Assignment 
Bağ et al. [39] 0-1 Goal Programming Fair Scheduling 

Hung-Tso et al. [40] Goal Programming Fair Scheduling 
Li et al. [41] Goal Programming Fair Scheduling 

Kassa and Tizazu [42] Goal Programming Fair Scheduling 
Louly [43] Goal Programming Fair Scheduling 

Labadi et al. [44] Goal Programming Fair Scheduling 
Todovic et al. [45] Goal Programming Fair Scheduling 

Shuib and Kamarudin [46] Goal Programming Shift Scheduling 
Özder et al. [47] Goal Programming Fair Scheduling 
Varlı et al. [48] Goal Programming Fair Scheduling 
Ernst et al. [50] Bibliographic Study Cost Minimization Tech. 

Azaies and Al-Sharif [51] 0-1 Goal Programming Providing Uninterrupted Service 
Topaloğlu [52] Goal Programming Balanced Assignments 

Alfares [53] Simulation Methods Cost Minimization 
Alfieri et al. [54] Branch-Price Algorithm Task Minimization 

Chu [55] Goal Programming Task Scheduling 
Thompson and Pullman [56] Integer Programming Fair Workforce Distribution 

Sinreich and Jabali [57] Linear Programming Idle Time Minimization 
Al-Yakoob and Sherali [58] Mixed Integer Programming Workforce Assignment 

De Matta and Peters [59] Branch and Price Shift Scheduling 
Tsai and Li [60] Genetic Algorithm Workforce Scheduling 

Lezaun et al. [61] Binary Programming Shift Scheduling 
Rönnberg and Larsson [62] Linear Programming Shift Scheduling 

Zolfaghari et al. [63] Genetic Algorithm Effective Scheduling 
Alsheddy and Tsang [64] Linear Programming Workforce Scheduling 
Fırat and Hurkens [65] Mixed Integer Programming Fair Scheduling 

Asensio-Cuesta et al. [66] Genetic Algorithm Job Satisfaction 
Veen and Veltman [73] Branch and Price Method Shift Scheduling 

Figure 2. Literature Overview.

Lezaun et al. [29] studied the shift scheduling of railroad drivers. They presented a practical study
on how to provide a more equitable annual work allocation for Metro Bilbao. The proposed model is
solved as a series of four types of integer programming problems. The main benefit of this paper is to
combine part-time allocation with a workload unevenly distributed on the days of the week and a
planning time frame divided into five periods of three different types.

In Alfares [32]’s paper, the Information Technology help desk operators described personnel shift
schedules for a large petrochemical company. The aim of the author was to reduce the cost of labor by
setting the best staff level and employee weekly tour schedules needed to cover the changing workload
during the 24-hour work period. An integer programming model has been formulated and solved to
determine tour scheduling assignments. Selected tour scheduling offers better service at a lower cost
and for fewer employees.

In another study Lezaun et al. [33], presented a case study commissioned by the Spanish railway
carrier for the annual rostering of shift schedules for the station personnel. A mixed rostering process
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was used in their research. These problems were resolved using the computer software LINGO
package. The model of the study was similar to our model structure.

Corominas et al. [34] aimed at eliminating the issue of production planning by making shift
schedules of production workers in their work. They proposed a mixed-integer linear program model.
The model helped to solve the problem of scheduling the production and the working hours of an
expert team which runs in a multi-product process.

Bard et al. [35] investigated the tour scheduling problem in the United States Postal Service
for their work. The study suggested a model to tour scheduling problem for decreasing the
size of the personnel scheduling, targeted with several scenarios with integer linear programing.
The whole mathematical model included not only full-time but also part-time workers, in addition the
specific constraints described by the union contract. They solved the problem faster and in a more
cost-efficient way.

Corominas et al. [36] have studied problems such as labor balancing and regulation, using a
mixed integer programming model in their work. Their study presented the scheduling problem of
annual working hours for any employee, where weekly working hours belong to a pre-set finite set
and day-off weeks are the same for all employees. The problem is modeled and solved as a mixed
integer linear program.

Bağ et al. [39] investigated the SSP of nurses using a 0–1 goal programming and analytic network
process in their work. The analytical networking process (ANP) was used to determine the weights of
the goal program. The model was implemented in a state hospital.

Hung-Tso et al. [40] investigated the problem of staff scheduling with the goal programming
technique in their work. A linear goal programming model is proposed, and three management goals
are considered simultaneously for generating a roster.

Li et al. [41], Kassa and Tizazu [42], Louly [43], Labadi et al. [44] and Todovic et al. [45] studied
shift scheduling by using goal programming method and intuitive methods together.

Shuib and Kamarudin [46], studied an SSP of the workers at the largest power plant in Malaysia.
Their study aimed to define the basic criteria and conditions of the shift planning problem at the
power plant in order to formulate the goal programming model for the shift programming problem,
which optimized the daytime preferences of the workers and determined the optimal scheduling
for the model-based workers. The study focused on three legs which were shift scheduling, day-off
scheduling, and scheduling with demands. The study involved scheduling 43 personnel in a specific
department of the power plant for 28 days where personnel work in three shifts (morning, evening,
and night shifts) and with day-offs.

Ernst et al. [50] conducted a bibliographic study that contributed significantly to the literature on
personnel SSPs in their work. They do not review the software packages in their work. Rather, they
review scheduling problems in specific areas of application and the models and algorithms reported in
the literature for the solutions. They also search for commonly used methods to solve staff problems.

Azaies and Al-Sharif [51] have solved the SSPs of the nurses by using a 0–1 goal programming
method in their studies. This study is an example of an NP-hard integer programming problem.
The model of the study is similar to our model structure. The constructed model calculates as well as
some of the policies proposed in the literature regarding both the hospital targets and the preferences
of the nurses. Hospital objectives include providing uninterrupted service with unnecessary nursing
skills and staff size and avoiding additional costs for unnecessary overtime.

Topaloğlu [52] studied the problem of shift scheduling health-care personnel with goal
programming method. The author suggested a goal programming (GP) model that includes both hard
and soft constraints for a monthly planning period. Hard constraints must be strictly observed but
may be violated if soft constraints are required. The relative significance values of soft constraints
were calculated by the analytic hierarchy process (AHP) used as deviation coefficients from the soft
constraints in the objective function. Their models were tested in the emergency room of a large local
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university hospital. The main results of the study are that realistic problems can be solved quickly, and
the schedules created have very high qualifications according to the schedules prepared manually.

In Alfares [53]’s study, a simulation approach was presented for workers’ permission schedules
when daily labor demands were random variables. The author created a simulation model and stated
that the proposed approach is a case study application. The model stated that the employees had
a limited number of jobs, included variable workload, and that employees had policy restrictions
on the selection of work programs. The shift scheduling model also offered an alternative for leave
days, reducing average production times for maintenance work orders by 25% without increasing the
number of employees or cost.

Alfieri et al. [54] have defined an intuitive procedure with an intuitive branch-price algorithm
based on a dynamic programming algorithm to find a suitable solution for pricing. They tested the
results on the timetable of train lines.

Chu [55] solved the SSP of airport staff using the goal programming technique in his work.
Chu proposed an integrated crew duty assignment for the luggage department staff at Hong Kong
International Airport. The results could be adopted as a good crew schedule. The result showed that it
was both feasible and the model satisfied various work conditions and minimized idle shifts.

In Thompson and Pullman’s [56] study, the SSP of the staff were solved. The study focused on
workforce schedules breaks or reliefs of the workers.

Sinreich and Jabali [57] used a linear programming model and simulation tools to solve the SSP
in their work. In their study, they used a linear optimization model (S-model) and a heuristic iterative
simulation-based algorithm (SWSSA) for scheduling the resources’ work shifts, one resource at a
time. Their algorithm was tested using data that was gathered from emergency departments of five
general hospital. By using this model, they were able to achieve a reduction in patient’s “length of
stay” minutes.

The other paper of Al-Yakoob and Sherali [58] concerns the issue of assigning employees to a
range of work centers, taking into account the preferences expressed for specific shifts, days and
business centers by using a heuristic method. Computational results have shown that the proposed
approach can facilitate the creation of good quality scheduling even for large-scale problematic cases
at a reasonable time. De Matta and Peters [59] used branch and price; Tsai and Li [60] used genetic
algorithm and Lezaun et al. [61] used binary programming for solving scheduling problems.

Rönnberg and Larsson [62] studied the problem of appointing nurses shift scheduling in the
Swedish healthcare sector. The authors present a pilot study that aims to determine if it is possible
to create an optimization tool that presents a program that is automatically available based on the
charts recommended by nurses. The study was conducted in a typical Swedish nursing ward, where
we developed a mathematical model and presented timetables. The results of this study are highly
encouraging and suggest ongoing studies. Zolfaghari et al. [63] used genetic algorithm and Alsheddy
and Tsang [64] used linear programming for solving scheduling problem.

Fırat and Hurkens [65] performed personnel shift schedules with mixed integer programming.
The authors assigned technicians to tasks with multi-level skills requirements. The study deals with
the scheduling of complex tasks with a non-homogeneous resource set. They created programs by
repetitively applying a flexible matching model that selects the tasks to be processed and which creates
technician groups assigned to task combinations. The underlying mixed integer programming model
is capable of reviewing technician-task distributions and performs very well, especially in the case of
rare skills. Asensio-Cuesta et al. [66] used genetic algorithm for solving scheduling problem.

4. Methods

In this study, two different methods were used. One of them was goal programming. The other
one was the analytic network process. These two techniques will be briefly summarized below.

57



Mathematics 2019, 7, 192

4.1. Goal Programming (GP)

Goal programming is a kind of multi-criteria decision-making model. The model is established
using both soft constraints and hard constraints. Soft constraints are used to model situations
where deviations are acceptable to a desired goal value. Thus, more than one desired situation
is provided approximately or fully. Goal programming is a mathematical programming method
aiming at minimizing deviations from the goal values determined by turning aims to goals and
ranking goals by importance ratings, or weighting each of them. In linear programming, while a single
objective function is used, it is aimed to achieve the same goal by targeting multiple goals differently
in the goal programming. In 1955, Charnes and his colleagues first worked on goal programming [67].
Later in 1961 and 1977, Charnes and Cooper developed this model [68,69]. Ignizio [70] describes goal
programming as follows: Minimize the deviations in the aim thus that each target reaches as far as
possible the given goals. The goal programming mathematical representation is as follows [71]:

Minimize Z =
e

∑
g=1

(d+g + d−g ) (1)

y

∑
s=1

agsxs − d+g + d−g = bg (2)

d+g , d−g , xs ≥ 0 (3)

g = 1 . . . e s = 1 . . . y, g: Number of goals s: Number of decision variables (4)

xs : sth decision variable, s = 1 . . . y (5)

ags : Coefficient of gth goal and sth decision variable g = 1 . . . es = 1 . . . y (6)

bg : Desired value for the goal g g = 1 . . . e (7)

d+g : Positive deviation variable of goal g = 1 . . . e (8)

d−g : Negative deviation variable of goal g g = 1 . . . e (9)

4.2. Analytic Network Process (ANP)

Analytical Networking (ANP) is a multi-criteria decision-making technique developed by Thomas
L. Saaty as a more general approach than the Analytic Hierarchy Process (AHP) method and works
with the dual comparative logic like AHP. The Analytical Networking Process can be used to model
decision problems that need to take account of the relationships between factors and to achieve more
effective results. In the ANP method, factors affecting a goal and a target are grouped according to
their effects on each other and a suitable network is modeled [72]. The ANP differs from the AHP
in that it uses a hierarchical structure (network / network form) instead of a hierarchical structure
from top to bottom [73]. Furthermore, an important problem encountered in the AHP method is rank
reversal. Order change; the alternative priorities determined by a particular set of factors change when
a new alternative is added or removed [74]. This problem has been reduced by the ANP method [72].
Steps of the ANP method is like that [75]:

Step 1: Determining the Decision-Making Problem
Step 2: Determining Relationships: Interactions between criteria and sub criteria are identified.
Step 3: Performing Criteria Binary Comparisons
Step 4: Calculating of Consistency: The consistency ratio (CR) of each binary comparison matrix

is calculated. For consistency, CR < 0.1.
Step 5: Creating Super Matrices in Order:
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• Unweighted Super Matrix: A square matristor consisting of super matrices, vectors that take into
account all interactions between the problem criterion, sub criterion, and alternatives. - Weighted
Super Matrix: The unweighted super matrix is equal to 1 column sum.

• Limit Super Matrix: The weighted super matrix is formed by taking the strength of the lines until
they are not changed.

Step 6: Determination of the Best Alternative: Alternative priorities are obtained by selecting the
highest alternative among these values by finding the limit super matrix and criterion weights.

5. Case Study

This study was carried out on a large-scale shift scheduling optimization with the sustainability
of the electricity generation of a NGCCPP for 80 workers at their place of destination directly acting
considering programming model for 30 days in Turkey. The application area and the magnitude of
the problem have been realized by the combination of the methods mentioned for the first time in
the literature. The implementation steps of the work are given in Figure 3. Our study was conducted
with four levels. The First Level was getting shaped in the name of the data collection and model
development. The second stage was generated as ANP calculations and analysis of the result. The third
level was generated as a model computation and analysis step. The fourth level was the validation
and verification of the model. In the first level, all data were taken from the technical management and
human resource department of the power plant.

• Problem
Definition

• Data 
Collection

First 
Stage

• ANP 
Calculations

• Analysis

Second 
Stage

Mathematical 
Model 

Creation with 
Goal 

Programming

Third 
Stage

• Validation
• Verification

Fourth 
Stage

Figure 3. Schematic representation of the study.

In this study, scheduling focuses on three steps. These are demand modeling, scheduling of
shifts, and scheduling of the days-off. This paper deals with SSP of the personnel who are in working
for generation of the electricity to the power plant. The goal programming method is used for its
advantages in many shifts and many employees of many workers.

5.1. Determining the Workers’ Skill Weights with Analytic Network Process (ANP)

Analytic Network Process includes decision-maker’s judgments value. It can also provide a
decision-making process included in the model. Besides significant tangible or intangible factors to
be correct, the decision must be examined. ANP gives solution that can accommodate within the
complex structure and this method is capable of easy calculation. As mentioned in the first phase
of the work, there are a number of situations that stop electricity production if it is checked and not
intervened at the required times. The ability of each worker working in the natural gas combined cycle
line to intervene in these situations is different. As it seen in Figure 4, ANP steps are applied in order.
Schematic representation of the network structure can be seen in Figure 5.
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STEP 1: Determining the Decision Problem

STEP 2: Determining of Its Relationship with Each of the Criteria (9 Criteria)

STEP 3: Making the Criteria between Binary Comparison

STEP 4: Comparing Matrix Consistency

STEP 5: Creating a Sequence of Super Matrix

STEP 6: Determining of Weights of Alternatives

Figure 4. Schematic representation of the analytic network process (ANP) steps.

There are nine criteria of the skills of the workers. Each criterion is determined with the expert
of the power plant. The network structure was established based on the internal and external
dependencies among the criteria in the hierarchical structure. According to these nine criteria, each
personnel’s skill weight is determined. These criteria are given in Table 1.

Table 1. Criteria about personnel skills (C1, C2, . . . , C9).

C1: Intervention to SCADA system C5: Intervention to hydraulic lubrication system
C2: Subcontracting and removal of execution unit C6: Intervention to central internal demand system
C3: Intervention to fault SCADA faults C7: Intervention to water proofing equipment
C4: Intervention to main power transformer and equipments C8: Interference to generator defects

C9: Intervention to switchgear equipment

Consistency ratios (CR) of the binary comparison matrix prepared with the central experts were
found to be less than 0.10. This means that the matrices were consistent. Three types of super matrix
calculations are made in ANP. These are the unweighted supermatrix, weighted supermatrix and limit
supermatrix. On a lean quilt; matrices obtained as a result of initial effects. The relative weight vectors
obtained from the ANP charts are placed on the columns and rows of this matrix.

Figure 5. Schematic representation of the network structure.

After transferring the data to the super decisions 3.0 package program, the weighted sequence of
the alternatives is reached by obtaining the non-weighted super matrix, the weighted super matrix and
the limit super matrix, respectively. Limit super matrix of the ANP calculations is given in Appendix A
as Figures A1–A3.
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After all calculations, each worker’s score is determined with the help of the nine criteria.
In Table 2, ANP weights of each worker are given.

Table 2. ANP Weights (ti) of the workers (P1, P2, P3, . . . P80).

P1 to P10 P11 to P20 P21 to P30 P31 to P40 P41 to P50 P51 to P60 P61 to P70 P71 to P80

0.040845070 0.008450700 0.040845070 0.000069897 0.006960000 0.009990010 0.000069897 0.000069897
0.135560010 0.005865000 0.000868010 0.000021550 0.000025010 0.005665500 0.000021550 0.000021550
0.040840010 0.065868010 0.002567600 0.000021554 0.040845070 0.000860010 0.000021554 0.000021554
0.040045070 0.040111070 0.002240010 0.000002150 0.040845070 0.040775070 0.000002150 0.000002150
0.030845070 0.039845060 0.040845070 0.000000454 0.040845070 0.040845070 0.000000454 0.000000454
0.006960000 0.009990010 0.040845070 0.040845070 0.008450700 0.040663070 0.040845007 0.040845070
0.000025010 0.005665500 0.005686800 0.135560010 0.005865001 0.000868010 0.005686800 0.005686800
0.040845070 0.000860010 0.001235600 0.040840010 0.065868010 0.002567600 0.001235600 0.001235600
0.033945070 0.040845070 0.035655000 0.040045070 0.040845070 0.002240010 0.035655000 0.035655000
0.040740070 0.040845070 0.000000450 0.030845070 0.040845070 0.040845070 0.000000450 0.000000450

In this model, a seniority-based calculation was made in order to incorporate the skill basics into
the model, and a separate mean value was calculated for each level of seniority level. In calculating
these average values, the number of seniorities (4 different levels) and the individual weight values
(obtained in ANP calculations) were used. Therefore, the weights are included in the model.
According to this, the average values for the shift supervisor, foreman, expert and assistant are
given in Table 3 respectively.

Table 3. Seniority-based ANP weights (ti) of the workers.

Shift Supervisor’s Weight Foremen’s Weight Expert’s Weight Assistant’s Weight

0.06432254 0.026957512 0.022802299 0.016094762

The values which are observed in Table 3 will be used in the goal constraints.

5.2. Proposed Goal Programming Model

Satisfying every goal specified by the decision-makers may not always be possible to completely
provide. Therefore, goal programming is often referred to as a sequence of procedure in which the
multiple goals are satisfied in their priority order [71]. The shift scheduling model will also attempt to
satisfy several goals like establishing fairness among personnel. Because of that reason, a unique goal
programming model is an excellent approach to solve this problem.

5.2.1. Notations

The workers (P1, P2, P3, . . . P80) (i) in this department were divided into three shifts (k); Morning
(S1) shift 8 a.m. to 4 p.m., Evening (S2) shift—4 p.m. to 12 a.m., and Night (S3) shift—12 a.m. to
8 a.m. Scheduling horizon is 30 days (j). Workers in the power plant have four different seniority level.
These are:

• (1st Seniority-Shift Supervisor, 2nd Seniority-Foreman, 3rd Seniority-Expert, 4th Seniority-Assistant)
• There are 80 People in the department (4 Shift Supervisors, 12 Foremen, 24 Experts, 40 Assistants)
• 3 Shifts (Morning, Evening and Night Shifts)

There are some hard and weak constraints about our mathematical model. There are 10 sets of
constraints, six of them correspond to the hard constraints (Constraint 1–Constraint 6 under 5.2.4
Constraints subsection) and the four corresponds to weak constraints (Goal 1–Goal 4 under 5.2.5 Goal
Constraints subsection):

Constraint 1: Number of personnel needed for each shift every day. (3 shifts 20 people) Number of
personnel assigned to their seniority in each shift.
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• At least 1 Shift Supervisor must be present in each shift. (1st Seniority Level)
• There must be at least 3 in each shift from the Foremen. (2nd Seniority Level)
• There must be at least 6 in each shift from the Experts. (3rd Seniority Level)
• There must be at least 10 in each shift from the Assistants. (4th Seniority Level)

Constraint 2: A staff working any day at night shift should not work in the morning and evening
shifts the next day.

Constraint 3: A person working on any day of the evening shift should not work the next day in
the morning.

Constraint 4: This constraint indicates that every staff member should take one day day-off
(at least) in a week. In other words, every staff member should not work more than 6 days in a week:

Constraint 5: Every staff member should not work on his/her the day off.
Constraint 6: In the evening shift, the staff cannot be operated more than 9 days.
Decision variables to be used are Xijk and hij, here notation of i, j and k are the indices for

80 workers, 30 days and three shifts, respectively. Variable Xijk indicates worker i is assigned to work
on day j for shift k and hij, indicate the assignment of worker i to be in day-off, respectively, on day j.

The complete formulation of the SSP-GP model is as follows:

5.2.2. Parameters: All Parameters Are Given in the Model Below

i: Personnel index, i = 1,2, . . . ,l (10)

j: Day index, j = 1,2, . . . ,m (11)

k: Shift index, k = 1,2, . . . ,n (12)

g: Goal index, g = 1,2, . . . ,z (13)

l: Number of Personnel, l = 80 (14)

m: Number of Day, m = 30 (15)

n: Number of Shifts, n = 3 (16)

ti: Weights of the skills of each personnel, i = 1,2, . . . ,l (17)

xijk : Decision variable for ith personnel, jth day, for shift k i = 1, 2 . . . l j = 1 . . . mk = 1, 2 . . . n (18)

hij: Decision variable for day-off of ith personnel, jth day i = 1,2, . . . ,l j = 1 . . . m (19)

d+gjk : Positive deviation variable of gth goal, jth day, for shift kg = 1, 2 . . . z
j = 1, 2 . . . mk = 1, 2 . . . n

(20)

d−gjk : Negative deviation variable of gth goal jth day, for shift kg = 1, 2 . . . z
j = 1, 2 . . . mk = 1, 2 . . . n

(21)

5.2.3. Decision Variables: There Are Two Decision Variables on the Model. Those Are Xijk and hij

Xijk =

{
1, I f personnel i is assigned to day j on shi f t k
0, otherwise

i = 1, 2, . . . , l j = 1, 2, . . . , mk = 1, 2, . . . , n (22)

hij =

{
1, I f the personnel i is on day − o f f in day j
0, otherwise

i = 1, 2, . . . , l j = 1, 2, . . . , m (23)
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5.2.4. Constraints

Constraint 1: The constraint that indicating the number of personnel assigned to each grade in
accordance with their seniority:

a. Number of Shift Supervisors needed for shift k.
4

∑
i=1

Xijk ≥ 1j = 1, 2, . . . , mk = 1, 2, . . . , n (24)

b. Number of Foremen needed for shift k.
16

∑
i=5

Xijk ≥ 3j = 1, 2, . . . , mk = 1, 2, . . . , n (25)

c. Number of Expert needed for shift k.
40

∑
i=17

Xijk ≥ 6j = 1, 2, . . . , mk = 1, 2, . . . , n (26)

d. Number of Assistant needed for shift k.
80

∑
i=41

Xijk ≥ 10j = 1, 2, . . . , mk = 1, 2, . . . , n (27)

Constraint 2: The constraint that indicating if a staff working any day at night shift should not
work in the morning and evening shifts the next day:

Xij3 + Xi(j+1)1 + Xi(j+1)2 ≤ 1i = 1, 2, 3, . . . , l j = 1, 2, . . . , m − 1 (28)

Constraint 3: The constraint that indicating if a person working on any day of the evening should
not work the next day in the morning:

Xij2 + Xi(j+1)1 ≤ 1i = 1, 2, 3, . . . , l j = 1, 2, . . . , m − 1 (29)

Constraint 4: This constraint indicates that every staff member should take one day day-off (at
least) in a week. In other words, every staff member should not work more than 6 days in a week:

hij + hi(j+1) + hi(j+2) + hi(j+3) + hi(j+4) + hi(j+5) + hi(j+6) ≥ 1i = 1, 2, . . . , l j = 1, 2, . . . , 24 (30)

Constraint 5: The constraint that indicating every staff member should not work on his/her the
day off:

3

∑
k=1

Xijk + hij = 1i = 1, 2, 3, . . . , l j = 1, 2, . . . , m (31)

Constraint 6: The constraint that indicating in the night shift, the staff cannot be operated more
than 9 days:

Xij3 + Xi(j+1)3 + Xi(j+2)3 + Xi(j+3)3 + Xi(j+4)3 + Xi(j+5)3 + Xi(j+6)3 + Xi(j+7)3 + Xi(j+8)3 ≤ 9
i = 1, 2, 3, . . . , l j = 1, 2, . . . , m − 8

(32)

5.2.4.1. Goal Constraints

The total number of shifts assigned to each staff by their seniority should be as equal as possible.
Goal 1: Constraints for Shift Supervisors

4

∑
i=1

ti ∗ Xijk − d+1jk + d−1jk = 1 ∗ 0.06432254j = 1, 2, 3, . . . , mk = 1, 2, . . . , n (33)

Goal 2: Constraints for Foremen

16

∑
i=5

ti ∗ Xijk − d+2jk + d−2jk = 3 ∗ 0.026957512j = 1, 2, 3, . . . , mk = 1, 2, . . . , n (34)

63



Mathematics 2019, 7, 192

Goal 3: Constraints for Experts

40

∑
i=17

ti ∗ Xijk − d+3jk + d−3jk = 6 ∗ 0.022802299j = 1, 2, 3, . . . , mk = 1, 2, . . . , n (35)

Goal 4: Constraints for Assistants

80

∑
i=41

ti ∗ Xijk − d+4jk + d−4jk = 10 ∗ 0.016094762j = 1, 2, 3, . . . , mk = 1, 2, . . . , n (36)

5.2.4.2. Objective Function

min Z =
30

∑
j=1

3

∑
k=1

d−1jk + d+1jk + d−2jk + d+2jk + d−3jk + d+3jk + d−4jk + d+4jk (37)

5.2.5. Analysis of The Result

All goals have the same weight. Solving of the model is used with the features computer which
processor "Intel (R) Core (TM) i7-2800 CPU@2.00 GH", 16 GB of memory and Windows 10 operating
system. The proposed model, ILOG CPLEX Studio IDE is written in the program and is solved with
the CPLEX solvent. The proposed schedule is created after running the ILOG CPLEX Studio IDE
Solver at a reasonable time.

The complete assignment results can be seen in Figure 6. In order to examine the results in detail,
the amount of deviation or not, if any, was calculated. The results show that a 1.56% positive deviation
was observed from the second goal. A 0.48% negative deviation was observed to the fourth goal.
There was no deviation from the first and third goals. As can be seen here, the deviation rates are very
low, and the model has yielded positive and efficient results.

The model of this study increases the balanced assignments of the workers and that the program
needs to adapt these workers on shift scheduling. Thus, it will increase the satisfaction of workers in
terms of considering their shift schedule. As it seen from the Table 4, workloads of the personnel are
unstable and irregular when the schedules are done in the manual. It has been determined that staff
assignments are made by ignoring the hard and soft constraints.

In the Table 5, the workloads of each personnel can be seen after scheduling is done with a
mathematical model. All hard constraints are satisfied and many of the soft constraints are satisfied.
Worker’s preferences are not ignored.
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Table 4. Workloads of each personnel with manual scheduling.

P1 27 P9 19 P17 26 P25 25 P33 20 P41 22 P49 20 P57 19 P65 20 P73 22
P2 11 P10 23 P18 19 P26 20 P34 14 P42 22 P50 26 P58 27 P66 20 P74 30
P3 17 P11 26 P19 24 P27 27 P35 16 P43 21 P51 24 P59 27 P67 17 P75 30
P4 20 P12 25 P20 25 P28 26 P36 21 P44 27 P52 17 P60 21 P68 15 P76 19
P5 25 P13 26 P21 27 P29 28 P37 23 P45 11 P53 30 P61 16 P69 19 P77 22
P6 21 P14 20 P22 20 P30 17 P38 22 P46 25 P54 12 P62 22 P70 21 P78 16
P7 26 P15 19 P23 26 P31 25 P39 26 P47 21 P55 30 P63 23 P71 27 P79 23
P8 22 P16 24 P24 23 P32 10 P40 24 P48 22 P56 24 P64 26 P72 22 P80 22

Table 5. Workloads of each personnel after scheduling is done with mathematical model.

P1 23 P9 23 P17 23 P25 23 P33 23 P41 23 P49 23 P57 20 P65 23 P73 23
P2 23 P10 22 P18 23 P26 23 P34 23 P42 22 P50 23 P58 23 P66 22 P74 23
P3 23 P11 23 P19 23 P27 23 P35 22 P43 22 P51 23 P59 23 P67 23 P75 23
P4 23 P12 23 P20 22 P28 22 P36 22 P44 23 P52 22 P60 22 P68 23 P76 23
P5 22 P13 23 P21 23 P29 23 P37 22 P45 22 P53 22 P61 22 P69 23 P77 23
P6 23 P14 23 P22 23 P30 23 P38 23 P46 22 P54 22 P62 23 P70 23 P78 23
P7 22 P15 22 P23 22 P31 23 P39 22 P47 23 P55 23 P63 23 P71 23 P79 23
P8 23 P16 23 P24 22 P32 22 P40 23 P48 23 P56 22 P64 23 P72 23 P80 23

Computational results are given in Table 6. When the results are examined, the ratio of the
demands that are met before the work is done and the rates after the work are done are different
from each other. According to gathering results, fair scheduling requests were met, and fairness was
provided from shift schedules. The preferences mentioned in the study constitute the entire hard and
soft constraints. In the previous manual scheduling, 4 of 10 constraints, some hard, some soft, were not
available. After the solution of the proposed mathematical model, all hard and weak constraints were
met. 24 of the total 80 employees work 22 days and 56 of them work 23 days in a month for proposed
scheduling mathematical model.

Table 6. Computational result.

Criteria Existing Schedule Proposed Schedule

Unsatisfied preference 4 0
Satisfied preference 6 10

Total preference 10 10
Percentage of satisfaction %60.00 %100.00

This scheduling study, together with shift scheduling issues, has made very high contributions
to reducing costs. In order to express the contributions of this work in decreasing costs, it is more
appropriate to first explain the calculation over the capacity of the plant. We can say that if the power
plant runs at 100% capacity, installed capacity of the power plant is 1000 MW. According to this, the
monthly capacity can be calculated as 720 hours (24 hours × 30 days). 1 MW electricity is selling by
17.1 Kuruş (One Turkish Lira ( ) is equal to 100 Turkish Kuruş) from the Energy Market Inspection
Agency (EPDK, Ankara, Turkey). This value is the wholesale electricity sales price for 2018 in Turkey.
We can find the monthly 100% total generation capacity of the NGCCPP as 720.000 MW (1000 MW ×
24 Hours × 30 Days).

There are some shutdown problems of the power plant also included, which arise from doing
shift scheduling manually. When the shift scheduling is done manually, on average 53 hours were
lost because of SSP. Due to the faults from shift scheduling, 53 hours shutdown caused 90.630.000
expenses to the NGCCPP (53 Hours × 1000 MW × 17,1 Krş × 100). After the proposed schedule
was applied in six months in the power plant, some results were gathered and calculated from the
engineering department. According to this, 53 hours loss has been decreased to 4 hours loss after
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the proposed model of shift scheduling was done. After our implementation of the new schedule,
only 4 hours shutdown were seen in the NGCCPP because of the faults from shift scheduling errors.
4 hours shutdown cause 6.840.000 expenses to the NGCCPP (4 Hours × 1000 MW × 17,1 Krş × 100).
According to this calculations, 83.790.000 total profit (90.630.000 – 6.840.000 ) is gathering from
proposed model of shift scheduling. For this reason, this article differs from other studies in the
literature in the context of giving the results of application.

6. Conclusions

NGCCPPs have significant advantages such as having high capacities, low setup times, low
installation costs, low environmental impacts, short run times, high yields, ease of operation and
maintenance, and a long economic lifespan compared to the other types of power plants, which are
especially fossil fueled and providing base load requirements. Despite the lack of resource availability,
because of these advantages, these power plants are located in first place with a third of Turkey’s
energy mix as at of the end of 2018.

The main purpose of NGCCPPs, as in all others, is to provide a sustainable energy supply and
one of the most important and problematic pillars of this comprehensive goal is the uninterruptedness.
Because, many factors such as operating the power plants without considering the operation and
maintenance directives, fuel quality, grid failure, atmospheric conditions, and lack of water cause the
NGCCPs’ shutdowns. In addition to this, in NGCCPPs without a SCADA system, the power plant
is operated from a main control room or in place by intervening on the equipment spread over the
power plant. In this context, the continuity of generation is directly related to the operators, or in
other words, to their attention. Because fatigue, unwillingness, and a lack of motivation may cause the
operators not to perform the necessary interventions on time. This may lead to longer shutdowns in
the power plant. An important way to increase operator motivation in power plants is to establish a
fair work distribution and to make competency-based assignments. Therefore, in this study, talent
based SSP is handled in one of the large-scale NGCCPP in Turkey and a monthly shift schedule is
obtained by solving the proposed multi-objective goal programming model supported with ANP,
which is used for calculating the operators’ competencies for decreasing the generation shutdowns
due to operator errors.

The power plant has previously been operated by schedules which were unplanned, arbitrary,
and without considering the operator qualifications. Therefore, the motivation and work requests of
the operators had been lost, and their attention levels decreased considerably. Thus, the power plant
had to interrupt generation for 53 hours due to operator error. This loss means millions of kWh of
energy; equaling to a significant monetary magnitude. The shift schedule produced by the proposed
model within this study has maximized the operator motivation on the basis of fair work distribution
and capabilities. Thus, a 92.5% improvement was achieved in operator-centered generation downtimes
and millions of TL losses were prevented.

Two of the most important reasons for operators’ motivation loss are that operators are assigned
to the shifts without a fair and balanced distribution and without regard to their level of expertise,
regardless of their seniority. This fact is agreed upon by all managers and operators at the power plant
where this study was carried out. The impact of their level of expertise on motivation is related to each
operator’s feeling safe. As mentioned above, the fact that the generation carried out in the power plant
is removed from sustainability can cause significant financial losses and social problems. In addition,
each shift is a team of four seniority levels, and team members think that a balanced distribution of
expertise levels will ensure that sustainable energy supply will not be interrupted. This is consistent
with the 92.5% improvement in the proposed model’s generation downtimes. From this point of view,
it can be interpreted that operator motivation is increased by taking the working competencies of the
proposed model into consideration in the shift schedules produced in NGCCPPs.

The model was solved by using IBM ILOG Optimization Tool in a reasonable time by considering
the complexity of the model and the use of precise and intuitive algorithms rather than metaheuristic
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approaches. However, the SSP-ANP-GP model significantly reduces the time it takes to obtain a
monthly schedule based on the current manual scheduling. On the basis of the 30-day program
obtained with the SSP-ANP-GP model, the satisfaction of the workers for their day-off preferences
increased significantly compared to the current schedule. In addition, according to the current schedule
and practice, each worker has to work with a fixed group of people throughout the year. By contrast,
in addition to having preferred leisure time choices, the workers have the opportunity to work with a
variety of people for their shifts. It has been shown that optimal results that maximizes the day-off
preferences can be obtained using the formulated SSP-ANP-GP model.

The proposed SSP-ANP-GP model has the potential to be adapted to the other power plants
by changing some possible constraints such as holidays, operator groups, shift number etc. In other
words, all types of power plants have specific conditions, requirements, or constraints based on their
technology, and the proposed model can be directly applied to the NGCCPPs without a DCS system.
However, computational results consistent with real life power plant management of the proposed
model show that this study comes to the fore from other studies in the literature.

The examination of the results of the study and the possibility of long-term implementation are
important for the contribution to the literature. In practice, SSPs tend to be intertwined with other
factory programming problems. For example, the reservation date etc. (it is not possible to change).
In the literature, these more general problems (the integration of machine planning and personnel
planning) have not been addressed yet. However, there are a number of programming systems on the
market at this time. Regarding the solution method, we can see that the literature has multiplied the
mathematical programming approaches and metaheuristic approaches.

In spite of the significant increase in productivity of complete algorithms in order to solve integer
programming problems in recent years, they are often not applicable to solve practical problems in the
medium and large size due to excessive working times and memory requirements. For this reason, for
the future application of the SSP-ANP-GP model in the electricity generation of workers’ shift schedules,
heuristics can be considered to obtain a complete or approximate solution for shorter calculation times.
Other proposals for future work to expand or investigate the SSP for future applications may include
strategically reducing the number of decision variables and constraints to make it more practical in the
field of application for overtime. In a different point of view, researchers may create a user-friendly
interface for using the mathematical model and knowledge based on the solutions obtained by the
users to solve SSPs quickly.
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Figure A1. Limit super matrix of the ANP calculations.
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Figure A2. Limit super matrix of the ANP calculations (cont.).
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Figure A3. Limit super matrix of the ANP calculations (cont.).
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Abstract: The Precise consistency consensus matrix (PCCM) is a consensus matrix for AHP-group
decision making in which the value of each entry belongs, simultaneously, to all the individual
consistency stability intervals. This new consensus matrix has shown significantly better behaviour
with regards to consistency than other group consensus matrices, but it is slightly worse in terms
of compatibility, understood as the discrepancy between the individual positions and the collective
position that synthesises them. This paper includes an iterative algorithm for improving the
compatibility of the PCCM. The sequence followed to modify the judgments of the PCCM is given by
the entries that most contribute to the overall compatibility of the group. The procedure is illustrated
by means of its application to a real-life situation (a local context) with three decision makers and four
alternatives. The paper also offers, for the first time in the scientific literature, a detailed explanation
of the process followed to solve the optimisation problem proposed for the consideration of different
weights for the decision makers in the calculation of the PCCM.

Keywords: Analytic Hierarchy Process (AHP); group decision making; consistency; compatibility

1. Introduction

One of the multicriteria decision making techniques that best responds to the challenges and needs
of the Knowledge Society [1], especially the consideration of intangible aspects and decision-making
with multiple actors, is the Analytical Hierarchy Process (AHP). AHP was proposed by Thomas L. Saaty
in the early 1970s (20th century) [2]. This multicriteria technique incorporates the intangible aspects
associated with the human factor through the use of pairwise comparisons. In group decision-making,
where all the actors work as a single unit, AHP usually follows one of the two most traditional
approaches [3–5]: the Aggregation of Individual Judgements (AIJ) and the Aggregation of Individual
Priorities (AIP).

Both methods present two important limitations that have been addressed in some of
the most recent proposals: the certainty of the data and the use of the geometric mean as
the synthesising procedure of the considered values (judgments in AIJ and priorities in AIP).
Escobar and Moreno-Jiménez [6] consider the principle of certainty and incorporate the context
effect through the procedure called the Aggregation of Individual Preference Structures (AIPS).
Altuzarra et al. [7] advance a Bayesian approach as a prioritisation procedure and a group
decision-making aggregation procedure.

The concept of consistency [2] is one of the characteristics that distinguishes AHP from the other
multicriteria techniques and gives coherence to the method; Moreno-Jiménez et al. [8–10] used this to
design a new procedure for group decision making: the Consistency Consensus Matrix (CCM). Under
certain conditions, the CCM automatically provides an interval judgement matrix where each entry
reflects the range of values in which all decision makers would simultaneously be consistent in their
initial matrices.
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One limitation of this new decision-making tool is that the CCM is sometimes incomplete.
The Precise Consistency Consensus Matrix (PCCM) has been proposed [11,12] to respond to this
limitation by including more judgments in the group consensus matrix and allowing decision makers
to have different weights assigned in the resolution of the problem. This new consensus matrix has,
by construction, demonstrated good behaviour with respect to consistency, but it can be improved
with respect to compatibility, understood as the discrepancy between the individual positions and the
collective position that synthesises them.

This work presents a procedure to improve the compatibility of the PCCM guaranteeing that the
consistency does not exceed a predetermined level. Compatibility is improved by modifying those
judgments of the PCCM that most contribute to the global compatibility, with the idea of reducing this
contribution. The combination of what happens to the consistency and the compatibility will allow
selecting, as the preferred option, the one that most improves the cumulative relative changes of the
two criteria (consistency and compatibility).

The paper is structured as follows: Section 2 gives the background to the developments; Section 3
describes the PCCM and the algorithm that solves the optimisation problem that aims to find the
precise value that maximises the slack of consistency that remains free for the following steps when the
actors have different weights; Section 4 explains the proposal for improving the compatibility of the
PCCM and applies it to a case study; Section 5 highlights the most important conclusions of the study.

2. Background

2.1. Multiactor Decision Making (MADM)

As previously mentioned, consistency (coherence of decision makers in eliciting their judgments)
and a good behaviour in the decision-making with multiple actors are two of the most important
properties for multicriteria decision making techniques. [6,13] distinguish three areas in multi-actor
decision-making: (i) Group Decision Making (GDM); (ii) Negotiated Decision Making (NDM); and (iii)
Systemic Decision Making (SDM).

In GDM, individuals work together in pursuit of a common goal under the principle of consensus.
Consensus refers to the approach, model, tools, and procedures for deriving the collective position or
final group priority vector.

NDM is based on the principle of agreement and the assumption that all the actors follow the
same scientific approach. The individuals resolve the problem separately, the zones of agreement
and disagreement between the actors are identified and agreement paths (sometimes known as
consensus paths) are constructed by changing, in a personal, semiautomatic or automatic way, one or
several judgements.

SDM follows the principle of tolerance: the individual acts independently and the individual
preferences, expressed as probability distributions, are aggregated to form a collective one—the
tolerance distribution. This new approach integrates all the preferences, even if they are provided
from different ‘individual theoretical models’; the only requirement is that they must be expressed as
some kind of probability distribution.

The systemic situation for dealing with multiactor decision making allows capturing the holistic
vision of reality and the subjacent ideas of lateral thinking [14]. The information provided by the
tolerance distribution can be used to construct tolerance paths to produce a more democratic and
representative final decision. In other words, a decision will be accepted by a greater number of actors
or by a number of actors with greater weighting in the decisional process [15,16].

2.2. Analytic Hierarchy Process

The Analytic Hierarchy Process is one of the most widely utilised multicriteria decision making
techniques. Its methodology consists of three phases [2]: (a) modelling, (b) valuation, and, (c)
prioritisation and synthesis.
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(a) Modelling refers to the construction of a hierarchy of different levels that represent the relevant
aspects of the problem (scenarios, actors, criteria, alternatives). The mission or goal hangs on the
highest level. The subsequent levels contain the criteria, the first order subcriteria, the second
order, etc. This continues to the last order subcriteria or attributes (characteristics of the reality
that are susceptible to be measured for the alternatives); the alternatives hang from the lowest
subcriteria level (attributes).

(b) Valuation involves the incorporation of the preferences of the decision makers via pairwise
comparisons of the elements that hang from the nodes of the hierarchy in relation to the common
node. The judgements follow Saaty’s fundamental scale [2] and reflect the relative importance
of one element with respect to another with regards to the criterion that is considered. They are
expressed in reciprocal pairwise comparison matrices.

(c) Prioritisation and synthesis determines the local, global and total priorities. Local priorities
(priorities of the elements of the hierarchy with regards to the node from which they hang)
are obtained from the pairwise comparison matrices using any of the existing prioritisation
procedures. The Eigenvector (EGV) and the Row Geometric Mean (RGM) are the two most
commonly employed. Global priorities (the priorities of the elements of the hierarchy with
regards to the mission) are obtained through the principle of hierarchical composition, whilst
Total priorities (the priorities of the alternatives with regards to the mission) are obtained by a
multiadditive aggregation of the global priorities of each alternative.

In the AHP-group decision making context, the two techniques traditionally used are: (i) the
Aggregation of Individual Judgements (AIJ) and (ii) the Aggregation of Individual Priorities (AIP);
firstly, it is necessary to specify the notation that will be utilised. Given a local context (one criteria
in the hierarchy) with n alternatives (A1,...,An) and r decision makers (D1,...,Dr), let A(k) = (a(k)ij ) be
the pairwise comparison matrix of decision-maker Dk (k = 1,...,r; i, j = 1,...,n) and πk be the relative

importance in the group (πk ≥ 0,
r
∑

k=1
πk = 1).

The priorities following the two approaches AIJ and AIP are obtained as follows:

• Aggregation of Individual Judgements: The individual pairwise comparison matrices A(k)k =

1,...,r, are first aggregated to obtain a new judgement matrix for the group A(G) = (a(G)
ij ). Then,

the priority vector w(G/J) = (w(G/J)
i ) is derived from this new matrix using one of the existing

prioritisation methods.
• Aggregation of Individual Priorities: The priority vectors are first obtained for each individual,

w(k) = (w(k)
i ) and k = 1,...,r, using one of the existing prioritisation methods and then aggregated to

obtain the priorities of the group w(G/P) = (w(G/P)
i ).

Using the Weighted Geometric Mean Method (WGMM) as the aggregation procedure, the group
judgement matrix and the group priority vector are given by:

• A(G) = (a(G)
ij ) with a(G)

ij = ∏r
k=1 (a(k)ij )

πk
, i, j = 1, . . . , n

• w(G/P) = (w(G/P)
i ) with w(G/P)

i = ∏r
k=1 (w

(k)
i )

πk
, i = 1, . . . , n

When the WGMM aggregation procedure is employed and the priorities are obtained using the
RGM, the two approaches, AIJ and AIP, provide the same solution [17,18].

2.3. Consistency and Compatibility in AHP

AHP allows for the evaluation of the consistency of the decision-maker when the judgements
are introduced into the pairwise comparison matrices. Saaty [2] defined consistency in AHP as the
cardinal transitivity of the judgements included in the pairwise comparison matrices, that is to say, the
reciprocal pairwise comparison matrix Anxn = (aij) is consistent if ∀i,j,k = 1,...,n satisfies aij·ajk = aik.
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Consistency is associated with the (internal) coherence of the decision makers when their
judgements are considered in the pairwise comparison matrices. Consistency is usually evaluated
—depending on the prioritisation procedure that is used— as the ‘representativeness’ of the local
priorities vector derived from the pairwise comparison matrices (aij is an estimation of wi/wj).

In the case of the EGV and RGM, the inconsistency indicators are given, respectively, by the
Consistency Index (CI) and the Geometric Consistency Index (GCI) [19]:

CI =
1

n(n − 1)

n

∑
i,j=1

(eij − 1) (1a)

GCI =
2

(n − 1)(n − 2) ∑
i<j

log2eij (1b)

where eij = aij(wj/wi). Obviously, if the matrix is consistent, both indicators of inconsistency are null,
thus errors eij = 1 (aij = wi/wj).

The Consistency Interval Judgement matrix for the group (GCIJA) is an interval matrix GCIJA =
([aij, aij]) where the entries correspond to the range of values for which all the decision makers will not
exceed the maximum inconsistency allowed and will belong to the Saaty’s fundamental scale range of
values [1/9, 9].

The values that determine the limits of each entry of the GCIJA are given by aij = Max
k

{
a(k)ij ; 1/9

}
and aij= Min

k

{
a(k)ij ; 9

}
, where a(k)ij and a(k)ij are the limits of the individual consistency stability interval

for a(k)ij ([a(k)ij , a(k)ij ]) with Δ(k) = GCI* − GCI(k), GCI* being the maximum inconsistency allowed for the

problem and GCI(k) the Geometric Consistency Index for the individual matrix A(k) [20].
Compatibility refers to the (internal) coherence of the group when selecting its priority vector

(w(G) = (w1
(G), . . . ,wn

(G))), that is to say, its representativeness in relation to the individual positions
(w(k) = (w1

(k), . . . ,wn
(k))). To evaluate the compatibility of an individual k (w(k)), k = 1, . . . ,r, with the

collective position or group priority vector(w(G)), it is sufficient to adapt the previous expression of
the GCI, taking eij = a(k)ij (w(G)

j /w(G)
i ) in local context or eij = (w(k)

i /w(k)
j )(w(G)

j /w(G)
i ) in a global one.

The concept of compatibility reflects the distance between the individual and collective positions and
is calculated automatically, without the express intervention of the individual with the exception of the
emission of the initial judgements of the pairwise comparison matrices. [21] advanced the Geometric
Compatibility Index (GCOMPI) in order to evaluate the compatibility of the individual positions with
respect of the collective position provided by any of the existing procedures. The expression of the
GCOMPI for a decision maker k in a local context (one criterion) is given by:

GCOMPI(k, G) =
2

(n − 1)(n − 2)

n−1

∑
i=1

n

∑
j=i+1

log2(a(k)ij

w(G)
j

w(G)
i

) (2)

and in a global context (hierarchy) by:

GCOMPI(k, G) =
2

(n − 1)(n − 2)

n−1

∑
i=1

n

∑
j=i+1

log2(
w(k)

i

w(k)
j

w(G)
j

w(G)
i

) (3)

The GCOMPI for the group is given by:

GCOMPI(G) = ∑
k=1,...r

πkGCOMPI(k,G) =
2

(n − 1)(n − 2)

n−1

∑
i=1

n

∑
j=i+1

r

∑
k=1

πklog2(a(k)ij

w(G)
j

w(G)
i

) (4)
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In addition to the use of the GCI and the GCOMPI, two more indicators are used in the literature to
compare the behaviour of the different procedures with respect to consistency and compatibility [11,12]:
the Number of Violations in Consistency (CVN) for the consistency; and the Number of Violations in
Priorities (PVN) for the compatibility.

The CVN considers the mean number of entries of the group pairwise comparison matrix that do
not belong to the corresponding consistency stability interval judgement of each individual, calculated
for the inconsistency threshold considered in the problem. The Consistency Violation Number (CVN)
for the group is given by CVN(G) = ΣkπkCVN(k,G), where

CVN(k,G) =
2

n(n − 1)

n

∑
i<j

Iij(CI JA(k)/A(G)) (5)

and

Iij(CI JA(k)/A(G)) =

{
1 i f a(G)

ij /∈
[

a(k)ij , a(k)ij

]
0 otherwise

(6)

The PVN measures the ordinal compatibility of each AHP-GDM procedure by means of the
minimum number of violations [22].

The Priority Violation Number (PVN) for the group is given by PVN(G) = ΣkπkPVN(k,G), where

PVN(k,G) = PVN(A(k)/A(G)) =
2

(n − 1)(n − 2)

n

∑
i<j

Iij(A(k)/A(G)) (7)

and

Iij(A(k)/A(G)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 i f a(k)ij > 1 and w(G)

i < w(G)
j

0.5 i f a(k)ij = 1 and w(G)
i �= w(G)

j

0.5 i f a(k)ij �= 1 and w(G)
i = w(G)

j

0 otherwise

(8)

3. The Precise Consensus Consistency Matrix (PCCM)

Moreno-Jiménez et al. [9,10] proposed a decisional tool, the Consistency Consensus Matrix (CCM),
which identifies the core of consistency of the group decision using an interval matrix that may not be
complete or connected. In [12], the same authors refined this tool and introduced the PCCM, which
selects a precise value for each interval judgement in such a way that the quantity of slack that remains
free for successive algorithm iterations is the maximum possible.

Escobar et al. [11] extended the PCCM to allow the assignment of different weights to the decision
makers and to guarantee that the group consensus values were acceptable to the individuals in terms
of inconsistency. In the same work, these authors put forward a number of methods for completing
the PCCM matrix if it were incomplete.

The improved version of the algorithm for constructing the PCCM proposed in [11] starts by
calculating the variance of the logarithms of the corresponding judgements, taking into account the
fact that decision makers may have different weights. It also provides (Step 1) the initial Consistency
Stability Intervals [20] for the individuals and for the group (GCIJA). The judgement with least
variance (Step 2) that has a non-null intersection for the initial individual consistency stability intervals
is selected. The consistency stability intervals for each decision maker are calculated for this judgement
(Step 3) and the intersection of all these intervals is obtained (Step 4). In this common interval, it is
guaranteed that the individual judgements can oscillate without the GCI exceeding a previously fixed
level of inconsistency. The intersection of the previous interval with the range of values [1/9,9] and the
initial consistency stability intervals is then calculated (Step 5). This avoids taking a value distanced
from the initial judgements of all the decision makers more than the amount allowed for the fixed
inconsistency level. The algorithm determines a precise value that belongs to the common interval
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(Step 6). Any judgment in this interval will have an acceptable inconsistence. Some of the matrices will
be more inconsistent than others and they will therefore admit less slack for the following iterations.
In order to address this point, the algorithm selects the value that provides the greatest slack for the
most inconsistent matrix (the value that minimises the GCI of the most inconsistent matrix). Finally,
the value obtained is included as an entry of the PCCM and serves to update the initial individual
judgment matrices (Step 7). The detailed version of the algorithm can be seen in [11].

The consideration of different weights for the decision makers has notably increased the difficulty
of the optimisation model (9) solved in Step 6. This non-trivial optimisation problem is solved using
an iterative procedure which searches for the intersection points of the parabolas (the second order
equations associated with the GCI(A(k)) functions).

Minαrs Maxkπk

(
GCI(k) +

2
n(n − 1)

[(
αrs − α

(k)
rs

)2
+

2n
n − 2

(
αrs − α

(k)
rs

)
ε
(k)
rs

])
(9)

with αrs ∈
[
log at

rs, log at
rs
]
, where αrs = log ars, α

(k)
rs = log a(k)rs and ε

(k)
rs = log e(k)rs

When all decision makers have the same weight (initial version of the algorithm [12]), all the
parabolas have the same ‘width’ (the same coefficient of the quadratic term). In that situation, the
parabolas may intersect in one point or none. But when the decision makers have different weights [11],
the parabolas may have different coefficients for their respective quadratic terms. Each pair of parabolas
may intersect in one or two points, or none. Moreover, in this case, some parabolas can be tangential.
The resolution of the optimisation model (9) should consider all these possibilities and carefully
analyse each intersection point. A more detailed explanation of the procedure followed to solve this
optimisation model (9) can be seen in Appendix A.

4. Improving the PCCM’s Compatibility

4.1. Iterative Procedure

The PCCM decisional tool has been applied to decisional problems [11,12] and the values of
consistency are significantly better than those obtained with other GDM approaches (AIJ, Dong
procedure [23]), but they are slightly worse in terms of compatibility.

This paper suggests an iterative procedure to improve compatibility without significantly
worsening consistency (keeping it below a preset threshold). If the PCCM is constructed by sequentially
considering the judgements from the least to the greatest variance, the proposed improvement of
compatibility will sequentially consider the judgments with the greatest contribution (participation) to
the global compatibility measure employed (4). This value corresponds to the entry prs of the PCCM
for which:

Maxij

r

∑
k=1

πklog2(a(k)ij

v(G)
j

v(G)
i

) (10)

where v(G) is the priority vector derived from the PCCM using the RGM method.

The procedure will modify the selected judgement prs approaching it to the ratio w(G)
r

w(G)
s

of

the priorities derived for the AIJ matrix; following a similar idea of that employed in the Dong
procedure [23].

p′rs = (prs)
θ ·(w(G)

r

w(G)
s

)

1−θ

, θ ∈ [0, 1] (11)

In any case, the modified value would never exceed the limits of the consistency stability intervals
for this judgment, guaranteeing that the level of inconsistency for each decision maker is acceptable.

In what follows, the new iterative procedure for improving compatibility is explained in detail.
It is described for any judgement matrix P; it will be applied to P = PCCM, as following Algorithm 1.
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Algorithm 1

Let A(k) = (a(k)ij ) be the pairwise comparison matrix of decision maker Dk (k = 1,...,r; i, j = 1,...,n)

and πk its relative importance in the group (πk ≥ 0,
r
∑

k=1
πk = 1); aij, aij (i, j = 1, . . . , n) the limits of

the intervals of the Consistency Interval Judgement matrix for the group; θ ∈ [0, 1]; w(G) the priority
vector obtained when applying the RGM to the AIJ matrix; P a judgement matrix; and v the priority
vector derived from P using the RGM method.

Step 0: Initialisation

Let t = 0, P(0) = P, J = {(i, j), with i < j} and calculate for all (i, j) ∈ J:

dij = ∑
k

πklog2
a(k)ij vj

vi

Step 1: Selection of the judgement

Let (r, s) be the entry for which drs = max
(i,j)∈J

dij

J = J − {(r, s)}

Step 2: Obtaining a PCCM entry
P(t+1) = P(t)

Let z = (p(t)rs )
θ
(w(G)

r

w(G)
s

)
1−θ

p(t+1)
rs =

⎧⎪⎨⎪⎩
ars if z < ars
z if ars ≤ z ≤ ars

ars if z > ars

Step 3: Finalisation

J = ∅, then Stop
Else let t = t + 1 and go to Step 1.

4.2. Case Study

The previous procedure was applied to a case study which has been widely employed in the
literature [11,12,24,25]: three decision makers (DM1, DM2 and DM3) must compare 5 alternatives (A1,
. . . , A5). The individual pairwise comparison matrices are given in Table 1. The decision makers were
given different weights (π1 = 5; π2 = 4; and π3 = 2).

Table 1. Pairwise comparison matrices for the three decision makers.

DM1 A1 A2 A3 A4 A5 DM2 A1 A2 A3 A4 A5 DM3 A1 A2 A3 A4 A5

A1 1 3 5 8 6 A1 1 3 7 9 5 A1 1 5 7 7 5

A2 - 1 3 5 4 A2 - 1 3 7 1 A2 - 1 1 5 1

A3 - - 1 3 2 A3 - - 1 5 1/5 A3 - - 1 5 1/3

A4 - - - 1 1/3 A4 - - - 1 1/5 A4 - - - 1 1/5

A5 - - - - 1 A5 - - - - 1 A5 - - - - 1

Table 2 gives the resulting priorities using the RGM for each of the three individual matrices and
their corresponding rankings.
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Table 2. Individual priority vectors, rankings and GCIs.

Priorities DM1 DM2 DM3

A1 0.513 0.520 0.560
A2 0.251 0.195 0.135
A3 0.115 0.072 0.101
A4 0.042 0.030 0.035
A5 0.079 0.182 0.168

Rankings 1-2-3-5-4 1-2-5-3-4 1-5-2-3-4

GCIs 0.143 0.303 0.298

The PCCM matrix that is obtained by applying the procedure explained in [11,12] is shown in
Table 3.

Table 3. Precise Consistency Consensus Matrix (PCCM).

PCCM A1 A2 A3 A4 A5

A1 1 2.05 5.51 9 3.17
A2 0.49 1 3 6.08 1.74
A3 0.18 0.33 1 2.71 0.68
A4 0.11 0.16 0.37 1 0.35
A5 0.32 0.58 1.47 2.4 1

Two other AHP-GDM procedures have been applied: the AIJ that was explained in Section 2,
and the Dong procedure [23]. Table 4 shows the priority vectors obtained with the three AHP-GDM
procedures. It can be observed that the ranking of the alternatives is the same for the three procedures.

Table 4. Priority vectors and rankings for the AHP-GDM procedures.

Priorities PCCM AIJ Dong

A1 0.467 0.533 0.531
A2 0.255 0.208 0.216
A3 0.095 0.096 0.099
A4 0.044 0.037 0.038
A5 0.139 0.125 0.116

Rankings 1-2-5-3-4 1-2-5-3-4 1-2-5-3-4

Table 5 shows the consistency and compatibility indicator values for the three
AHP-GDM procedures.

Table 5. Consistency and compatibility indicator values (the best value of the methods is in bold, for
each indicator).

PCCM AIJ Dong

GCI 0.023 0.122 0.069
CVN 0 0.018 0.018

GCOMPI 0.529 0.464 0.472
PVN 0.136 0.136 0.136

With respect to the indicators that measure consistency (GCI and CVN), the values obtained with
the PCCM are considerably better than those obtained with the other two approaches. The values of
the GCI for the AIJ procedure (0.122) and for the Dong procedure (0.069) are, respectively, more than
five times (535.7%) and three times (304.2%) greater than that of the PCCM (0.023). The behaviour of
the CVN is also better for the PCCM (CVN(PCCM) = 0 while CVN(AIJ) = CVN(Dong) = 0.018).
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With respect to the compatibility, the value of the GCOMPI for the AIJ procedure (0.464) is better
than those of the PCCM (the value 0.529 is 14% greater than the AIJ) and the Dong procedure (the
value 0.472 is 1.7% greater). Finally, in the analysis of the number of violations (ordinal compatibility),
the three methods gave the same result (0.136).

Having observed that the PCCM is the procedure (among the three being compared) that achieves
the highest value for the GCOMPI indicator, the iterative procedure proposed at Section 4.1 is applied
with the aim of detecting an improvement in the compatibility of the PCCM.

The iterative procedure was applied with different values of θ (θ = 0.75; θ = 0.5; θ = 0.25; and
θ = 0); the PCCM corresponds to θ = 1. In order to compare the results obtained for the combinations
considered, the focus is on the two cardinal indicators—the GCI for consistency and the GCOMPI
for compatibility.

Tables 6–9 show the sequence of iterations followed when applying the procedure (each column)
and the values obtained for the two indicators for each iteration. The second row specifies the
judgement that is modified in the corresponding iteration. The values for the original PCCM are
shown in the first column as it corresponds to the starting point of the iterative procedure (t = 0). The
modified values for each entry can be seen in Table 10. The values of the GCI and GCOMPI for the
judgment (1,4), t = 8, are empty because modifying this judgement will lead to a figure out of the matrix
GCIJA. The initial value is maintained and the procedure continues, selecting the following judgement.

Table 6. Results for the iterative procedure with θ = 0.75 (the best value of the methods is in bold, for
each indicator).

Iteration◦ t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

Modif. Judg. - (3,5) (2,5) (3,4) (1,2) (1,5) (2,3) (4,5) (1,4) (1,3) (2,4)

GCI 0.023 0.023 0.023 0.022 0.025 0.023 0.021 0.019 ◦ 0.020 0.019

GCOMPI 0.529 0.528 0.527 0.528 0.522 0.517 0.512 0.511 ◦ 0.511 0.511

Table 7. Results for the iterative procedure with θ = 0.5 (the best value of the methods is in bold, for
each indicator).

Iteration◦ t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

Modif. Judg. - (3,5) (2,5) (3,4) (1,2) (1,5) (2,3) (4,5) (1,4) (1,3) (2,4)

GCI 0.023 0.023 0.024 0.022 0.028 0.025 0.020 0.019 ◦ 0.019 0.018

GCOMPI 0.529 0.527 0.526 0.527 0.516 0.507 0.499 0.496 ◦ 0.496 0.496

Table 8. Results for the iterative procedure with θ = 0.25 (the best value of the methods is in bold, for
each indicator).

Iteration◦ t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

Modif. Judg. - (3,5) (2,5) (3,4) (1,2) (1,5) (2,3) (4,5) (1,4) (1,3) (2,4)

GCI 0.023 0.024 0.024 0.023 0.031 0.029 0.021 0.021 ◦ 0.021 0.019

GCOMPI 0.529 0.526 0.525 0.526 0.510 0.499 0.489 0.485 ◦ 0.485 0.486

Table 9. Results for the iterative procedure with θ = 0 (the best value of the methods is in bold, for each
indicator).

Iteration◦ t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

Modif. Judg. - (3,5) (2,5) (3,4) (1,2) (1,5) (2,3) (4,5) (1,4) (1,3) (2,4)

GCI 0.023 0.024 0.025 0.023 0.036 0.033 0.024 0.025 ◦ 0.025 0.023

GCOMPI 0.529 0.525 0.523 0.525 0.505 0.493 0.484 0.477 ◦ 0.477 0.479

From Tables 6–9, it is possible to make the following observations:
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• The order of the entrance of the judgements is the same for all the values considered for θ. This
does not always have to happen.

• According to the proposal followed in expression (11), the values of the compatibility indicator
improve when the value of the parameter θ decreases.

• In addition to improving compatibility, the final result also improves consistency.
• The value of the compatibility indicator almost always decreases with the iterations. In just a

few cases, for judgements (3,4) and (2,4), compatibility is slightly worse. The lowest value of the
GCOMPI (0.477) is obtained with θ = 0 and applying the iteration procedure until the penultimate
iteration. This value is only 2.8% greater than the one obtained with the AIJ.

• The consistency indicator oscillates a little until achieving the highest value at iteration t = 4
(modifying judgement (1,2)). The next iteration (modifying judgement (1,5)) is a turning point
and from there the GCI reduces its value significantly (this can also be seen in Figures 1 and 2). It
can also be observed that the lower values of the GCI tend to be those obtained with high and
intermediate values of θ. The lowest value of the GCI (0.018) is obtained with θ =0.5 and applying
the iteration procedure until the last iteration. This value is 15.8% lower than that obtained with
the PCCM procedure.

• The fact that in the iteration t = 8 the judgement (1,4) is not modified means that the value of the
GCI is not null at the last iteration of the procedure for θ = 0.

Figures 1 and 2 give the information provided in Tables 6–9 in the form of graphs; they illustrate
the relationship between the two indicator values, GCI and GCOMPI. Figure 1 shows the paths
that these values follow in the iterative procedure (as new judgements are modified) for each value
of θ separately, while Figure 2 shows all the paths in the same graphic presentation. The graphic
visualisations help us to understand the relationship between the two indicators and to identify the
steps of the algorithm that provide the biggest changes.

 

Figure 1. GCI and GCOMPI values for the iterative procedure for different values of θ. Red points
correspond to the initial values of the iterative process.
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Figure 2. GCI and GCOMPI values for the iterative procedure (all the values of θ).

It can be observed that for all the values of θ, there is a turning point where the value of the GCI
begins to decrease significantly. It corresponds to iteration t = 5 when judgment (1,5) is modified.
Moreover, when θ decreases, the value of the GCOMPI also decreases and the variability of the GCI
increases (Figure 2).

Table 10 includes the modified PCCMs corresponding to the last iteration for each value of θ.
Table 11 gives the priorities associated to these matrices; all the priority vectors have the same ranking
and their range increases when the value of θ decreases.

Table 10. Modified PCCMs for different values of θ.

Modified PCCM
(θ = 0.75)

A1 A2 A3 A4 A5
Modified PCCM

(θ = 0.5)
A1 A2 A3 A4 A5

A1 1 2.17 5.52 9 3.41 A1 1 2.29 5.52 9 3.67

A2 0.46 1 2.76 5.97 1.72 A2 0.44 1 2.55 5.86 1.70

A3 0.18 0.36 1 2.68 0.70 A3 0.18 0.39 1 2.66 0.72

A4 0.11 0.17 0.37 1 0.34 A4 0.11 0.17 0.38 1 0.32

A5 0.29 0.58 1.42 2.97 1 A5 0.27 0.59 1.38 3.11 1

Modified PCCM
(θ = 0.25)

A1 A2 A3 A4 A5
Modified PCCM

(θ = 0)
A1 A2 A3 A4 A5

A1 1 2.42 5.53 9 3.96 A1 1 2.56 5.54 9 4.26

A2 0.41 1 2.35 5.75 1.68 A2 0.39 1 2.16 5.64 1.66

A3 0.18 0.43 1 2.64 0.75 A3 0.18 0.46 1 2.61 0.77

A4 0.11 0.17 0.38 1 0.31 A4 0.11 0.18 0.38 1 0.29

A5 0.25 0.59 1.34 3.25 1 A5 0.23 0.60 1.30 3.39 1

Table 11. Priority vectors and rankings for the modified PCCMs with different values of θ.

Priorities PCCM (θ = 1) θ = 0.75 θ = 0.5 θ = 0.25 θ = 0

A1 0.467 0.477 0.488 0.498 0.508
A2 0.255 0.245 0.236 0.227 0.218
A3 0.095 0.096 0.098 0.099 0.101
A4 0.044 0.044 0.043 0.043 0.042
A5 0.139 0.137 0.135 0.133 0.131

Rankings 1-2-5-3-4 1-2-5-3-4 1-2-5-3-4 1-2-5-3-4 1-2-5-3-4

5. Conclusions

This paper has addressed issues related to the calculation and exploitation of the PCCM decisional
tool employed in group decision making with AHP.
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There are two particular contributions to the literature:

(i) For the first time, the procedure followed to solve the optimisation problem that arises in each
iteration of the calculation algorithm of the PCCM has been explained in detail. The consideration
of different weights for decision makers greatly increases the difficulty of the optimisation
problem, and it has been necessary to study all of the possible situations that could occur.

(ii) The work presents a proposal to improve the compatibility of PCCM matrices. As previously
mentioned, whilst the PCCM gives much better values than other procedures with regards to
consistency, its behavior in terms of compatibility is worse. Following a sequential procedure
in line with their contribution to the GCOMPI, the judgments of the PCCM are modified using
a combination of the initial value of the PCCM and the ratio of the priorities obtained with the
AIJ procedure.

The case study proved that compatibility substantially improves, reaching values close to those
of the AIJ procedure. Consistency also improved, guaranteeing that the judgments of the consensus
matrix belong to the consistency stability intervals of all decision makers.

Although the proposal made in this paper has been focused on improving the compatibility of
the PCCM, the procedure can be adapted and applied to any consensus matrix.

Future research will seek to establish other criteria that determine the sequence in which the
judgments of the group consensus matrix are selected for modification. At the same time, future
extensions of this research will include a comparison of the proposal set out in this paper with the
recently published improvements made by the authors of [23] to their methodology.
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Appendix A

The following is a description of the procedure followed to solve the optimisation problem posed
in Step 6 and given by expression (9):

min
αrs

max
k

πk

(
GCI(k) +

2
n(n − 1)

[(
αrs − α

(k)
rs

)2
+

2n
n − 2

(
αrs − α

(k)
rs

)
ε
(k)
rs

])

with αrs ∈
[
log at

rs, log at
rs
]
, where αrs = log ars, α

(k)
rs = log a(k)rs and ε

(k)
rs = log e(k)rs

This problem can be written as:
min

αrs∈[l, u]
max

k
pk(αrs)

where pk(αrs) = πk

(
GCI(k) + 2

n(n−1)

[(
αrs − α

(k)
rs

)2
+ 2n

n−2

(
αrs − α

(k)
rs

)
ε
(k)
rs

])
are second degree

polynomials with αrs the variable and the coefficient for the quadratic term positive.
Therefore, the problem can be rewritten as:

min
x∈[l, u]

max
k

pk(x) (A1)

where pk(x) = akx2 + bkx + ck with ak > 0.
There are three cases:

a. The polynomial that is dominant in x = l is an increasing function at this point. In this case, the
solution to the optimisation problem (9) is x∗ = l (Figure A1a).
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b. The polynomial that is dominant in x = u is a decreasing function at this point. In this case, the
solution to the optimisation problem (9) is x∗ = u (Figure A1b).

c. The polynomial that is dominant in x = l is a decreasing function at this point. In this case, we
start from this initial point and move forward until we find a section/segment in which the
dominant polynomial is an increasing function (Figure A1c).

 

Case a Case b Case c

Figure A1. Graphical representation of the three cases.

Case a. When we say that a polynomial pr is dominant in x = l, we refer to the situation in which the
polynomial pr provides the maximum value in a neighbourhood [l, l + ε) :

pr(x) = max
k

pk(x)withx ∈ [l, l + ε)

In order to obtain this dominant polynomial, we start by analysing the values [l, l + ε) . The polynomial
pr(x) that provides the maximum value at this point is the polynomial that we were looking for. Nevertheless, it is
possible that some ties exist. In this case, we should look for the polynomial that is dominant in the neighbourhood
[l, l + ε) .

If pi(l) = pj(l), in order to determine which of the two polynomials is dominant in [l, l + ε) , we examine
the first derivative: if p′i(l) > p′j(l), the polynomial pi is dominant.

If pi(l) = pj(l) and p′i(l) = p′j(l), the dominant polynomial will be that one with the maximum value in
the second derivative.

 
Figure A2. Several domination relationships.

In the Figure A2 it can be appreciated that p1(l) = 1 and p2(l) = p3(l) = p4(l) = 4. It can also be
observed that p′2(l) < p′3(l) and p′2(l) < p′4(l), thus the polynomial p2(x) is not dominant. Polynomials
p3(x) and p4(x) have the same value as their derivative in x = l, but the polynomial p4(x) has a greater value
in the second derivative (greater coefficient of x2), it is therefore the dominant polynomial.

In short, if pr is the polynomial that is dominant in x = l, the following condition should be fulfilled:

(pr(l), p′r(l), p′′r (l)) = lex max
k

(pk(l), p′k(l), p′′k (l))
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Case b. The polynomial that is dominant in x = u can be determined in an analogous way:

(ps(u),−p′s(u), p′′s(u)) = lex max
k

(pk(u),−p′k(u), p′′k(u))

By determining the polynomials which are dominant in l and u, and calculating their respective derivatives
we will be able to identify cases a and b.

Case c. Starting from point x0 = l and from the corresponding polynomial that is dominant at this point, we
determine point x1 in which this polynomial becomes dominated. If the following polynomial that is dominant is
a decreasing function at this point, we continue the process, updating x0 = x1. At the moment in which we go
out from the interval under study, or when the new polynomial that is dominant is an increasing function, we
have finished the iterative stage and we only have to calculate the minimum of the present dominant polynomial
in the interval under study.

In Figure A1c we can see that p1 is the polynomial that is dominant in x = l. It continues to
be the dominant polynomial until x1 where the new polynomial that is dominant is p2. Again, this
polynomial is dominant until point x2. But the polynomial that is dominant from this point is an
increasing function at x2, and therefore it is not necessary to continue. The solution to the optimisation
problem is given by the minimum of the polynomial p2 in the interval [x1, x2].

Finding the points where a polynomial ceases to be dominant is determined by exploring the
possible cut points with the rest of the polynomials in the problem (those that are within the interval
under study) as following Algorithm A1.

Algorithm A1

min
x∈[l, u]

max
k

pk(x) where pk(x) = akx2 + bkx + ck with ak > 0

Step 1: Find r and with

(pr(l), p′r(l), p′′r(l)) = lex max
k

(pk(l), p′k(l), p′′k(l))

(ps(u),−p′s(u), p′′s(u)) = lex max
k

(pk(u),−p′k(u), p′′k (u))

If p′r(l) ≥ 0 then x∗ = l. STOP
If p′s(u) ≤ 0 then x∗ = u. STOP

Step 2: Start from point x0 = l, where the polynomial that is dominant, pr(x), is a decreasing function at this
point.
Step 3: Calculate I = {i such that ∃ ti ∈ (x0, u] withpi(ti) = pr(ti)andpi′(ti) > pr′(ti)}
Step 4: If I = ∅ the optimal solution is given by:

min
x∈[x0, u]

pr(x)

Step 5: Let j be the value such that

(−tj, p′j(tj), p′′j (tj)) = lex max
i∈I

(−ti, p′i(ti), p′′i (ti))

If p′j(tj) > 0 the optimal solution is given by:

min
x∈[x0, tj ]

pr(x)

Otherwise, update and r = j and go to Step 3.
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Abstract: In this paper, we design the EDAS (evaluation based on distance from average solution)
model with picture 2-tuple linguistic numbers (P2TLNs). First, we briefly reviewed the definition of
P2TLSs and introduced the score function, accuracy function, and operational laws of P2TLNs. Then,
we combined the traditional EDAS model for multiple criteria group decision making (MCGDM)
with P2TLNs. Our presented model was more accurate and effective for considering the conflicting
attributes. Finally, a numerical case for green supplier selection was given to illustrate this new
model, and some comparisons were also conducted between the picture 2-tuple linguistic weighted
averaging (P2TLWA), picture 2-tuple linguistic weighted geometric (P2TLWG) aggregation operators
and EDAS model with P2TLNs, to further illustrate the advantages of the new method.

Keywords: multiple criteria group decision making (MCGDM) problems; picture fuzzy sets (PFSs);
picture 2-tuple linguistic numbers (P2TLNs); picture 2-tuple linguistic sets (P2TLSs); EDAS model;
green supplier selection

1. Introduction

The traditional EDAS (evaluation based on distance from average solution) method [1], which
can consider the conflicting attributes, has been studied in many multi-attribute decision making
(MADM) problems. By computing the average solution (AV), this model can describe the difference
between all the alternatives and the AV based on two distance measures which are namely PDA
(Positive Distance from Average) and NDA (Negative Distance from Average), the alternative with
higher values of PDA and lower values of NDA is the best choice. Until now, lots of MADM
methods such as the VIKOR (VIseKriterijumska Optimizacija I KOmpromisno Resenje) method [2,3],
the ELECTRE (ELimination and Choice Expressing the Reality) method [4], the TOPSIS (Technique for
Order Preference by Similarity to Ideal Solution) method [5], the PROMETHEE (Preference Ranking
Organisation Method for Enrichment Evaluations) method [6,7], the GRA (Grey relational Analysis)
method [8], the MULTIMOORA method [9] and the TODIM (an acronym in Portuguese for Interactive
Multi-Criteria Decision Making) method [10–12] were broadly investigated by a large amount of
scholars. Compared to the existing work, the EDAS model owns the merit of only taking AVs into
account with respect to the intangibility of decision maker (DM) and the uncertainty of the decision
making environment to obtain more accurate and effective aggregation results.

Atanassov [13] introduced the concept of intuitionistic fuzzy sets (IFSs), which is a generalization
of the concept of fuzzy sets [14]. Atanassov and Gargov [15], and Atanassov [16] proposed the concept
of interval-valued intuitionistic fuzzy sets (IVIFSs), which are characterized by a membership function,
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a non-membership function, and a hesitancy function whose values are intervals. Recently, Cuong
and Kreinovich [17] proposed picture fuzzy sets (PFSs) and investigated some basic operations and
properties of PFSs. The PFS is characterized by three functions expressing the degree of membership,
the degree of neutral membership, and the degree of non-membership. The only constraint is that the
sum of the three degrees must not exceed 1. Singh [18] presented the geometrical interpretation of
PFSs and proposed correlation coefficients for PFSs. Son [19] presented a novel distributed picture
fuzzy clustering (FC) method on PFSs. Thong and Son [20] proposed the model between picture FC
and intuitionistic fuzzy recommender systems for medical diagnosis. Thong and Son [21] proposed
automatic picture fuzzy clustering (AFC-PFS) for determining the most suitable number of clusters for
AFC-PFS. Wei [22] proposed the MADM method based on the proposed picture fuzzy cross entropy.
Son [23] defined the generalized picture distance measures and picture association measures. Son and
Thong [24] developed some novel hybrid forecast models with picture FC for weather nowcasting from
satellite image sequences. Wei [25] gave some cosine similarity measures of PFSs for strategic decision
making on the basis of traditional similarity measures [26,27]. Wei [28] proposed some aggregation
operators for MADM based on the PFSs based on traditional aggregation operators [29–35]. Wei [36]
defined some similarity measures for PFSs. Wei [12] proposed the TODIM method for picture fuzzy
MADM. Wei and Gao [37] developed the generalized dice similarity measures for PFSs. Wei [38]
proposed some picture fuzzy Hamacher aggregation operators in MADM with traditional Hamacher
operations [39–42]. Wei et al. [43] designed the projection models for MADM with picture fuzzy
information. Wei et al. [44] proposed some picture 2-tuple linguistic operators in MADM. Wei [45]
proposed some Bonferroni mean (BM) operators with P2TLNs in MADM. Wei [46] defined some
picture uncertain linguistic BM operators for MADM.

Turskis et al. [1] originally defined the EDAS method for multi-criteria inventory classification.
Keshavarz Ghorabaee et al. [47] proposed the extended EDAS method for supplier selection. Kahraman
et al. [48] established the EDAS model under intuitionistic fuzzy information for solid waste disposal
site selection. Keshavarz Ghorabaee et al. [49] extended the EDAS method with interval type-2
fuzzy sets. Keshavarz Ghorabaee et al. [50] defined the multi-criteria EDAS model with interval
type-2 fuzzy sets. Keshavarz Ghorabaee et al. [51] proposed the stochastic EDAS method for MADM
with normally distributed data. Peng and Liu [52] resolved the neutrosophic soft decision making
method based on EDAS. Ecer [53] gave third-party logistics provider selection with the fuzzy AHP
and the fuzzy EDAS integrated method. Feng et al. [54] developed the EDAS method for hesitant
fuzzy linguistic MADM. Ilieva [55] assigned the group decision models with EDAS for interval
fuzzy sets. Karasan and Kahraman [56] defined the interval-valued neutrosophic EDAS method.
Keshavarz-Ghorabaee et al. [57] developed the dynamic fuzzy EDAS method for multi-criteria
subcontractor evaluation. Stevic et al. [58] gave the selection of carpenter manufacturer using the
fuzzy EDAS method. Keshavarz-Ghorabaee et al. [59] gave a comparative analysis of the rank reversal
phenomenon with the EDAS and TOPSIS methods.

Wei et al. [44] introduced the concept of P2TLSs based on PFSs [17] and the 2-tuple linguistic
information processing model [60], and developed some BM and geometric BM operators with P2TLNs.
However, no studies using the EDAS model with P2TLNs were found in the literature. Hence, it was
necessary to take the picture 2-tuple linguistic EDAS model into account. The purpose of our work
is to establish an extended EDAS model according to the traditional EDAS method and P2TLNs to
study multiple criteria group decision making (MCGDM) problems more effectively. Thus, the main
contributions of this paper are (1) to extend EDAS models to picture 2-tuple linguistic sets; (2) to
combine the traditional EDAS model for MCGDM with P2TLNs; (3) to provide a numerical case for
green supplier selection to illustrate this new model and conduct some comparisons between the
EDAS model with P2TLNs, and P2TLWA and P2TLWG aggregation operators to further illustrate
advantages of the new method.

The structure of our paper is organized as follows: definition, score function, accuracy function,
and operational formulas of P2TLNs are briefly introduced in Section 2. We introduce some aggregation
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operators of P2TLNs in Section 3. We combine the traditional EDAS model for MCGDM with P2TLNs,
and the computing steps are simply depicted in Section 4. In Section 5, a numerical example for green
supplier selection has been given to illustrate this new model, and some comparisons between the use
of P2TLWA and P2TLWG operators in the EDAS model with P2TLNs were also conducted to further
illustrate the advantages of the new method. Section 6 describes some conclusions of our work.

2. Preliminaries

In the following, we introduced some basic concepts related to 2-tuple linguistic term sets
and PFSs.

2.1. 2-Tuple Linguistic Term Sets

Let S = {si |i = 1, 2, · · · , t} be a linguistic term set with odd cardinality. si represents a possible
value for a linguistic variable, and it should satisfy the following characteristics [61]:

(1) The set is ordered: si > sj, if i > j; (2) Max operator: max
(
si, sj

)
= si, if si ≥ sj; (3) Min

operator: min
(
si, sj

)
= si, if si ≤ sj. For example, S can be defined as

S = {s1 = extremely poor, s2 = very poor, s3 = poor, s4 = medium,
s5 = good, s6 = very good, s7 = extremely good}.

Herrera and Martinez [60] defined the 2-tuple fuzzy linguistic representation model based on the
concept of symbolic translation. It is utilized for depicting the linguistic information with a 2-tuple
(si, αi), where si is a linguistic label from predefined linguistic term set S, and αi is the value of symbolic
translation, and αi ∈ [−0.5, 0.5) .

2.2. Picture Fuzzy Sets (PFSs)

Definition 1 ([17]). A PFS on the universe. X is an object of the form

A = {〈x, μA(x), ηA(x), νA(x)〉|x ∈ X }, (1)

where μA(x) ∈ [0, 1] is called the “degree of positive membership of A”, ηA(x) ∈ [0, 1] is defined as the “degree
of neutral membership of A”, and νA(x) ∈ [0, 1] is defined as the “degree of negative membership of A”, and
μA(x), ηA(x), νA(x) satisfy the following condition: 0 ≤ μA(x) + ηA(x) + νA(x) ≤ 1, ∀ x ∈ X. Then, for
x ∈ X, πA(x) = 1 − (μA(x) + ηA(x) + νA(x)) could be defined as the degree of refusal membership of x
in A.

Definition 2 ([17]). Let α = (μα, ηα, να) and β =
(
μβ, ηβ, νβ

)
be two PFNs, the operation formula of them

can be given:

(1) α ⊕ β =
(
μα + μβ − μαμβ, ηαηβ, νανβ

)
;

(2) α ⊗ β =
(
μαμβ, ηα + ηβ − ηαηβ, να + νβ − νανβ

)
;

(3) λα =
(

1 − (1 − μα)
λ, ηλ

α , νλ
α

)
, λ > 0;

(4) αλ =
(

μλ
α , 1 − (1 − ηα)

λ, 1 − (1 − να)
λ
)

, λ > 0.

According to Definition 2, the operation laws have the following properties [17].

α ⊕ β = β ⊕ α, α ⊗ β = β ⊗ α,
(
(α)λ1

)λ2
= (α)λ1λ2 ; (2)

λ(α ⊕ β) = λα ⊕ λβ, (α ⊗ β)λ = (α)λ ⊗ (β)λ; (3)
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λ1α ⊕ λ2α = (λ1 + λ2)α, (α)λ1 ⊗ (α)λ2 = (α)(λ1+λ2). (4)

2.3. Picture 2-Tuple Linguistic Sets (P2TLSs)

In the following, we introduce the concepts and basic operations of the P2TLSs based on the
PFSs [17] and 2-tuple linguistic information model [60].

Definition 3 ([44,45]). A P2TLS A in X is given

A =
{(

sθ(x), ρ
)

, (μA(x), ηA(x), νA(x)), x ∈ X
}

, (5)

where
(

sθ(x), ρ
)

∈ S, ρ ∈ [−0.5, 0.5) , uA(x) ∈ [0, 1], ηA(x) ∈ [0, 1], and vA(x) ∈ [0, 1], with the
condition 0 ≤ uA(x) + ηA(x) + vA(x) ≤ 1, ∀x ∈ X, sθ(a) ∈ S, and ρ ∈ [−0.5, 0.5) . The numbers
μA(x), ηA(x), νA(x) represent, respectively, the degree of positive membership, degree of negative membership,
and degree of negative membership of the element x to 2-tuple linguistic variable

(
sθ(x), ρ

)
.

For convenience, we call α̃ =<
(

sθ(a), ρ
)

, (u(a), η(a), v(a)) > a P2TLN, where μα ∈ [0, 1], ηα ∈
[0, 1], να ∈ [0, 1], μα + ηα + να ≤ 1, sθ(a) ∈ S and ρ ∈ [−0.5, 0.5) .

Definition 4 ([44]). Let ã =<
(

sθ(a), ρ
)

, (u(a), η(a), v(a)) > be a P2TLN, and a score function ã can be
defined as follows:

S(ã) = Δ
(

Δ−1
(

sθ(a), ρ
)
·1 + μα − να

2

)
, Δ−1(S(ã)) ∈ [1, t]. (6)

Definition 5 ([44]). Let ã =<
(

sθ(a), ρ
)

, (u(a), η(a), v(a)) > be a P2TLN, and the accuracy function can be
defined as follows:

H(ã) = Δ
(

Δ−1
(

sθ(a), ρ
)
·μα + ηα + να

2

)
, Δ−1(H(ã)) ∈ [1, t]. (7)

Definition 6 ([44]). Let ã1 =<
(

sθ(a1)
, ρ1

)
, (u(a1), η(a1), v(a1)) > and ã2 =<

(
sθ(a2)

, ρ2

)
,

(u(a2), η(a2), v(a2)) > be two P2TLNs, S(ã1) = Δ
(

Δ−1
(

sθ(a1)
, ρ1

)
· 1+μα1−να1

2

)
and S(ã2) =

Δ
(

Δ−1
(

sθ(a2)
, ρ2

)
· 1+μα2−να2

2

)
be the scores of ã1 and ã2, respectively, and let H(ã1) =

Δ
(

Δ−1
(

sθ(a1)
, ρ1

)
· μα1+ηα1+να1

2

)
and H(ã2) = Δ

(
Δ−1

(
sθ(a2)

, ρ2

)
· μα2+ηα2+να2

2

)
be the accuracy degrees

of ã1 and ã2, respectively, then if S(ã1) < S(ã2), ã1 < ã2; if S(ã1) = S(ã2), then (1) if H(ã1) = H(ã2), then
ã1 = ã2; (2) if H(ã1) < H(ã2), then, ã1 < ã2.

Some operational laws of P2TLNs are defined as follows:
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Definition 7 ([44]). Let ã1 =<
(

sθ(a1)
, ρ1

)
, (u(a1), η(a1), v(a1)) > and ã2 =<(

sθ(a2)
, ρ2

)
, (u(a2), η(a2), v(a2)) > be two P2TLNs, then

ã1 ⊕ ã2 =
〈

Δ
(

Δ−1
(

sθ(a1)
, ρ1

)
+ Δ−1

(
sθ(a2)

, ρ2

))
,

(u(a1) + u(a2)− u(a1)u(a2), η(a1)η(a2), ν(a1)ν(a2))〉;
ã1 ⊗ ã2 =

〈
Δ
(

Δ−1
(

sθ(a1)
, ρ1

)
·Δ−1

(
sθ(a2)

, ρ2

))
,

(u(a1)u(a2), η(a1) + η(a2)− η(a1)η(a2), ν(a1) + ν(a2)− ν(a1)ν(a2))〉;
λã1 =

〈
Δ
(

λΔ−1
(

sθ(a1)
, ρ1

))
,
(

1 − (1 − u(a1))
λ, η(a1)

λ, ν(a1)
λ
)〉

;

(ã1)
λ =

〈
Δ
((

Δ−1
(

sθ(a1)
, ρ1

))λ
)

,
(

u(a1)
λ, 1 − (1 − η(a1))

λ, 1 − (1 − ν(a1))
λ
)〉

.

3. Picture 2-Tuple Linguistic Aggregation Operators

In this section, we propose some aggregation operators with P2TLNs, such as the P2TLWA
operator and the P2TLWG operator.

Definition 8. Let α̃j =
〈(

sj, ρj
)
,
(
μj, ηj, νj

)〉
(j = 1, 2, · · · , n) be a collection of P2TLNs, and the P2TLWA

operator can be represented as

P2TLWAω(α̃1, α̃2, · · · , α̃n) =
n⊕

j=1

(
ωjα̃j

)
, (8)

where ω = (ω1, ω2, . . . , ωn)
T is the weight vector of α̃j(j = 1, 2, . . . , n) and ωj > 0,

n
∑

j=1
ωj = 1.

Based on the Definition 8, we can get the following result:

Theorem 1. The aggregated value by using the P2TLWA operator is also a P2TLN, where

P2TLWAω(α̃1, α̃2, · · · , α̃n) =
n⊕

j=1

(
ωjα̃j

)
=

〈
Δ

(
n
∑

j=1
ωjΔ−1(sj, ρj

))
,

(
1 − n

∏
j=1

(
1 − μj

)ωj
,

n
∏
j=1

(
ηj
)ωj ,

n
∏
j=1

(
νj + ηj

)ωj − n
∏
j=1

(
ηj
)ωj

)〉 (9)

where ω = (ω1, ω2, . . . , ωn)
T is the weight vector of α̃j(j = 1, 2, . . . , n) and ωj > 0,

n
∑

j=1
ωj = 1.

Definition 9. Let α̃j =
〈(

sj, ρj
)
,
(
μj, ηj, νj

)〉
(j = 1, 2, · · · , n) be a collection of P2TLNs, the P2TLWG

operator can be represented as

P2TLWGω(α̃1, α̃2, · · · , α̃n) =
n⊗

j=1

(
α̃j
)ωj (10)

where ω = (ω1, ω2, . . . , ωn)
T is the weight vector of α̃j(j = 1, 2, . . . , n) and ωj > 0,

n
∑

j=1
ωj = 1.

Based on Definition 9, we can get the following result:
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Theorem 2. The aggregated value by using the P2TLWG operator is also a P2TLN, where

P2TLWGω(α̃1, α̃2, · · · , α̃n) =
n⊗

j=1

(
α̃j
)ωj

=

〈
Δ

(
n
∏
j=1

(
Δ−1(sj, ρj

)ωj
))

,

(
n
∏
j=1

(
μαj + ηαj

)ωj
− n

∏
j=1

(
ηαj

)ωj
,

n
∏
j=1

(
ηαj

)ωj
, 1 − n

∏
j=1

(
1 − ναj

)ωj

)〉 (11)

where ω = (ω1, ω2, . . . , ωn)
T is the weight vector of αj(j = 1, 2, . . . , n) and ωj > 0,

n
∑

j=1
ωj = 1.

4. The EDAS Model with P2TLNs

The traditional EDAS method [1], which can consider the conflicting attributes, has been studied
in many MCDM problems. By computing the average solution (AV), this model can describe the
difference between all the alternatives and the AV based on two distance measures which are namely
PDA (positive distance from average) and NDA (negative distance from average); the alternative
with higher values of PDA and lower values of PDA is the best choice. To combine the EDAS model
with P2TLNs, we construct the EDAS model so the evaluation values are presented by P2TLNs.
The computing steps of our proposed model can be established as follows.

Suppose there are m alternatives {δ1, δ2, . . . δm}, n attributes {G1, G2, . . . Gn}, and r experts
{a1, a2, . . . ar}, let {ω1, ω2, . . . ωn} and {θ1, θ2, . . . θr} be the attribute’s weighting vector and expert’s
weighting vector which satisfy ωi ∈ [0, 1], θi ∈ [0, 1] and ∑n

i=1 ωi = 1, ∑t
i=1 θi = 1. Then:

Step 1. Construct the picture 2-tuple linguistic decision matrix R̃ =
(
r̃ij
)

m×n =〈(
sij, ρij

)
,
(
μij, ηij, νij

)〉
m×n, i = 1, 2, . . . , m, j = 1, 2, . . . , n, which can be depicted as follows.

R̃ =
(
r̃ij
)

m×n =

⎡⎢⎢⎢⎢⎣
r̃11 r̃12 . . . r̃1n
r̃21 r̃22 . . . r̃2n
...

...
...

...
r̃m1 r̃m2 . . . r̃mn

⎤⎥⎥⎥⎥⎦, (12)

where r̃ij denotes the P2TLNs of alternative ϑi on attribute Uj by expert qr.

Step 2. Normalize the evaluation matrix R̃ =
(
r̃ij
)

m×n to R̃′ =
(

r̃′ij
)

m×n
.

For benefit attributes:

r̃′ij = r̃ij =
〈(

sij, ρij
)
,
(
μij, ηij, νij

)〉
, i = 1, 2, . . . , m, j = 1, 2, . . . , n (13)

For cost attributes:

r̃′ij =
(
r̃ij
)c

=
〈

Δ
(

T − Δ−1(sij, ρij
))

,
(
νij, ηij, μij

)〉
, i = 1, 2, . . . , m, j = 1, 2, . . . , n. (14)

Step 3. According to the decision making matrix R̃′ =
(

r̃′ij
)

m×n
and expert’s weighting vector

{δ1, δ2, . . . δr}, we can utilize overall r̃′ ij to r′ ij by using P2TLWA or P2TLWG aggregation operators,
and the computing results can be presented as follows.

R =
[
r′ ij
]

m×n =

⎡⎢⎢⎢⎢⎣
r′11 r′12 . . . r′1n
r′21 r′22 . . . r′2n

...
...

...
...

r′m1 r′m2 . . . r′mn

⎤⎥⎥⎥⎥⎦ (15)
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Step 4. Compute the value of AV based on all proposed attributes;

AV =
[
AVj

]
1×n =

[
∑m

i=1 r′ ij
m

]
1×n

. (16)

Based on Definition 8,

∑m
i=1 r′ ij =

〈
Δ
(

m
∑

i=1
Δ−1(si, ρi)

)
,
(

1 − m
∏
i=1

(
1 − μ′

ij

)
,

m
∏
i=1

η′
ij,

m
∏
i=1

(
ν′ ij + η′

ij

)
− m

∏
i=1

η′
ij

)〉
(17)

AV =
[
AVj

]
1×n =

[
∑m

i=1 r′ ij
m

]
1×n

=

〈
Δ
(

m
∑

i=1

1
m Δ−1(si, ρi)

)
,
(

1 − m
∏
i=1

(
1 − μ′

ij

) 1
m ,

m
∏
i=1

(
η′

ij

) 1
m ,

m
∏
i=1

(
ν′ ij + η′

ij

) 1
m − m

∏
i=1

(
η′

ij

) 1
m
)〉 (18)

Step 5. According to the results of AV, we can compute the PDA and NDA by using the
following formula:

PDAij =
[
PDAij

]
m×n =

max
(
0,
(
r′ ij − AVj

))
AVj

, (19)

NDAij =
[
NDAij

]
m×n =

max
(
0,
(
AVj − r′ ij

))
AVj

. (20)

For convenience, we can use the score function of P2TLNs presented in Definition 4 to determine
the results of PDA and NDA as follows.

PDAij =
[
PDAij

]
m×n =

max
(
0,
(
s
(
r′ ij
)− s

(
AVj

)))
s
(
AVj

) (21)

NDAij =
[
NDAij

]
m×n =

max
(
0,
(
s
(
AVj

)− s
(
r′ ij
)))

s
(
AVj

) (22)

Step 6. Calculate the values of SPi and SNi which denotes the weighted sum of PDA and NDA,
the computing formula are provided as follows.

SPi =
n

∑
j=1

wjPDAij, SNi =
n

∑
j=1

wjNDAij (23)

Step 7. The results of Equation (23) can be normalized as

NSPi =
SPi

max(SPi)
i

, NSNi = 1 − SNi
max(SNi)

i

. (24)

Step 8. Compute the values of appraisal score (AS) based on each alternative’s NSPi and NSNi.

ASi =
1
2
(NSPi + NSNi) (25)

Step 9. According to the calculating results of the AS, we can rank all the alternatives; the bigger
the value of AS is, the better the selected alternative will be.

5. The Numerical Example

5.1. Numerical for MCGDM Problems with PFNs

In this section, we provide a numerical example for green supplier selection by using EDAS
models with P2TLNs. Assuming that five possible green suppliers ϑi(i = 1, 2, 3, 4, 5) are to be selected
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and there are four criteria to assess these green suppliers: 1© U1 is the price factor; 2© U2 is the delivery
factor; 3© U3 is the environmental factors; 4© U4 is the product quality factor. The five possible green
suppliers ϑi(i = 1, 2, 3, 4, 5) are to be evaluated with P2TLNs with the four criteria by three experts,
ar (attributes weight ω = (0.22, 0.36, 0.28, 0.14), expert’s weight δ = (0.24, 0.45, 0.31).).

Step 1. Construct the evaluation matrix R̃ =
(
r̃ij
)

m×n, i = 1, 2, . . . , m, j = 1, 2, . . . , n for each of the
three experts, which are listed in Tables 1–3.

Table 1. Picture 2-tuple linguistic evaluation information by q1.

U1 U2

ϑ1 〈(S3, 0) , (0.41 , 0.26, 0.33)〉 〈 (S5, 0), (0.54 , 0.36 , 0.10 ) 〉
ϑ2 〈 (S6, 0), (0.72 , 0.11 , 0.17 ) 〉 〈 (S3, 0), (0.25 , 0.17 , 0.58 ) 〉
ϑ3 〈 (S1, 0), (0.35 , 0.26 , 0.39 ) 〉 〈 (S2, 0), (0.28 , 0.16 , 0.56 ) 〉
ϑ4 〈 (S3, 0), (0.47 , 0.22 , 0.31 ) 〉 〈 (S1, 0), (0.16 , 0.38 , 0.46 ) 〉
ϑ5 〈 (S5, 0), (0.58 , 0.17 , 0.25 ) 〉 〈 (S3, 0), (0.39 , 0.21 , 0.40 ) 〉

U3 U4

ϑ1 〈 (S1, 0), (0.33 , 0.35 , 0.32 ) 〉 〈 (S2, 0), (0.59 , 0.16 , 0.25 ) 〉
ϑ2 〈 (S4, 0), (0.59 , 0.15 , 0.26 ) 〉 〈 (S5, 0), (0.68 , 0.21 , 0.11 ) 〉
ϑ3 〈 (S7, 0), (0.13 , 0.24 , 0.63 ) 〉 〈 (S3, 0), (0.27 , 0.31 , 0.42 ) 〉
ϑ4 〈 (S3, 0), (0.56 , 0.19 , 0.25 ) 〉 〈 (S4, 0), (0.41 , 0.29 , 0.30 ) 〉
ϑ5 〈 (S1, 0), (0.28 , 0.39 , 0.33 ) 〉 〈 (S2, 0), (0.75 , 0.17 , 0.08 ) 〉

Table 2. Picture 2-tuple linguistic evaluation information by q2.

U1 U2

ϑ1 〈 (S2, 0), (0.27 , 0.28 , 0.45 ) 〉 〈 (S1, 0), (0.50 , 0.24 , 0.26 ) 〉
ϑ2 〈 (S7, 0), (0.59 , 0.17 , 0.24 ) 〉 〈 (S4, 0), (0.66 , 0.21 , 0.13 ) 〉
ϑ3 〈 (S2, 0), (0.46 , 0.25 , 0.29 ) 〉 〈 (S3, 0), (0.22 , 0.13 , 0.65 ) 〉
ϑ4 〈 (S1, 0), (0.34 , 0.10 , 0.56 ) 〉 〈 (S5, 0), (0.34 , 0.42 , 0.24 ) 〉
ϑ5 〈 (S5, 0), (0.34 , 0.10 , 0.56 ) 〉 〈 (S4, 0), (0.18 , 0.25 , 0.57 ) 〉

U3 U4

ϑ1 〈 (S4, 0), (0.39 , 0.38 , 0.23 ) 〉 〈 (S3, 0), (0.42 , 0.18 , 0.40 ) 〉
ϑ2 〈 (S6, 0), (0.60 , 0.16 , 0.24 )〉 〈 (S5, 0), (0.75 , 0.10 , 0.15 ) 〉
ϑ3 〈 (S3, 0), (0.38 , 0.11 , 0.51 ) 〉 〈 (S4, 0), (0.48 , 0.29 , 0.23 ) 〉
ϑ4 〈 (S5, 0), (0.29 , 0.31 , 0.40 ) 〉 〈 (S3, 0), (0.57 , 0.25 , 0.18 ) 〉
ϑ5 〈 (S2, 0), (0.57 , 0.26 , 0.17 ) 〉 〈 (S1, 0), (0.63 , 0.21 , 0.16 )〉

Table 3. Picture 2-tuple linguistic evaluation information by q3.

U1 U2

ϑ1 〈 (S4, 0), (0.19 , 0.33 , 0.48 ) 〉 〈 (S3, 0), (0.32 , 0.29 , 0.39 ) 〉
ϑ2 〈 (S5, 0), (0.51 , 0.37 , 0.12 ) 〉 〈 (S5, 0), (0.77 , 0.11 , 0.12 ) 〉
ϑ3 〈 (S3, 0), (0.59 , 0.25 , 0.16 ) 〉 〈 (S4, 0), (0.35 , 0.25 , 0.40 ) 〉
ϑ4 〈 (S7, 0), (0.57 , 0.19 , 0.24 ) 〉 〈 (S3, 0), (0.27 , 0.24 , 0.49 ) 〉
ϑ5 〈 (S1, 0), (0.22 , 0.21 , 0.57 ) 〉 〈 (S2, 0), (0.41 , 0.36 , 0.23 ) 〉

U3 U4

ϑ1 〈 (S2, 0), (0.59 , 0.24 , 0.17 ) 〉 〈 (S5, 0), (0.74 , 0.16 , 0.10 ) 〉
ϑ2 〈 (S4, 0), (0.64 , 0.13 , 0.23 ) 〉 〈 (S7, 0), (0.78 , 0.15 , 0.07 ) 〉
ϑ3 〈 (S2, 0), (0.49 , 0.17 , 0.34 ) 〉 〈 (S1, 0), (0.53 , 0.28 , 0.19 ) 〉
ϑ4 〈 (S1, 0), (0.34 , 0.31 , 0.35 ) 〉 〈 (S3, 0), (0.59 , 0.21 , 0.20 ) 〉
ϑ5 〈 (S4, 0), (0.71 , 0.19 , 0.10 ) 〉 〈 (S2, 0), (0.34 , 0.42 , 0.24 ) 〉

Step 2. Normalize the evaluation matrix R̃ =
[
r̃ij

]
m×n

to R̃′ =
[
r̃′ij
]

m×n
; if all the attributes are

benefitted, then normalization is not needed.
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Step 3. According to the decision making matrix R̃′ =
[
r̃′ij
]

m×n
and expert’s weighting vector

{δ1, δ2, . . . δr}, utilize overall r̃′ij to r′ ij by using the P2TLWA aggregation operator, and the computing
results can be presented as follows in Table 4.

Table 4. The fused values by using picture 2-tuple linguistic weighted averaging (P2TLWA) operator.

U1 U2

ϑ1 〈 (S3,−0.1), (0.2836 , 0.2894 , 0.4269 ) 〉 〈 (S3,−0.4), (0.4609 , 0.2805 , 0.2586 ) 〉
ϑ2 〈 (S6, 0.1), (0.6046 , 0.1949 , 0.2005 ) 〉 〈 (S4, 0.1), (0.6358 , 0.1634 , 0.2008 ) 〉
ϑ3 〈 (S2, 0.1), (0.4816 , 0.2524 , 0.2660 )〉 〈 (S3, 0.1), (0.2769 , 0.1673 , 0.5558 )〉
ϑ4 〈 (S3, 0.3), (0.4517 , 0.1474 , 0.4008 ) 〉 〈 (S3, 0.4), (0.2785 , 0.3447 , 0.3768 ) 〉
ϑ5 〈 (S4,−0.2), (0.3893 , 0.2479 , 0.3628 )〉 〈 (S3, 0.1), (0.3103 , 0.2684 , 0.4213 ) 〉

U3 U4

ϑ1 〈 (S3,−0.3), (0.4484 , 0.3231 , 0.2285 ) 〉 〈 (S3, 0.4), (0.5838 , 0.1687 , 0.2474 ) 〉
ϑ2 〈 (S5,−0.1), (0.6106 , 0.1477 , 0.2417 ) 〉 〈 (S6,−0.4), (0.7450 , 0.1355 , 0.1195 ) 〉
ϑ3 〈 (S4,−0.3), (0.3670 , 0.1518 , 0.4812 ) 〉 〈 (S3,−0.2), (0.4533 , 0.2915 , 0.2552 ) 〉
ϑ4 〈 (S3, 0.3), (0.3812 , 0.2756 , 0.3432 ) 〉 〈 (S3, 0.2), (0.5429 , 0.2454 , 0.2117 ) 〉
ϑ5 〈 (S2, 0.4), (0.5693 , 0.2600 , 0.1707 ) 〉 〈 (S2,−0.4), (0.5970 , 0.2475 , 0.1555 ) 〉

Step 4. According to Table 4, we can obtain the value of the AV based on all proposed attributes
by Formula (16), which is listed in Table 5.

Table 5. The value of the average solution (AV).

Average Solution

U1 〈 (S4,−0.4), (0.4526 , 0.0119 , 0.5355 ) 〉
U2 〈 (S3, 0.3), (0.4114 , 0.2345 , 0.3541 ) 〉
U3 〈 (S3, 0.4), (0.4850 , 0.2203 , 0.2947 ) 〉
U4 〈 (S3, 0.3), (0.5966 , 0.2096 , 0.1938 ) 〉

Step 5. According to the results of the AV, we can compute the PDA and the NDA by using the
Formulas (19) and (20), which are listed in Tables 6–8.

Table 6. The score values of ϑ′
ij and AVj.

U1 U2 U3 U4

ϑ1 (S1, 0.2251 ) (S2,−0.4490 ) (S2,−0.3775 ) (S2, 0.2585 )
ϑ2 (S4, 0.3106 ) (S3,−0.0798 ) (S3, 0.3536 ) (S5,−0.4321 )
ϑ3 (S1, 0.2582 ) (S1, 0.1069 ) (S2,−0.3834 ) (S2,−0.3047 )
ϑ4 (S2,−0.2450 ) (S2,−0.4581 ) (S2,−0.2976 ) (S2, 0.1565 )
ϑ5 (S2,−0.0701 ) (S1, 0.3958 ) (S2,−0.3356 ) (S1, 0.1172 )

AV (S2,−0.3337 ) (S2,−0.2787 ) (S2, 0.0080 ) (S2, 0.3314 )

Table 7. The results of PDAij.

U1 U2 U3 U4

ϑ1 0.0000 0.0000 0.0000 0.0000
ϑ2 1.5869 0.6965 0.6702 0.9593
ϑ3 0.0000 0.0000 0.0000 0.0000
ϑ4 0.0532 0.0000 0.0000 0.0000
ϑ5 0.1582 0.0000 0.0000 0.0000
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Table 8. The results of NDAij.

U1 U2 U3 U4

ϑ1 0.2648 0.0990 0.1920 0.0313
ϑ2 0.0000 0.0000 0.0000 0.0000
ϑ3 0.2449 0.3569 0.1949 0.2729
ϑ4 0.0000 0.1043 0.1522 0.0750
ϑ5 0.0000 0.1891 0.1711 0.5208

Step 6. By calculating the values of SPi and SNi by Equation (23) and the attributes weighting
vector ω = (0.22, 0.36, 0.28, 0.14), we can obtain the results as

SP1 = 0.0000, SP2 = 0.9218, SP3 = 0.0000, SP4 = 0.0117, SP5 = 0.0348
SN1 = 0.1520, SN2 = 0.0000, SN3 = 0.2752, SN4 = 0.0907, SN5 = 0.1889

Step 7. The results of Step 6 can be normalized by Formula (24) and are listed as

NSP1 = 0.0000, NSP2 = 1.0000, NSP3 = 0.0000, NSP4 = 0.0127, NSP5 = 0.0378
NSN1 = 0.4475, NSN2 = 1.0000, NSN3 = 0.0000, NSN4 = 0.6705, NSN5 = 0.3135

Step 8. Based on each alternative’s NSPi and NSNi, compute the values of AS;

AS1 = 0.2238, AS2 = 1.0000, AS3 = 0.0000, AS4 = 0.3416, AS5 = 0.1756.

Step 9. According to the calculated results of AS, we can rank all the alternatives; the bigger
the value of AS is, the better the selected alternative will be. Clearly, the rank of all alternatives is
ϑ2 > ϑ4 > ϑ1 > ϑ5 > ϑ3, and ϑ2 is the best green supplier.

5.2. Compare P2TLNs EDAS Method with Some Aggregation Operators with P2TLNs

In this section, we compare our proposed picture 2-tuple linguistic EDAS method when using
either the P2TLWA operator or the P2TLWG operator. According to the results of Table 4 and attributes
weighting vector ω = (0.22, 0.36, 0.28, 0.14), we can utilize overall r′ ij to r′ i by using the P2TLWA and
P2TLWG operators, which is listed in Table 9.

Table 9. The fused values by using some picture 2-tuple linguistic number (P2TLN) aggregation
operators.

P2TLWA P2TLWG

ϑ1 〈 (S3,−0.2), (0.4430 , 0.2737 , 0.2834 ) 〉 〈 (S3,−0.2), (0.4362 , 0.2737 , 0.2901 ) 〉
ϑ2 〈 (S5, 0), (0.6405 , 0.1608 , 0.1986 ) 〉 〈 (S5,−0.1), (0.6375 , 0.1608 , 0.2017 ) 〉
ϑ3 〈 (S3, 0), (0.3774 , 0.1926 , 0.4300 ) 〉 〈(S2,−0.1), (0.3644 , 0.1926 , 0.4430 )〉
ϑ4 〈 (S3, 0.3), (0.3896 , 0.2561 , 0.3542 ) 〉 〈 (S3, 0.3), (0.3918 , 0.2561 , 0.3520 ) 〉
ϑ5 〈 (S3,−0.2), (0.4541 , 0.2585 , 0.2874 ) 〉 〈 (S3,−0.3)(0.4308 , 0.2585 , 0.3107 ) 〉

According to the score function of P2TLNs, we can obtain the alternative score results which are
shown in Table 10.

The ranking of alternatives by some P2TLN aggregation operators are listed in Table 11.
Comparing the results of the picture 2-tuple linguistic EDAS model using either P2TLWA or

P2TLWG operators, the aggregation results are slightly different in the ranking of alternatives, and the
best alternatives are the same. However, the picture 2-tuple linguistic EDAS model has the valuable
characteristic of considering the conflicting attributes, and can be more accurate and effective in the
application of MCGDM problems.
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Table 10. Score results of alternatives ϑi.

P2TLWA P2TLWG

s(ϑ1) (S2,−0.3905) (S2,−0.4158 )
s(ϑ2) (S4,−0.4134) (S4,−0.4751)
s(ϑ3) (S1, 0.4111) (S1, 0.3459)
s(ϑ4) (S2,−0.2719) (S2,−0.2649)
s(ϑ5) (S2,−0.3427) (S2,−0.4662)

Table 11. Rank of alternatives by some P2TLN aggregation operators.

Order

P2TLWA operator ϑ2 > ϑ4 > ϑ5 > ϑ1 > ϑ3
P2TLWG operator ϑ2 > ϑ4 > ϑ1 > ϑ5 > ϑ3

P2TLNs EDAS model ϑ2 > ϑ4 > ϑ1 > ϑ5 > ϑ3

6. Conclusions

In this paper, we present the picture fuzzy EDAS model for MCGDM based on the traditional
EDAS model and some fundamental theories of P2TLNs. First, we briefly reviewed the definition of
P2TLNs and introduced the score function, accuracy function, and operational laws of P2TLNs. Next,
to fuse the P2TLNs, we introduced some aggregation operators of P2TLNs. Furthermore, we combined
the traditional EDAS model with P2TLNs, the picture fuzzy EDAS model for MCGDM was established,
and the computing steps were simply depicted. Our presented model was more accurate and effective
for considering the conflicting attributes. Finally, a numerical example for green supplier selection was
given to illustrate this new model and some comparisons between P2TLWA and P2TLWG operators
using the P2TLN EDAS model were also conducted to further illustrate advantages of the new method.
In the future, the picture fuzzy EDAS model can be applied to risk analysis, MADM problems [62–65],
and many other uncertain and fuzzy environments [44,66–71].
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* Correspondence: stanislav.dadelo@vgtu.lt

Received: 23 January 2019; Accepted: 11 March 2019; Published: 21 March 2019

Abstract: New solutions and techniques for developing country policies are used under real
conditions. The present study aims to propose a new approach for evaluating and ranking the
European countries by using the interrelation between two groups of criteria, associated with the
Human Development Index (HDI) and the World Internal Security and Police Index (WISPI). HDI
and its components rank countries by value and detail the values of the components of longevity,
education and income per capita. WISPI focuses on the effective rendering of security services and
the outcome of rendered services. The priority of criteria is determined in the descending order
of their correlation values with other group criteria. The criteria weights are set simultaneously
for both groups by applying the weight balancing method WEBIRA. The methodology based on
minimising sum of squared differences of the weighted sums within groups is used. Finally, the
generalised criteria measuring the level of the country are calculated using the SAW method. Cluster
analysis of the countries was carried out and compared with MCDM results. The study revealed that
WEBIRA ranking of countries is basically consistent with the results of cluster analysis. The proposed
methodology can be applied to develop the management policy of the countries, as well as to their
evaluation and ranking by using various indices, criteria and procedures. The results of this research
can also be used to reveal national policy choices, to point out government policy priorities.

Keywords: human development; internal security; MCDM; weight balancing; WEBIRA;
cluster analysis

1. Introduction

The European countries are exposed to various hybrid dangers (e.g., political differences, military
aggression, financial and economic crises, natural and technogenic catastrophes, social upheavals,
criminal offences, etc.). This problem is closely associated with the internal security of the states.
The institutions, ensuring the internal security of the states, also guarantee their economic stability.
The European Union (EU) is becoming a centre of sustainability of the European values and stability.
The systematic and consistent attitudes towards the topical issues of internal security are formed by
the EU member states through their joint regulations. However, the particular EU states develop
their security systems depending on numerous internal and external factors. Therefore, their internal
security systems have some specific features. The states not belonging to the EU also demonstrate
their distinctive properties, though in the world involved in the global processes similar tendencies
of changes in the internal safety systems can be observed [1]. This field of research has been barely
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explored. The World Internal Security and Police Index (WISPI) [2] focuses on describing both the
effective rendering of security services and the outcome of the rendered services. WISPI is considered
the first international index for measuring the indicators of the internal security worldwide, as well as
ranking the states according to their ability to provide security services and boost security performance.

The economic and human development of a particular country relate to the state of security in
this country [3]. Higher development levels, in terms of GDP per capita, are capable of providing
social and individual prosperity or human development. It is not clear whether other interrelations
between prosperity indicators exist on different levels of economic development. Social and human
development and security status indicators improve with economic development. Public well-being
increases with income rise at all levels of economic development [4]. Focusing on people instead of
economic outcomes provides a wider range of options for policy-makers [5]. Countries’ development
policies should strive to remove any obstacles that impede people’s freedoms: political freedom
provides individuals to enjoy the freedom of political expression; economic facilities allow the use of
economic resources for the purpose of consumption, production or exchange; social opportunities
are made possible access to education and health; transparency guarantees relate to openness and
the prevention of any type of corruption; and protective security allows a social safety network that
protects individuals from misery [6]. Human development paves the way for economic development
and security. State policy not only secures educational programs but also promotes development
through innovation and expansion of new programs [7]. Meanwhile relationship exists between
pro-government militias and various types of human rights violations [5]. A relationship between
a given government regime’s security repertoire and the likelihood of control and violence against
civilians exists [8]. Uncontrollable human rights violations have a harmful effect on the positive
country’s image [9]. Since the government is a source of legitimate authority, laws and regulations also
provide important cues about which course is supported and protected by the government. A legal
country system that protects certain interests with certain methods sends a signal to world societal
participants that these interests and these methods should be determined as a dominant image of the
country [10].

Human development is a process, which seeks to expand the possibilities to create an environment
where people can live long, healthy and creative lives. Human Development Index (HDI) [11] is one
of the most widely used composite indicators of socioeconomic development of a country. People
who have achieved high or very high human development level represent 51 percent of the global
population. Researchers are extremely interested in factors influencing HDI [12]. Overwhelming
evidence of the direct positive effects of economic freedom on human development is provided by a
large number of the cross-country studies [13]. However, the ‘original sin’ of HDI involves neglecting
the environmental and social sustainability and personal security issues [14].

A wide variety of approaches and evaluation techniques are used in the field of security research;
however, there are some gaps, particularly if researchers aim to study the internal security of the
whole country. The aim of the present study is to propose a new approach to identify a method of
ranking the countries for evaluating the internal security of the European countries, using indicators
such as the Human Development Index [11] and the Internal Security and Police Index [2]. Thus,
the combining of HDI indicators with the World Internal Security and Police Index can provide an
integrated evaluation approach for filling this gap. However, the conventional security system’s
modelling tools and models, such as expert-based or other approaches, do not propose any integral
internal security metric, covering all types of threats, to which the countries and citizens are exposed.

There is not much research in the literature dedicated to studying HDI and particularly WISPI by
means of mathematical modelling. Most research is related to the separate dimensions of HDI—public
health, economic development and quality of life. The most commonly used methods are various tools
of mathematical statistics, i.e., correlation, regression analysis and some econometric models.

The study by Zaborskis et al. [15] introduces several methods for measuring family affluence
inequality in adolescent life satisfaction (LS) and assesses its relationship with macrolevel indices
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(Gross National Income, Human Development Index and the mean Overall Life Satisfaction score).
Poisson regression estimations and correlation analysis were used in this research. Murray et al. [16]
investigated how preterm delivery rates differ in a country with a very high human development
index and explored rural vs. urban environmental and socioeconomic factors that may be responsible
for this variation. A multiple linear regression was used for this purpose. The study by Liu et al. [17]
employs a panel smooth transition vector error correction model (PST-VECM) to explore the
education-health causality. The paper by Sayed et al. [18] discusses the rank reversal issue
in multicriteria decision-making (MCDM) techniques. The proposed methodology of the Goal
Programming Benefit-of-the-Doubt (GP-BOD) aims to overcome this problem and obtain consistent
and stable rankings for the human development index (HDI) framework. The paper by Carvalhal
Monteiro et al. [19] proposes a new Human Development Index (HDI) classification method using the
combination of the ELECTRE TRI method with statistical tools to define classes and class profiles for
the HDI.

We could not find any quantitative investigation of WISPI in the literature. The synergy of HDI
and WISPI as a research object is unprecedented in the scientific literature. However, the task of
ranking the countries according to HDI and WISPI interrelation is an interesting and relevant issue.

MCDM methods usually rank countries by set of homogeneous (having the same nature)
indicators. If several criteria groups having different nature exist, for example, subjective and
objective, external and internal evaluations of alternatives, other methodologies should be proposed.
KEMIRA [20] is the MCDM method implemented by maximising compatibility of two or more subsets
of criteria, thus it is naturally appropriate for solving our task. In this research, a modification
of KEMIRA called WEBIRA [21] has been applied to the case of two groups of evaluation criteria.
The advantage of WEBIRA is that its efficiency does not decrease with increasing number of alternatives
as other MCDM methods [22]. It also remains stable with increasing number of criteria [21].

Prioritisation of criteria is a separate issue of the WEBIRA method that needs to be addressed
before solving the optimisation task. In this sense, WEBIRA is not a fully objective method for
determining criteria weights. The problem of criteria prioritisation can be solved by applying wide
range of objective or subjective (expert-based) methods. Examples of expert-based methods are
Analytic Hierarchy Process (AHP) [23], Kemeny median method [24], Stepwise Weight Assessment
Ratio Analysis (SWARA) [25], a fuzzy inference system (FIS) approach [26], etc. However, when
dealing with country rating task, we need to look for alternative methods for prioritising criteria,
because we do not have information about criteria assessments by experts. Objective methods for
criteria weighting are based on initial data values and their structure (entropy-based methods [27],
mathematical programming models [28], IDOCRIW [29], etc.).

There are three main steps of WEBIRA: (1) criteria priority setting separately in every subset;
(2) criteria weight determining by solving optimisation problem; and (3) ranking of alternatives by
applying one of MCDM methods. One of the novelty elements of this article is to use correlation
analysis to set criteria priority. Statistical methods are traditionally used in weighting attributes. Thus,
CRICTIC (Criteria Importance Through Intercriteria Correlation), developed by Diakoulaki et al. [30],
aims to determine objective weights of relative importance in MCDM problems by considering
correlation coefficient values between criteria and standard deviations of each criterion for alternatives.
High correlation is considered as some kind of double counting, so assigned weights are inversely
proportional to the correlation coefficient value. Our methodological assumption is based on the
maximisation of compatibility between two different groups of indicators. A suitable way to measure
compatibility is to apply intergroup correlation coefficients. Unlike correlations within groups, where
attributes with strong correlation are undesirable, high correlation of the attribute with the attributes
of other groups indicates that the interdependence between the two group’s indicators became higher;
such indicator is more preferable in the decision-making process.

This idea arose from the ultimate goal of this research—to evaluate countries by combining several
dimensions: economic prosperity, comprehensive education, healthy lifestyle, safe environment and
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human security. Thus, two groups of criteria—X and Y—were distinguished and the optimisation task
has been solved according to weight balancing procedure. This procedure ensures that the criteria for
the two groups in the final order of alternatives are maximally aligned with each other.

2. Materials and Methods

2.1. Criteria and Their Definitions

The Human Development Index is a summary measure of average achievement in key dimensions
of human development: (1) a long and healthy life; (2) knowledge; and (3) a decent standard of living.
The knowledge dimension consists of two subdimensions: (1) mean of years of schooling for adults
aged 25 years and more and (2) expected years of schooling for children of school entering age.
The HDI is the geometric mean of normalised indices for each of the three dimensions [11]. In the
present work, four components of HDI are used: the ability to lead a long and healthy life, measured
by life expectancy at birth (years) (y1); the ability to acquire knowledge, measured by the mean
number of years of schooling (y2); the expected years of schooling (y3); and the ability to achieve a
decent standard of living, measured by the gross national income (GNI) per capita (PPP $) (y4) [11].
HDI makes an assessment of diverse countries with very different price levels. To compare economic
statistics across countries, the data must first be converted into a common currency. For this reason
GNI per capita is measured in purchasing power parity (PPP) international dollars (PPP $). One PPP
dollar (or international dollar) has the same purchasing power in the domestic economy of any country
as US$1 has in the US economy.

World Internal Security and Police Index (WISPI) measures the capacity and efficiency of police
and security service providers to address the internal security issues worldwide through the four
domains, i.e., capacity, process, legitimacy and outcomes (Table 1) [2]. Domain content can be explained
by answering these questions:

Capacity: Do security providers have the resources needed to address security violation?
Process: Are the resources directed towards violence prevention used effectively?
Legitimacy: Are security providers trusted by the people? Do they abuse their position?
Outcomes: Do people feel safe in their neighbourhoods? Are crime rates low?

Each WISPI domain acquires values from 0 to 1. The higher the numerical value of the country’s
respective domain, the higher the position of that country in the corresponding rating. WISPI measures
the ability of police and internal security service to protect society as well as provides broader measure
of human security.

Table 1. World Internal Security and Police Index, Domains and Indicators [2].

Domain Indicator Definition

Capacity

Police Number of Police and Internal Security Officers per 100,000 people
Armed Forces Number of Armed Service Personnel per 100,000 people

Private Security Number of Private Security Contractors per 100,000 people
Prison Capacity Ratio of Prisoners to Official Prison Capacity

Process

Corruption Control of Corruption
Effectiveness Criminal Justice effectiveness, impartial, respects rights

Bribe Payments to Police % of Respondents who paid a bribe to a police officer in the past year
Underreporting Ratio of police reported thefts to survey reported thefts

Legitimacy

Due Process Due process of law and rights of the accused
Confidence in Police % of Respondents who have confidence in their local police

Public Use, Private Gain Government officials in the police and the military do not use public office for private gain
Political Terror Use of Force by Government Against Its Own Citizens

Outcomes

Homicide Number of Intentional Homicides per 100,000 people
Violent Crime % Assaulted or mugged in the last year

Terrorism Composite measure of deaths, injuries and incidents of terrorism
Public Safety Perceptions Perceptions of safety walking alone at night

The initial data matrix, maximum and minimum values of indicators are presented in Table 2.
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2.2. General Description of WEBIRA Method

Let the initial data be the results of the performed measurements, expert evaluations, etc.,
presented in m × n-dimension matrix X =

(
xij
)

m×n. The element xij of the decision-making matrix is
the estimate of the alternative i (i = 1, 2, . . . , m) based on using the criteria j (j = 1, 2, . . . , n). A data
normalisation procedure is required because there are different criteria measurement units. There is a
variety of data normalisation formulas, in this case a min–max normalisation was used:⎧⎪⎪⎨⎪⎪⎩

x̃ij =
xij− min

1≤i≤m
xij

max
1≤i≤m

xij− min
1≤i≤m

xij
, for the direct normalisation,

x̃ij =
max

1≤i≤m
xij−xij

max
1≤i≤m

xij− min
1≤i≤m

xij
, for inverse normalisation.

The choice of min–max normalisation is based on the results of previous studies [22,31], which
revealed that min–max normalisation ensures the best stability of the SAW method compared to
other well-known normalisation procedures such as max, sum, vector, logarithmic, etc. Stability of
the min–max method was the highest for cases of both more and less separable alternatives. All the
variables after the min–max normalisation gain their values between 0 and 1.

If new countries with values not in the range analysed initially would be introduced, normalisation
would be performed again and all values after normalisation would also range between 0 and 1.
However, after introducing new countries (cases) and recalculation of correlation coefficients the
priority of criteria, data structure and, subsequently, the overall rating of the countries, could be
changed. For this reason, only European countries were involved in the investigation.

The normalised decision-making matrix has the following form, X̃ =
(

x̃ij
)

m×n, 0 ≤ x̃ij ≤ 1. Let
wj, j = 1, 2, . . . , n be criteria weights, satisfying the conditions as follows

n

∑
j=1

wj = 1, 0 ≤ wj ≤ 1. (1)

The Simple Additive Weighting (SAW) method [32] is a well-known and widely used MCDM
tool. SAW with the weights wj, j = 1, 2, . . . , n can be applied to solve MCDM problem. The aggregated
value based on using the SAW criteria was calculated for each alternative as follows

Si =
n

∑
j=1

wjx̃ij, i = 1, 2, . . . , m. (2)

The values 0 ≤ x̃ij ≤ 1 in Equation (2) were normalised so that the higher x̃ij value would
correspond to the better evaluation of the i-th alternative Si.

The weighted coefficients (1) are usually determined by using various methods that could be
based on expert judgement (subjective methods) or the objective weight assessing methods [33].
WEBIRA is objective weight assessing method which is appropriate for solving our problem for two
reasons. The first is the absence of highly qualified expert judgements. This prevents the use of
subjective methods such as Analytic Hierarchy Process (AHP), Delphi, Stepwise Weight Assessment
Ratio Analysis (SWARA), etc. The second reason is the structure of the data. The set of criteria
(indicators) naturally and logically could be divided to two groups of criteria. The idea of WEBIRA
method is weights determining procedure when the rankings of alternatives in the few groups of
criteria maximally match each other. This goal is achieved by performing a so-called weight balancing
procedure aimed at minimising a certain objective function.

Suppose that n criteria are being divided to r groups. The coefficient calculation scheme is
introduced when there are r normalised data matrices Xk:
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Xk = ‖xk
ij‖m×nk , 0 ≤ xk

ij ≤ 1, k = 1, 2, . . . , r,
r

∑
k=1

nk = n. (3)

The aggregated values for each matrix k = 1, 2, . . . , r obtained by using SAW criteria were
as follows

Sk
i =

nk

∑
j=1

wk
j x̃k

ij, i = 1, 2, . . . , m, k = 1, 2, . . . , r. (4)

The coefficients wk
j in Formula (4) satisfy the inequalities

1 ≥ wk
1 ≥ wk

2 ≥ . . . ≥ wk
nk ≥ 0, k = 1, 2, . . . , r. (5)

The optimisation problem is formulated where the minimum value of the function has to be found:

F
(

W1, W2, . . . , Wr
)
=

r−1

∑
k=1

r

∑
l=k+1

m

∑
i=1

∣∣∣Sk
i − Sl

i

∣∣∣δ
by checking the value of the function above with each vector Wk =

(
wk

1, wk
2, . . . , wk

nk

)
, k = 1, 2, . . . , r

satisfying the inequalities (5) and the relationships (1). The parameter’s δ value is δ = 2 throughout
the paper. The inequalities (5) can be determined by using various methods of processing the expert
assessments; in Krylovas et al. [24], it has been proposed to apply Kemeny median [34] for this
purpose. This method for prioritising criteria and determining weights which satisfy Formulas (1)
and (5) is named the KEmeny Median Indicator Ranks Accordance (KEMIRA) method. The order
of preference of the weighted coefficients can be determined by using other methods. In this paper
correlation analysis is applied to the solution of this problem. Therefore, a group of the methods given
in Krylovas et al. [21] is referred to as WEBIRA (WEight Balancing Indicator Ranks Accordance).

Suppose that A = {1, 2, . . . , m} is a set of the available alternatives, while the subsets of the set A
are denoted as follows

A+
α =

{
i ∈ A : S1

i > α, S2
i > α, . . . , Sr

i > α
}

,
A−

α =
{

i ∈ A : S1
i ≤ α, S2

i ≤ α, . . . , Sr
i ≤ α

}
,

A±
α = A\(A+

α ∪ A−
α ),

A+
α denotes the sets of the undoubtedly superior alternatives, A−

α are the sets of undoubtedly inferior
alternatives and A±

α denotes the sets of alternatives whose assessment is doubtful. Note that when
0 ≤ Sk

i ≤ 1, A+
0 = A−

1 = A, A+
1 = A−

0 = ∅. The functions F+(α), F−(α), F±(α) are determined as the
number of elements of the respective sets A+

α , A−
α , A±

α . It is obvious that F+(α) + F−(α) + F±(α) = m.
F+(α), F−(α), F±(α) are stepwise functions, having the first type points of discontinuity. The values
of the functions can help assess the quality of weight balancing. In the ideal case, F±(α) ≡ 0. In this
research, the authors deal with A+

0 = A−
1 = A.

3. Results

A problem of determining the ranks of the European countries based on two groups of criteria
(r = 2), including internal security and human development, was solved. In the first step, correlation
analysis was applied to the data in Table 2 for establishing the priority of the criteria, such as internal
security, X = (x1, x2, x3, x4) and human development, Y = (y1, y2, y3, y4), in each group. The larger
the absolute value of the correlation coefficient of the respective criterion with the criteria of the other
group, the higher its priority order. The values of the Pearson correlation coefficients are presented in
Table 3.

Process criteria has the highest priority value in the Int_Sec_Group, due to higher correlation
with Y group criteria (0.868), followed by Legitimacy (0.823), Capacity (−0.537) and, finally, Outcomes
criterion (0.467). In the human development group, GNI per Capita (0.868) has the highest priority
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value, Life Expectancy at birth (0.823) is second, the Expected Years of Schooling (0.772) is third and
the Mean Years of Schooling (0.506) is last. Therefore, the priority order of the considered criteria is
as follows

x4 � x1 � x3 � x2, y4 � y1 � y3 � y2

and the respective weight priority (5) is

1 ≥ wX
4 ≥ wX

1 ≥ wX
3 ≥ wX

2 ≥ 0, 1 ≥ wY
4 ≥ wY

1 ≥ wY
3 ≥ wY

2 ≥ 0. (6)

Table 3. Values of Pearson correlation coefficients of the criteria (first row) and p-values (second row).

Factors (Criteria)
Life Expectancy

at Birth y1

Mean Years of
Schooling y2

Expected Years of
Schooling y3

GNI per
Capita y4

Legitimacy
x1

Outcomes
x2

Capacity
x3

GNI per capita y4
0.757 ** 0.451 ** 0.762 **

10.000 0.005 0.000

Legitimacy x1
0.823 ** 0.390 * 0.711 ** 0.794 **

10.000 0.016 0.000 0.000

Outcomes x2
0.467 ** −0.003 0.159 0.268 0.539 **

10.003 0.987 0.339 0.103 0.000

Capacity x3
−0.537 ** −0.116 −0.384 * −0.531 ** −0.492 ** −0.319

10.001 0.487 0.017 0.001 0.002 0.051

Process x4
0.754 ** 0.506 ** 0.772 ** 0.868 ** 0.890 ** 0.404 * −0.498 **

0.000 0.001 0.000 0.000 0.000 0.012 0.001

** Correlation is significant at the 0.01 level (2-tailed). * Correlation is significant at the 0.05 level (2-tailed).

The second step in solving the MCDM problem is normalising the decision-making matrix
elements xij and yij. Min–max normalisation equations were used in both cases. This method
demonstrated the highest accuracy and was most stable compared to other normalisation techniques,
when applied with SAW [30]. In the case of direct normalisation, the equations were as follows

x̃ij =

xij − min
1≤i≤m

xij

max
1≤i≤m

xij − min
1≤i≤m

xij
, ỹij =

yij − min
1≤i≤m

yij

max
1≤i≤m

yij − min
1≤i≤m

yij
,

while the inverse normalisation equation was applied only to the Capacity criterion, having an opposite
direction with respect to the goal:

x̃ij =

max
1≤i≤m

xij − xij

max
1≤i≤m

xij − min
1≤i≤m

xij
.

In Table 4 the normalised values of the criteria x̃ij, ỹij are given.
Then, the procedure of weight balancing was carried out. A possible set of weights, satisfying

the conditions (1) and (6), is presented in Table 5. The elements of this set were reselected and the
weighted sums SX

i = ∑4
j=1 wx

j x̃ij, SY
i = ∑4

j=1 wy
j ỹij were calculated for each alternative. The minimum

value of the target function was obtained for the optimal weight values WX∗ =
(
wx∗

1 , wx∗
2 , wx∗

3 , wx∗
4
)

and WY∗ =
(

wy∗
1 , wy∗

2 , wy∗
3 , wy∗

4

)
:

F
(

WX∗, WY∗
)
= min

WX ,WY

m

∑
i=1

(
SX

i − SY
i

)2
= min

WX ,WY

m

∑
i=1

(
4

∑
j=1

wx
j x̃ij −

4

∑
j=1

wy
j ỹij

)2

. (7)

F
(
WX∗, WY∗) is the minimum value of a disagreement measure between two alternative rankings

(according to the criteria values X and Y). It could be interpreted as the function of assessing the
weight balancing quality.
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Table 5. The set of possible weight values 1 ≥ wx,y
4 ≥ wx,y

1 ≥ wx,y
3 ≥ wx,y

2 ≥ 0 for the criteria X and Y.

No wx,y
2 wx,y

3 wx,y
1 wx,y

4 No wx,y
2 wx,y

3 wx,y
1 wx,y

4

1 0 0 0 1 13 0 0.1 0.4 0.5
2 0 0 0.1 0.9 14 0 0.2 0.3 0.5
3 0 0 0.2 0.8 15 0.1 0.1 0.3 0.5
4 0 0.1 0.1 0.8 16 0.1 0.2 0.2 0.5
5 0 0 0.3 0.7 17 0 0.2 0.4 0.4
6 0 0.1 0.2 0.7 18 0.1 0.1 0.4 0.4
7 0.1 0.1 0.1 0.7 19 0 0.3 0.3 0.4
8 0 0 0.4 0.6 20 0.1 0.2 0.3 0.4
9 0 0.1 0.3 0.6 21 0.2 0.2 0.2 0.4

10 0 0.2 0.2 0.6 22 0.1 0.3 0.3 0.3
11 0.1 0.1 0.2 0.6 23 0.2 0.2 0.3 0.3
12 0 0 0.5 0.5

The number of possible weight combinations and, accordingly, the values of the target function (7)
is 23 × 23 = 529. The function F

(
WX , WY) gained its minimum value 0.397 for the respective

weight values:

wx∗
4 = 0.6, wx∗

1 = 0.2, wx∗
3 = 0.2, wx∗

2 = 0; wy∗
4 = 0.3, wy∗

1 = 0.3, wy∗
3 = 0.2, wy∗

2 = 0.2. (8)

Next, the step length 0.05 (twice as small as in Table 5) was chosen and the optimisation procedure
was repeated. However, the authors failed to get a better result. The minimum value of the target
function (7) remained the same with the same weights (8).

At the last step of WEBIRA, the weighted sum values of the criteria X and Y were calculated for
each alternative as follows

Qi

(
WX∗, WY∗

)
= SX∗

i + SY∗
i , i = 1, 2, . . . , m

and the ranking of the alternatives based on these values was performed. The final results are presented
in Table 6.

When assessing the criteria of ranking the countries, it is important to take into consideration
the mutual distribution of HDI and WISPI components (the difference between the ranks of HDI and
WISPI of the countries) (Figure 1). The difference between the ranks of HDI and WISPI reflects the
development priorities of the countries (Table 6). Appraisal of changes in the difference between these
indicators allows forecasting the trend of the country’s development (e.g., development of economic
potential and increasing the welfare of the population, development associated with strengthening the
policy and recognising the security priorities, or harmonious development). The minimal difference
between HDI and WISPI shows a balanced internal policy pursued by the countries, implying that the
countries allocate their resources to the internal security and public welfare in a balanced way.
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In the following, the performed comparative analysis of WEBIRA method results with the results
of cluster analysis is discussed. The clustering procedure was executed with standardised data. Based
on the silhouette method, the European countries could be divided into four clusters. The partition
into clusters was done by several hierarchical clustering methods and also techniques like k-means
cluster analysis. The challenge when applying the hierarchical clustering methods is determining
the proper distance measure. In our work, we have tested different distance measures, but there are
alternative methods like A-BIRCH [35]. All of the used methods gave very similar results, so we chose
the k-means method. Therefore, neither clustering approach can ultimately judge the actual quality
of clustering; this needs human evaluation [36], which is highly subjective [37]. Because of these
shortcomings, cluster analysis can only be used as rough initial test before applying more accurate
methods. Table 6 shows the ranking of the European countries by using methods WEBIRA, HDI,
WISPI and cluster analysis results. Table 6 and Figure 1 show that the WEBIRA ranking of countries is
basically consistent with the results of cluster analysis. Spearman correlation coefficient of WEBIRA
ranks and k-means cluster analysis results show very high correlation between them ρS = 0.912.
All countries with the highest HDI and WISPI indicators have entered cluster 4. Cluster 3 consists
of slightly lower HDI and WISPI countries with one exception—Hungary—which is the member of
cluster 1. The countries with lowest HDI and WISPI are assigned to cluster 1. The most diverse is
cluster 2, which consists of countries which at first glance do not have much in common, i.e., Lithuania,
Latvia, Belarus, Bulgaria and Russian Federation. Figure 2 represents cluster analysis results on HDI
and WISPI axes. It also shows that WISPI indicators in all cluster 2 countries except Lithuania are
lower than in other countries adjacent to these in WEBIRA ranking.

4. Discussion

It is important to note that motivation to use correlations for the criteria prioritisation is based
on the reasoning that the criteria of the two groups xi and yj describe the same phenomenon—the
well-being of the population in the broad sense. Criteria prioritisation procedure consider correlations
of xi with yj (not correlations in internal groups for xi and yj). Ideally, values of xi must not be
correlated with each other as well as values of yj. However, the correlation between the criteria of
different groups may be. If this assumption were completely wrong, WEBIRA would probably fail to
balance the weight of the criteria and the final rating would be not logical. However, the final rating
of alternatives is consistent with the results of cluster analysis. So, there is no reason to assert that
priorities have been wrongly identified.

The question is: Can intergroup correlations be spurious? A spurious correlation can often be
created by an antecedent which impacts both variables. In the current situation we do not have such
causal relationships; our belief is that this negates the hypothesis of false correlations. Furthermore,
security indicators correlation with national health indicators is ascertained in the literature [38].

The resulting weighted sum values SX and SY are strongly correlated (r = 0.861) and the
alternative for the Formula (7) may be the maximum of the correlation coefficient. There may
be other alternatives to the Formula (7). Benchmarking of methods for setting priorities (6) is an
interesting task looking forward to further research. To approve the use of correlations for setting the
relative importance of the evaluation criteria other well-known objective methods, for example, the
entropy method, would be applied. A sensitivity analysis of weights would be performed in order to
demonstrate the stability of the results. This is also planned by the authors in their further research.

Security is not only a mighty driver of economic activity worldwide but also has a strong influence
on public social welfare. Therefore, it is one of the most significant topics of discussion in the global
society today [1]. On the other hand, the relevant problem is to assess the feasibility of identifying
country threats in the economic, social and other spheres of society, based on the correlation and
consistency of definitions of security and socioeconomic indicators according to their content and
logical relationship [39]. Human development indicators are integrated part of economic, social and
other spheres of public life and are related to the level of internal security of the countries. These are
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key elements in assessing the economic, social and internal security aspects of countries. Investigation
shows that indicators of WISPI and HDI are closely related and their correlation is reasonable.

This should be considered in performing socioeconomic reforms in the EU. However, when the
countries were categorised into more and less developed ones, based on the Human Development
Index, they have different effects on their police systems [40]. Ranking the countries based on both
indices has revealed the differences between the countries in this respect. It allows the authors to
conclude that political strategies in the EU countries differ considerably. Political strategies in the
EU member states can be focused on the most significant (weighty) indicators of HDI and WISPI,
described in this study. It shows that there is no balance in the development strategies of these
countries. According to our insight, this is a preliminary distribution that helps to understand the
prevailing trends in the countries (HDI dominates in one group of countries, WISPI dominates in
another group of countries and WISPI and HDI harmonise in a third group of countries). This allows
us to distinguish countries by their distance from harmonious development according to HDI and
WISPI. This question requires further and deeper research and validation.

There are various multiple criteria decision-making techniques available for the analysis of the
alternatives based on a set of criteria. They often yield different ranking results of the alternatives.
The question arises, which approach is most suitable? It is clear that it depends on the investigated
problem and the goals to be achieved. In this research, the problem of ranking the countries by using
not only Human Development, but also the criteria describing Internal Security and Police has been
solved applying WEBIRA method. The MCDM method WEBIRA meets the objective pursued because
it allows the researchers to carry out the weight balancing procedure by solving the optimisation
problem and simultaneously determining the weights of the criteria of both groups. Then, the ranking
procedure has been performed by applying the SAW method. Brute force (i.e., the total reselection)
algorithm implementation was chosen for this particular task. However, the optimisation task could
be solved by using other heuristic techniques.

5. Conclusions

In recent years, the events taking place in Europe have come into the focus of attention. Now,
people, nations and economies, as well as the global development issues we are facing, have become
more closely connected than ever. A completely new modelling algorithm has been proposed, which
has not been implemented yet in ranking counties according to internal security criteria of the countries.
This improves the understanding of how the methodology should be applied. Thus, the considered
methodology is an advancement compared to the methods used in previous studies and provides a
comprehensive approach to the analysis of the internal security of the states. When estimating the
results of ranking the countries obtained by using various criteria and techniques (WEBIRA, HDI and
WISPI), reliable correlations can be observed. It should be noted that the integral WEBIRA ranking
method allows for objective determination of the considered states’ distribution, as well as assigning
weights to the criteria. Generalised criteria measuring the level of the country is being calculated by
using the SAW method. Cluster analysis of the countries was carried out and compared with MCDM
results. Cluster analysis approved the results of WEBIRA ranking. Thus, the clustering results of
the countries correspond to their positions in the WEBIRA ranking. Moreover, their Spearman rank
correlation coefficient value is very high (0.912).

This enables the objective evaluation of the security systems of the countries. It should also be
mentioned that though HDI does not assess the internal security indicators of the countries, and while
WISPI does not determine the level of their human development, they are similar to a great extent.
The established strong correlation between HDI and WISPI rankings allows the authors to argue that
the internal security of a state mainly depends on the trends of its human development and vice versa.
The question arises, which factor, HDI or WISPI, prevails? The answer to this question is given by
the correlations between these indicators and the integral combining index. The determination of
the correlations between HDI and WISPI and WEBIRA (HDI+WISPI) rank allowed for establishing a
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stronger correlation between WEBIRA rank and HDI. This, in turn, allows the authors to conclude that
the internal security of a state largely depends on the well-being of its citizens. Thus, to increase the
internal security of a state, it is necessary not only to strengthen the police and security forces, but also
to pay more attention to the well-being of its citizens.
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Abstract: The two procedures traditionally followed for group decision making with the Analytical
Hierarchical Process (AHP) are the Aggregation of Individual Judgments (AIJ) and the Aggregation
of Individual Priorities (AIP). In both cases, the geometric mean is used to synthesise judgments and
individual priorities into a collective position. Unfortunately, positional measures (means) are only
representative if dispersion is reduced. It is therefore necessary to develop decision tools that allow:
(i) the identification of groups of actors that present homogeneous and differentiated behaviours; and,
(ii) the aggregation of the priorities of the near groups to reach collective positions with the greatest
possible consensus. Following a Bayesian approach to AHP in a local context (a single criterion),
this work proposes a methodology to solve these problems when the number of actors is not high.
The method is based on Bayesian comparison and selection of model tools which identify the number
and composition of the groups as well as their priorities. This information can be very useful to
identify agreement paths among the decision makers that can culminate in a more representative
decision-making process. The proposal is illustrated by a real-life case study.

Keywords: Analytic Hierarchy Process (AHP); group decision making; homogeneous groups;
Bayesian analysis

1. Introduction

Two of the most outstanding characteristics of the Knowledge Society (KS), understood as a space
for the talent, imagination and creativity of human beings, are [1]: (i) the collaborative predisposition
of citizens in the resolution of complex problems, motivated by the existence of a more educated and
participative society that wants to be involved in decision-making processes; and, (ii) the relevance
of the human factor and the need for the formal models to incorporate the subjective, intangible and
emotional aspects inherent to the human being, alongside the tangible and rational objectives of the
traditional scientific method.

In order to take advantage of the characteristics of the KS and to provide an adequate response
to new challenges and needs, it is necessary to develop appropriate analytical and computing
decision-making tools to solve the complex problems characterised by the existence of multiple
scenarios, actors and both tangible and intangible criteria. One of the most utilised multicriteria
techniques that best incorporates intangible aspects and multiple actors is the Analytic Hierarchy
Process (AHP) proposed by Thomas L. Saaty in the mid-1970s [2]. The methodology consists of three
stages: (i) Hierarchical modelling; (ii) Valuation; (iii) Prioritisation and Synthesis.

AHP incorporates the intangible through the judgments issued when assessing the matrices of
paired comparisons considered in the problem. The two most commonly used methods in AHP for the
calculus of collective priorities in multi-actor decision making are [3–5]: the Aggregation of Individual
Judgments (AIJ) and the Aggregation of Individual Priorities (AIP). They obtain, as averages (geometric
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mean), the collective judgments or collective priorities. The average is not a representative indicator
of the collective when it is not homogeneous. It is therefore necessary to evaluate the compatibility
(an objective measure obtained automatically) or the agreement (a subjective measure that requires
personal intervention) between the individual positions of the actors and the position of the group.

If not all actors are compatible with the collective priority vector, the different positions and the
actors that support them must be identified in order to initiate posterior negotiation processes to achieve
final decisions that are as representative as possible. This paper presents a Bayesian procedure to solve
this problem in a local context (a single criterion). The procedure adopts the Bayesian hierarchical
approach (Stochastic AHP) proposed in reference [6]. It allows the estimation of the priorities of the
group by incorporating restrictions on the maximum level of inconsistency of the actors involved in the
problem. The procedure quantifies the homogeneity of the groups by means of the marginal density
of the judgments elicited by their respective actors. The density evaluates the goodness of fit of the
model and allows for comparisons between different partitions of the set of actors. The work further
puts forward an algorithm for the exhaustive search of homogeneous groups with respect to their
priorities based on the Bayesian comparison and selection of models. The methodology is illustrated by
a practical example.

The paper is structured as follows: Section 2 presents the model used to determine the priorities
of a group of homogeneous decision makers; Section 3 describes the algorithm that identifies decision
groups with homogeneous preferences; Section 4 applies the methodology to a case study; and,
Section 5 concludes by highlighting the most relevant aspects of the work and possible extensions.

2. Bayesian Local Priorities in an AHP-Multi-Actor Decision Making Context

This section deals with the problem of determining the total priorities of a group of actors with
homogeneous opinions regarding a decision criterion. A Bayesian statistical approach based on the
use of a log-linear model similar to that used in reference [6] is employed to describe the process of
the issuing judgments by the decision makers of a group. The posterior distribution of the group’s
priorities is calculated by means of Bayes’ Theorem; this is followed by a description of how to make
inferences about the most preferred alternative (alpha problem—P.α) and the priority ranking (gamma
problem—P.γ).

2.1. Problem Formulation

First, the log-linear model that is used to determine the priorities of the groups of decision makers
is explained: in what follows, N (μ, σ) denotes the univariate normal distribution of mean μ and
standard deviation σ; Np (μ, ∑) denotes the p-variant normal distribution of mean vector μ and the
matrix of variances and covariances ∑; Tp (μ, ∑, υ) denotes the p-variant Student t distribution with
mean vector μ, scale matrix ∑ and degrees of freedom υ; Gamma(p, a) denotes the gamma distribution
with shape parameter p and scale parameter 1/a; χ2

ν denotes the chi-squared distribution with υ

degrees of freedom; IA denotes the indicator function of set A; ∝ indicates ‘proportional to’ and [Y|X]
denotes the density function of the conditional distribution of Y given X.

Let G = {D[1], . . . ., D[K]} be a group of K homogeneous decision makers (k = 1, . . . , K), A = {A1,
. . . , An} be a set of n alternatives and R(k) =

(
r(k)ij

)
; k = 1, . . . , K be the nxn paired comparison matrices

issued by each decision maker.
We assume, without loss of generality, that the matrices of judgments are complete—all paired

comparisons have been made. If some of the rij comparisons are missing, the proposed methodology
could be analogously adapted, as shown in reference [6].

We further assume that the decision makers of G have homogeneous opinions regarding the
priorities of each of the alternatives of A so that:

y(k)
ij = μ

(G)
i − μ

(G)
j + ε

(k)
ij ; k = 1, . . . , K; 1 ≤ i < j ≤ n; (1)
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with y(k)
ij = log

(
r(k)ij

)
, where:

(a) μ
(G)
i = log

(
v(G)

i

)
; i = 1, . . . , n being v(G)

i the priority (without normalising) given to the
alternative Ai by the members of the group G

(b) v(G)
n = 1 (that is to say, μ(G)

n = 0) to avoid identifiability problems

(c) ε
(k)
ij ∼ N

(
0,σ(G)

)
; k = 1, . . . , K; 1 ≤ i < j ≤ n independents

The normalised priorities of the group will be given by the vector w(G) =
(

w(G)
i ; i = 1, . . . , n

)′
where w(G)

i =
v(G)

i
n
∑

i=1
v(G)

i

; i = 1, . . . , n. Likewise, the level of homogeneity will be determined by the

standard deviation of the errors σ(G) that quantifies the inconsistency level of all decision makers in
the group with the priority vector w(G).

2.2. Estimation of the Local Priorities for the Group

The estimation of the vector of group priorities w(G) uses a Bayesian approach that allows exact
inferences about their values. We adopt, as a prior, a normal-gamma distribution given by:

μ(G) =
(
μ
(G)
1 , . . . ,μ(G)

n−1

)′|τ(G) ∼ Nn−1

(
0,

1
c0τ(G)

In−1

)
with c0 > 0 (2)

τ(G) =
1

σ(G)2
∼ Gamma

(
n0

2
,

n0s2
0

2

)
(3)

that is the standard conjugate distribution used in Bayesian literature [7]. The constants c0, n0 and s2
0

determine the degree of strength of the prior distribution. In the illustrative example we have taken
c0 = 0.1 so that the influence of the prior distribution of μ(G) is not significant. The hyper-parameters
n0 and s2

0 are determined from the maximum levels of inconsistency σ2
max allowed for each decision

maker so that
P
[
0 ≤ σ(G)2 ≤ σ2

max

]
= 1 − α

being, 1 − α (0 < α < 1) the level of credibility that we want to achieve. The value of σ2
max has been

set using the consistency thresholds of the geometric consistency index (GCI) proposed by [8]. In our
illustrative example, and given that n = 4, we take σ2

max = 0.35 and α = 0.05, which resulted in n0 = 0.1
and s2

0 = 0.0014.
Using Bayes’ theorem, and taking into account (1)–(3), we calculate the posterior distribution of

(μ(G), τ(G)) whose density is given by:[
μ(G)

∣∣∣τ(G),
{

y(k); k ∈ {1, . . . , K}
}]

∝ ∏
1≤i<j≤n

[
y(k)

ij

∣∣∣μ(G), τ(G)
][
μ(G)

∣∣∣τ(G)
][
τ(G)

]
∝

∝
K
∏

k=1
∏

1≤i<j≤n

(
τ(G)

) 1
2 exp

[
−τ(G)

2

(
y(k)

ij − μ
(G)
i + μ

(G)
j

)2
](

τ(G)
) n−1

2 exp
[
− c0τ

(G)

2

(
n−1
∑

i=1

(
μ
(G)
i

)2
)]

x
(
τ(G)

) n0
2 −1

exp
[
−τ(G)

2 n0s2
0

]
I(0,∞)

(
τ(G)

)
=

=
(
τ(G)

) JK+n−1+n0
2 −1

exp

[
−τ(G)

2

[
n0s2

0 +
K
∑

k=1
∑

1≤i<j≤n

(
y(k)

ij − μ
(G)
i + μ

(G)
j

)2
+ c0

(
n−1
∑

i=1

(
μ
(G)
i

)2
)]]

I(0,∞)

(
τ(G)

)
=
(
τ(G)

) JK+n−1+n0
2 −1

exp
[
−τ(G)

2

[
n0s2

0 +
K
∑

k=1

(
y(k) − Xμ(G)

)′(
y(k) − Xμ(G)

)
+ c0

(
μ(G)′μ(G)

)]]
I(0,∞)

(
τ(G)

)
(4)

where y(k) =
(

y(k)
ij ; 1 ≤ i < j ≤ n

)′
for k = 1, . . . , K and X = (xij) (J × (n − 1)) with J = n(n−1)

2 is the
regression matrix of model (1) so that:

- xij = 1 if the ith judgement is yjk with k �= j;
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- xij = −1 if the ith judgement is ykj with k �= j;

- xij = 0 in any other case.

It follows that: [
μ(G)

∣∣∣τ(G),
{

y(k); k ∈ {1, . . . , K}
}]

∝

∝
(
τ(G)

) JK+n0
2 −1

exp
[
−τ(G)

2

{
n0s2

0 +
K
∑

k=1
y(k)′y(k) − m(g)′(K(X′X

)
+ c0In−1

)
m(g)

}]
x

x
(
τ(G)

) n−1
2 −1

exp
[
−τ(G)

2

{(
μ(G) − m(G)

)′(
K
(
X′X

)
+ c0In−1

)(
μ(G) − m(G)

)}]
I(0,∞)

(
τ(G)

) (5)

where m(G) =
(
K
(
X′X

)
+ c0In−1

)−1
(

X
′
(

K
∑

k=1
y(k)

))
.

Therefore, it follows from (5) that:

μ(G)|τ(G),
{

y(k); k ∈ {1, . . . , K}
}

∼ Nn−1

(
m(G),

1
τ(G)

(
K
(
X′X

)
+ c0In−1

)−1
)

(6)

τ(G)
∣∣∣{y(k); k ∈ {1, . . . , K}

}
∼ Gamma

(
n0 + JK

2
,
(

n0 + JK
2

)
s(G)2

)
(7)

where s2(G) =
n0s2

0+
K
∑

k=1
y(k)′y(k)−m(G)′(K(X′X)+c0In−1)m(G)

n0+JK .
Integrating with respect to τ(G) in (5), it follows that:

μ(G)|
{

y(k); k ∈ {1, . . . , K}
}

∼ Tn−1

(
m(G), s(G)2(K(X′X

)
+ c0In−1

)−1, n0 + JK
)

(8)

From the posterior distributions (7) and (8), point estimates and credibility intervals of w(G) and
σ(G) can be obtained using the posterior median and the corresponding quantiles.

In the case of σ2(G), and taking into account that from (7) τ(G) ∼ χ2
n0+JK

(n0+JK)s(G)2 , a 100 (1 − α)%,

the Bayesian credibility interval for σ2(G) is given by

[
s2(G)(n0+JK)

χ2
n0+JK,1−α

2

, s2(G)(n0+JK)

χ2
n0+JK, α2

]
where χ2

ν,α denotes the

(1 − α)th quantile of the distribution χ2
ν.

To calculate a credibility interval for w(G)
i (1 ≤ i ≤ n) the Monte Carlo method is applied by

extracting a sample
{
μ(G,s) =

(
μ
(G,s)
1 , . . . ,μ(G,s)

n−1

)′
; s = 1, . . . , S

}
from (8) and calculating a sample

of the posterior distribution of w(G), W(G) =

{
w(G,s) =

(
w(G,s)

1 , . . . , w(G,s)
n

)′
; s = 1, . . . , S

}
with

w(G,s)
i =

exp
[
μ
(G,s)
i

]
n
∑

j=1
exp
[
μ
(G,s)
j

] where μ
(G,s)
n = 0. From this sample a credibility interval for w(G)

i is given

by
[
w(G)

i
(
α
2
)
, w(G)

i
(
1 − α

2
)]

where w(G)
i (α) is the αth quantile of the sample W(G).

Alpha distributions could also be calculated P
Gg
α =

(
P

Gg
α,1, . . . , P

Gg
α,n

)
with:

PG
α,i = P

[
w(G)

i = max1≤j≤nw(G)
j

∣∣∣{y(k); k = 1, . . . , K
}]

; i = 1, . . . , n (9)

and gamma distributions with:

PG
γ,γh

= P
[
w(G)

γh,1 ≤ . . . ≤ w(G)
γh,n

∣∣∣{y(k); k = 1, . . . , K
}]

; h = 1, . . . , n! (10)
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where γh = (γh,1, . . . , γh,n) is the hth permutation of the elements of A sorted according to the
lexicographical order. The approximate calculation of these probabilities is from the sample W(G) by
means of the expressions:

P̂G
α,i =

1
S

S

∑
s=1

I
w(G,s)

i =max1≤j≤nw(G,s)
j

(s) (11)

P̂G
γ,γh

=
1
S

S

∑
s=1

I
w(G,s)

γh,1 ≤...≤w(G,s)
γh,n

(s) (12)

These distributions report on preferences as well as the most preferred alternative and ranking
for the group.

3. Identification of Homogeneous Groups of Actors

The procedure for estimating the priorities of a group, as detailed in the previous section, is based
on the hypothesis of the similarity of the opinions of the decision makers. However, it is quite possible
that there will be different opinions. In this case, and in order to facilitate a subsequent negotiation
process, it is useful to identify the different opinions within the group and the actors that support them;
this section presents a systematic procedure for doing this. It utilises a Bayesian oriented tool selection
model based on the use of the Bayes factor as a selection element.

3.1. Problem Formulation

Let D = {D[1], . . . , D[K]} be a group of K decision makers, G = {G1, . . . , Gm} be a partition of

D, with Gg =
{

D[ig,1], . . . , D[ig,ng ]
}
⊆ D; g = 1, . . . , m, Gg ∩ Gg

′ = ∅ if g �= g′, D =
m∪

g=1
Gg. To avoid

identifiability problems we impose that ig,1 < . . . < ig,ng and ig,1 < ig′,1 if g < g′.
The problem is to select the G partitions that best describe the opinions expressed by the decision

makers about the alternative to be chosen from the judgments issued Y =
{

y(k); k = 1, . . . , K
}

. To this
end we extend the approach made in the previous section to the case of several groups, assuming that
the decision makers of each group {Gg; g = 1, . . . , m} of the partition G have homogeneous opinions
regarding the priorities of each alternative of set A so that:

y(k)
ij = μ

(g(k))
i − μ

(g(k))
j + ε

(k)
ij with ε

(k)
ij ∼ N

(
0,σg(k)

)
; k = 1, . . . , K; 1 ≤ i < j ≤ n (13)

(i) D[k] ∈ Gg(k) with g(k) ∈ {1, . . . , m} the group to which the decision maker D[k] belongs

(ii) μ
(g)
i = log

(
v(g)

i

)
; i = 1, . . . , n being v(g)

i the priority (without normalising) given to the alternative
Ai by the members of the group Gg

(iii) v(g)
n = 1 (that is to say, μ(g)

n = 0) to avoid identifiability problems

(iv) ε
(k)
ij ∼ N

(
0,σg(k)

)
; k = 1, . . . , K; 1 ≤ i < j ≤ n and independent

Finally, we take the following prior distributions for the parameters of the normal-gamma model:

μ(g) =
(
μ
(g)
1 , . . . ,μ(g)

n−1

)′|τ(g) ∼ Nn−1

(
0,

1
c0τ

(g)
In−1

)
with c0 > 0 (14)

τ(g) =
1

σ2(g)
∼ Gamma

(
n0

2
,

n0s2
0

2

)
(15)

independents for g = 1, . . . , m.
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3.2. Goodness of Fit Evaluation of G
The selection of the best G partitions is made by an evaluation of their adjustment to the Y issued

judgments. We use [Y|G], the prior marginal density of the model (13)–(15), which is one of the tools
utilised in the Bayesian inference to quantify it, so that, the higher the value, the greater the degree of
fit of G as a description of the existing opinions in D and the greater is the explanatory power of the Y

issued judgments.
This density is given by:

[Y|G ] =
m
∏

g=1

[{
y(k); k : g(k) = g

}
|Gg

]
=

m
∏

g=1

∫ ∞
0

∫
Rn−1

[{
y(k); k : g(k) = g

}
|μ(g), τ(g)

][
μ(g)|τ(g)

][
τ(g)

]
dμ(g)dτ(g) =

=
m
∏

g=1

∫ ∞
0

[{
y(k); k : g(k) = g

}
|τ(g)

][
τ(g)

]
dτ(g)

(16)

Taking into account that:

[{
y(k); k : g(k) = g

}
|τ(g)

]
=

[{
y(k); k : g(k) = g

}
,μ(g), τ(g)

]
[
μ(g)

∣∣∣{y(k); k : g(k) = g
}

, τ(g)
]

from (6), (13), (14) and (15) it follows that[{
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where m(G) =
(
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(
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Substituting in (16) it follows that:

[Y|G ] =

(
n0s2

0
2

) n0
2
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2 Γ( n0
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exp
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2
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m
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Γ
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2
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)
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(

2
Q(g)
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2 ∝

∝

(
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0
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n0
2

(Γ( n0
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m

m
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Γ
( n0+Jng

2

)∣∣∣( ng
c0
(X′X)+In−1

)∣∣∣− 1
2

(Q(g))
n0+Jng

2

(19)

3.3. Location of Opinion Groups

Now that the evaluation of the adjustment of a G partition to the issued judgements is completed,
in this section we describe the process followed to determine the most representative partitions. We

use Bayesian selection models and the Bayes factor, [
Y|G ′ ]
[Y|G ]

as a tool of comparison of two elements G
and G ′ of ℘(D), the set of possible partitions of D.

We set a threshold β (0 < β < 1) to discriminate if there are significant differences in the data

adjustment of the partitions G and G ′ so that if [Y|G ′ ]
[Y|G ]

< β then the degree of fit of G ′ is significantly
worse than that of G and, therefore, G is more representative than G ′. In this case, and in line with [9],
we take β = 0.05.

The problem is to determine G ∈ ℘(D) so that:

[Y|G ]

[Y|Gmax ]
≥ β (20)

where [Y|Gmax ] = maxG∈℘(D)[Y|G ] and gives us the ‘Occam’s window’ of our problem [10].
The partitions could be taken as starting points for subsequent negotiation processes in order to
reach an agreement among the decision makers that is as representative as possible. In our case, we
look for the partitions of the window that have the least number of groups, since it can be foreseen
that the fewer groups there will be, the easier it will be to reach more representative agreements
because there are fewer disparate opinions. In order to do this, we use an exhaustive search algorithm
that calculates the values of [Y|G] for all the elements of ℘(D) using expression (19). Then Gmax is
determined and, from this, the partitions of Occam’s window that verify (20) are identified. Other
methods for consensus searching in group decision making can be seen in references [11–16].

Figure 1 shows the main steps for determining the groups with homogeneous opinions.

 

Figure 1. Steps of the proposed methodology.
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4. Case Study

In September 2006 the Government of Aragón and the Zaragoza City Council advanced the
‘Zaragoza Plan for Sustainable Mobility’, which led to the construction of the city’s Tram Line 1 that
was completed in 2013. The construction was controversial and in the following municipal elections,
the political parties presented their proposals for improving transport in the city. Representatives
of the main political parties (PSOE, PP and CHA) attended the university to explain their preferred
alternative. The case study concerns a citizen participation project in a local community which
contemplated alternatives put forward by the political parties during the municipal elections for the
extension of the city tram network.

Eleven students (K = 11) from the ‘Electronic-Government and Public Decisions’ course of
the Faculty of Economics and Business at the University of Zaragoza (Spain) were involved in
its implementation.

There were 4 alternatives:

A1 Build a new tram line
A2 Use a tram and bus combination called Tranbus
A3 Use a tram combination with commuter lines
A4 Do nothing

As the construction of Line 1 had a high economic cost, and the selection of any of first three
alternatives assumes a significant investment, a fourth alternative (no cost) was included. The selection
problem was solved using the Analytic Hierarchy Process [2]. The hierarchical model comprised four
levels (the goal, 3 criteria, 9 attributes and 4 alternatives).

The results of the Investment Cost attribute have been used to illustrate the proposed methodology.
The prior distribution parameters were c0 = 0.1, n0 = 1 and s2

0 = 0.0014 (corresponding to take
σ2

max = 0.35 and α = 0.05) and β = 0.05. The number of partitions was equal to the 678,570 that
were processed in 98.84 s of CPU by a Toshiba Ultrabook KIRA with Intel (R) Core™ i7-4510U CPU @
2.00GHz 2.60 GHz (64 bits) and 8 Gb of RAM.

The resulting number of groups was equal to five and the most probable composition was: G1 =
{D1, D2, D3, D7}, G2 = {D4, D10}, G3 = {D5, D6}, G4 = {D9}, G5 = {D11}. The results obtained are shown in
Tables 1–3. More specifically, Table 1 contains the posterior medians of the priorities of each alternative
for each decision maker and each group. Table 2 shows the posterior probabilities that each alternative
would be the most preferred, corresponding to the Pα distributions. Table 3 gives the probabilities
for each ranking corresponding to the Pγ distributions. The values were calculated from (7)–(8) and
(11)–(12), as described in Section 2.2, using S = 10,000 simulations.

So, for example, group G1 made up of decision makers D1, D2, D3 and D7, gives the highest
priority (0.4502) to alternative A4, followed by the alternatives A2 (priority 0.3076), A3 (0.1518) and
A1 (0.0879) (see Table 1). This ranking is also reflected by its Pα and Pγ distributions, which give
the maximum posterior probabilities to the A4 alternative (97.31%, see Table 2) and the ranking 4231
(96.94%, see Table 3). Even though the individual opinion of D3 is different to the rest of the members
of the group (their preferred alternative is A2 and the ranking is 2431), the consistency of the group G1

(0.2790) is good, being lower than the maximum level of inconsistency 0.35. This is due to the high
priority of D3 for alternative A4 (0.2705) and the similarity of their priorities to alternatives A1 and A3

which means that G1 can be considered as a homogeneous group.
From the tables, it can be observed that the compositions of the groups are very much determined

by their similarity to the most preferred alternative. The decision makers from groups G1 and G3 mostly
prefer the alternative A4, those from group G2 prefer alternative A1, those from G3 prefer alternative A3

and those from G4 prefer alternative A2 (see Tables 1 and 2). However, groups G1 and G3 differ in the
rankings (see Table 3). The decision makers from the group G1 tend to prefer the 4231 ranking, while
those from the group G3 prefer 4123. Nevertheless, preferences within each group are not completely
homogeneous; in group G1, decision-maker D3 shows a greater preference for alternative A2. This
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opinion is shared with decision maker D11 of group G4, although it assigns a priority 0.2705 to alternative
A4 that justifies its inclusion in group G1. Something similar happens in group G3, in which decision
maker D5 shows a greater preference for alternative A1, although it assigns a non-negligible priority
(0.3613) to alternative A4 and to the ranking 4123, hence its inclusion in group G3.

The consistency levels of the actors and most of the groups are acceptable (<0.35). The only
exception is G3 whose consistency is estimated as 0.4071, but with a 95% credibility interval [0.20, 1.43]
that does not reject the consistency hypothesis σ2(G3) ≤ 0.35.

The ambiguities of the opinions are revealed if we analyse the partitions selected by Occam’s
window with the smaller number of groups, included in Table 4 and Figure 2. Figure 2 incorporates, in
each node, the groups of decision makers that are classified together in all the selected partitions and
includes a link between two nodes if their components are classified together in some of the partitions.
Most of the decision makers are linked because of their preferences for alternatives A2 and A4, the
latter being the alternative which most decision makers support. Only D4, D9 and D10 are isolated
because of their preferences for alternatives A1 (D4 and D10) and A3 (D9).

Table 1. Priorities and consistency for each decision maker and each group.

Decision
Maker

Priorities
Consistency

w1 w2 w3 w4

D1 0.1285 0.2860 0.1275 0.4511 0.1412
D2 0.0899 0.2500 0.1418 0.5110 0.2042
D3 0.0900 0.4759 0.1582 0.2705 0.1363
D7 0.0587 0.2501 0.1839 0.5026 0.1405
G1 0.0879 0.3076 0.1518 0.4502 0.2790
D4 0.5748 0.1406 0.1086 0.1721 0.1214
D10 0.6318 0.1809 0.0797 0.1044 0.1046
G2 0.6139 0.1600 0.0926 0.1318 0.1602
D5 0.4021 0.1570 0.0758 0.3613 0.0888
D6 0.2131 0.1057 0.0542 0.6194 0.2849
D8 0.1388 0.2763 0.0578 0.5197 0.2186
G3 0.2321 0.1676 0.0617 0.5338 0.4071
D9 0.2846 0.0871 0.5503 0.0720 0.2186
G4 0.2846 0.0871 0.5503 0.0720 0.2186
D11 0.1228 0.4684 0.2736 0.1294 0.1261
G5 0.1228 0.4684 0.2736 0.1294 0.1261

in bold the highest priority.

Table 2. Alpha distributions for each decision maker and each group.

Decision Maker
Alternatives

A1 A2 A3 A4

D1 0.30 6.11 0.00 93.59
D2 0.19 2.71 0.04 97.06
D3 0.00 96.75 0.00 3.25
D7 0.01 1.75 0.04 98.20
G1 0.00 2.69 0.00 97.31
D4 99.23 0.03 0.00 0.74
D10 99.92 0.02 0.00 0.06
G2 99.96 0.00 0.00 0.04
D5 63.16 0.01 0.00 36.83
D6 5.24 0.00 0.00 94.76
D8 1.09 3.92 0.00 94.99
G3 2.96 0.00 0.00 97.04
D9 5.49 0.00 94.51 0.00
G4 5.49 0.00 94.51 0.00
D11 0.01 98.75 1.20 0.04
G5 0.01 98.75 1.20 0.04

in bold the probabilities higher than 20%.
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There are 4 homogeneous groups: {D1, D2, D7} that prefer alternative A4 and the ranking 4231;
{D5, D6} position alternatives A2 and A3 in the last places and they show a non-negligible preference for
A4; {D4, D10} prefer alternative A1 and put A3 in last place; decision maker {D9} prefers A3. Decision
makers D3, D8, D11 are in more intermediate and ambiguous positions. In the case of D3, this is due
to the greater preference for A2 (shared with D11) and the non-negligible preference for A4 (which
places them close to the group {D1, D2, D7}). In the case of D8, the intermediate position is due to their
preferences for A4 and A2, in that order, which places them close to the group {D1, D2, D7}, as well as
to the rejection of A3, which places them close to the group {D5, D6}.

In order to achieve as broad an agreement as possible, alternative A4 could be suggested, given
that a majority of decision makers (in groups G1 and G3) showed a preference for it. The negotiation
should be aimed at convincing decision makers D4, D9, D10 and D11.

With regards to the practical implications of the Bayesian procedure proposed in this work, it is
worth mentioning that, as in AHP, these applications are numerous, especially in matters of strategic
planning where the number of actors is not usually very high.

Table 4. Partitions selected by the Occam window.

Partition D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 Ratio †

1 1 1 1 2 3 3 1 3 4 2 5 1.00
2 1 1 2 3 4 4 1 4 5 3 2 0.48
3 1 1 1 2 3 3 1 1 4 2 5 0.42
4 1 1 2 3 4 4 1 1 5 3 2 0.15

† The ratio calculates the quotient of the posterior probability for the most probable model and that for the model
corresponding to each partition.

Figure 2. Relations of opinions existing in D.

5. Conclusions

This paper has proposed a methodology for the identification of homogenous opinion groups
with AHP in a local context. The methodology is based on the use of Bayesian processes for the
selection of hierarchical models that describe the judgments issued by each decision maker in their
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matrices of pairwise comparisons based on a set of priorities common to each of the members of
the group.

Using an exhaustive search method of the most compatible partitions with the judgments issued,
the Occam’s window of the compared models is defined. From these models it has been shown how
it is possible to describe the existing opinions in the groups, information that can be very useful to
identify consensus paths among the decision makers that can culminate in a more representative
decision-making process.

The search method works in a local AHP context, but has some limitations. First, it functions
if the number of decision makers is not very high (≤11). The total number of partitions of the set of

decision makers is equal to the Bell number BK =
K−1
∑

k=0

(
K − 1

k

)
Bk with B0 = 1, B1 = 1. The larger

the number of decision makers, the more computationally infeasible is the problem. In our case
(K = 11), the number of possible partitions is 687,570, which is computationally feasible. For instance,
if K = 22 the number is 4507 × 1015, then it is necessary to use algorithms that approximately determine
Occam’s window.

We are currently experimenting with stochastic search algorithms and the results obtained will
be published in a future work. A second limitation is that it is necessary that the groups constitute a
partition of the set of decision makers and this implies that a decision maker cannot belong to more
than one group. Even though this requirement decreases the computational time of the algorithm,
it also reduces the flexibility of the method. The development of search strategies that eliminate
this unrealistic assumption is worthy of consideration. Finally, it would be interesting to extend the
methodology to a global context in which a hierarchy of criteria and sub-criteria is used.
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Abstract: In this article, we propose another form of ten similarity measures by considering the
function of membership degree, non-membership degree, and indeterminacy membership degree
between the q-ROFSs on the basis of the traditional cosine similarity measures and cotangent
similarity measures. Then, we utilize our presented ten similarity measures and ten weighted
similarity measures between q-ROFSs to deal with multiple attribute decision-making (MADM)
problems including pattern recognition and scheme selection. Finally, two numerical examples are
provided to illustrate the scientific and effective of the similarity measures for pattern recognition and
scheme selection.

Keywords: multiple attribute decision-making (MADM); q-rung orthopair fuzzy sets (q-ROFSs);
cosine function; cosine similarity measure; pattern recognition; scheme selection

1. Introduction

As an important branch of multiple attribute decision-making (MADM) domains, the similarity
measures have been regarded as very useful tools to determine the degree of similarity between
two objects. In the previous research literature, an increasing number of researchers pay attention
to similarity measures between fuzzy sets (FSs) due to their broad applications in a variety of
fields, for instance, pattern recognition, scheme selection, machine learning, image processing, and
decision-making, many theories and applications of similarity measures between fuzzy sets (FSs) have
been presented and investigated for the past few years. Atanassov [1,2] presented the definition of
intuitionistic fuzzy set (IFS), which is an extension form of fuzzy set (FS). Each element contained in
IFS was depicted by an ordered pair including the degree of membership μ and non-membership v,
and the sum of them is limited to 1. Since IFS theory was proposed, a variety of similarity measures
between intuitionistic fuzzy sets (IFSs) have been studied in the document [3–6]. Based on IFS and
theories of similarity measures, Li and Cheng [7] presented appropriate similarity measure and gave a
numerical example of pattern recognition problems to illustrate the effective of this method. Besides,
Mitchell [8] improved Li and Cheng’s similarity measures to deal with MADM. According to the
extension of the Hamming distance (HD) of fuzzy sets (FSs), Park et al. [9] computed the distance
between IFSs based on Hamming distance (HD) and proposed some similarity measures to solve
MADM problems [10]. According to the Hausdorff distance, Torra and Narukawa [11] defined some
new similarity measures between IFSs. Based on geometric aggregation operators, Xia and Xu [12]
proposed the intuitionistic fuzzy geometric distance and intuitionistic fuzzy similarity measures to
deal with MADM problems. Ye [13] initially developed the intuitionistic fuzzy cosine similarity
measure based on cosine function. Kuo-ChenHung [14] defined the likelihood-based measurement of
IFSs for the medical diagnosis and bacteria classification problems. Shi and Ye [15] further modified
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the cosine similarity measure of IFSs. Based on the cotangent function, Tian [16] presented the
intuitionistic fuzzy cotangent similarity measure between IFSs for medical diagnosis. To contain
more fuzzy information, Rajarajeswari and Uma [17] further defined the cotangent similarity measure
which considered the function of membership degree, non-membership degree, and indeterminacy
membership degrees described in IFSs. In addition, Szmidt [18] introduced distances between IFSs
and introduced a family of similarity measures which considered the function of membership degree,
non-membership degree, and indeterminacy membership degree in IFSs. Ye [19] developed two new
cosine similarity measures and weighted cosine similarity measures based on cosine function and
the fuzzy information denoted by the function of membership degree, non-membership degree, and
indeterminacy membership degree described in intuitionistic fuzzy sets (IFSs). Wei [20] proposed
some picture fuzzy similarity measures and applied them in MADM problems. Le Hoang and Pham
Hong [21] defined the intuitionistic vector similarity measures for medical diagnosis. Wei and Wei [22]
introduced some Pythagorean fuzzy similarity measures based on cosine function and applied them in
pattern recognition and medical diagnosis.

More recently years, Pythagorean fuzzy set (PFS) [23] has emerged to describe the indeterminacy
and complexity of the evaluation information. Similar to IFS, the PFS also consisted of the function
of membership μ and non-membership v; the sum of squares of μ and v is restricted to 1, thus
it is clear that the PFS is more widespread than the IFS and can express more decision-making
information. For instance, the membership is given as 0.6 and the non-membership is given as 0.8,
therefore it is obvious that this problem is only valid for PFS. In other words, all the intuitionistic
fuzzy decision-making problems are the special case of Pythagorean fuzzy decision-making problems,
which means that PFS can more efficiently deal with MADM problems. In previous literatures,
some researching works have been studied by a large amount of investigators [24–28]. Zhang and
Xu [29] defined the Pythagorean fuzzy TOPSIS model to deal with the MADM problems. Peng and
Yang [30] primarily proposed two Pythagorean fuzzy operations including the division and subtraction
operations to better understand PFS. Reformat and Yager [31] handled the collaborative-based
recommender system with Pythagorean fuzzy information. Garg [32] defined some new Pythagorean
fuzzy aggregation operators including Pythagorean fuzzy Einstein weighted averaging (PFEWA)
operator, Pythagorean fuzzy Einstein ordered weighted averaging (PFEOWA) operator, generalized
Pythagorean fuzzy Einstein weighted averaging (GPFEWA) operator, and generalized Pythagorean
fuzzy Einstein ordered weighted averaging (GPFEOWA) operator. Zeng, et al. [33] utilized the
Pythagorean fuzzy ordered weighted averaging weighted average distance (PFOWAWAD) operator to
study Pythagorean fuzzy MADM issues. Ren, et al. [34] built the Pythagorean fuzzy TODIM model.
Wei and Lu [35] developed some new Maclaurin symmetric mean (MSM) [36] operator based on
Pythagorean fuzzy environment. Wei and Wei [22] defined ten cosine similarity measures under
Pythagorean fuzzy environment. Liang, et al. [37] investigated some Bonferroni mean operators with
Pythagorean fuzzy information. Liang, et al. [38] presented Pythagorean fuzzy Bonferroni mean
aggregation operators based on geometric averaging (GA) operations. Combined the PFSs [39–41] and
dual hesitant fuzzy sets (DHFSs) [42], Zhao et al. [43] introduced the definition of the dual hesitant
Pythagorean fuzzy sets (DHPFSs) and proposed some dual hesitant Pythagorean fuzzy Hamacher
aggregation operators.

In spite of this, to express more decision information, Yager [44] initially defined the q-rung
orthopair fuzzy sets (q-ROFSs), in which the sum of the qth power of the membership and
non-membership is less or equal to 1, that is to say, μq + vq ≤ 1. Obviously, q-ROFS are more
general for the IFS, and PFSs are special issues of it. Liu and Wang [45] developed the q-rung
orthopair fuzzy weighted averaging (q-ROFWA) operator and the q-rung orthopair fuzzy weighted
geometric (q-ROFWG) operator. Wei, et al. [46] proposed some q-rung orthopair fuzzy MSM operators,
including q-rung orthopair fuzzy MSM (q-ROFMSM) operator, q-rung orthopair fuzzy weighted
MSM (q-ROFWMSM) operator, q-rung orthopair fuzzy dual MSM (q-ROFDMSM) operator, and
q-rung orthopair fuzzy weighted DMSM (q-ROFWDMSM) operator. Wei, et al. [47] defined some
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q-rung orthopair fuzzy Heronian mean operators. Yang and Pang [48] presented some new partitioned
Bonferroni mean operators under q-rung orthopair fuzzy environment. Liu and Liu [49] provided some
power Bonferroni mean operators with linguistic q-rung orthopair fuzzy information. Xu, et al. [50],
given the concept of q-rung dual hesitant orthopair fuzzy set (q-RDHOFS), proposed some q-rung dual
hesitant orthopair fuzzy Heronian mean operators. Lei and Xu [51] gave some methods for MAGDM
with q-rung interval-valued orthopair fuzzy information for green supplier selection.

Although the intuitionistic fuzzy set (IFS) [1,2] and Pythagorean fuzzy set (PFS) [23,39] have
been applied in some decision-making areas, for some special cases, such as when the membership
degree and non-membership degree are given as 0.7 and 0.8, it is clear that both IFS and PFS theories
cannot satisfy this situation. The q-rung orthopair fuzzy set (q-ROFS) is also denoted by the degree of
membership and non-membership whose q-th power sum of them is restricted to 1. Obviously, the
q-ROFS is more general than the q-ROFS and can express more fuzzy information. In other words,
the q-ROFS can deal with the MADM problems which IFS cannot, and it is clear that IFS is a part
of the q-ROFS, which indicates q-ROFS can be more effective and powerful to deal with fuzzy and
uncertain decision-making problems. Thus, to solve such issues, based on the cosine functions and
cotangent functions, we shall propose the concept of q-rung orthopair fuzzy cosine similarity measures
and q-rung orthopair fuzzy cotangent similarity measures under q-rung orthopair fuzzy environment
in this paper, which is a new extension of the similarity measure of IFSs.

To do this, the rest of this article is structured as follows. In the next section, we briefly review
some fundamental theories of intuitionistic fuzzy set (IFS) and some intuitionistic fuzzy similarity
measures. Some q-rung orthopair fuzzy cosine similarity measures, q-rung orthopair fuzzy weighted
cosine similarity measures, q-rung orthopair fuzzy cotangent similarity measures, and q-rung orthopair
fuzzy weighted cotangent similarity measures are developed in Section 3. All the above-mentioned
similarity measures for q-ROFSs are used to pattern recognition and scheme selection in Section 4.
Section 5 concludes the paper with some remarks.

2. Preliminaries

In this part, we shall briefly introduce some basic theories of intuitionistic fuzzy sets (IFSs) and
review some similarity measures based on cosine functions and cotangent functions between IFSs.

Definition 1. Suppose thatX is a fixed set, then an intuitionistic fuzzy set (IFS) Q in X [1,2] can be denoted as

Q =
{〈

x,αQ(x), βQ(x)
〉
|x ∈ X

}
(1)

where αQ : X→ [0, 1] means the degree of membership and βQ(x) : X→ [0, 1] means the degree of
non-membership which satisfies the condition of 0 ≤ αQ(x) ≤ 1, 0 ≤ βQ(x) ≤ 1, 0 ≤ αQ(x) + βQ(x) ≤ 1,
∀ x ∈ X.

Definition 2. For each intuitionistic fuzzy set (IFS) Q in X [1,2], the degree of indeterminacy membership
πQ(x) can be expressed as

πQ(x) = 1− αQ(x) − βQ(x),∀ x ∈ X. (2)

The cosine similarity measures and cotangent similarity measures, which can calculate the degree
of proximity between any two schemes, have been applied in many practical MADM problems. As we
all know, the cosine and cotangent functions are monotone decreasing functions, thus, by considering
the distance measures between any two alternatives, the bigger the distance values are, the smaller
the calculating results by cosine and cotangent functions are and the lower similarity measures are.
Therefore, to select best alternatives in decision-making problems, we always utilize cosine and
cotangent similarity measures to obtain the similarity degree between each alternative and the ideal
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alternative. In what follows, we will briefly review some intuitionistic fuzzy cosine and cotangent
similarity measures.

Let M =
{〈

xj,αM
(
xj
)
, βM

(
xj
)〉∣∣∣xj ∈ X

}
and N =

{〈
xj,αN

(
xj
)
, βN

(
xj
)〉∣∣∣xj ∈ X

}
be two intuitionistic

fuzzy sets (IFSs), then the intuitionistic fuzzy cosine (IFC) measure between M and N proposed by
Ye [13] can be shown as

IFC1(M, N) =
1
n

n∑
j=1

αM
(
xj
)
αN

(
xj
)
+ βM

(
xj
)
βN

(
xj
)

√
α2

M

(
xj
)
+ β2

M

(
xj
)√
α2

N

(
xj
)
+ β2

N

(
xj
) (3)

Consider the degree of membership, non-membership and indeterminacy membership, then
the intuitionistic fuzzy cosine (IFC) measure between M and N proposed by Shi and Ye [15] can be
shown as

IFC2(M, N) =
1
n

n∑
j=1

αM
(
xj
)
αN

(
xj
)
+ βM

(
xj
)
βN

(
xj
)
+ πM

(
xj
)
πN

(
xj
)

√
α2

M

(
xj
)
+ β2

M

(
xj
)
+ π2

M

(
xj
)√
α2

N

(
xj
)
+ β2

N

(
xj
)
+ π2

N

(
xj
) (4)

On account of cosine function, Ye [19] developed two intuitionistic fuzzy cosine similarity (IFCS)
measures between two intuitionistic fuzzy sets (IFSs) M and N.

IFCS1(M, N) =
1
n

n∑
j=1

cos

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
π
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝max

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∣∣∣∣αM

(
xj
)
− αN

(
xj
)∣∣∣∣,∣∣∣∣βM

(
xj
)
− βN

(
xj
)∣∣∣∣,∣∣∣∣πM

(
xj
)
−πN

(
xj
)∣∣∣∣

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (5)

IFCS2(M, N) =
1
n

n∑
i=1

cos

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
π
4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∣∣∣∣αM

(
xj
)
− αN

(
xj
)∣∣∣∣+∣∣∣∣βM

(
xj
)
− βN

(
xj
)∣∣∣∣+∣∣∣∣πM

(
xj
)
−πN

(
xj
)∣∣∣∣

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (6)

In addition, the intuitionistic fuzzy cotangent (IFCot) similarity measure between any two
intuitionistic fuzzy sets (IFSs) M and N proposed by Tian [16] is shown as

IFCot1(M, N) =
1
n

n∑
j=1

cot

⎡⎢⎢⎢⎢⎢⎢⎣π4 +
π
4

⎛⎜⎜⎜⎜⎜⎜⎝max

⎛⎜⎜⎜⎜⎜⎜⎝
∣∣∣∣αM

(
xj
)
− αN

(
xj
)∣∣∣∣,∣∣∣∣βM

(
xj
)
− βN

(
xj
)∣∣∣∣

⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦ (7)

Consider the degree of membership, non-membership, and indeterminacy membership, then
the intuitionistic fuzzy cotangent (IFCot) similarity measure between any two intuitionistic fuzzy sets
(IFSs) M and N proposed by Rajarajeswari and Uma [17] can be shown as

IFCot2(M, N) =
1
n

n∑
j=1

cot

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
π
4
+
π
4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝max

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∣∣∣∣αM

(
xj
)
− αN

(
xj
)∣∣∣∣,∣∣∣∣βM

(
xj
)
− βN

(
xj
)∣∣∣∣,∣∣∣∣πM

(
xj
)
−πN

(
xj
)∣∣∣∣

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (8)

Consider the weighting vector of the elements in IFS, the weighted intuitionistic fuzzy cosine
(WIFC) measure, the weighted intuitionistic fuzzy cosine similarity (WIFCS) measure, and weighted
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intuitionistic fuzzy cotangent (WIFCot) similarity measure between any two intuitionistic fuzzy sets
(IFSs), M and N can be shown as follows [13,15–17,19]

WIFC1(M, N) =
n∑

j=1

ω j

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
αM

(
xj
)
αN

(
xj
)
+ βM

(
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)
βN

(
xj
)

√
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M

(
xj
)
+ β2

M

(
xj
)√
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N

(
xj
)
+ β2

N

(
xj
)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (9)

WIFC2(M, N) =
n∑

j=1

ω j
αM

(
xj
)
αN

(
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)
+ βM

(
xj
)
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(
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)
+ πM

(
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)
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(
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)

√
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M

(
xj
)
+ β2

M

(
xj
)
+ π2

M

(
xj
)√
α2

N

(
xj
)
+ β2

N

(
xj
)
+ π2

N

(
xj
) (10)

WIFCS1(M, N) =
n∑

j=1

ω j cos

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
π
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝max
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(
xj
)
− αN

(
xj
)∣∣∣∣,∣∣∣∣βM

(
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)
− βN

(
xj
)∣∣∣∣,∣∣∣∣πM

(
xj
)
−πN

(
xj
)∣∣∣∣

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (11)

WIFCS2(M, N) =
n∑

i=1

ω j cos

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
π
4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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(
xj
)
− αN

(
xj
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(
xj
)
− βN

(
xj
)∣∣∣∣+∣∣∣∣πM

(
xj
)
−πN

(
xj
)∣∣∣∣

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (12)

WIFCot1(M, N) =
n∑

j=1

ω j cot

⎡⎢⎢⎢⎢⎢⎢⎣π4 +
π
4

⎛⎜⎜⎜⎜⎜⎜⎝max

⎛⎜⎜⎜⎜⎜⎜⎝
∣∣∣∣αM

(
xj
)
− αN

(
xj
)∣∣∣∣,∣∣∣∣βM

(
xj
)
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(
xj
)∣∣∣∣

⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦ (13)

WIFCot2(M, N) =
n∑

j=1

ω j cot

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
π
4
+
π
4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝max

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∣∣∣∣αM

(
xj
)
− αN

(
xj
)∣∣∣∣,∣∣∣∣βM

(
xj
)
− βN

(
xj
)∣∣∣∣,∣∣∣∣πM

(
xj
)
−πN

(
xj
)∣∣∣∣

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (14)

where ω j( j = 1, 2, · · · , n) denotes the weighting vector of elements xj, which satisfies the condition of

ω j ∈ [0, 1] and
n∑

j=1
ω j = 1.

3. Some Similarity Measures Based on Cosine Function for q-ROFSs

Although the intuitionistic fuzzy sets (IFSs) defined by Atanassov’s [1,2] have been broadly applied
in different areas, for some special cases, such as when membership degree and non-membership
degree are given as 0.7 and 0.8, it is clear that IFSs theory cannot satisfy this situation. The q-rung
orthopair fuzzy set (q-ROFS) is also denoted by the degree of membership and non-membership,
whose q-th power sum is restricted to 1, obviously, the q-ROFS is more general than the q-ROFS and
can express more fuzzy information. In other words, the q-ROFS can deal with the MADM problems
which IFS cannot and it is clear that IFS is a part of the q-ROFS, which indicates q-ROFS can be more
effective and powerful to deal with fuzzy and uncertain decision-making problems.

Definition 3. Suppose P be a fix set, then a q-rung orthopair fuzzy set (q-ROFS) P in X [39,40] can be denoted as

P =
{〈

x, (αP(x), βP(x))
〉|x ∈ X

}
(15)

where αP : X→ [0, 1] means the degree of membership and βP(x) : X→ [0, 1] means the degree of
non-membership which satisfies the condition of 0 ≤ αP(x) ≤ 1, 0 ≤ βP(x) ≤ 1, 0 ≤ (αP(x))

q + (βP(x))
q ≤ 1,

q ≥ 1,∀ x ∈ X.

141



Mathematics 2019, 7, 340

Definition 4. For each q-rung orthopair fuzzy set (q-ROFS) P in X [39,40], the degree of indeterminacy
membership πP(x) can be expressed as

πP(x) =
q
√
(αP(x))

q + (βP(x))
q − (αP(x))

q(βP(x))
q,∀ x ∈ X. (16)

Definition 5. Let p = (α, β) be a q-ROFN, a score function can be represented [40] as follows

S(p) =
1
2
(1 + αq − βq), S(p) ∈ [0, 1]. (17)

Definition 6. Let rj =
(
α j, β j

)
( j = 1, 2, · · · , n) be a group of q-ROFNs with weighting vector

w = (w1, w2, . . . , wn)
T , which satisfies wj > 0, i = 1, 2, . . . , n and

∑n
j=1 wj = 1 [40]. Then we can

obtain the q-rung orthopair fuzzy weighted averaging (q-ROFWA) operator and the q-rung orthopair fuzzy
weighted geometric (q-ROFWG) operator as follows

q−ROFWA(r1, r2, . . . , rn) =
n⊕

j=1
wjrj =

〈⎛⎜⎜⎜⎜⎜⎜⎝1− n∏
j=1

(
1− αq

j

)wj

⎞⎟⎟⎟⎟⎟⎟⎠
1/q

,
n∏

j=1

β
wj

j

〉
(18)

q−ROFWG(r1, r2, . . . , rn) =
n⊗

j=1

(
rj
)wj

=

〈 n∏
j=1

α
wj

j ,

⎛⎜⎜⎜⎜⎜⎜⎝1− n∏
j=1

(
1− βq

j

)wj

⎞⎟⎟⎟⎟⎟⎟⎠
1/q〉

(19)

3.1. Cosine Similarity Measure for q-ROFSs

Suppose that P is a q-rung orthopair fuzzy set (q-ROFS) in a universe of discourse X = {x}, the
elements contained in q-ROFS can be expressed as the function of membership degree αP(x), the
function of non-membership degree βP(x), and the function of indeterminacy membership degree
πP(x). Thus, a cosine similarity measure and a weighted cosine similarity measure with q-rung
orthopair fuzzy information are presented in an analogous manner to the cosine similarity measure
based on Bhattacharya’s distance and cosine similarity measure for intuitionistic fuzzy set (IFS) [13].

Let M =
{〈

xj,αM
(
xj
)
, βM

(
xj
)〉∣∣∣xj ∈ X

}
and N =

{〈
xj,αN

(
xj
)
, βN

(
xj
)〉∣∣∣xj ∈ X

}
be two q-rung

orthopair fuzzy sets (q-ROFSs), then the q-rung orthopair fuzzy cosine (q-ROFC) measure between M
and N can be shown as

q−ROFC1(M, N) =
1
n

n∑
j=1

α
q
M

(
xj
)
α

q
N

(
xj
)
+ β

q
M

(
xj
)
β

q
N

(
xj
)

√(
α

q
M

(
xj
))2

+
(
β

q
M

(
xj
))2

√(
α

q
N

(
xj
))2

+
(
β

q
N

(
xj
))2

(20)

Especially, when we let n = 1, the cosine similarity measure between q-ROFSs M and N can be
depicted as Cq−ROFS(M, N), which will become the correlation coefficient between M and N, which
is depicted as Kq−ROFS(M, N), i.e., Cq−ROFS(M, N) = Kq−ROFS(M, N). In addition, the cosine similarity
measure between q-ROFSs M and N also satisfies some properties as follows.

(1) 0 ≤ q−ROFC1(M, N) ≤ 1;
(2) q−ROFC1(M, N) = q−ROFC1(N, M);
(3) q−ROFC1(M, N) = 1, i f M = N, j = 1, 2, · · · , n.

Proof.

(1) It is clear that the proposition is true based on the cosine result.
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(2) It is clear that the proposition is true.

(3) When M = N, it means that αM
(
xj
)
= αN

(
xj
)

and βM
(
xj
)
= βN

(
xj
)

for j = 1, 2, · · · , n.
So C1

q−ROFS(M, N) = 1.

Therefore, we have finished the proofs. �

In what follows, we shall study the distance measure of the angle as d(M, N) =

arccos
(
C1

q−ROFS(M, N)
)
. It satisfies some properties as follows.

(1) d(M, N) ≥ 0, if 0 ≤ C1
q−ROFS(M, N) ≤ 1;

(2) d(M, N) = arccos(1) = 0, if C1
q−ROFS(M, N) = 1;

(3) d(M, N) = d(N, M), if C1
q−ROFS(M, N) = C1

q−ROFS(N, M),

(4) d(M, T) ≤ d(M, N) + d(N, T), if M ⊆ N ⊆ T for any q-ROFS T.

Proof. Clearly the distance measure d(M, N) satisfies properties (1)–(3). In what follows we shall prove
that the distance measure d(M, N) satisfies property (4).

For any q-rung orthopair fuzzy set (q-ROFS) T =
{〈

xj,
(
αT

(
xj
)
, βT

(
xj
))〉∣∣∣xj ∈ x

}
, M ⊆ N ⊆ T, let us

investigate the distance measures of the angle between the vectors:

dj
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M

(
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are three vectors in

one plane, if M
(
xj
)
⊆ N

(
xj
)
⊆ T

(
xj
)
, j = 1, 2, · · · , n. Therefore, it is clear that dj

(
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≤
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(
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based on the triangle inequality. Combining the inequality

0 ≤
(
αP

(
xj
))q

+
(
βP

(
xj
))q ≤ 1, we can get d(M, T) ≤ d(M, N) + d(N, T). Therefore d(M, N) meets the

property (4). So we completed the process of proof. �

If we consider three terms—membership degree, non-membership degree, and
indeterminacy membership—which are contained in q-ROFSs, assume that there are two
q-rung orthopair fuzzy sets, M =

{〈
xj,αM

(
xj
)
, βM

(
xj
)
,πM

(
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}
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(
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}
( j = 1, 2, . . . , n), then the q-rung orthopair fuzzy cosine

(q-ROFC) measures between q-ROFSs can be expressed as
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(21)
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Especially when we let n = 1, the cosine similarity measure between q-ROFSs M and N will
become the correlation coefficient between q-rung orthopair fuzzy sets (q-ROFSs) M and N. Of course,
the cosine similarity measure q−ROFC2(M, N) also satisfies some properties which are listed as follows.

(1) 0 ≤ q−ROFC2(M, N) ≤ 1;
(2) q−ROFC2(M, N) = q−ROFC2(N, M);
(3) q−ROFC2(M, N) = 1, i f M = N, j = 1, 2, · · · , n.

Consider the weighting vector of the elements in q-ROFS, the q-rung orthopair fuzzy weighted
cosine (q-ROFWC) measure between two q-rung orthopair fuzzy sets (q-ROFSs) M and N can be
shown as follows.

q−ROFWC1(M, N) =
n∑

j=1

ω j
α

q
M

(
xj
)
α

q
N

(
xj
)
+ β

q
M

(
xj
)
β

q
N

(
xj
)

√(
α

q
M

(
xj
))2

+
(
β

q
M

(
xj
))2

√(
α

q
N

(
xj
))2

+
(
β

q
N

(
xj
))2

(22)

q−ROFWC2(M, N) =
n∑

j=1

ω j

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎝ αq
M

(
xj
)
α

q
N

(
xj
)
+ β

q
M

(
xj
)
β

q
N

(
xj
)

+π
q
M

(
xj
)
π

q
N

(
xj
) ⎞⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎜⎜⎝

√(
α

q
M

(
xj
))2

+
(
β

q
M

(
xj
))2

+
(
π

q
M

(
xj
))2

×
√(
α

q
N

(
xj
))2

+
(
β

q
N

(
xj
))2

+
(
π

q
N

(
xj
))2

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(23)

whereω = (ω1,ω2, · · · ,ωn)
T indicates the weighting vector of the elements xj( j = 1, 2, · · · , n) contained

in q-ROFS and the weighting vector satisfies ω j ∈ [0, 1], j = 1, 2, · · · , n,
∑n

j=1 ω j = 1. Especially,

when we let weighting vector be ω = (1/n, 1/n, · · · , 1/n)T, then the weighted cosine similarity
measure will reduce to cosine similarity measure. In other words, when ω j =

1
n , j = 1, 2 · · · , n, the

q−ROFWC1(M, N) = q−ROFC1(M, N).

Example 1. Suppose there are two q-ROFSs M =
{
(x1, 0.7, 0.4), (x2, 0.5, 0.6), (x3, 0.3, 0.8)

}
and

N =
{
(x1, 0.9, 0.2), (x2, 0.4, 0.3), (x3, 0.7, 0.6)

}
, assume q = 3,ω j = (0.2, 0.3, 0.5) then according to

Equation (19), the weighted cosine similarity measure between M and N can be calculated as

q−ROFWC1(M, N) =
n∑

j=1
ω j

α
q
M(xj)α

q
N(xj)+β

q
M(xj)β

q
N(xj)√

(αq
M(xj))

2
+(βq

M(xj))
2
√
(αq

N(xj))
2
+(βq

N(xj))
2

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0.2×(0.73×0.93+0.43×0.23)√

(0.73)2
+(0.43)2×

√
(0.93)2

+(0.23)2
+

0.3×(0.53×0.43+0.63×0.33)√
(0.53)2

+(0.63)2×
√
(0.43)2

+(0.33)2

+
0.5×(0.33×0.73+0.83×0.63)√

(0.33)2
+(0.83)2×

√
(0.73)2

+(0.63)2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0.7247
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Example 2. Suppose there are two q-ROFSs M =
{
(x1, 0.7, 0.4), (x2, 0.5, 0.6), (x3, 0.3, 0.8)

}
and

N =
{
(x1, 0.9, 0.2), (x2, 0.4, 0.3), (x3, 0.7, 0.6)

}
, assume q = 3,ω j = (0.2, 0.3, 0.5) then according to

Equation (3) and Equation (20), the weighted cosine similarity measure between M and N can be calculated as

q−ROFWC2(M, N) =
n∑

j=1
ω j

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ α
q
M

(
xj
)
α

q
N

(
xj
)
+ β

q
M

(
xj
)
β

q
N

(
xj
)

+π
q
M

(
xj
)
π

q
N

(
xj
) ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√(
α

q
M

(
xj
))2

+
(
β

q
M

(
xj
))2

+
(
π

q
M

(
xj
))2

×
√(
α

q
N

(
xj
))2

+
(
β

q
N

(
xj
))2

+
(
π

q
N

(
xj
))2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.2×
⎛⎜⎜⎜⎜⎜⎝ 0.73 × 0.93+0.43 × 0.23+0.73 × 0.93√

(0.73)
2
+ (0.43)2

+ (0.73)2 ×
√
(0.93)2

+ (0.23)2
+ (0.93)2

⎞⎟⎟⎟⎟⎟⎠
+0.3×

⎛⎜⎜⎜⎜⎜⎝ 0.53 × 0.43+0.63 × 0.33+0.73 × 0.43√
(0.53)2

+ (0.63)2
+(0.73)2 ×

√
(0.43)2

+ (0.33)2
+(0.43)2

⎞⎟⎟⎟⎟⎟⎠
+0.5×

⎛⎜⎜⎜⎜⎜⎝ 0.33 × 0.73+0.83 × 0.63+0.83 × 0.83√
(0.33)2

+ (0.83)2
+ (0.83)2 ×

√
(0.73)2

+ (0.63)2
+ (0.83)2

⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0.8789

Evidently, similar to cosine similarity measure q−ROFC1(M, N), the weighted cosine similarity
measure q−ROFWC1(M, N) also meets three properties as follows.

(1) 0 ≤ q−ROFWC1(M, N) ≤ 1,
(2) q−ROFWC1(M, N) = q−ROFWC1(N, M),
(3) q−ROFWC1(M, N) = 1, i f M = N, i = 1, 2, · · · , n.

3.2. Similarity Measures of q-ROFSs Based on Cosine Function

In this section, according to the cosine function, we will present some q-rung orthopair fuzzy
cosine similarity measures (q-ROFCS) between q-ROFSs and discuss their properties.

Definition 7. Assume that there are any two q-rung orthopair fuzzy sets (q-ROFSs)
M =

{〈
xj,

(
αM

(
xj
)
, βM

(
xj
))〉∣∣∣xj ∈ x

}
and N =

{〈
xj,

(
αN

(
xj
)
, βN

(
xj
))〉∣∣∣xj ∈ x

}
. Then, we shall propose

two q-rung orthopair fuzzy cosine similarity (q-ROFCS) measures between q-ROFSs M and N as follows

q−ROFCS1(M, N) =
1
n

n∑
j=1

cos

⎡⎢⎢⎢⎢⎢⎢⎣π2
⎛⎜⎜⎜⎜⎜⎜⎝max

⎛⎜⎜⎜⎜⎜⎜⎝
∣∣∣∣αq

M

(
xj
)
− αq

N

(
xj
)∣∣∣∣,∣∣∣∣βq

M

(
xj
)
− βq

N

(
xj
)∣∣∣∣

⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦ (24)

q−ROFCS2(M, N) =
1
n

n∑
j=1

cos

⎡⎢⎢⎢⎢⎢⎢⎣π4
⎛⎜⎜⎜⎜⎜⎜⎝
∣∣∣∣αq

M

(
xj
)
− αq

N

(
xj
)∣∣∣∣+∣∣∣∣βq

M

(
xj
)
− βq

N

(
xj
)∣∣∣∣

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦ (25)

Proposition 1. Assume that there are any two q-rung orthopair fuzzy sets (q-ROFSs) M and N in
X = {x1, x2, · · · , xn}, the q-rung orthopair fuzzy cosine similarity measures q − ROFCSk(M, N)(k = 1, 2)
should satisfy the properties (1)–(4):

(1) 0 ≤ q−ROFCSk(M, N) ≤ 1;
(2) q−ROFCSk(M, N) = 1if and only if M = N;
(3) q−ROFCSk(M, N) = q−ROFCSk(N, M);
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(4) Let M, N, T be three q-ROFSs in X and M ⊆ N ⊆ T, then q − ROFCSk(M, T) ≤ q − ROFCSk(M, N),
q−ROFCSk(M, T) ≤ q−ROFCSk(N, T).

Proof. (1) Since the calculated results based on the cosine function are within [0, 1], the q-rung
orthopair fuzzy cosine similarity measures based on the cosine function are also within [0, 1]. Thus
0 ≤ q−ROFCSk(M, N) ≤ 1, k = 1, 2.

(2) For two q-rung orthopair fuzzy sets (q-ROFSs) M and N in X = {x1, x2, · · · , xn}, if M = N, then

α
q
M

(
xj
)
= α

q
N

(
xj
)
, βq

M

(
xj
)
= β

q
N

(
xj
)
, j = 1, 2, · · · , n. Thus,

∣∣∣∣αq
M

(
xj
)
− αq

N

(
xj
)∣∣∣∣ = 0,

∣∣∣∣βq
M

(
xj
)
− βq

N

(
xj
)∣∣∣∣ = 0.

So, q−ROFCSk(M, N) = 1, k = 1, 2. If q−ROFCSk(M, N) = 1, k = 1, 2, it implies
∣∣∣∣αq

M

(
xj
)
− αq

N

(
xj
)∣∣∣∣ = 0,

j = 1, 2, · · · , n,
∣∣∣∣βq

M

(
xj
)
− βq

N

(
xj
)∣∣∣∣ = 0, j = 1, 2, · · · , n. Since cos(0) = 1. Then, there are αq

M

(
xj
)
= α

q
N

(
xj
)
,

β
q
M

(
xj
)
= β

q
N

(
xj
)
, j = 1, 2, · · · , n. Hence M = N.

(3) Proof is straightforward.
(4) If M ⊆ N ⊆ T, that means αM

(
xj
)
≤ αN

(
xj
)
≤ αT

(
xj
)
,βM

(
xj
)
≥ βN

(
xj
)
≥ βT

(
xj
)
, for j = 1, 2, · · · , n.

Then αq
M

(
xj
)
≤ αq

N

(
xj
)
≤ αq

T

(
xj
)
, βq

M

(
xj
)
≥ βq

N

(
xj
)
≥ βq

T

(
xj
)
. Thus, we have∣∣∣∣αq

M

(
xj
)
− αq

N

(
xj
)∣∣∣∣ ≤ ∣∣∣∣αq

M

(
xj
)
− αq

T

(
xj
)∣∣∣∣, ∣∣∣∣αq

N

(
xj
)
− αq

T

(
xj
)∣∣∣∣ ≤ ∣∣∣∣αq

M

(
xj
)
− αq

T

(
xj
)∣∣∣∣,∣∣∣∣βq

M

(
xj
)
− βq

N

(
xj
)∣∣∣∣ ≤ ∣∣∣∣βq

M

(
xj
)
− βq

T

(
xj
)∣∣∣∣, ∣∣∣∣βq

N

(
xj
)
− βq

C

(
xj
)∣∣∣∣ ≤ ∣∣∣∣βq

M

(
xj
)
− βq

T

(
xj
)∣∣∣∣.

Thus q − ROFCSk(M, T) ≤ q − ROFCSk(M, N), q − ROFCSk(M, T) ≤ q − ROFCSk(M, N), as the
cosine function is a decreasing function with the interval [0,π/2]. Then, we finished the process of
proofs. �

If we consider three terms including membership degree, non-membership degree,
and indeterminacy membership, which are contained in q-ROFSs, assume that there are
two q-rung orthopair fuzzy sets M =

{〈
xj,αM

(
xj
)
, βM

(
xj
)
,πM

(
xj
)〉∣∣∣xj ∈ X

}
( j = 1, 2, . . . , n) and

N =
{〈

xj,αN
(
xj
)
, βN

(
xj
)
,πN

(
xj
)〉∣∣∣xj ∈ X

}
( j = 1, 2, . . . , n), then the q-rung orthopair fuzzy cosine

similarity (q-ROFCS) measures between M and N can be expressed as

q−ROFCS3(M, N) =
1
n

n∑
j=1

cos

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
π
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝max

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∣∣∣∣αq

M

(
xj
)
− αq

N

(
xj
)∣∣∣∣,∣∣∣∣βq

M

(
xj
)
− βq

N

(
xj
)∣∣∣∣,∣∣∣∣πq

M

(
xj
)
−πq

N

(
xj
)∣∣∣∣

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (26)

where q − ROFCS3(M, N) means the q-rung orthopair fuzzy cosine similarity measures between M
and N, which consider the maximum distance based on the membership, indeterminacy membership,
and non-membership degree.

q−ROFCS4(M, N) =
1
n

n∑
j=1

cos

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
π
4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∣∣∣∣αq

M

(
xj
)
− αq

N

(
xj
)∣∣∣∣+∣∣∣∣βq

M

(
xj
)
− βq

N

(
xj
)∣∣∣∣+∣∣∣∣πq

M

(
xj
)
−πq

N

(
xj
)∣∣∣∣

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (27)

where q − ROFCS4(M, N) means the q-rung orthopair fuzzy cosine similarity measures between M
and N, which consider the sum of distance based on the membership, indeterminacy membership, and
non-membership degree.
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Consider the weighting vector of the elements in q-ROFS, the q-rung orthopair fuzzy weighted
cosine similarity (q-ROFWCS) measure between two q-rung orthopair fuzzy sets (q-ROFSs) M and N
can be shown as follows.

q−ROFWCS1(M, N) =
n∑

j=1

ω j cos

⎡⎢⎢⎢⎢⎢⎢⎣π2
⎛⎜⎜⎜⎜⎜⎜⎝max

⎛⎜⎜⎜⎜⎜⎜⎝
∣∣∣∣αq

M

(
xj
)
− αq

N

(
xj
)∣∣∣∣,∣∣∣∣βq

M

(
xj
)
− βq

N

(
xj
)∣∣∣∣

⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦ (28)

where q−ROFWCS1(M, N) means the q-rung orthopair fuzzy weighted cosine similarity measures
between M and N, which consider the maximum distance based on the membership and
non-membership degree.

q−ROFWCS2(M, N) =
n∑

j=1

ω j cos

⎡⎢⎢⎢⎢⎢⎢⎣π4
⎛⎜⎜⎜⎜⎜⎜⎝
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M

(
xj
)
− αq

N

(
xj
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M

(
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)
− βq

N

(
xj
)∣∣∣∣

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦ (29)

where q−ROFWCS2(M, N) means the q-rung orthopair fuzzy weighted cosine similarity measures
between M and N, which consider the sum of distance based on the membership and non-membership
degree.

q−ROFWCS3(M, N) =
n∑

j=1

ω j cos

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
π
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝max
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∣∣∣∣αq

M

(
xj
)
− αq

N

(
xj
)∣∣∣∣,∣∣∣∣βq
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(
xj
)
− βq

N

(
xj
)∣∣∣∣,∣∣∣∣π2

A

(
xj
)
−π2

B

(
xj
)∣∣∣∣

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (30)

where q−ROFWCS3(M, N) means the q-rung orthopair fuzzy weighted cosine similarity measures
between M and N, which consider the maximum distance based on the membership, indeterminacy
membership, and non-membership degree.

q−ROFWCS4(M, N) =
n∑

j=1

ω j cos

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
π
4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∣∣∣∣αq

M

(
xj
)
− αq

N

(
xj
)∣∣∣∣+∣∣∣∣βq

M

(
xj
)
− βq

N

(
xj
)∣∣∣∣+∣∣∣∣π2

A

(
xj
)
−π2

B

(
xj
)∣∣∣∣

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (31)

where q−ROFWCS4(M, N) means the q-rung orthopair fuzzy weighted cosine similarity measures
between M and N, which consider the sum of distance based on the membership, indeterminacy
membership, and non-membership degree.
whereω = (ω1,ω2, · · · ,ωn)

T indicates the weighting vector of the elements xj( j = 1, 2, · · · , n) contained
in q-ROFS, and the weighting vector satisfies ω j ∈ [0, 1], j = 1, 2, · · · , n,

∑n
j=1 ω j = 1. Especially,

when we let weighting vector be ω = (1/n, 1/n, · · · , 1/n)T, then the weighted cosine similarity
measure will reduce to cosine similarity measure. In other words, when ω j =

1
n , j = 1, 2 · · · , n, the

q−ROFWCSk(M, N) = q−ROFCSk(M, N)(k = 1, 2, 3, 4).

Example 3. Suppose there are two q-ROFSs, M =
{
(x1, 0.7, 0.4), (x2, 0.5, 0.6), (x3, 0.3, 0.8)

}
and

N =
{
(x1, 0.9, 0.2), (x2, 0.4, 0.3), (x3, 0.7, 0.6)

}
, assume q = 3,ω j = (0.2, 0.3, 0.5), then according to

Equation (25), the weighted cosine similarity measure between M and N can be calculated as

q−ROFWCS1(M, N) =
n∑

j=1
ω j cos

[
π
2

(
max

(∣∣∣∣αq
M

(
xj
)
− αq

N

(
xj
)∣∣∣∣, ∣∣∣∣βq

M

(
xj
)
− βq

N

(
xj
)∣∣∣∣))]

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ 0.2× cos
[
π
2 max

(∣∣∣0.73 − 0.93
∣∣∣, ∣∣∣0.43 − 0.23

∣∣∣)]+ 0.3× cos
[
π
2 max

( ∣∣∣0.53 − 0.43
∣∣∣,∣∣∣0.63 − 0.33
∣∣∣
)]

+0.5× cos
[
π
2

(
max

(∣∣∣0.33 − 0.73
∣∣∣, ∣∣∣0.83 − 0.63

∣∣∣))]
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0.8909
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Evidently, similar to cosine similarity measure q − ROFCSk(M, N)(k = 1, 2, 3, 4), the weighted
cosine similarity measure q−ROFWCSk(M, N)(k = 1, 2, 3, 4) also meets some properties as follows.

Proposition 2. Assume that there are any two q-rung orthopair fuzzy sets (q-ROFSs) M
and N in X = {x1, x2, · · · , xn}, the q-rung orthopair fuzzy weighted cosine similarity measures
q − ROFWCSk(M, N)(k = 1, 2, 3, 4) should satisfy the properties (1)–(4):

(1) 0 ≤ q−ROFWCSk(M, N) ≤ 1;
(2) q−ROFWCSk(M, N) = 1 if and only if M = N;
(3) q−ROFWCSk(M, N) = q−ROFWCSk(N, M);
(4) If T is a q-ROFS in X and M ⊆ N ⊆ T, then q − ROFWCSk(M, T) ≤ q − ROFWCSk(M, N),

q − ROFWCSk(M, T) ≤ q−ROFWCSk(N, T).

The proof is similar to Proposition 1, so it is omitted here.

3.3. Similarity Measures of q-ROFSs Based on Cotangent Function

In this section, according to the cotangent function, we will present some q-rung orthopair fuzzy
cotangent similarity measures (q-ROFCot) between q-ROFSs and discuss their properties.

Definition 8. Assume that there are any two q-rung orthopair fuzzy sets (q-ROFSs)
M =

{〈
xj,

(
αM

(
xj
)
, βM

(
xj
))〉∣∣∣xj ∈ x

}
and N =

{〈
xj,

(
αN

(
xj
)
, βN

(
xj
))〉∣∣∣xj ∈ x

}
. Then, we shall propose

two q-rung orthopair fuzzy cotangent (q-ROFCot) measures between q-ROFSs M and N as follows

q−ROFCot1(M, N) =
1
n

n∑
j=1

cot

⎡⎢⎢⎢⎢⎢⎢⎣π4 +
π
4

⎛⎜⎜⎜⎜⎜⎜⎝max

⎛⎜⎜⎜⎜⎜⎜⎝
∣∣∣∣αq

M

(
xj
)
− αq

N

(
xj
)∣∣∣∣,∣∣∣∣βq

M

(
xj
)
− βq

N

(
xj
)∣∣∣∣

⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦ (32)

where q−ROFCot1(M, N) means the q-rung orthopair fuzzy cotangent similarity measures between M and N,
which consider the maximum distance based on the membership and non-membership degree.

q−ROFCot2(M, N) =
1
n

n∑
j=1

cot

⎡⎢⎢⎢⎢⎢⎢⎣π4 +
π
8

⎛⎜⎜⎜⎜⎜⎜⎝
∣∣∣∣αq

M

(
xj
)
− αq

N

(
xj
)∣∣∣∣+∣∣∣∣βq

M

(
xj
)
− βq

N

(
xj
)∣∣∣∣

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦ (33)

where q−ROFCot2(M, N) means the q-rung orthopair fuzzy cotangent similarity measures between M and N,
which consider the sum of distance based on the membership and non-membership degree.

If we consider three terms—membership degree, non-membership degree and
indeterminacy membership—which are contained in q-ROFSs, assume that there are two
q-rung orthopair fuzzy sets M =

{〈
xj,αM

(
xj
)
, βM

(
xj
)
,πM

(
xj
)〉∣∣∣xj ∈ X

}
( j = 1, 2, . . . , n) and

N =
{〈

xj,αN
(
xj
)
, βN

(
xj
)
,πN

(
xj
)〉∣∣∣xj ∈ X

}
( j = 1, 2, . . . , n), then the q-rung orthopair fuzzy cotangent

(q-ROFCot) similarity measures between M and N can be expressed as

q−ROFCot3(M, N) =
1
n

n∑
j=1

cot

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
π
4
+
π
4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝max

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∣∣∣∣αq

M

(
xj
)
− αq

N

(
xj
)∣∣∣∣,∣∣∣∣βq

M

(
xj
)
− βq

N

(
xj
)∣∣∣∣,∣∣∣∣π2

A

(
xj
)
−π2

B

(
xj
)∣∣∣∣

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (34)

148



Mathematics 2019, 7, 340

where q−ROFCot3(M, N) means the q-rung orthopair fuzzy cotangent similarity measures between M
and N, which consider the maximum distance based on the membership, indeterminacy membership,
and non-membership degree.

q−ROFCot4(M, N) =
1
n

n∑
j=1

cot

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
π
4
+
π
8

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∣∣∣∣αq

M

(
xj
)
− αq

N

(
xj
)∣∣∣∣+∣∣∣∣βq

M

(
xj
)
− βq

N

(
xj
)∣∣∣∣+∣∣∣∣π2

A

(
xj
)
−π2

B

(
xj
)∣∣∣∣

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (35)

where q−ROFCot4(M, N) means the q-rung orthopair fuzzy cotangent similarity measures between
M and N, which consider the sum of distance based on the membership, indeterminacy membership,
and non-membership degree.

Consider the weighting vector of the elements in q-ROFS, the q-rung orthopair fuzzy weighted
cotangent (q-ROFWCot) similarity measure between two q-rung orthopair fuzzy sets (q-ROFSs) M
and N can be shown as follows.

q−ROFWCot1(M, N) =
n∑

j=1

ω j cot

⎡⎢⎢⎢⎢⎢⎢⎣π4 +
π
4

⎛⎜⎜⎜⎜⎜⎜⎝max

⎛⎜⎜⎜⎜⎜⎜⎝
∣∣∣∣αq

M

(
xj
)
− αq

N

(
xj
)∣∣∣∣,∣∣∣∣βq

M

(
xj
)
− βq

N

(
xj
)∣∣∣∣

⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦ (36)

where q − ROFWCot1(M, N) means the q-rung orthopair fuzzy weighted cotangent similarity
measures between M and N, which consider the maximum distance based on the membership
and non-membership degree.

q−ROFWCot2(M, N) =
n∑

j=1

ω j cot

⎡⎢⎢⎢⎢⎢⎢⎣π4 +
π
8

⎛⎜⎜⎜⎜⎜⎜⎝
∣∣∣∣αq

M

(
xj
)
− αq

N

(
xj
)∣∣∣∣+∣∣∣∣βq

M

(
xj
)
− βq

N

(
xj
)∣∣∣∣

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦ (37)

where q−ROFWCot2(M, N) means the q-rung orthopair fuzzy weighted cotangent similarity measures
between M and N, which consider the sum of distance based on the membership and non-membership
degree.

q−ROFWCot3(M, N) =
n∑

j=1

ω j cot

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
π
4
+
π
4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝max

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∣∣∣∣αq

M

(
xj
)
− αq

N

(
xj
)∣∣∣∣,∣∣∣∣βq

M

(
xj
)
− βq

N

(
xj
)∣∣∣∣,∣∣∣∣π2

A

(
xj
)
−π2

B

(
xj
)∣∣∣∣

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (38)

where q−ROFWCot3(M, N) means the q-rung orthopair fuzzy weighted cotangent similarity measures
between M and N, which consider the maximum distance based on the membership, indeterminacy
membership and non-membership degree.

q−ROFWCot4(M, N) =
n∑

j=1

ω j cot

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
π
4
+
π
8

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∣∣∣∣αq

M

(
xj
)
− αq

N

(
xj
)∣∣∣∣+∣∣∣∣βq

M

(
xj
)
− βq

N

(
xj
)∣∣∣∣+∣∣∣∣π2

A

(
xj
)
−π2

B

(
xj
)∣∣∣∣

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (39)

where q−ROFWCot4(M, N) means the q-rung orthopair fuzzy weighted cotangent similarity measures
between M and N, which consider the sum of distance based on the membership, indeterminacy
membership and non-membership degree.

Where ω = (ω1,ω2, · · · ,ωn)
T indicates the weighting vector of the elements xj( j = 1, 2, · · · , n)

contained in q-ROFS and the weighting vector satisfies ω j ∈ [0, 1], j = 1, 2, · · · , n,
∑n

j=1 ω j = 1.

Especially, when we let weighting vector be ω = (1/n, 1/n, · · · , 1/n)T, then the weighted cotangent
similarity measure will reduce to cotangent similarity measure. In other words, when ω j = 1

n ,
j = 1, 2 · · · , n, the q−ROFWCotk(M, N) = q−ROFWCotk(M, N)(k = 1, 2, 3, 4).
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Example 4. Suppose there are two q-ROFSs M =
{
(x1, 0.7, 0.4), (x2, 0.5, 0.6), (x3, 0.3, 0.8)

}
and

N =
{
(x1, 0.9, 0.2), (x2, 0.4, 0.3), (x3, 0.7, 0.6)

}
, assume q = 3,ω j = (0.2, 0.3, 0.5), then according to

Equation (33), the weighted cotangent similarity measure between M and N can be calculated as

q−ROFWCot1(M, N) =
n∑

j=1
ω j cot

[
π
4 + π

4

(
max

(∣∣∣∣αq
M

(
xj
)
− αq

N

(
xj
)∣∣∣∣, ∣∣∣∣βq

M

(
xj
)
− βq

N

(
xj
)∣∣∣∣))]

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ 0.2× cot
[
π
4 + π

4 max
(∣∣∣0.73 − 0.93

∣∣∣, ∣∣∣0.43 − 0.23
∣∣∣)]+ 0.3× cot

[
π
4 + π

4 max
( ∣∣∣0.53 − 00.43

∣∣∣,∣∣∣0.63 − 0.33
∣∣∣

)]
+0.5× cot

[
π
4 + π

4

(
max

(∣∣∣0.33 − 0.73
∣∣∣, ∣∣∣0.83 − 0.63

∣∣∣))]
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0.6245

4. Applications

In this section, we shall give two applications about the cosine similarity measures and cotangent
similarity measures under q-rung orthopair fuzzy environment. The methods proposed in this
paper are applied to pattern recognition and scheme selection to demonstrate the effectiveness of
these methods.

4.1. Numerical Example 1—Pattern Recognition

There is no doubt that the quantity of construction mainly depends on the quality of building
materials. Therefore, building material inspection is the premise of good engineering quality. In the
selection of materials must be strictly controlled. Inspection can not only enable the builders to
accurately identify qualified materials, but also ensure and improve the quality of the project. Let us
consider the pattern recognition problems about classification of building materials, suppose there are
five known building materials Ai(i = 1, 2, 3, 4, 5), which are depicted by the q-ROFSs Ai(i = 1, 2, 3, 4, 5)
in the feature space X = {x1, x2, x3, x4, x5} as

A1 =
{
(x1, 0.5, 0.8), (x2, 0.6, 0.4), (x3, 0.8, 0.3), (x4, 0.6, 0.9), (x5, 0.1, 0.4)

}
A2 =

{
(x1, 0.6, 0.7), (x2, 0.7, 0.3), (x3, 0.6, 0.2), (x4, 0.8, 0.6), (x5, 0.3, 0.5)

}
A3 =

{
(x1, 0.3, 0.4), (x2, 0.7, 0.5), (x3, 0.9, 0.3), (x4, 0.4, 0.8), (x5, 0.2, 0.3)

}
A4 =

{
(x1, 0.5, 0.3), (x2, 0.4, 0.4), (x3, 0.6, 0.2), (x4, 0.4, 0.7), (x5, 0.2, 0.6)

}
A5 =

{
(x1, 0.4, 0.7), (x2, 0.2, 0.6), (x3, 0.5, 0.4), (x4, 0.5, 0.3), (x5, 0.4, 0.2)

}
Consider an unknown building material A ∈ q − ROFSs(X) that will be recognized, which is

depicted as

A =
{
(x1, 0.7, 0.6), (x2, 0.8, 0.2), (x3, 0.4, 0.3), (x4, 0.7, 0.8), (x5, 0.4, 0.2)

}
The purpose of this problem is classify the pattern A in one of the following classes, A1, A2, A3, A4,

or A5. For it, the cosine similarity measures and cotangent similarity measures proposed in this paper
have been utilized to compute the similarity from A to Ai(i = 1, 2, 3, 4, 5) and the results are listed as
follows. (Suppose q = 3)
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For q-rung orthopair fuzzy cosine (q-ROFC1) measures, we can obtain

q−ROFC1(A1, A)

= 1
5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(0.53×0.73+0.83×0.63)√
(0.53)2

+(0.83)2×
√
(0.73)2

+(0.63)2
+

(0.63×0.83+0.43×0.23)√
(0.63)2

+(0.43)2×
√
(0.83)2

+(0.23)2

+
(0.83×0.43+0.33×0.33)√

(0.83)2
+(0.33)2×

√
(0.43)2

+(0.33)2
+

(0.63×0.73+0.93×0.83)√
(0.63)2

+(0.93)2×
√
(0.73)2

+(0.83)2

+
(0.13×0.43+0.43×0.23)√

(0.13)2
+(0.43)2×

√
(0.43)2

+(0.23)2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0.7443

Similarly, we can get

q−ROFC1(A2, A) = 0.8033, q−ROFC1(A3, A) = 0.7988,
q−ROFC1(A4, A) = 0.7345, q−ROFC1(A5, A) = 0.6897.

(1) For q-rung orthopair fuzzy cosine (q-ROFC2) measures we can obtain

q−ROFC2(A1, A) = 0.8795, q−ROFC2(A2, A) = 0.9116,
q−ROFC2(A3, A) = 0.9124, q−ROFC2(A4, A) = 0.8766,
q−ROFC2(A5, A) = 0.8543.

(2) For q-rung orthopair fuzzy cosine similarity (q-ROFCS1) measures we can obtain

q−ROFCS1(A1, A) = 0.8975, q−ROFCS1(A2, A) = 0.9588,
q−ROFCS1(A3, A) = 0.8496, q−ROFCS1(A4, A) = 0.9057,
q−ROFCS1(A5, A) = 0.8654.

(3) For q-rung orthopair fuzzy cosine similarity (q-ROFCS2) measures we can obtain

q−ROFCS2(A1, A) = 0.9559, q−ROFCS2(A2, A) = 0.9774,
q−ROFCS2(A3, A) = 0.9498, q−ROFCS2(A4, A) = 0.9561,
q−ROFCS2(A5, A) = 0.9291.

(4) For q-rung orthopair fuzzy cosine similarity (q-ROFCS3) measures we can obtain

q−ROFCS3(A1, A) = 0.8975, q−ROFCS3(A2, A) = 0.9588,
q−ROFCS3(A3, A) = 0.8364, q−ROFCS3(A4, A) = 0.8880,
q−ROFCS3(A5, A) = 0.8540.

(5) For q-rung orthopair fuzzy cosine similarity (q-ROFCS4) measures we can obtain

q−ROFCS3(A1, A) = 0.8964, q−ROFCS3(A2, A) = 0.9630,
q−ROFCS3(A3, A) = 0.8386, q−ROFCS3(A4, A) = 0.8701,
q−ROFCS3(A5, A) = 0.8362.

(6) For q-rung orthopair fuzzy cotangent similarity (q-ROFCot1) measures we can obtain

q−ROFCot1(A1, A) = 0.6618, q−ROFCot1(A2, A) = 0.7633,
q−ROFCot1(A3, A) = 0.6362, q−ROFCot1(A4, A) = 0.6613,
q−ROFCot1(A5, A) = 0.6766.

151



Mathematics 2019, 7, 340

(7) For q-rung orthopair fuzzy cotangent similarity (q-ROFCot2) measures we can obtain

q−ROFCot2(A1, A) = 0.7571, q−ROFCot2(A2, A) = 0.8257,
q−ROFCot2(A3, A) = 0.7613, q−ROFCot2(A4, A) = 0.7544,
q−ROFCot2(A5, A) = 0.7522.

(8) For q-rung orthopair fuzzy cotangent similarity (q-ROFCot3) measures we can obtain

q−ROFCot3(A1, A) = 0.6618, q−ROFCot3(A2, A) = 0.7633,
q−ROFCot3(A3, A) = 0.6198, q−ROFCot3(A4, A) = 0.6318,
q−ROFCot3(A5, A) = 0.6596.

(9) For q-rung orthopair fuzzy cotangent similarity (q-ROFCot4) measures we can obtain

q−ROFCot4(A1, A) = 0.6588, q−ROFCot4(A2, A) = 0.7702,
q−ROFCot4(A3, A) = 0.6259, q−ROFCot4(A4, A) = 0.6085,
q−ROFCot4(A5, A) = 0.6496.

Thereafter, the above computing results are concluded to list in Table 1 as follows.

Table 1. The similarity measures between Ai(i = 1, 2, 3, 4, 5) and A.

Similarity Measures (A1,A) (A2,A) (A3,A) (A4,A) (A5,A)

q−ROFC1(Ai, A) 0.7433 0.8003 0.7988 0.7345 0.6897
q−ROFC2(Ai, A) 0.8795 0.9116 0.9124 0.8766 0.8543

q−ROFCS1(Ai, A) 0.8975 0.9588 0.8496 0.9057 0.8654
q−ROFCS2(Ai, A) 0.9559 0.9774 0.9498 0.9561 0.9291
q−ROFCS3(Ai, A) 0.8975 0.9588 0.8364 0.8880 0.8540
q−ROFCS4(Ai, A) 0.8964 0.9630 0.8386 0.8701 0.8362
q−ROFCot1(Ai, A) 0.6618 0.7633 0.6362 0.6613 0.6766
q−ROFCot2(Ai, A) 0.7571 0.8257 0.7613 0.7544 0.7522
q−ROFCot3(Ai, A) 0.6618 0.7633 0.6198 0.6318 0.6596
q−ROFCot4(Ai, A) 0.6588 0.7702 0.6259 0.6085 0.6496

According to the above calculated results listed in Table 1, except for q−ROFC2(Ai, A), we can
easily find that the degree of similarity between A2 and A is the largest as derived by the other nine
similarity measures. This indicates the nine similarity measures allocate the unknown building material
A to the known building material A2 based on the principle of maximum similarity between q-rung
orthopair fuzzy sets (q-ROFSs).

In practical decision-making problems, it is important to take the weights of elements into account,
if we let the weights of elements xi(i = 1, 2, 3, 4, 5) be ωi = (0.15, 0.20, 0.25, 0.10, 0.30), respectively.
Then the weighted cosine similarity measures and weighted cotangent similarity measures proposed
in this paper have been utilized to compute the similarity from A to Ai(i = 1, 2, 3, 4, 5) and the results
are listed in Table 2 (suppose q = 3). (The calculation process is similar to not weighted situation, so it
is omitted here.)

According to the above calculated results listed in Table 2, except for q − ROFC2(Ai, A) and
q−ROFWC2(Ai, A), we can easily find that the degree of similarity between A2 and A is the largest
one as derived by the other eight similarity measures. This indicates the eight similarity measures
allocate the unknown building material A to the known building material A2 based on the principle of
maximum similarity between q-rung orthopair fuzzy sets (q-ROFSs).
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Table 2. The weighted similarity measures between Ai(i = 1, 2, 3, 4, 5) and A.

Similarity Measures (A1,A) (A2,A) (A3,A) (A4,A) (A5,A)

q−ROFWC1(Ai, A) 0.6728 0.7515 0.7553 0.6584 0.7336
q−ROFWC2(Ai, A) 0.8457 0.8901 0.8937 0.8406 0.8735

q−ROFWCS1(Ai, A) 0.8962 0.9673 0.8398 0.9114 0.8976
q−ROFWCS2(Ai, A) 0.9601 0.9838 0.9487 0.9621 0.9464
q−ROFWCS3(Ai, A) 0.8962 0.9673 0.8299 0.8986 0.8910
q−ROFWCS4(Ai, A) 0.8961 0.9693 0.8303 0.8883 0.8830
q−ROFWCot1(Ai, A) 0.6740 0.7831 0.6478 0.6735 0.7474
q−ROFWCot2(Ai, A) 0.7740 0.8482 0.7700 0.7733 0.8065
q−ROFWCot3(Ai, A) 0.6740 0.7831 0.6356 0.6522 0.7324
q−ROFWCot4(Ai, A) 0.6727 0.7866 0.6356 0.6389 0.7284

In order to illustrate the effective and scientific of our proposed methods, we shall compare with
other decision-making methods, such as the q-rung orthopair fuzzy weighted averaging (q-ROFWA)
operator and the q-rung orthopair fuzzy weighted geometric (q-ROFWG) operator proposed by Liu
and Wang [40], we obtained the following results in Table 3.

Table 3. The fused values of Ai(i = 1, 2, 3, 4, 5) and A.

The q-ROFWA Operator The q-ROFWG Operator

A1 (0.2387,0.4479) (0.3665,0.2428)
A2 (0.2300,0.3845) (0.5173,0.1262)
A3 (0.3453,0.3827) (0.4263,0.1162)
A4 (0.0980,0.3848) (0.3719,0.1258)
A5 (0.0751,0.3724) (0.3766,0.1249)
A (0.2479,0.2998) (0.5285,0.1123)

Then, based on distance measure between q-rung orthopair fuzzy numbers (q-ROFNs), we can
allocate the unknown building material A to the known building material Ai, the distance measure
d(M, N) between q-ROFNs M = (α1, β1) and N = (α2, β2) can be depicted as

d(M, N) =

∣∣∣(α1)
q − (α2)

q∣∣∣+ ∣∣∣(β1)
q − (β2)

q∣∣∣
2

(40)

For q-ROFWA operator, we can obtain the distance results d(Ai, A) as

d(A1, A) = 0.0323,d(A2, A) = 0.0165,d(A3, A) = 0.0275,
d(A4, A) = 0.0222,d(A5, A) = 0.0197

For q-ROFWG operator, we can obtain the distance results d(Ai, A) as

d(A1, A) = 0.0556,d(A2, A) = 0.0049,d(A3, A) = 0.0352,
d(A4, A) = 0.0484,d(A5, A) = 0.0474

From above analysis, for q-ROFWA and q-ROFWG operators, the distance measure between
A2 and A is the minimum one. This indicates that q-ROFWA and q-ROFWG operators allocate
the unknown building material A to the known building material A2. Although, based on the two
operators and our developed methods, we can derive the same results, however, the q-ROFWA
and q-ROFWG operators have the limitation of considering the interrelationship between attributes;
our developed methods can overcome this disadvantage and derive more accuracy and scientific
decision-making results.
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4.2. Numerical Example 2—Scheme Selection

In this section, we shall present a numerical example to show scheme selection of construction
project with q-rung orthopair fuzzy information in order to illustrate the method proposed in this paper.
There is a panel with five possible construction projects. Yi(i = 1, 2, 3, 4, 5) to select. Experts selected
five attributes to evaluate from the five possible construction projects: 1� G1 is the capital and technical
factors; 2� G2 is the Hoisting construction operation factors; 3� G3 is the PC component installation
factor; 4� G4 is the internal and external environmental risk factors; and 5� G5 is the professional
management level factors. The five possible construction projects Yi(i = 1, 2, 3, 4, 5) are to be evaluated
using the q-rung orthopair fuzzy information by the decision maker under the above five attributes
which listed as follows.

Y1 =
{
(G1, 0.6, 0.7), (G2, 0.5, 0.8), (G3, 0.6, 0.3), (G4, 0.7, 0.3), (G5, 0.4, 0.6)

}
Y2 =

{
(G1, 0.7, 0.4), (G2, 0.8, 0.3), (G3, 0.5, 0.6), (G4, 0.2, 0.5), (G5, 0.6, 0.3)

}
Y3 =

{
(G1, 0.6, 0.3), (G2, 0.4, 0.2), (G3, 0.7, 0.4), (G4, 0.5, 0.2), (G5, 0.9, 0.4)

}
Y4 =

{
(G1, 0.8, 0.7), (G2, 0.5, 0.6), (G3, 0.4, 0.6), (G4, 0.6, 0.3), (G5, 0.4, 0.2)

}
Y5 =

{
(G1, 0.7, 0.2), (G2, 0.4, 0.3), (G3, 0.5, 0.6), (G4, 0.3, 0.5), (G5, 0.7, 0.2)

}
Let

Y+ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(
G1, max

i
(αi1), min

i
(βi1)

)
,
(
G2, max

i
(αi2), min

i
(βi2)

)
,(

G3, max
i

(αi3), min
i
(βi3)

)
,
(
G4, max

i
(αi4), min

i
(βi4)

)
,(

G5, max
i

(αi5), min
i
(βi5)

)
⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

According to the evaluation results given in Y1, Y2, Y3, Y4 and Y5, we can easily obtain

Y+ =
{
(G1, 0.8, 0.2), (G2, 0.8, 0.2), (G3, 0.7, 0.3), (G4, 0.7, 0.2), (G5, 0.9, 0.2)

}
Then the weighted cosine similarity measures and weighted cotangent similarity measures

proposed in this paper have been utilized to compute the similarity from Y+ to Yi(i = 1, 2, 3, 4, 5) and
the results are listed in Table 4 (suppose q = 3).

Table 4. The similarity measures between Yi(i = 1, 2, 3, 4, 5) and Y+.

Similarity Measures (Y1,Y) (Y2,Y) (Y3,Y) (Y4,Y) (Y5,Y)

q−ROFC1(Yi, Y) 0.6181 0.9092 0.9958 0.7401 0.7457
q−ROFC2(Yi, Y) 0.8215 0.7266 0.9975 0.8818 0.8837

q−ROFCS1(Yi, Y) 0.8099 0.8714 0.9185 0.8147 0.8741
q−ROFCS2(Yi, Y) 0.8827 0.8927 0.9785 0.9303 0.9542
q−ROFCS3(Yi, Y) 0.8099 0.9571 0.9185 0.8147 0.8741
q−ROFCS4(Yi, Y) 0.8161 0.8927 0.9194 0.8249 0.8737
q−ROFCot1(Yi, Y) 0.6088 0.8912 0.7289 0.5642 0.6103
q−ROFCot2(Yi, Y) 0.6851 0.6836 0.8494 0.7076 0.7453
q−ROFCot3(Yi, Y) 0.6088 0.7781 0.7289 0.5642 0.6103
q−ROFCot4(Yi, Y) 0.6160 0.6836 0.7371 0.5802 0.6089

According to the above calculated results listed in Table 4, we can easily find that the degree of
similarity between Y3 and Y is the largest one as derived by all ten similarity measures. This indicates
all ten similarity measures think the alternative Y3 is closest to be best alternative Y+ based on the
principle of maximum similarity between q-rung orthopair fuzzy sets (q-ROFSs). In other words, Y3 is
the best scheme selection for the construction project.

In practical decision-making problems, it is important to take the weights of elements into account,
if we let the weights of elements xi(i = 1, 2, 3, 4, 5) be ωi = (0.15, 0.20, 0.25, 0.10, 0.30), respectively.
Then the weighted cosine similarity measures and weighted cotangent similarity measures proposed
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in this paper have been utilized to compute the similarity from Y to Yi(i = 1, 2, 3, 4, 5) and the results
are listed in Table 5 (suppose q = 3).

Table 5. The weighted similarity measures between Yi(i = 1, 2, 3, 4, 5) and Y+.

Similarity Measures (Y1,Y) (Y2,Y) (Y3,Y) (Y4,Y) (Y5,Y)

q−ROFWC1(Yi, Y) 0.5703 0.7963 0.9956 0.7160 0.8006
q−ROFWC2(Yi, Y) 0.7994 0.9060 0.9974 0.8711 0.9095

q−ROFWCS1(Yi, Y) 0.7659 0.8744 0.9292 0.7689 0.8672
q−ROFWCS2(Yi, Y) 0.8659 0.9529 0.9813 0.9160 0.9533
q−ROFWCS3(Yi, Y) 0.7659 0.8744 0.9292 0.7689 0.8672
q−ROFWCS4(Yi, Y) 0.7714 0.8727 0.9303 0.7765 0.8667
q−ROFWCot1(Yi, Y) 0.5508 0.6633 0.7663 0.5124 0.6001
q−ROFWCot2(Yi, Y) 0.6494 0.7678 0.8706 0.6723 0.7405
q−ROFWCot3(Yi, Y) 0.5508 0.6633 0.7663 0.5124 0.6001
q−ROFWCot4(Yi, Y) 0.5571 0.6607 0.7779 0.5240 0.5983

According to the above calculated results listed in Table 5, we can easily find that the degree
of similarity between Y3 and Y is the largest one as derived by other nine similarity measures.
This indicates all ten similarity measures; the alternative Y3 is closest to be best alternative Y+ based on
the principle of maximum similarity between q-rung orthopair fuzzy sets (q-ROFSs). In other words,
Y3 is the best scheme selection for the construction project.

In order to illustrate the effective and scientific of our proposed methods, we shall compare with
other decision-making methods such as the q-rung orthopair fuzzy weighted averaging (q-ROFWA)
operator and the q-rung orthopair fuzzy weighted geometric (q-ROFWG) operator proposed by Liu
and Wang [40], we can obtain the result which is listed in Table 6.

Table 6. The fused results of Yi(i = 1, 2, 3, 4, 5).

The q-ROFWA Operator The q-ROFWG Operator

Y1 (0.1697,0.5103) (0.5203,0.2511)

Y2 (0.2693,0.3921) (0.5568,0.0932)
Y3 (0.4287,0.3112) (0.6377,0.0420)
Y4 (0.1772,0.4121) (0.4833,0.1628)
Y5 (0.2121,0.3129) (0.5287,0.0799)

.
Then according to the score functions of q-rung orthopair fuzzy numbers (q-ROFNs), we can

obtain the score values of Yi(i = 1, 2, 3, 4, 5) which is listed in Table 7.

Table 7. The score values of Yi(i = 1, 2, 3, 4, 5).

The q-ROFWA Operator The q-ROFWG Operator

s(Y1) 0.4360 0.5625
s(Y2) 0.4796 0.5859
s(Y3) 0.5243 0.6296
s(Y4) 0.4678 0.5543
s(Y5) 0.4895 0.5736

Then based on score values, the ordering of Yi(i = 1, 2, 3, 4, 5) can be determined in Table 8.
From above analysis, based on the two operators and our developed methods, we can obtain that

the ordering of alternatives are slightly different and the best results are same, however, the q-ROFWA
and q-ROFWG operators have the limitation of considering the interrelationship between attributes,
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our developed methods can overcome this disadvantage and derive more accuracy and scientific
decision-making results.

Table 8. The ordering of Yi(i = 1, 2, 3, 4, 5).

Ordering

The q−ROFWA operator Y3 
 Y5 
 Y2 
 Y4 
 Y1
The q−ROFWG operator Y3 
 Y2 
 Y5 
 Y1 
 Y4

4.3. Advantages of the Proposed Similarity Measures

Although, the intuitionistic fuzzy sets (IFSs), defined by Atanassov’s [1,2], have been broadly
applied in different areas, for some special cases, such as when membership degree and non-membership
degree are given as 0.7 and 0.8, it is clear that IFSs theory cannot satisfy this situation. The q-rung
orthopair fuzzy set (q-ROFS) is also denoted by the degree of membership and non-membership,
whose q-th power sum of them is restricted to 1; obviously, the q-ROFS is more general than the
q-ROFS and can express more fuzzy information. In other words, the q-ROFS can deal with the MADM
problems which IFS cannot and it is clear that IFS is a part of the q-ROFS, which indicates q-ROFS can
be more effective and powerful to deal with fuzzy and uncertain decision-making problems. Thus, the
MADM problem with q-rung orthopair fuzzy information is more effective and suitable for practical
scientific and engineering applications.

To date, we can get that the cosine similarity measures and cotangent similarity measures [13,15–17,19]
with IFSs have been investigated by a large amount of scholars; however, as mentioned above,
there are some special cases that cannot be described by IFS. Therefore, the algorithms based on
similarity measures with IFS can’t deal with such problems. The cosine similarity measures and
cotangent similarity measures with intuitionistic fuzzy information are special case of our proposed
similarity measures with q-rung orthopair fuzzy information in this paper. Thus, our defined similarity
measures are more suitable and generalized to deal with the real-life problem more accurately than the
existing ones.

4.4. Discussion

According to above two numerical examples, we can easily find our proposed methods can
express more fuzzy information and apply broadly situations in real MADM problems. Based on the
q-rung orthopair fuzzy set (q-ROFS), we developed ten q-rung orthopair fuzzy similarity measures; our
research results are more suitable for MADM problems than intuitionistic fuzzy similarity measures
and Pythagorean fuzzy similarity measures. For pattern recognition problems, we accurately allocated
the unknown building material A to the known building material A2. For scheme selection, by utilizing
our developed ten similarity measures, we obtained the best scheme selection of construction project.

Furthermore, in complicated decision-making environment, the decision-maker’s risk attitude is
an important factor to think about, our methods can make this come true by altering the parameters
whereas other decision-making ways such as q-ROFWA and q-ROFWA operator do not have the ability
that dynamic adjust to the parameter according to the decision maker’s risk attitude, so it is difficult to
solve the risk multiple attribute decision-making in real practice.

5. Conclusions

According to the intuitionistic fuzzy cosine similarity measures and cotangent similarity measures,
based on q-rung orthopair fuzzy sets (q-ROFSs), we proposed another form of ten similarity measures
by considering the function of membership degree, nonmembership degree and indeterminacy
membership degree in q-ROFSs. In addition, we utilized our presented ten similarity measures and
ten weighted similarity measures between q-ROFSs to deal MADM problems, including pattern
recognition and scheme selection. Finally, two numerical examples and some comparative analysis
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were provided to illustrate the scientific and effective of the similarity measures for pattern recognition
and scheme selection. By utilizing our developed ten similarity measures, we can deal with MADM
problems regarding pattern recognition and scheme selection. When comparing our developed ten
similarity measures with the q-rung orthopair fuzzy weighted average (q-ROFWA) operator and q-rung
orthopair fuzzy weighted geometric (q-ROFWG) operator, our proposed methods can be applied in
scheme selection and pattern recognition applications as the q-ROFWA and q-ROFWG operators can be
only used to select best alternatives. Moreover, q-ROFWA and q-ROFWG operators have the limitation
of considering the interrelationship between fused arguments; our proposed methods can overcome
this disadvantage and derive more accuracy and reasonable decision-making results. In the future,
works concerning q-ROFSs could focus on dealing with other kinds of decision-making problems such
as: staff selection, investment selection, machine selection, project selection, manufacturing systems,
etc. [52–59].
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Abstract: As a powerful generalization to fuzzy set, hesitant fuzzy set (HFS) was introduced, which
provided multiple possible membership values to be associated with a specific instance. But HFS did
not consider occurrence probability values, and to circumvent the issue, probabilistic HFS (PHFS)
was introduced, which associates an occurrence probability value with each hesitant fuzzy element
(HFE). Providing such a precise probability value is an open challenge and as a generalization to
PHFS, interval-valued PHFS (IVPHFS) was proposed. IVPHFS provided flexibility to decision makers
(DMs) by associating a range of values as an occurrence probability for each HFE. To enrich the
usefulness of IVPHFS in multi-attribute group decision-making (MAGDM), in this paper, we extend
the Muirhead mean (MM) operator to IVPHFS for aggregating preferences. The MM operator is a
generalized operator that can effectively capture the interrelationship between multiple attributes.
Some properties of the proposed operator are also discussed. Then, a new programming model is
proposed for calculating the weights of attributes using DMs’ partial information. Later, a systematic
procedure is presented for MAGDM with the proposed operator and the practical use of the operator
is demonstrated by using a renewable energy source selection problem. Finally, the strengths and
weaknesses of the proposal are discussed in comparison with other methods.

Keywords: group decision-making; hesitant fuzzy set; interval-valued probability; muirhead mean
and programming model

1. Introduction

Multi-attribute group decision-making (MAGDM) is an interesting and complex day-to-day
problem which involves implicit uncertainty and vagueness [1]. Hesitant fuzzy set (HFS) [2] is a
powerful extension of the fuzzy set [3] that allows multiple degrees of truth to be associated with each
preference information for better handling uncertainty and vagueness. Attracted by the strength of
HFS, many researchers used HFS for different MAGDM applications viz., supplier selection [4,5], plant
location selection [6], hospital site selection [7] and pattern recognition [8]. Recently, Rodriguez et al. [9]
conducted a thorough analysis of HFS and some of its variants and identified its usefulness in MAGDM.

Though HFS is powerful, it lacks the ability to consider occurrence probability for each hesitant
fuzzy element (HFE). To alleviate the issue, Xu and Zhou [10] put forward the probabilistic hesitant
fuzzy set (PHFS), which associates occurrence probability value for each HFE. Motivated by the power
of PHFS, researchers widely explored the idea for multi-attribute decision-making (MADM) [11–17].
Though PHFS alleviates the weakness of HFS to some extent, still the elicitation of occurrence probability
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is prone to imprecision and inaccuracy. To circumvent the weakness, a generalized model called
interval-valued PHFS (IVPHFS) [18] is put forward which associates a range of values as occurrence
probability to each HFE with a constraint that the sum of upper limit probability equals unity. As a
generalization of Reference [18], Krishankumar et al. [19] proposed an IVPHFS concept which associates
a range of values as occurrence probability for each HFE (for flexible elicitation of occurrence probability
values). This mitigates the problem of imprecision and inaccuracy in the elicitation of occurrence
probability values by providing multiple choices of values as occurrence probability for each HFE.

Based on the literature analysis of PHFS, we can infer that IVPHFS is a recent extension to PHFS
which needs to be better explored for effective MAGDM. Group decision-making (GDM) [20] is a widely
studied problem which obtains preference information from multiple DMs and aggregates them into
single preference information without much loss of information. Mesiar et al. [21] made an interesting
analysis of aggregation functions and we can infer that the realization of the interrelationship between
attributes is a key factor for aggregation operators. Most of the state-of-the-art operators ignore this
theme and are hence, not very suitable for MAGDM.

The MM [22] operator is an aggregation operator that reflects the interrelationship between
attributes in a better way by considering risk appetite (refer Section 3 for details)s. MM is a
generalized operator which can easily represent other operators viz., arithmetic average, geometric
average, generalized arithmetic average, Bonferroni mean [23] and Maclaurin symmetric mean [24] as
special cases.

Some challenges that can be encountered from the literature analysis made above are:

1. Elicitation of occurrence probability in a precise manner is difficult and prone to inaccuracies.
2. Following this, aggregation of preference information with better scope to capture the

interrelationship between attributes is an open challenge in the IVPHFS context.
3. Further, calculation of weights of attributes by making reasonable use of partial information from

DMs is also an open challenge.
4. Understanding the applicability, strengths and weaknesses of the proposed method are also

substantial for effective use of the framework in uncertain situations.

Motivated by these challenges and to circumvent the same, in this paper, some key contributions
are made:

1. As a generalization to PHFS, IVPHFS [18,19] was proposed which allows the range of occurrence
probability values to be associated with each HFE. This mitigates the issue of imprecision and
inaccuracy in probability elicitation and addresses challenge (1).

2. MM operator is extended in the IVPHFS context for capturing the interrelationship between
attributes in a better way. Also, DMs’ preferences are aggregated in a rational manner by
considering risk appetite along with the weight of each DM which addresses challenge (2).

3. A new mathematical programming model is put forward in the IVPHFS context for calculation of
weights of attributes with the help of partial information from the DMs. The idea is to use this
partial information effectively for a reasonable calculation of weights.

4. The applicability of the proposed method is validated by using a green supplier selection problem.
5. Finally, the superiority and weakness of the proposed method are discussed in comparison with

other methods.

The rest of the paper is constructed as follows. Section 2 describes some basic concepts of HFS,
PHFS and IVPHFS. Section 3 presents the core idea of the research in which the proposed aggregation
operator along with some desirable properties is discussed. Further, a new programming model is put
forward for calculating attributes’ weight values and finally, a systematic procedure is presented for
MAGDM using proposed aggregation operator. In Section 4, a numerical example for green supplier
selection is put forward to validate the applicability of the proposed method. In Section 5, some
superiority and weakness of the proposal are discussed by comparison with other methods and finally,
in Section 6, concluding remarks with future research directions are presented.
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2. Preliminaries

Let us discuss some basics of HFS, PHFS and IVPHFS concepts.

Definition 1 [2]. Consider a fixed set T and hesitant fuzzy set (HFS) H on T which is a function h that produces
a subset in the interval [0, 1]. Mathematically, it is given by,

H = (t, hH(t)
∣∣∣t ∈ T) (1)

where hH(t) is the set of values in range 0 to 1.

Remark 1. For convenience, hH(t) = h(t) is called the hesitant fuzzy element (HFE) and the collection of HFEs
is H.

Definition 2 [10]. Consider a fixed set T. The PHFS Hp on T is given by,

HP =
(
t, hHp(γi, pi)

∣∣∣t ∈ T
)

(2)

where hHp(γi, pi) is the probabilistic hesitant fuzzy element with γi being the membership value of t with its
associated occurrence probability pi and i = 1, 2, . . . , #hHp.

Remark 2. For convenience, hHp(γi, pi) = h(γi, pi) is called the probabilistic hesitant fuzzy element (PHFE)
with γi and pi in the range 0 to 1.

Definition 3 [19]. Consider a fixed set T. The IVPHFS HIP on T is given by,

HIP =
(
t, hHp

(
γi,

[
pl

i, pu
i

]))
(3)

where hHp

(
γi,

[
pl

i, pu
i

])
is the interval-valued probabilistic hesitant fuzzy element with γi being the membership

value of t with its associated occurrence probability value in the interval fashion as
[
pl

i, pu
i

]
, for all i =

1, 2, . . . , #hHIp .

Here, γi, pl
i and pu

i are in the range 0 to 1 and pl
i ≤ pu

i . For simplicity, hHp

(
γi,

[
pl

i, pu
i

])
=

h
(
γi,

[
pl

i, pu
i

])
= h is called interval-valued probabilistic hesitant fuzzy element (IVPHFE).

Consider an example where a DM provides his preference for ice-creams. Initially, he uses
PHFS information (refer Definition 2) to rate different ice-creams viz., vanilla, strawberry and
chocolate as HP = (vennila,

{
0.6, (0.4)

}
, strawberry,

{
0.8, (0.5)

}
, chocolate,

{
0.4, (0.7)

}
). Later, he uses

IVPHFS information (refer Definition 3) to provide probability values in a more flexible manner.
HIP = (vennila,

{
0.6, [0.3, 0.45]

}
, strawberry,

{
0.8, [0.4, 0.6]

}
, , chocolate,

{
0.4, [0.6, 0.7]

}
). By applying the

latter style for preference information, we can increase the flexibility by providing a range of values as
probability values.

Definition 4 [19]. Let h1, h2 and h3 be three IVPHFEs; then some operations are given by,

h1
⊕h2 =

(
γ1 + γ2 − γ1γ2,

[
pl

1pl
2, pu

1pu
2

])
(4)

h1
⊗h2 =

(
γ1γ2,

[
pl

1pl
2, pu

1pu
2

])
(5)

λh1 =
(
1− (1− γ1)

λ,
[
pl

1, pu
1

])
(6)

hλ1 =
(
γλ1 ,

[
pl

1, pu
1

])
(7)
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Here, Equations (4)–(7) represent addition, multiplication, scalar multiplication and power
operations. Actually, these equations are algebraic Archimedean T-norm and T-conorm and the
additive generators used here are g(x) = −ln(x) for T-norm TA(x, y) = xy and h(x) = −ln(1− x) for
T-conorm SA(x, y) = x + y− xy.

Property 1: Commutativity

h1
⊕h2 = h2

⊕h1

h1
⊗h2 = h2

⊗h1

Property 2: Associativity

h1
⊕
(h2

⊕h3) = (h1
⊕h2)

⊕h3

h1
⊗
(h2

⊗h3) = (h1
⊗h2)

⊗h3

3. Proposed Methodology

3.1. IVPHFS Based MM Operator and Its Properties

This section presents a new extension to the popular and powerful MM operator in the IVPHFS
context. The MM operator [22] is a generalized operator which aggregates preferences by properly
capturing the interrelationship between attributes. The operator can be used to realize other operators
as mentioned above. The MM operator also considers the risk appetite values of DMs along with their
relative importance (weights) in its formulation which intuitively produces a rational aggregation of
preference information.

Table 1 provides a review on MM operators that are proposed for different fuzzy sets. This
provides an idea on the basic concept of MM operator, its practical use in MADM problems. Moreover,
the challenges mentioned above are clearly supported by this tabular analysis.

Table 1. Review of MM operator on different fuzzy sets.

Ref.#
Aggregation
Operator

Preference Style
Attributes’ Weights
Calculation

Applications

[25] MM Picture fuzzy set no Investment risk
[26] Power MM T-spherical fuzzy set no Air quality evaluation

[27] MM The hesitant fuzzy linguistic
term set no ERP system selection

[28] MM Hesitant fuzzy set no Evaluation of
emergency responses

[29] Power MM Neutrosophic cubic fuzzy set no Van selection
[30] MM Pythagorean fuzzy set no Airline evaluation
[31] MM q-rung orthopair fuzzy set no Investor selection

[32] MM The probabilistic linguistic
term set no Project selection

From Table 1, it can be inferred that (i) preference styles either associate a single value as a
probability or ignore probability, which is not reasonable for decision-making; (ii) the MM operator is
popularly used for aggregating preference information by effectively capturing the interrelationship
between attributes and (iii) finally, attributes’ weight values are directly (not calculated) obtained from
the DMs which causes inaccuracies in the decision-making process.

Motivated by the power of MM operator and IVPHFS concept, in this paper, we extend the MM
operator to IVPHFS and the definition and properties are given below:
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Definition 5. The aggregation of IVPHFEs using IVPHFMM (interval-valued probabilistic hesitant fuzzy
Muirhead mean) operator is a mapping from Tk → T for k = 1, 2, . . . , nd which is given by,

IVPHFMM(λ1,λ2,...,λnd)(h1, h2, . . . , hnd)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎝ nd∏
k=1

⎛⎜⎜⎜⎜⎝ nd∏
j=1
γ
λ j

i

⎞⎟⎟⎟⎟⎠wk
⎞⎟⎟⎟⎟⎠

1∑
j λ j

,⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝ nd∏

k=1

⎛⎜⎜⎜⎜⎝ nd∏
j=1

(
pl

i

)λ j

⎞⎟⎟⎟⎟⎠wk
⎞⎟⎟⎟⎟⎠

1∑
j λ j

,

⎛⎜⎜⎜⎜⎝ nd∏
k=1

⎛⎜⎜⎜⎜⎝ nd∏
j=1

(
pu

i

)λ j

⎞⎟⎟⎟⎟⎠wk
⎞⎟⎟⎟⎟⎠

1∑
j λ j

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(8)

where λ1,λ2, . . . ,λk is risk appetite values of each DM from the set {1, 2, . . . , nd}, nd is the total number of DMs,
wk is the weight of the kth DM.

It must be noted that Equation (8) provides the MM operator in the IVPHFS context. The operator
aggregates the membership values, followed by the probability values (in the interval fashion). That is,
the lower limit of the probability value is aggregated and then the upper limit of the probability value
is aggregated. The square bracket represents the interval values that we obtain upon aggregation of
probability values. Further, we present a theorem below to show that aggregation of different IVPHFEs
by using IVPHFMM operator produces an IVPHFE.

Remark 3. The MM operator is initially proposed in Reference [22] and it is given by

⎛⎜⎜⎜⎜⎝ 1
nd!

nd∑
k=1

nd∏
j=1

a
λ j

k

⎞⎟⎟⎟⎟⎠
1∑
j λ j

where nd is the number of DMs and λ j is the risk appetite values for j = 1, 2, . . . , nd. Risk appetite is defined
by ISO 31000 as the amount of risk pursued, retained or taken by an organization. In this case, it is the risk
pursued, retained or taken by a DM. The possible values are from the set {1, 2, . . . , nd}. The higher the value of λ
indicates a higher risk appetite value for the DM.

Property 1: Idempotent

If IVPHFEs h1 = h2 = . . . = hk = h, then IVPHFMM(λ1,λ2,...,λk)(h1, h2, . . . , hk) = h.

Proof. From Equation (8),

IVPHFMM(λ1,λ2,...,λk)(h1, h2, . . . , hk) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎝ nd∏
k=1

⎛⎜⎜⎜⎜⎝ nd∏
j=1
γ
λ j

i

⎞⎟⎟⎟⎟⎠wk
⎞⎟⎟⎟⎟⎠

1∑
j λ j

,⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝ nd∏

k=1

⎛⎜⎜⎜⎜⎝ nd∏
j=1

(
pl

i

)λ j

⎞⎟⎟⎟⎟⎠wk
⎞⎟⎟⎟⎟⎠

1∑
j λ j

,

⎛⎜⎜⎜⎜⎝ nd∏
k=1

⎛⎜⎜⎜⎜⎝ nd∏
j=1

(
pu

i

)λ j

⎞⎟⎟⎟⎟⎠wk
⎞⎟⎟⎟⎟⎠

1∑
j λ j

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
nd∏
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(
γλ1+λ2+...+λnd
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)wk
) 1∑

j λ j
,⎡⎢⎢⎢⎢⎢⎢⎣

(
nd∏

k=1

((
pl

i

)λ1+λ2+...+λnd
)wk

) 1∑
j λ j

,
(

nd∏
k=1

((
pu

i

)λ1+λ2+...+λnd
)wk

) 1∑
j λ j

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
By doing the same to DMs’ weight values, we obtain,

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(
γλ1+λ2+...+λnd

i

) 1∑
j λ j ,⎡⎢⎢⎢⎢⎣((pl

i

)λ1+λ2+...+λnd
) 1∑

j λ j ,
((

pu
i

)λ1+λ2+...+λnd
) 1∑

j λ j

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
(
γi,

[
pl

i, pu
i

])
= h

as
∑
k

wk = 1. �

Property 2: Commutativity
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If h∗i is any permutation of hi ∀i = 1, 2, . . . , k, then IVPHFMM(λ1,λ2,...,λk)(h1, h2, . . . , hk) =

IVPHFMM(λ1,λ2,...,λk)
(
h∗1, h∗2, . . . , h∗k

)
.

Proof.

IVPHFMM(λ1,λ2,...,λk)
(
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Property 3: Monotonicity

Consider IVPHFEs h′ = h′i and h = hi for i = 1, 2, . . . , k such that h′i ≥ hi. Then,
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Similarly, hi is defined as above. Now score and deviation measure is adopted from Reference [19]
for IVPHFEs. Since h′i ≥ hi ∀i = 1, 2, . . . , k, s(h′) ≥ s(h) which concludes that h′ ≥ h and if s(h′) = s(h),
then calculate deviation and if σ(h) ≥ σ(h′) h′ ≥ h. Thus, IVPHFMM(λ1,λ2,...,λk)(h1, h2, . . . , hk) ≤
IVPHFMM(λ1,λ2,...,λk)

(
h′1, h′2, . . . , h′k

)
. �

Property 4: Bounded

For any IVPHFE hi ∀i = 1, 2, . . . , k, h− ≤ IVPHFMM(λ1,λ2,...,λk)(h1, h2, . . . , hk) ≤ h+. Here, h− = min(hi)

and h+ = max(hi). Initially,
γipl

i+γipu
i

2 is calculated and the IVPHFE that correspond to minimum and
maximum value is considered as h− and h+ respectively.

Proof. Based on the monotonic and idempotent property of IVPHFMM operator, we can easily
conclude that IVPHFMM(λ1,λ2,...,λk)(h1, h2, . . . , hk) ≥ IVPHFMM(λ1,λ2,...,λk)(h−, h−, . . . , h−). Similarly,
IVPHFMM(λ1,λ2,...,λk)(h1, h2, . . . , hk) ≤ IVPHFMM(λ1,λ2,...,λk)(h+, h+, . . . , h+). Combining these two
inequalities, we get h− ≤ IVPHFMM(λ1,λ2,...,λk)(h1, h2, . . . , hk) ≤ h+. �

Theorem 1. The aggregation of IVPHFEs by IVPHFMM operator produces an IVPHFE.

Proof. To prove the above theorem, we must show that the aggregated value obeys Definition
3. Now, from Property 4, it is clear that the aggregated value is bounded within the different

IVPHFEs taken for aggregation. By extending the idea further, we get 0 ≤
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⎤⎥⎥⎥⎥⎥⎥⎥⎦ ≤ 1. By combining these two
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inequalities, we get 0 ≤
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≤ 1 . Thus, 0 ≤

IVPHFMM(λ1,λ2,...,λk)(h1, h2, . . . , hk) ≤ 1. Hence, aggregation of IVPHFEs yields an IVPHFE. �

3.2. Weight Calculation for Attributes Using the Proposed Programming Model

This section put forwards a new mathematical programming model in the IVPHFS context for
calculating the weights of attributes. There are mainly two types of weight calculation methods. In the
first type, weight values are calculated with completely unknown information and some popular
examples are analytical hierarchy process (AHP) [33], entropy measure [34] and so forth. In the second
type, weight values are calculated with partially known information and this type of weight calculation
gives DMs a chance to express their personal preference on each attribute which is considered during
the weight calculation process. Whenever partial information is known for each attribute, the effective
idea is to use the information for rational calculation of weights.

Motivated by the ability of the second type of weight calculation, in this paper, a new programming
model is put forward in the IVPHFS context. The key advantages of the proposed model are (i) it uses
the partial information from the DMs in a rational manner in its formulation; (ii) provides flexibility
to the DMs to share their personal preferences on each attribute in the form of constraints; (iii) the
nature of the attribute (benefit or cost) is also taken into consideration during formulation and (iv) the
ideal solution for each attribute is considered for rational calculation of weight values which resemble
closely to the human cognition process.

The systematic procedure for attribute weight calculation is presented below:

Step 1: Construct an evaluation matrix of order 3 × 4 with IVPHFS information. The order of the
matrix is DMs by attributes.

Step 2: Calculate the positive ideal solution (PIS) and negative ideal solution (NIS) for each attribute
using Equations 9 and 10.

hPIS
j = maxj∈bene f it
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where hPIS
j and hNIS

j are PIS and NIS values of the jth attribute respectively. The hPIS
j and hNIS

j
are calculated for each attribute and they contain IVPHFS information of the corresponding
value obtained from Equations 9 and 10.

Step 3: Apply Model 1 to obtain the weights of attributes. Model 1:

Min Z =
n∑

j=1

wj

m∑
i=1

d
(
hij, hPIS

j

)
− d

(
hij, hNIS

j

)

Subject to:
0 ≤ wj ≤ 1;

∑
j

wj = 1.
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The distance measure is calculated using Equation (11).
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where a and b are any two IVPHFEs.

3.3. Proposed MAGDM Method for Prioritization of Objects

This section develops a ranking procedure for prioritizing objects based on the operational laws
and newly proposed IVPHFMM operator. The procedure is presented below:

Step 1: Begin.
Step 2: Construct k decision matrices of order m× n where m is the number of objects and n is the

number of attributes.
Step 3: Aggregate these matrices into a single matrix of order m × n by using newly proposed

IVPHFMM operator (see Section 3.1).
Step 4: Multiply the weight of each attribute with the respective IVPHFE and use Equation (4)

attribute-wise to calculate the net value for each object. The resultant value is also an IVPHFE.
Step 5: Prioritize the objects by adopting transformation method given in Equation (12).

hsingle
l =

#instance∑
i=1

⎛⎜⎜⎜⎜⎝γipl
i + γipu

i
2

⎞⎟⎟⎟⎟⎠ (12)

where l is the index for the object. Arrange hsingle
l in the descending order of values to obtain

ranking order.
Step 6: End.

Before demonstrating the practical use of the proposed framework, Figure 1 is presented to obtain
a clear view of the implementation process of the proposed framework. Initially, DMs’ preference
information is obtained as IVPHFEs for each object over a specific attribute. These matrices are
aggregated using newly proposed IVPHFMM operator (refer Section 3.1) which extends the MM
operator in the IVPHFS context. An evaluation matrix is obtained from the DMs for attribute weight
calculation. Mathematical programming model (refer to Section 3.2) is proposed for calculating the
weights of the attributes with the help of partially known information. Finally, a new systematic
procedure (refer to Section 3.3) is developed for prioritizing objects which uses the aggregated matrix
and weight vector as input for implementation.

 
Figure 1. Proposed decision framework in the IVPHFS context.
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4. Numerical Example: Renewable Energy Source Selection from the Indian Perspective

This section demonstrates the practicality of the proposed method by solving renewable energy
source selection problem from an Indian perspective which is adapted from Reference [35]. India has a
great appetite for energy owing to its high technological advancement and opportunities. Around
85,000 MW of energy demand is potentially satisfied with the help of biomass, small hydro, solar and
wind energy. Recently, Mardani et al. [36] conducted a thorough survey of energy source selection
using MADM methods and projected the key importance of MADM methods for energy selection.
Luthra et al. [37] conducted a deep investigation of barriers to energy sources in India and suggested
ideas for the mitigation of challenges from the Indian perspective. In a recent study performed by
the Economic Times on energy demand and supply, they predicted that by 2040: (i) there will be a
30% increase in energy which crosses the conventional energy charts and forces an urgent need for
renewable energy sources; (ii) also by 2040, India will reach 49% renewable energy usage.

Motivated by the investigation, in this paper, we formulate the renewable source selection problem
as an MADM problem and present a systematic procedure for the suitable selection of renewable
energy sources.

Step 1: Construct a panel of three DMs viz., technical personnel e1, member of the ministry of energy
and natural resource e2 and senior financial personnel e3. Make an initial list of renewable
energy sources and attributes. By systematic pre-screening, the panel finalizes four renewable
energy sources and four attributes. These are adapted from Reference [35] and the panel
decides to use IVPHFS information for rating energy sources against the attribute.

Step 2: Form three matrices of order 4× 4 where the rows represent the energy sources and columns
represent the attributes. Four renewable energy sources considered are geothermal a1, solar
a2, tidal a3 and hydro a4 which are evaluated over four attributes viz., technical aspects c1,
social aspects c2, financial aspects c3 and environmental aspects c4 IVPHFS information (refer
Definition 3) is used for rating energy sources and it is depicted in Table 2.

Table 2 presents the preference information by different DMs over renewable energy sources
based on a set of attributes. IVPHFS based preference information is adopted.

Step 3: Aggregate the IVPHFEs from Table 2 by using IVPHFMM operator (see Section 3.1 for details).
There are three risk appetite values used viz., λ1, λ2 and λ3 which are given by 2, 2 and 1.
The weight of each DM is given by 0.3, 0.4 and 0.3. The preference information from Table 2
is aggregated using IVPHFMM operator and it is shown in Table 3. Clearly, from Table 3, we
can observe that the aggregated value is also an IVPHFE (refer Definition 3).

Step 4: Calculate the weights of the attributes by using the procedure given in Section 3.2. Table 4
shows an evaluation matrix with IVPHFS information which is used to calculate the PIS and
NIS values for each attribute (see Table 4).

By using Tables 4 and 5 the objective function is constructed from Model 1. The constraints are
obtained from the DMs and the model is solved using optimization toolbox of MATLAB®. From
Model 1, we get the objective function as MinZ = 0.38w1 − 0.008w2 − 0.043w3 + 0.112w4 and the
inequality constraints are given by w1 ≤ 0.3, w2 ≤ 0.3, w3 ≤ 0.3 and w4 ≤ 0.3. By solving we get,
w1 = w2 = w3 = 0.3 and , w4 = 0.1.
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Table 2. Interval-valued probabilistic hesitant fuzzy set (IVPHFS) based preference information for
different DMs.

Energy
Evaluation Attribute

c1 c2 c3 c4

e1

a1

{
0.85, [0.12, 0.12]
0.58, [0.2, 0.48]

} {
0.12, [0.41, 0.41]
0.6, [0.29, 0.29]

} {
0.21, [0.74 , 0.88 ]
0.8, [ 0.16 , 0.89 ]

} {
0.79, [0.46 , 0.46]
0.73, [0.34 , 0.83]

}
a2

{
0.86, [0.49, 0.57]
0.39, [0.66, 0.66]

} {
0.79, [0.39, 0.39]
0.55, [0.54, 0.54]

} {
0.79, [0.51 , 0.8]

0.39, [0.17 , 0.73]

} {
0.28, [0.25 , 0.3]
0.28, [0.2 , 0.2]

}
a3

{
0.21, [0.26, 0.43]
0.81, [0.4, 0.76]

} {
0.63, [0.13, 0.85]
0.31, [0.56, 0.59]

} {
0.29, [0.21 , 0.21]
0.61, [0.75 , 0.84]

} {
0.2, [0.11 , 0.11]

0.71, [0.12 , 0.12]

}
a4

{
0.71, [0.32, 0.32]
0.43, [0.65, 0.88]

} {
0.49, [0.35, 0.71]
0.23, [0.2, 0.2]

} {
0.58, [0.64 , 0.64]
0.19, [0.5 , 0.7]

} {
0.28, [0.33 , 0.33]
0.58, [0.28 , 0.43]

}
e2

a1

{
0.88, [0.19, 0.19]
0.11, [0.17, 0.71]

} {
0.31, [0.39, 0.39]
0.56, [0.47, 0.84]

} {
0.89, [0.64 , 0.64]
0.1, [0.34 , 0.73]

} {
0.29, [0.1 , 0.11]
0.43, [0.1 , 0.1]

}
a2

{
0.24, [0.34, 0.44]
0.53, [0.71, 0.71]

} {
0.54, [0.45, 0.48]
0.8, [0.19, 0.19s]

} {
0.47, [0.15 , 0.31]
0.79, [0.32 , 0.32]

} {
0.35, [0.35 , 0.35]
0.35, [0.19 , 0.23]

}
a3

{
0.65, [0.47 , 0.73]
0.89, [0.13 , 0.77]

} {
0.52, [0.27 , 0.51]
0.39, [0.18 , 0.18]

} {
0.81, [0.34 , 0.57]
0.46, [0.58 , 0.58]

} {
0.4, [0.32 , 0.48]

0.33, [0.19 , 0.23]

}
a4

{
0.85, [0.27 , 0.27]
0.89, [0.31 , 0.79]

} {
0.87, [0.27 , 0.27]
0.52, [0.29 , 0.29]

} {
0.28, [0.39 , 0.77]
0.43, [0.3 , 0.3]

} {
0.11, [0.32 , 0.63]
0.32, [0.21 , 0.46]

}
e3

a1

{
0.63, [0.2 , 0.2]
0.6, [0.33 , 0.33]

} {
0.54, [0.45 , 0.45]
0.68, [0.15 , 0.15]

} {
0.85, [0.52 , 0.52]
0.8, [0.11 , 0.11]

} {
0.48, [0.21 , 0.22]
0.58, [0.22 , 0.29]

}
a2

{
0.56, [0.15 , 0.15]
0.57, [0.65 , 0.7]

} {
0.78, [0.57 , 0.57]{
0.48, [0.19 , 0.29]

} {
0.24, [0.63 , 0.63]
0.57, [0.38 , 0.38]

} {
0.29, [0.31 , 0.33]
0.33, [0.22 , 0.24]

}
a3

{
0.53, [0.44 , 0.44]
0.16, [0.33 , 0.33]

} {
0.84, [0.13 , 0.38]
0.78, [0.43 , 0.63]

} {
0.15, [0.2 , 0.86]

0.34, [0.35 , 0.35]

} {
0.34, [0.22 , 0.34]
0.31, [0.22 , 0.25]

}
a4

{
0.46, [0.83 , 0.83]
0.64, [0.33 , 0.33]

} {
0.2, [0.54 , 0.54]

0.82, [0.41 , 0.41]

} {
0.84, [0.25 , 0.25]
0.69, [0.23 , 0.37]

} {
0.21, [0.31 , 0.54]
0.51, [0.27 , 0.42]

}

Table 3. Aggregation of preferences by using interval-valued probabilistic hesitant fuzzy Muirhead
mean (IVPHFMM) operator.

Energy
Evaluation Attribute

c1 c2 c3 c4

e123

a1

{
0.79, [ 0.17 , 0.17 ]
0.3, [ 0.22 , 0.5 ]

} {
0.27, [ 0.41 , 0.41]
0.61, [ 0.29 , 0.37 ]

} {
0.57, [ 0.63 , 0.66 ]
0.35, [ 0.19 , 0.44 ]

} {
0.48, [ 0.21 , 0.22 ]
0.58, [ 0.22 , 0.29 ]

}
a2

{
0.46, [ 0.3 , 0.34 ]
0.5, [ 0.68 , 0.69]

} {
0.67, [ 0.46 , 0.47 ]
0.61, [ 0.26 , 0.3 ]

} {
0.45, [ 0.34 , 0.51 ]
0.58, [ 0.28 , 0.43 ]

} {
0.29, [ 0.31 , 0.33 ]
0.33, [ 0.22 , 0.24 ]

}
a3

{
0.43, [ 0.39 , 0.54 ]
0.51, [ 0.24 , 0.6 ]

} {
0.64, [ 0.17 , 0.54 ]
0.45, [ 0.33 , 0.37]

} {
0.36, [ 0.25 , 0.48 ]
0.45, [ 0.54 , 0.56

} {
0.34, [ 0.22 , 0.34]

0.31, [ 0.22 , 0.25 ]

}
a4

{
0.67, [ 0.4 , 0.4 ]
0.49, [ 0.39 , 0.63 ]

} {
0.47, [ 0.36 , 0.45 ]
0.47, [ 0.29 , 0.29 ]

} {
0.48, [ 0.4 , 0.52 ]
0.39, [ 0.32 , 0.41

} {
0.21, [ 0.31 , 0.54 ]
0.51, [ 0.27 , 0.42 ]

}

Table 4. Evaluation matrix for attribute weight calculation.

DMs
Evaluation Attribute

c1 c2 c3 c4

e1

{
0.5, [0.5, 0.7]

0.4, [0.35, 0.45]

} {
0.44, [0.45, 0.5]
0.54, [0.5, 0.6]

} {
0.55, [0.55, 0.65]
0.45, [0.55, 0.7]

} {
0.65, [0.35, 0.4]
0.4, [0.4, 0.45]

}
e2

{
0.6, [0.6, 0.65]

0.45, [0.45, 0.5]

} {
0.35, [0.6, 0.7]

0.5, [0.55, 0.65]

} {
0.45, [0.54, 0.65]
0.35, [0.4, 0.6]

} {
0.55, [0.5, 0.7]
0.4, [0.6, 0.7]

}
e3

{
0.45, [0.5, 0.6]

0.4, [0.55, 0.65]

} {
0.4[0.5, 0.6]

0.5, [0.4, 0.55]

} {
0.45, [0.45, 0.55]
0.6, [0.35, 0.55]

} {
0.45, [0.55, 0.65]
0.6, [0.6, 0.65]

}
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Table 5. PIS & NIS for each attribute.

Ideal Solution
Evaluation Attribute

c1 c2 c3 c4

h+
{

0.6, [0.6, 0.65]
0.45, [0.45, 0.5]

} {
0.35, [0.6, 0.7]

0.5, [0.55, 0.65]

} {
0.45, [0.54, 0.65]
0.35, [0.4, 0.6]

} {
0.45, [0.55, 0.65]
0.6, [0.6, 0.65]

}
h−

{
0.5, [0.5, 0.7]

0.4, [0.35, 0.45]

} {
0.4, [0.5, 0.6]
0.5, [0.4, 0.55]

} {
0.55, [0.55, 0.65]
0.45, [0.55, 0.7]

} {
0.65, [0.35, 0.4]
0.4, [0.4, 0.45]

}

Step 5: Prioritize the energy sources by using the procedure given in Section 3.3. The
cumulative ring sum value for each renewable energy source is given by

0.97, [0.86, 0.87], 0.93, [0.65, 0.87]; 0.93, [0.83, 0.89], 0.95, [0.87, 0.91];
0.91, [0.7, 0.93], 0.9, [0.82, 0.92]; 0.93, [0.84, 0.93], 0.92, [0.79, 0.91]

for unbiased attributes’

weights and
0.41, [0.33, 0.34], 0.34, [0.20, 0.33]; 0.37, [0.29, 0.34], 0.39, [0.31, 0.35];
0.34, [0.23, 0.37], 0.34, [0.30, 0.37]; 0.37, [0.30, 0.36], 0.34, [0.27, 0.34]

for biased

attributes’ weights. From Equation (12) we get, a1 = 1.54, a2 = 1.63, a3 = 1.52 and a4 = 1.6 for
unbiased weight values and a1 = 0.23, a2 = 0.25, a3 = 0.23 and a4 = 0.23 for biased weight
values. Thus, the ranking order is a2 
 a4 
 a1 
 a3 and the suitable renewable energy source
for the process is solar energy a2.

Step 6: Perform sensitivity analysis on the risk appetite of each DM by varying the values within
the predefined threshold value. Figures 2–4 depict 27 possible risk appetite values and the
corresponding prioritized value for each renewable energy source. From the analysis, we
can clearly observe that the prioritized order remains unchanged with the final order as
a2 
 a4 � a1 
 a3 with solar energy as a suitable renewable energy source for the process
taken into consideration.

 

Figure 2. Sensitivity analysis of risk appetite of each DM ((1) 1,1,1 to (9) 1,3,3).

 
Figure 3. Sensitivity analysis of risk appetite of each DM ((10) 2,1,1 to (18) 2,3,3).
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Figure 4. Sensitivity analysis of risk appetite of each DM ((19) 3,1,1 to (27) 3,3,3).

Step 7: End.

5. Comparative Analysis of Proposed Decision Framework

This section put forwards a comparative study of the proposed aggregation operator with other
operators in the IVPHFS context. In order to maintain the homogeneity of the comparison process, we
analyse the proposed method with aggregation operators from References [18] and [19] which uses
IVPHFEs as preference information.

Table 6 depicts the ranking order from different methods and we can see that the proposed method
produces a unique ranking order compared to its counterpart. This is mainly due to the ability of
the proposed aggregation operator to capture the interrelationship between multiple attributes. The
consistency of the proposed method is realized by calculating the Spearman correlation coefficient [38]
for each method. Figure 5 depicts the correlation plot for each method and we can infer that the
proposed method is highly consistent with other state-of-the-art methods.

Table 6. The ranking order of renewable energy sources: Proposed vs. Others.

Methods
Renewable Energy Source (s)

Order
a1 a2 a3 a4

[18] 2 1 4 3 a2 
 a1 
 a4 
 a3
[19] 2 1 4 3 a2 
 a1 
 a4 
 a3

Proposed 3 1 4 2 a2 
 a4 
 a1 
 a3

Note: DMs’ weight values are considered as 0.3, 0.4 and 0.3 respectively and the attributes’ weight values are
considered as 0.25.

Table 7 depicts the characteristics analysis of different methods. The characteristics are adapted
from the work of Liu and Teng [32].

Some strengths of the proposed method are listed below:

1. The proposed aggregation operator uses the generalized data structure viz., IVPHFS as preference
information. The interval number is associated as an occurrence probability value for each HFE.

2. The extension of MM operator to IVPHFS context provides DMs with the ability to capture
interrelationship between multiple attributes. This property resembles closely with the real-life
decision-making problem.

3. The proposed operator not only obtains weights of DMs but also considers the risk appetite of
each DM.

4. The proposed operator has parameters that are easily customizable for realizing different effects
on prioritization of objects.
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5. The proposed operator can also realize certain operators as special cases which provide a
generalized context for aggregation of preferences that helps DMs is effective management of
uncertainty and vagueness.

6. The attributes’ weight values are calculated in a rational manner by considering the partial
information from each DM.

Some weaknesses of the proposed method are:

1. It is difficult to fix the parameter value for different MAGDM application without a trial and
error process.

2. DMs need some training with the data structure for proper elicitation of preferences.

Figure 5. Corrplot for different ranking methods: Proposed vs. Others.

Table 7. Characteristics analysis for proposed vs. other methods.

Characteristics
Methods

Proposed [18] [19]

Data IVPHFS based preference information
Comprehensive data yes yes yes
Interrelationship yes no no
Customizable parameter(s) yes no no
Total pre-order yes yes yes
Generalizability yes no no
The relative importance of DM yes yes yes
Risk appetite of DM yes no no
Information loss Mitigated in an efficient manner Mitigated in a moderate manner

6. Conclusions

This paper presents a new extension to MM operator in the IVPHFS context. Some interesting
properties and theorems are also discussed for arriving better theoretical perspective in the field of
aggregation and information fusion. The weights of the attributes are also calculated using newly
proposed mathematical programming model which uses the DMs’ partial information effectively. The
data structure used for preference elicitation is a generalization of PHFS concept that mitigates the
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problem of assigning a precise occurrence probability to each HFE by allowing interval values as
occurrence probability for each HFE. The MM operator has the ability to capture interrelationship
between multiple attributes and provides a generalized focus on the aggregation of preferences.
The customizable parameter in MM operator allows DMs to clearly understand the effect of risk
appetite value on the prioritization order. The idea of extending the MM operator to IVPHFS context and
the proposing of a new programming model for attribute weight calculation enriches the data structure
for better MAGDM. Some desirable properties of the proposed IVPHFMM operator have analyzed for
better understanding the operator and applying the same for MAGDM. From the sensitivity analysis
of risk appetite values, we can infer that as values increase, the rank values also increase for each
renewable energy source, thus allowing rational prioritization of renewable energy sources. Also,
sensitivity analysis is carried out for attribute weight values and they infer that the prioritization order
is unchanged and the proposed prioritization procedure is stable even after adequate changes are
made to the attributes’ weights.

As a part of the future direction, plans are made to extend different generalized operators in the
IVPHFS context with a discussion on different Archimedean T-norms and T-conorms. Further, plans
are made to propose a new decision framework in the IVPHFS context for better MAGDM and large
scale group decision-making.

Author Contributions: The individual contribution and responsibilities of the authors were as follows: Author(s)
R.K. and M.I.A. designed the research model, collected, pre-processed, analysed the data and the obtained results.
They worked on the development of the paper. Authors K.S.R., S.K. and X.P. provided valuable advice throughout
the research by sharing insights on model design, methodology and inferences. They also refined the manuscript
by providing a valuable suggestion. All the authors have read and approved the final manuscript.

Funding: This research was funded by the University Grants Commission (UGC), India and Department of Science
& Technology (DST), India under grant number F./2015-17/RGNF-2015-17-TAM-83 and SR/FST/ETI-349/2013.

Acknowledgments: Author(s) thank the editors and the anonymous reviewers for their insightful comments
which improved the quality of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Triantaphyllou, E.; Shu, B. Multi-criteria decision making: An operations research approach. Encycl. Electr.
Electron. Eng. 1998, 15, 175–186.

2. Torra, V. Hesitant fuzzy sets. Int. J. Intell. Syst. 2010, 25, 529–539. [CrossRef]
3. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
4. Chai, J.; Ngai, E.W.T. Multi-perspective strategic supplier selection in uncertain environments. Int. J.

Prod. Econ. 2015, 166, 215–225. [CrossRef]
5. Krishankumar, R.; Ravichandran, K.S.; Murthy, K.K.; Saeid, A.B. A scientific decision-making framework for

supplier outsourcing using hesitant fuzzy information. Soft Comput. 2018, 22, 7445–7461. [CrossRef]
6. Aktas, A.; Kabak, M. A hybrid hesitant fuzzy decision-making approach for evaluating solar power plant

location sites. Arab. J. Sci. Eng. 2018, 1–13. [CrossRef]
7. Senvar, O.; Otay, I.; Bolturk, E. Hospital site selection via hesitant fuzzy TOPSIS. IFAC-PapersOnLine 2016, 49,

1140–1145. [CrossRef]
8. Zhang, F.; Chen, J.; Zhu, Y.; Li, J.; Li, Q.; Zhuang, Z. A dual hesitant fuzzy rough pattern recognition approach

based on deviation theories and its application in urban traffic modes recognition. Symmetry. 2017, 9, 262.
[CrossRef]

9. Rodríguez, R.M.; Martínez, L.; Torra, V.; Xu, Z.S.; Herrera, F. Hesitant fuzzy sets: State of the art and future
directions. Int. J. Intell. Syst. 2014, 29, 495–524. [CrossRef]

10. Xu, Z.S.; Zhou, W. Consensus building with a group of decision makers under the hesitant probabilistic
fuzzy environment. Fuzzy Optim. Decis. Mak. 2016, 16, 1–23. [CrossRef]

11. Yue, L.; Sun, M.; Shao, Z. The probabilistic hesitant fuzzy weighted average operators and their application
in strategic decision making. J. Inf. Comput. Sci. 2013, 10, 3841–3848. [CrossRef]

174



Mathematics 2019, 7, 342

12. Li, J.; Wang, Z. Multi-attribute decision making based on prioritized operators under probabilistic hesitant
fuzzy environments. Soft Comput. 2018, 1–16. [CrossRef]

13. Hao, Z.; Xu, Z.S.; Zhao, H.; Su, Z. Probabilistic dual hesitant fuzzy set and its application in risk evaluation.
Knowledge-Based Syst. 2017, 127, 16–28. [CrossRef]

14. Zhou, W.; Xu, Z.S. Group consistency and group decision making under uncertain probabilistic hesitant
fuzzy preference environment. Inf. Sci. 2017, 414, 276–288. [CrossRef]

15. Bashir, Z.; Rashid, T.; Watróbski, J.; Salabun, W.; Malik, A. Hesitant probabilistic multiplicative preference
relations in group decision making. Appl. Sci. 2018, 8, 3998. [CrossRef]

16. Gao, J.; Xu, Z.S.; Liao, H. A dynamic reference point method for emergency response under hesitant
probabilistic fuzzy environment. Int. J. Fuzzy Syst. 2017, 19, 1261–1278. [CrossRef]

17. Jiang, F.; Ma, Q. Multi-attribute group decision making under probabilistic hesitant fuzzy environment with
application to evaluate the transformation efficiency. Appl. Intell. 2017, 48, 953–965. [CrossRef]

18. Song, C.; Zhao, H.; Xu, Z.S.; Hao, Z. Interval-valued probabilistic hesitant fuzzy set and its application in the
Arctic geopolitical risk evaluation. Int. J. Intell. Syst. 2018, 1–25. [CrossRef]

19. Krishankumar, R.; Ravichandran, K.S.; Kar, S.; Gupta, P.; Mehlawat, M.K. Interval-valued probabilistic
hesitant fuzzy set for multi-criteria group decision-making. Soft Comput. 2018, 1–27. [CrossRef]

20. Moscovici, S.; Zavalloni, M. The group as a polarizer of attitudes. J. Pers. Soc. Psychol. 1969, 12, 125–135.
[CrossRef]

21. Mesiar, R.; Calvo, T. Fuzzy sets and their extensions: Representation, aggregation and models. Stud. Fuzziness
Soft Comput. 2008, 220, 1–22.

22. Muirhead, R.F. Some methods applicable to identities and inequalities of symmetric algebraic functions of n
letters. Proc. Edinburgh Math. Soc. 1902, 21, 144–162. [CrossRef]

23. Xia, M.; Xu, Z.S.; Zhu, B. Geometric Bonferroni means with their application in multi-criteria decision making.
Knowledge-Based Syst. 2013, 40, 88–100. [CrossRef]

24. Qin, J.; Liu, X.; Pedrycz, W. Hesitant fuzzy Maclaurin symmetric mean operators and its application to
multiple-attribute decision making. Int. J. Fuzzy Syst. 2015, 17, 509–520. [CrossRef]

25. Wang, R.; Wang, J.; Gao, H.; Wei, G. Methods for MADM with picture fuzzy Muirhead mean operators and
their application for evaluating the financial investment risk. Symmetry 2019, 11, 6. [CrossRef]

26. Liu, P.; Khan, Q.; Mahmood, T.; Hassan, N. T-spherical fuzzy power Muirhead mean operator based on
novel operational laws and their application in multi-attribute group decision making. IEEE Access 2019, 7,
22613–22632. [CrossRef]

27. Liu, P.; Li, Y.; Zhang, M.; Zhang, L.; Zhao, J. Multiple-attribute decision-making method based on hesitant
fuzzy linguistic Muirhead mean aggregation operators. Soft Comput. 2018, 22, 5513–5524. [CrossRef]

28. Hong, Z.; Rong, Y.; Qin, Y.; Liu, Y. Hesitant fuzzy dual Muirhead mean operators and its application to
multiple attribute decision making. J. Intell. Fuzzy Syst. 2018, 35, 2161–2172. [CrossRef]

29. Khan, Q.; Hassan, N.; Mahmood, T. Neutrosophic cubic power Muirhead mean operators with uncertain
data for multi-attribute decision-making. Symmetry 2018, 10, 444. [CrossRef]

30. Xu, Y.; Shang, X.; Wang, J. Pythagorean fuzzy interaction Muirhead means with their application to
multi-attribute group decision-making. Inf. 2018, 9, 157. [CrossRef]

31. Wang, J.; Zhang, R.; Zhu, X.; Zhou, Z.; Shang, X.; Li, W. Some q-rung orthopair fuzzy Muirhead means with
their application to multi-attribute group decision-making. J. Intell. Fuzzy Syst. 2018, 36, 1–19. [CrossRef]

32. Liu, P.; Teng, F. Some Muirhead mean operators for probabilistic linguistic term sets and their applications to
multiple attribute decision-making. Appl. Soft Comput. 2018, 68, 396–431. [CrossRef]

33. Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83. [CrossRef]
34. Gupta, P.; Mehlawat, M.K.; Grover, N. Intuitionistic fuzzy multi-attribute group decision-making with an

application to plant location selection based on a new extended VIKOR method. Inf. Sci. 2016, 370, 184–203.
[CrossRef]

35. Chatterjee, K.; Kar, S. A multi-criteria decision making for renewable energy selection using Z-numbers.
Technol. Econ. Dev. Econ. 2018, 24, 739–764. [CrossRef]

36. Mardani, A.; Zavadskas, E.K.; Khalifah, Z.; Zakuan, N.; Jusoh, A.; Nor, K.M.; Khoshnoudi, M. A review of
multi-criteria decision-making applications to solve energy management problems: Two decades from 1995
to 2015. Renew. Sustain. Energy Rev. 2017, 71, 216–256. [CrossRef]

175



Mathematics 2019, 7, 342

37. Luthra, S.; Kumar, S.; Garg, D.; Haleem, A. Barriers to renewable/sustainable energy technologies adoption:
Indian perspective. Renew. Sustain. Energy Rev. 2015, 41, 762–776. [CrossRef]

38. Spearman, C. The proof and measurement of association between two things. Am. J. Psychol. 1904, 15,
72–101. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

176



mathematics

Article

Dual Hesitant Pythagorean Fuzzy Heronian Mean
Operators in Multiple Attribute Decision Making

Mei Tang 1, Jie Wang 1, Jianping Lu 1, Guiwu Wei 1, Cun Wei 1,2 and Yu Wei 3,*

1 School of Business, Sichuan Normal University, Chengdu 610101, China; 15882583803@163.com (M.T.);
JW970326@163.com (J.W.); lujp2002@163.com (J.L.); weiguiwu1973@sicnu.edu.cn (G.W.);
weicun1990@163.com (C.W.)

2 School of Statistics, Southwestern University of Finance and Economics, Chengdu 611130, China
3 School of Finance, Yunnan University of Finance and Economics, Kunming 650221, China
* Correspondence: weiyusy@126.com

Received: 27 March 2019; Accepted: 6 April 2019; Published: 10 April 2019

Abstract: On account of the indeterminacy and subjectivity of decision makers (DMs) in complexity
decision-making environments, the evaluation information over alternatives presented by DMs is
usually fuzzy and ambiguous. As the generalization of intuitionistic fuzzy sets (IFSs), the Pythagorean
fuzzy set (PFS) is more useful in expressing fuzzy and ambiguous information. Meanwhile, in order
to consider human hesitance, dual hesitant Pythagorean fuzzy sets (DHPFSs) are presented, which
can be more valid for handling real multiple attribute decision-making (MADM) problems. To fuse
the information in DHPFSs more effectively, in this article, some dual hesitant Pythagorean fuzzy
Heronian mean operators, which can consider the relationships between arguments being fused,
are defined and studied. Evidently, the new proposed operators can obtain more exact results
than other existing methods. In addition, some important properties of these Heronian mean
(HM) operators are discussed. Subsequently, the defined aggregation operators are used in MADM
with dual hesitant Pythagorean fuzzy numbers (DHPFNs), and the MADM model is developed.
In accordance with the defined operators and the built model, the dual hesitant Pythagorean fuzzy
generalized weighted Heronian mean (DHPFGWHM) operator and dual hesitant Pythagorean fuzzy
generalized geometric weighted Heronian mean (DHPFGGWHM) operator are applied to deal with
the green supplier selection in supply chain management, and the availability and superiority of the
proposed operators are analyzed by comparing them with some existing approaches. The method
presented in this paper can effectively solve the MADM problems in which the decision-making
information is expressed by DHPFNs and the attributes are interactive.

Keywords: multiple attribute decision-making (MADM); dual hesitant Pythagorean fuzzy sets (DHPFSs);
dual hesitant Pythagorean fuzzy generalized weighted Heronian mean (DHPFGWHM) operator; dual
hesitant Pythagorean fuzzy generalized geometric weighted Heronian mean (DHPFGGWHM) operator;
green supplier selection; supply chain management

1. Introduction

In practical decision making environments, it is difficult for decision makers (DMs) to give
evaluated information with exact real numbers. To overcome this disadvantage, Zadeh [1] has
developed the fuzzy set (FS) theory which utilizes the function of membership degree to express decision
making information instead of crisp results between 0 and 1. Based on studies of FS, Atanassov [2]
further proposed another function, named the non-membership degree, as a supplementary function.
Thus, the intuitionistic fuzzy set (IFS) was constructed; in the IFS each intuitionistic fuzzy set is
characterized by the functions of membership degree and non-membership degree between 0 and 1,
and the sum of these are limited to 1. Subsequent to these studies, more and more scholars have studied
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the IFS in relation to many multiple attribute decision making (MADM) problems [3–16]. Xu [17]
has defined some intuitionistic fuzzy weighted average operators. Xu and Yager [18] have proposed
some aggregation operators, such as the intuitionistic fuzzy weighted geometric (IFWG) operator, the
intuitionistic fuzzy ordered weighted geometric (IFOWG) operator, and the intuitionistic fuzzy hybrid
geometric (IFHG) operator, based on geometric operation laws and an intuitionistic fuzzy environment.
Hung and Yang [19] studied the similarity measures of intuitionistic fuzzy sets based on an Lp-metric.
Park et al. [20] have put forward some distance measures of interval-valued intuitionistic fuzzy sets.
To handle intuitionistic fuzzy MADM problems with incomplete weight information, Wei [21] utilized
the maximizing deviation method to build two intuitionistic fuzzy nonlinear programming models.
By considering the entropy weight of an intuitionistic fuzzy set, Hung et al. [22] established a fuzzy
TOPSIS decision making model. Luo [23] defined a projection method based on intuitionistic fuzzy
information with uncertain attribute weights for MADM. Ye [24] has provided a cross-entropy method
with which to handle decision making problems with interval-valued intuitionistic fuzzy information.
On account of the indeterminacy of DMs, Zhang [25] has presented some interval-valued hesitant fuzzy
aggregation operators and applied them to MADM problems. Liao and Xu [26] have defined some
intuitionistic fuzzy hybrid weighted aggregation operators. To express fuzzy information more easily,
Liu et al. [27] have developed the concepts of hesitant intuitionistic fuzzy linguistic elements (HLFLEs)
and have defined some weighted aggregation operators. Peng et al. [28] have discussed the MADM
approach under a hesitant interval-valued intuitionistic fuzzy environment. Chen and Huang [29]
have given the definition of hesitant triangular intuitionistic fuzzy set (HTIFS) and investigated its
applications in MADM problems.

In addition, some other fuzzy decision making approaches have been proposed by numerous
scholars [30–33]. Hu et al. [34] have proposed a novel approach combining fuzzy data envelopment
analysis (DEA) and the analytical hierarchical process (AHP) to rank units with multiple fuzzy criteria.
Ziemba et al. [35] have studied the online comparison system with certain and uncertain criteria. Diouf
and Kwak [36] have studied fuzzy AHP, DEA, and managerial analysis for supplier selection and
development from the perspective of open innovation. Dong et al. [37] utilized the modified fuzzy
VIKOR and scalable computing method to study the performance evaluation of residential demand
responses. Kim and Kim [38] have developed a new model for the optimal LNG import portfolio.
Chou et al. [39] have used fuzzy AHP and fuzzy TOPSIS to evaluate the human resource in science
and technology (HRST) performance of Southeast Asian countries.

In addition, as an effective MADM tool, the Pythagorean fuzzy set (PFS) [40,41] has emerged
as a means to describe the indeterminacy and complexity of evaluation information. Similarly to
the IFS, the PFS also consists of a membership degree and non-membership degree, the sum of the
squares of which is restricted to 1. Thus, it is clear that the PFS is more widespread than the IFS
and can express more decision-making information. For instance, the membership is given as 0.6
and the non-membership is given as 0.8; it is obvious that this problem is only valid for the PFS.
In other words, all intuitionistic fuzzy decision-making problems are a special case of Pythagorean
fuzzy decision-making problems, which means that the PFS is more efficient in dealing with MADM
problems. In previous literature, some research works have been studied by a large number of
investigators. Zhang and Xu [42] defined the Pythagorean fuzzy TOPSIS model to deal with MADM
problems. Peng and Yang [43] primarily proposed two Pythagorean fuzzy operations including the
division and subtraction operations to better understand PFS. Reformat and Yager [44] handled the
collaborative-based recommender system with Pythagorean fuzzy information. Gou et al. [45] have
studied some important properties of continuous Pythagorean fuzzy information. Garg [46] has
defined some new Pythagorean fuzzy aggregation operators, including Pthe ythagorean fuzzy Einstein
weighted averaging (PFEWA) operator, the Pythagorean fuzzy Einstein ordered weighted averaging
(PFEOWA) operator, the generalized Pythagorean fuzzy Einstein weighted averaging (GPFEWA)
operator and the generalized Pythagorean fuzzy Einstein ordered weighted averaging (GPFEOWA)
operator. Zeng et al. [47] have utilized the Pythagorean fuzzy ordered weighted averaging weighted
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average distance (PFOWAWAD) operator to study Pythagorean fuzzy MADM issues. Ren et al. [48]
built a Pythagorean fuzzy TODIM model. Liang et al. [49] investigated some Bonferroni mean operators
with Pythagorean fuzzy information. Liang et al. [50] have presented Pythagorean fuzzy Bonferroni
mean aggregation operators based on geometric averaging (GA) operations. Combining PFSs [40,41]
and dual hesitant fuzzy sets (DHFSs) [51,52], Wei and Lu [53] introduced a definition of dual hesitant
Pythagorean fuzzy sets (DHPFSs) and proposed some dual hesitant Pythagorean fuzzy Hamacher
aggregation operators. Obviously, the DHPFSs have the advantages of considering the hesitance of
DMs and expressing fuzzy information more effectively and reasonably.

However, in practical MADM problems, some relationships do exist between arguments being
fused, and it is obvious that the dual hesitant Pythagorean fuzzy Hamacher aggregation operators
defined by Wei and Lu [53] do not take the relationships between the arguments being fused into
consideration. Thus, it is necessary to find another more effective method with which to fuse dual
hesitant Pythagorean fuzzy information. To date, the Heronian mean (HM) [54] operator, which can
effectively take the interrelationship between arguments into account, has drawn a large quantity
of scholars’ attention [55–59]. Based on intuitionistic fuzzy information and a geometric operator,
Yu [54] developed the intuitionistic fuzzy geometric Heronian mean (IFGHM) operator and the
intuitionistic fuzzy geometric weighted Heronian mean (IFGWHM) operator. Liu et al. [60] further
proposed some Heronian mean operators under an intuitionistic uncertain linguistic environment for
MADM. Yu et al. [61] have defined some linguistic hesitant fuzzy Heronian mean (LHFHM) operators.
Li et al. [62] extended the Heronian mean operator to a single valued neutrosophic environment.
Wei et al. [63] have presented some q-rung orthopair Heronian mean operators. Considering linguistic
variables, Li et al. [64] developed some q-rung orthopair linguistic Heronian mean operators.

In this paper, based on the generalized Heronian mean (GHM) operator and generalized geometric
Heronian mean (GGHM) operator, we develop some dual hesitant Pythagorean fuzzy generalized
Heronian mean aggregation operators. The remainder of this paper is set out as follows. In the next
section, we introduce some basic concepts related to the Pythagorean fuzzy set (PFS), the dual hesitant
Pythagorean fuzzy set (DHPFS), and their operational laws. In Section 3, we propose some dual hesitant
Pythagorean fuzzy Heronian mean aggregation operators such as: the dual hesitant Pythagorean fuzzy
generalized weighted Heronian mean (DHPFGWHM) operator and the dual hesitant Pythagorean
fuzzy generalized geometric weighted Heronian mean (DHPFGGWHM) operator. In Section 4, based
on the DHPFGWHM and DHPFGGWHM operators, we propose some models for MADM problems
with dual hesitant Pythagorean fuzzy information. In Section 5, we present a numerical example for
supplier selection in supply chain management with dual hesitant Pythagorean fuzzy information in
order to illustrate the method proposed in this paper. Section 6 concludes the paper with some remarks.

2. Preliminaries

2.1. Pythagorean Fuzzy Set

The fundamental definition of PFSs [40,41] are briefly introduced in this section. Then, novel
score and accuracy functions of Pythagorean fuzzy numbers (PFNs) are developed. Furthermore,
the comparison laws of PFNs are proposed.

Definition 1 [40,41]. Let X be a fixed set. A Pythagorean fuzzy set (PFS) is an object which can be denoted as

P =
{〈

x, (αP(x), βP(x))
〉|x ∈ X

}
(1)

where the function αP : X→ [0, 1] indicates the degree of membership and the function βP : X→ [0, 1]
indicates the degree of non-membership of the element x ∈ X to P, respectively, and, for each x ∈ X, it holds that(

αp(x)
)2
+

(
βp(x)

)2 ≤ 1 (2)
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Definition 2 [42]. Assume that p1 = (α1, β1) , p2 = (α2, β2), and p = (α, β) are three Pythagorean fuzzy
numbers (PFNs). Then, some basic operation laws of them can be expressed as:

(1) p1 ⊕ p2 =

(√(
αp1

)2
+

(
αp2

)2 −
(
αp1

)2(
αp1

)2
, βp1βp2

)
;

(2) p1 ⊗ p2 =

(
αp1αp2 ,

√(
βp1

)2
+

(
βp2

)2 −
(
βp1

)2(
βp2

)2
)
;

(3)λp =

(√
1− (1− α2)λ, βλ

)
,λ > 0;

(4) (p)λ =
(
αλ,

√
1− (1− β2)λ

)
,λ > 0;

(5) pc = (β,α).

Example 1. Assume that p1 = (0.5, 0.7), p2 = (0.3, 0.4), and p = (0.6, 0.3) are three Pythagorean fuzzy
numbers (PFNs). Suppose λ = 3. Then, according to the above operation laws, we can obtain:

(1) p1 ⊕ p2 =

(√
(0.5)2 + (0.3)2 − (0.5)2 × (0.3)2, 0.7× 0.4

)
= (0.56, 0.28);

(2) p1 ⊗ p2 =

(
0.5× 0.3,

√
(0.7)2 + (0.4)2 − (0.7)2 × (0.4)2

)
= (0.15, 0.64);

(3) 3× p =

(√
1− (1− 0.62)3, 0.33

)
= (0.8590, 0.0270);

(4) (p)3 =

(
0.63,

√
1− (1− 0.32)3

)
= (0.4964, 0.2160);

(5) pc = (0.3, 0.6).

2.2. Dual Hesitant Pythagorean Fuzzy Set

In this section, we shall introduce the basic definition of the dual hesitant Pythagorean fuzzy set
(DHPFS), which is the generalization of the PFS [40,41] and the dual hesitant fuzzy set (DHFS) [51,52].
It is obvious that the DHPFSs consist of two parts, namely, the function of membership hesitancy
and the function of non-membership hesitancy, which support more exemplary and flexible access to
assigning values for each element in the domain, meaning we have to handle two kinds of hesitancy in
this situation.

Definition 3 [53]. Assume that X is a fixed set. Then, a dual hesitant Pythagorean fuzzy set (DHPFS) on X
can be developed as

P̃ =
(〈

x, hP̃(x), gP̃(x)
〉
|x ∈ X

)
(3)

in which hP̃(x) and gP̃(x) are two sets of some values in [0, 1], indicating that the function of membership
degrees and non-membership degrees of the element x ∈ X to the set P̃, respectively, satisfies the condition

α2 + β2 ≤ 1

where α ∈ hP̃(x), β ∈ gP̃(x), for all x ∈ X. For convenience, the pair p̃(x) =
(
hp̃(x), gp̃(x)

)
is called a dual

hesitant Pythagorean fuzzy number (DHPFN) denoted by p̃ = (h, g), with the conditions α ∈ h, β ∈ g ,
0 ≤ α, β ≤ 1, 0 ≤ α2 + β2 ≤ 1.
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Definition 4 [53]. Let p̃ = (h, g) be a DHPFN. Then, s(p̃) = 1
2

(
1 + 1

#h
∑
α∈h α

2 − 1
#g
∑
β∈g β

2
)

is the score

function of p̃, and H(p̃) = 1
#h
∑
α∈h α

2 + 1
#g
∑
β∈g β

2 is the accuracy function of p̃, where #h and #g are the
numbers of the elements in h and g respectively. Then, let p̃i = (hi, gi)(i = 1, 2) be any two DHPFNs.
Subsequently, we have the following comparison laws:

• If s(p̃1) > s(p̃2), then p̃1 is superior to p̃2, denoted by p̃1 
 p̃2;
• If s(p̃1) = s(p̃2), then:

(1) If p(p̃1) = p(p̃2), then p̃1 is equivalent to p̃2, denoted by p̃1 ∼ p̃2 ;
(2) If p(p̃1) > p(p̃2), then p̃1 is superior to p̃2, denoted by p̃1 
 p̃2.

Definition 5 [53]. Assume that p̃1 = (h1, g1) , p̃2 = (h2, g2), and p̃ = (h, g) are three DHPFNs. Then, some
basic operation laws of these can be expressed as:

(1) p̃λ = ∪α∈h,β∈g

{{
αλ

}
,
{√

1− (1− β2)λ
}}

,λ > 0;

(2) λp̃ = ∪α∈h,β∈g

{{√
1− (1− α2)λ

}
,
{
βλ

}}
,λ > 0;

(3) p̃1 ⊕ p̃2 = ∪α1∈h1,α2∈h2,β1∈g1,β2∈g2

{{√
(α1)

2 + (α2)
2 − (α1)

2(α2)
2
}

,
{
β1β2

}}
;

(4) p̃1 ⊗ p̃2 = ∪α1∈h1,α2∈h2,β1∈g1,β2∈g2

{
{α1α2},

{√
(β1)

2 + (β2)
2 − (β1)

2(β2)
2
}}

.

Example 2. Assume that p1 = {{0.7}, {0.3}}, p2 = {{0.1, 0.2}, {0.4}}, and p = {{0.5, 0.6}, {0.4}} are three
Pythagorean fuzzy numbers. Suppose λ = 3. Then, according to the above operation laws, we can obtain

(1) p̃3 = ∪α∈h,β∈g

{{
0.53, 0.63

}
,
{√

1− (1− 0.42)3
}}

= {{0.125, 0.216}, {0.638}};

(2) 3p̃ = ∪α∈h,β∈g

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎧⎪⎪⎪⎨⎪⎪⎪⎩

√
1− (1− 0.52)3,√
1− (1− 0.62)3

⎫⎪⎪⎪⎬⎪⎪⎪⎭,
{
0.43

}⎫⎪⎪⎪⎬⎪⎪⎪⎭ = {{0.760, 0.859}, {0.064}};

(3)
p̃1 ⊕ p̃2 = ∪α1∈h1,α2∈h2,β1∈g1,β2∈g2

⎧⎪⎨⎪⎩⎧⎪⎨⎪⎩ √0.72 + 0.12 − 0.72 × 0.12,√
0.72 + 0.22 − 0.72 × 0.22

⎫⎪⎬⎪⎭, {0.3× 0.4}
⎫⎪⎬⎪⎭

= {{0.704, 0.714}, {0.120}}

(4)
p̃1 ⊗ p̃2 = ∪α1∈h1,α2∈h2,β1∈g1,β2∈g2

{
{0.7× 0.1, 0.7× 0.2},

{√
0.32 + 0.42 − 0.32 × 0.42

}}
= {{0.070, 0.140}, {0.485}}

2.3. The Heronian Mean Operator

Definition 6 [65]. Let bi (i = 1, 2, · · · , n) be a group of nonnegative real numbers. Then, the Heronian mean
(HM) operator can be defined as:

HM(b1, b2, . . . , bn) =
2

n(n + 1)

n∑
i=1

n∑
j=i

(
bibj

) 1
2 (4)
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Definition 7 [54]. Assume that ξ, ζ > 0, and bi (i = 1, 2, · · · , n) are a group of nonnegative real numbers.
Then, the GHM operator can be defined as:

GHMξ,ζ(a1, a2, . . . , an) =

⎛⎜⎜⎜⎜⎜⎜⎝ 2
n(n + 1)

n∑
i=1

n∑
j=i

aξi aζj

⎞⎟⎟⎟⎟⎟⎟⎠
1/(ξ+ζ)

(5)

When ξ = ζ = 1/2, the GHM operator will reduce to the Heronian mean (HM) operator, which indicates
that the HM operator is a special case of the GHM operator.

3. Dual Hesitant Pythagorean Fuzzy Heronian Mean Operators

In the following section Xu et al. [66] proposed the dual hesitant Pythagorean fuzzy generalized
Heronian mean (DHPFGHM) operators based on dual hesitant Pythagorean fuzzy numbers (DHPFNs)
and GHM operations. In addition, some important properties, such as idempotency, boundedness,
and monotonicity are discussed.

3.1. The DHPFGHM Aggregation Operator

Definition 8 [66]. Let ξ, ζ > 0 and p̃j =
(
hj, gj

)
( j = 1, 2, · · · , n) be a group of DHPFNs. Then, we can define

the DHPFGHM operator as

DHPFGHMξ,ζ(p̃1, p̃2, . . . , p̃n) =

(
2

n(n + 1)
n⊕

i=1

n⊕
j=i

(
p̃ξi ⊗ p̃ζj

)) 1
ξ+ζ

(6)

where “ ⊕ ” indicates the addition operation law and “ ⊗ ” indicates the multiplication operation law of the
DHPFNs described in Definition 5. Then, according to these operation laws, Xu et al. [66] obtained Theorem 1.

Theorem 1 [66]. Let ξ, ζ > 0 and p̃j =
(
hj, gj

)
( j = 1, 2, · · · , n) be a group of dual hesitant Pythagorean fuzzy

numbers, meaning their fused results by utilizing the DHPFGHM operator is also a DHPFN, and

DHPFGHMξ,ζ(p̃1, p̃2, . . . , p̃n) =

(
2

n(n+1)

n⊕
i=1

n⊕
j=i

(
p̃ξi ⊗ p̃ζj

)) 1
ξ+ζ

= ∪αi∈hi,α j∈hj,βi∈gi,α j∈hj

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎝
√

1− n∏
i=1, j=i

(
1− α2ξ

i α
2ζ
j

) 2
n(n+1)

⎞⎟⎟⎟⎟⎟⎠
1
ξ+ζ

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
√√√√

1−
⎛⎜⎜⎜⎜⎜⎝1− n∏

i=1, j=i

(
1−

(
1− β2

i

)ξ(
1− β2

j

)ζ) 2
n(n+1)

⎞⎟⎟⎟⎟⎟⎠
1
ξ+ζ

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7)

Proof. Based on Definition 5:

p̃ξi = ∪αi∈hi,βi∈gi

⎧⎪⎪⎨⎪⎪⎩{αξi },
⎧⎪⎪⎨⎪⎪⎩
√

1−
(
1− β2

i

)ξ⎫⎪⎪⎬⎪⎪⎭
⎫⎪⎪⎬⎪⎪⎭ (8)

p̃ζj = ∪α j∈hj,β j∈gj

⎧⎪⎪⎨⎪⎪⎩{αζj },

⎧⎪⎪⎨⎪⎪⎩
√

1−
(
1− β2

j

)ζ⎫⎪⎪⎬⎪⎪⎭
⎫⎪⎪⎬⎪⎪⎭ (9)

182



Mathematics 2019, 7, 344

Thus,

p̃ξi ⊗ p̃ζj = ∪αi∈hi,α j∈hj,βi∈gi,α j∈hj,

⎧⎪⎪⎨⎪⎪⎩{αξi αζj },

⎧⎪⎪⎨⎪⎪⎩
√

1−
(
1− β2

i

)ξ(
1− β2

j

)ζ⎫⎪⎪⎬⎪⎪⎭
⎫⎪⎪⎬⎪⎪⎭ (10)

Therefore,
n⊕

i=1

n⊕
j=i

(
p̃ξi ⊗ p̃ζj

)

= ∪αi∈hi,α j∈hj,βi∈gi,α j∈hj

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎨⎪⎪⎩
√

1− n∏
i=1, j=i

(
1− α2ξ

i α
2ζ
j

)⎫⎪⎪⎬⎪⎪⎭,

⎧⎪⎪⎨⎪⎪⎩
√

n∏
i=1, j=i

(
1−

(
1− β2

i

)ξ(
1− β2

j

)ζ)⎫⎪⎪⎬⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(11)

Furthermore,

2
n(n+1)

n⊕
i=1

n⊕
j=i

(
p̃ξi ⊗ p̃ζj

)

= ∪αi∈hi,α j∈hj,βi∈gi,α j∈hj

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎨⎪⎪⎩
√

1− n∏
i=1, j=i

(
1− α2ξ

i α
2ζ
j

) 2
n(n+1)

⎫⎪⎪⎬⎪⎪⎭,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√√

n∏
i=1, j=i

(
1−

(
1− β2

i

)ξ(
1− β2

j

)ζ) 2
n(n+1)

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(12)

Therefore,

DHPFGHMξ,ζ(p̃1, p̃2, . . . , p̃n) =

(
2

n(n+1)

n⊕
i=1

n⊕
j=i

(
p̃ξi ⊗ p̃ζj

)) 1
ξ+ζ

= ∪αi∈hi,α j∈hj,βi∈gi,α j∈hj

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎝
√

1− n∏
i=1, j=i

(
1− α2ξ

i α
2ζ
j

) 2
n(n+1)

⎞⎟⎟⎟⎟⎟⎠
1
ξ+ζ

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
√√√√

1−
⎛⎜⎜⎜⎜⎜⎝1− n∏

i=1, j=i

(
1−

(
1− β2

i

)ξ(
1− β2

j

)ζ) 2
n(n+1)

⎞⎟⎟⎟⎟⎟⎠
1
ξ+ζ

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13)

Thus, the proof has been finished.

Example 3. Assume that p̃1 = {{0.7, 0.8}, {0.4}}, p̃2 = {{0.3}, {0.6, 0.7}}, p̃3 = {{0.1, 0.3}, {0.4, 0.6}} and
p̃4 = {{0.5}, {0.5}} are four DHPFNs, and suppose that ξ = 2, ζ = 3. Then according to the DHPFGHM
operator, we can obtain the fused results as follows. For the membership degree function α, the fused results are
shown as:

α1 = DHPFGHM2,3(0.7, 0.3, 0.1, 0.5) =

⎛⎜⎜⎜⎜⎜⎝
√

1− n∏
i=1, j=i

(
1− α2ξ

i α
2ζ
j

) 2
n(n+1)

⎞⎟⎟⎟⎟⎟⎠
1
ξ+ζ

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√√√√√√√√√√√√√√√√√√1−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
1− 0.72×2 × 0.72×3

)
×
(
1− 0.72×2 × 0.32×3

)
×
(
1− 0.72×2 × 0.12×3

)
×
(
1− 0.72×2 × 0.52×3

)
×
(
1− 0.32×2 × 0.32×3

)
×
(
1− 0.32×2 × 0.12×3

)
×
(
1− 0.32×2 × 0.52×3

)
×
(
1− 0.12×2 × 0.12×3

)
×
(
1− 0.12×2 × 0.52×3

)
×
(
1− 0.52×2 × 0.52×3

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
10

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
2+3

= 0.5658
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Similarly, we can obtain

α2 = DHPFGHM2,3(0.7, 0.3, 0.3, 0.5) = 0.5664
α3 = DHPFGHM2,3(0.8, 0.3, 0.1, 0.5) = 0.6492
α4 = DHPFGHM2,3(0.8, 0.3, 0.3, 0.5) = 0.6432

Hence, we can get α = {0.5658, 0.5664, 0.6429, 0.6432}.
For the non-membership degree function β, the fused results are shown as:

β1 = DHPFGHM2,3(0.4, 0.6, 0.4, 0.5) =

√√√√
1−

⎛⎜⎜⎜⎜⎜⎝1− n∏
i=1, j=i

(
1−

(
1− β2

i

)ξ(
1− β2

j

)ζ) 2
n(n+1)

⎞⎟⎟⎟⎟⎟⎠
1
ξ+ζ

=

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
1−

(
1− 0.42

)2 ×
(
1− 0.42

)3
)
×
(
1−

(
1− 0.42

)2 ×
(
1− 0.62

)3
)

×
(
1−

(
1− 0.42

)2 ×
(
1− 0.42

)3
)
×
(
1−

(
1− 0.42

)2 ×
(
1− 0.52

)3
)

×
(
1−

(
1− 0.62

)2 ×
(
1− 0.62

)3
)
×
(
1−

(
1− 0.62

)2 ×
(
1− 0.42

)3
)

×
(
1−

(
1− 0.62

)2 ×
(
1− 0.52

)3
)
×
(
1−

(
1− 0.42

)2 ×
(
1− 0.42

)3
)

×
(
1−

(
1− 0.42

)2 ×
(
1− 0.52

)3
)
×
(
1−

(
1− 0.52

)2 ×
(
1− 0.52

)3
)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
10
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
2+3

= 0.4698

Similarly, we can obtain

β2 = DHPFGHM2,3(0.4, 0.6, 0.6, 0.5) = 0.5211
β3 = DHPFGHM2,3(0.4, 0.7, 0.4, 0.5) = 0.4856
β4 = DHPFGHM2,3(0.4, 0.7, 0.6, 0.5) = 0.5383

Hence, we can get β = {0.4698, 0.5211, 0.4856, 0.5383}.Therefore,

DHPFGHM(p̃1, p̃2, p̃3, p̃4) =

{ {0.5658, 0.5664, 0.6429, 0.6432},
{0.4698, 0.5211, 0.4856, 0.5383}

}
.

It can be easily proven that the DHPFGHM operator satisfies the following properties.

Property 1. (Idempotency) If all p̃ j =
(
hj, gj

)
( j = 1, 2, · · · , n) are equal, i.e., p̃ j = p̃ for all j, then

DHPFGHMξ,ζ(p̃1, p̃2, . . . , p̃n) = p̃ (14)

Property 2. (Boundedness) Let p̃j =
(
hj, gj

)
( j = 1, 2, · · · , n) be a collection of DHPFNs, and let

p̃+ = ∪α j∈hj,β j∈gj

{{
maxi(αi)

}
,
{
mini(βi)

}}
, p̃− = ∪α j∈hj,β j∈gj

{{
mini(αi)

}
,
{
maxi(βi)

}}
Then

p̃− ≤ DHPFGHMξ,ζ(p̃1, p̃2, . . . , p̃n) ≤ p̃+ (15)
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Property 3. (Monotonicity) Let p̃j =
(
hj, gj

)
and p̃′j =

(
h′j, g′j

)
, j = 1, 2, · · · , n, be two sets of DHPFNs.

If p̃ j ≤ p̃′j, for all j, then

DHPFGHMξ,ζ(p̃1, p̃2, . . . , p̃n) ≤ DHPFGHMξ,ζ
(
p̃′1, p̃′2, . . . , p̃′n

)
(16)

3.2. The DHPFGWHM Aggregation Operator

Using Definition 8, we can conclude that the DHPFGHM operator didn’t take the importance
of arguments being fused into account. However, in many practical MADM problems, we should
consider the weights of attributes. To overcome this limitation of the DHPFGHM operator, we propose
a novel DHPFGWHM operator as follows.

Definition 9. Assume that ξ, ζ > 0 and p̃j =
(
hj, gj

)
( j = 1, 2, · · · , n) are a group of dual hesitant Pythagorean

fuzzy numbers (DHPFNs). Then, we define the DHPFGWHM operator as follows:

DHPFGWHMξ,ζw (p̃1, p̃2, . . . , p̃n) =

(
n⊕

i=1

n⊕
j=i

(
wiwj

(
p̃ξi p̃ζj

))) 1
ξ+ζ

(17)

According to the operation laws of the DHPFNs described in Definition 5, we can obtain Theorem 2.

Theorem 2. Assume that ξ, ζ > 0 and p̃j =
(
hj, gj

)
( j = 1, 2, · · · , n) are a collection of DHPFNs with the

weighting vector w = (w1, w2, . . . , wn)
T, which satisfies wj > 0, i = 1, 2, . . . , n and

n∑
j=1

wj = 1. Then, their

fused result obtained by utilizing the DHPFGWHM operator is also a DHPFN, and

DHPFGWHMξ,ζw (p̃1, p̃2, . . . , p̃n) =

(
n⊕

i=1

n⊕
j=i

(
wiwj

(
p̃ξi p̃ζj

))) 1
ξ+ζ

= ∪αi∈hi,α j∈hj,βi∈gi,α j∈hj,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎝
√

1− n∏
i=1, j=i

(
1− α2ξ

i α
2ζ
j

)wiwj
⎞⎟⎟⎟⎟⎟⎠

1
ξ+ζ

⎫⎪⎪⎪⎬⎪⎪⎪⎭,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
√√√

1−
⎛⎜⎜⎜⎜⎝1− n∏

i=1, j=i

(
1−

(
1− β2

i

)ξ(
1− β2

j

)ζ)wiwj
⎞⎟⎟⎟⎟⎠

1
ξ+ζ

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(18)

Proof. Based on Definition 5, we can obtain:

p̃ξi = ∪αi∈hi,βi∈gi

⎧⎪⎪⎨⎪⎪⎩{αξi },
⎧⎪⎪⎨⎪⎪⎩
√

1−
(
1− β2

i

)ξ⎫⎪⎪⎬⎪⎪⎭
⎫⎪⎪⎬⎪⎪⎭ (19)

p̃ζj = ∪α j∈hj,β j∈gj

⎧⎪⎪⎨⎪⎪⎩{αζj },

⎧⎪⎪⎨⎪⎪⎩
√

1−
(
1− β2

j

)ζ⎫⎪⎪⎬⎪⎪⎭
⎫⎪⎪⎬⎪⎪⎭ (20)

Thus,

p̃ξi p̃ζj = ∪αi∈hi,α j∈hj,βi∈gi,α j∈hj,

⎧⎪⎪⎨⎪⎪⎩{αξi αζj },

⎧⎪⎪⎨⎪⎪⎩
√

1−
(
1− β2

i

)ξ(
1− β2

j

)ζ⎫⎪⎪⎬⎪⎪⎭
⎫⎪⎪⎬⎪⎪⎭ (21)
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Therefore,

wiwj

(
p̃ξi p̃ζj

)

= ∪αi∈hi,α j∈hj,βi∈gi,α j∈hj,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎨⎪⎪⎩
√

1−
(
1− α2ξ

i α
2ζ
j

)wiwj

⎫⎪⎪⎬⎪⎪⎭,

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎜⎜⎝
√

1−
(
1− β2

i

)ξ(
1− β2

j

)ζ⎞⎟⎟⎟⎟⎠wiwj
⎫⎪⎪⎬⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(22)

Thereafter,
n⊕

i=1

n⊕
j=i

(
wiwj

(
p̃ξi p̃ζj

))

= ∪αi∈hi,α j∈hj,βi∈gi,α j∈hj,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎨⎪⎪⎩
√

1− n∏
i=1, j=i

(
1− α2ξ

i α
2ζ
j

)wiwj

⎫⎪⎪⎬⎪⎪⎭,

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎝
√

n∏
i=1, j=i

(
1−

(
1− β2

i

)ξ(
1− β2

j

)ζ)⎞⎟⎟⎟⎟⎟⎠
wiwj⎫⎪⎪⎬⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(23)

Therefore,

DHPFGWHMξ,ζw (p̃1, p̃2, . . . , p̃n) =

(
n⊕

i=1

n⊕
j=i

(
wiwj

(
p̃ξi p̃ζj

))) 1
ξ+ζ

= ∪αi∈hi,α j∈hj,βi∈gi,α j∈hj,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎝
√

1− n∏
i=1, j=i

(
1− α2ξ

i α
2ζ
j

)wiwj
⎞⎟⎟⎟⎟⎟⎠

1
ξ+ζ

⎫⎪⎪⎪⎬⎪⎪⎪⎭,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
√√√

1−
⎛⎜⎜⎜⎜⎝1− n∏

i=1, j=i

(
1−

(
1− β2

i

)ξ(
1− β2

j

)ζ)wiwj
⎞⎟⎟⎟⎟⎠

1
ξ+ζ

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(24)

Thus, we have finished the proof.

Example 4. Assume that p̃1 = {{0.7, 0.8}, {0.4}}, p̃2 = {{0.3}, {0.6, 0.7}}, p̃3 = {{0.1, 0.3}, {0.4, 0.6}} and
p̃4 = {{0.5}, {0.5}} are four DHPFNs, and suppose that ξ = 2, ζ = 3 and wj = (0.3, 0.2, 0.1, 0.4). Then,
according to the DHPFGWHM operator, we can obtain the fused results as follows. For the membership degree
function α, the fused results are shown as:

α1 = DHPFGWHM2,3(0.7, 0.3, 0.1, 0.5) =

⎛⎜⎜⎜⎜⎜⎝
√

1− n∏
i=1, j=i

(
1− α2ξ

i α
2ζ
j

)wiwj
⎞⎟⎟⎟⎟⎟⎠

1
ξ+ζ

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

1−
(
1− 0.72×2 × 0.72×3

)0.3×0.3 ×
(
1− 0.72×2 × 0.32×3

)0.3×0.2 ×
(
1− 0.72×2 × 0.12×3

)0.3×0.1

×
(
1− 0.72×2 × 0.52×3

)0.3×0.4 ×
(
1− 0.32×2 × 0.32×3

)0.2×0.2 ×
(
1− 0.32×2 × 0.12×3

)0.2×0.1

×
(
1− 0.32×2 × 0.52×3

)0.2×0.4 ×
(
1− 0.12×2 × 0.12×3

)0.1×0.1 ×
(
1− 0.12×2 × 0.52×3

)0.1×0.4

×
(
1− 0.52×2 × 0.52×3

)0.4×0.4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
5

= 0.5630
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Similarly, we can obtain

α2 = DHPFGWHM2,3(0.7, 0.3, 0.3, 0.5) = 0.5632
α3 = DHPFGWHM2,3(0.8, 0.3, 0.1, 0.5) = 0.6376
α4 = DHPFGWHM2,3(0.8, 0.3, 0.3, 0.5) = 0.6377

Hence, we can get α = {0.5630, 0.5632, 0.6376, 0.6377}.
For the non-membership degree function β, the fused results are shown as:

β1 = DHPFGWHM2,3(0.4, 0.6, 0.4, 0.5) =

√√√
1−

⎛⎜⎜⎜⎜⎝1− n∏
i=1, j=i

(
1−

(
1− β2

i

)ξ(
1− β2

j

)ζ)wiwj
⎞⎟⎟⎟⎟⎠

1
ξ+ζ

=

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1−
(
1−

(
1− 0.42

)2 ×
(
1− 0.42

)3
)0.3×0.3

×
(
1−

(
1− 0.42

)2 ×
(
1− 0.62

)3
)0.3×0.2

×
(
1−

(
1− 0.42

)2 ×
(
1− 0.42

)3
)0.3×0.1

×
(
1−

(
1− 0.42

)2 ×
(
1− 0.52

)3
)0.3×0.4

×
(
1−

(
1− 0.62

)2 ×
(
1− 0.62

)3
)0.2×0.2

×
(
1−

(
1− 0.62

)2 ×
(
1− 0.42

)3
)0.2×0.1

×
(
1−

(
1− 0.62

)2 ×
(
1− 0.52

)3
)0.2×0.4

×
(
1−

(
1− 0.42

)2 ×
(
1− 0.42

)3
)0.1×0.1

×
(
1−

(
1− 0.42

)2 ×
(
1− 0.52

)3
)0.1×0.4

×
(
1−

(
1− 0.52

)2 ×
(
1− 0.52

)3
)0.4×0.4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
2+3

= 0.5333

Similarly, we can obtain

β2 = DHPFGWHM2,3(0.4, 0.6, 0.6, 0.5) = 0.5480
β3 = DHPFGWHM2,3(0.4, 0.7, 0.4, 0.5) = 0.5438
β4 = DHPFGWHM2,3(0.4, 0.7, 0.6, 0.5) = 0.5586

Hence, we can get β = {0.5333, 0.5480, 0.5438, 0.5586}. Therefore,

DHPFGWHM(p̃1, p̃2, p̃3, p̃4) =

{ {0.5630, 0.5632, 0.6376, 0.6377},
{0.5333, 0.5480, 0.5438, 0.5586}

}
.

It can be easily proven that the DHPFGWHM operator satisfies the following properties.

Property 4. (Idempotency) If all p̃ j =
(
hj, gj

)
( j = 1, 2, · · · , n) are equal, i.e., p̃ j = p̃ for all j, then

DHPFGWHMξ,ζw (p̃1, p̃2, . . . , p̃n) = p̃ (25)

Property 5. (Boundedness) Let p̃j =
(
hj, gj

)
( j = 1, 2, · · · , n) be a collection of DHPFNs, and let

p̃+ = ∪α j∈hj,β j∈gj

{{
maxi(αi)

}
,
{
mini(βi)

}}
, p̃− = ∪α j∈hj,β j∈gj

{{
mini(αi)

}
,
{
maxi(βi)

}}
Then

p̃− ≤ DHPFGWHMξ,ζw (p̃1, p̃2, . . . , p̃n) ≤ p̃+ (26)
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Property 6. (Monotonicity) Let p̃j =
(
hj, gj

)
and p̃′j =

(
h′j, g′j

)
, j = 1, 2, · · · , n, be two sets of DHPFNs. If

p̃ j ≤ p̃′j, for all j, then

DHPFGWHMξ,ζw (p̃1, p̃2, . . . , p̃n) ≤ DHPFGWHMξ,ζw

(
p̃′1, p̃′2, . . . , p̃′n

)
(27)

3.3. The DHPFGGHM Aggregation Operator

In the following, based on the geometric mean (GM) operator, Yu [54] extended the GHM operator
to a GGHM operator which can be depicted as follows.

Definition 10 [54]. Assume that ξ, ζ > 0 and bi(i = 1, 2, · · · , n) are a group of non-negative real numbers.
Then, the generalizeGGHM) operator can be expressed as:

GHMξ,ζ(a1, a2, · · · , an) =
1
ξ+ ζ

⎛⎜⎜⎜⎜⎜⎜⎝ n∏
i=1, j=i

(
ξai + ζaj

)⎞⎟⎟⎟⎟⎟⎟⎠
2

n(n+1)

(28)

In this section, we introduced the GGHM operator with dual hesitant Pythagorean fuzzy
information. According to Definition 5, Xu et al. [66] gave the definition of the DHPFGGHM operator
as follows.

Definition 11 [66]. Assume that ξ, ζ > 0 and p̃j =
(
hj, gj

)
( j = 1, 2, · · · , n) are a collection of DHPFNs. Then,

the DHPFGGHM operator can be defined as:

DHPFGGHMξ,ζ(p̃1, p̃2, . . . , p̃n) =
1
ξ+ ζ

(
n⊗

i=1

n⊗
j=i

(
ξp̃i ⊕ ζp̃ j

)) 2
n(n+1)

(29)

According to the operation laws of the DHPFNs described in Definition 5, Xu et al. [66] obtained Theorem 3.

Theorem 3 [66]. Assume that ξ, ζ > 0 and p̃j =
(
hj, gj

)
( j = 1, 2, · · · , n) are a group of DHPFNs. Then, their

fused results obtained by utilizing the DHPFGGHM operator is also a DHPFN, and

DHPFGGHMξ,ζ(p̃1, p̃2, . . . , p̃n) =
1
ξ+ζ

(
n⊗

i=1

n⊗
j=i

(
ξp̃i ⊕ ζp̃ j

)) 2
n(n+1)

= ∪αi∈hi,α j∈hj,βi∈gi,α j∈hj

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
√√√√

1−
⎛⎜⎜⎜⎜⎜⎝1− n∏

i=1, j=i

(
1−

(
1− α2

i

)ξ(
1− α2

j

)ζ) 2
n(n+1)

⎞⎟⎟⎟⎟⎟⎠
1
ξ+ζ

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎝
√

1− n∏
i=1, j=i

(
1− β2ξ

i β
2ζ
j

) 2
n(n+1)

⎞⎟⎟⎟⎟⎟⎠
1
ξ+ζ

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(30)

Proof. Based on Definition 5:

ξp̃i = ∪αi∈hi,βi∈gi

⎧⎪⎪⎨⎪⎪⎩
⎧⎪⎪⎨⎪⎪⎩
√

1−
(
1− α2

i

)ξ⎫⎪⎪⎬⎪⎪⎭,
{
βξi

}⎫⎪⎪⎬⎪⎪⎭ (31)

ζp̃ j = ∪α j∈hj,β j∈gj

⎧⎪⎪⎨⎪⎪⎩
⎧⎪⎪⎨⎪⎪⎩
√

1−
(
1− α2

j

)ζ⎫⎪⎪⎬⎪⎪⎭,
{
βζj

}⎫⎪⎪⎬⎪⎪⎭ (32)
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Thus,

ξp̃i ⊕ ζp̃ j = ∪αi∈hi,α j∈hj,βi∈gi,α j∈hj,

⎧⎪⎪⎨⎪⎪⎩
⎧⎪⎪⎨⎪⎪⎩
√

1−
(
1− α2

i

)ξ(
1− α2

j

)ζ⎫⎪⎪⎬⎪⎪⎭,
{
βξi β
ζ
j

}⎫⎪⎪⎬⎪⎪⎭ (33)

Therefore,
n⊗

i=1

n⊗
j=i

(
ξp̃i ⊕ ζp̃ j

)

= ∪αi∈hi,α j∈hj,βi∈gi,α j∈hj

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎨⎪⎪⎩
√

n∏
i=1, j=i

(
1−

(
1− α2

i

)ξ(
1− α2

j

)ζ)⎫⎪⎪⎬⎪⎪⎭,

⎧⎪⎪⎨⎪⎪⎩
√

1− n∏
i=1, j=i

(
1− β2ξ

i β
2ζ
j

)⎫⎪⎪⎬⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(34)

Furthermore, (
n⊗

i=1

n⊗
j=i

(
ξp̃i ⊕ ζp̃ j

)) 2
n(n+1)

= ∪αi∈hi,α j∈hj,βi∈gi,α j∈hj

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√√

n∏
i=1, j=i

(
1−

(
1− α2

i

)ξ(
1− α2

j

)ζ) 2
n(n+1)

⎫⎪⎪⎪⎬⎪⎪⎪⎭,

⎧⎪⎪⎨⎪⎪⎩
√

1− n∏
i=1, j=i

(
1− β2ξ

i β
2ζ
j

) 2
n(n+1)

⎫⎪⎪⎬⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(35)

Therefore,

DHPFGGHMξ,ζ(p̃1, p̃2, . . . , p̃n) =
1
ξ+ζ

(
n⊗

i=1

n⊗
j=i

(
ξp̃i ⊕ ζp̃ j

)) 2
n(n+1)

= ∪αi∈hi,α j∈hj,βi∈gi,α j∈hj

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
√√√√

1−
⎛⎜⎜⎜⎜⎜⎝1− n∏

i=1, j=i

(
1−

(
1− α2

i

)ξ(
1− α2

j

)ζ) 2
n(n+1)

⎞⎟⎟⎟⎟⎟⎠
1
ξ+ζ

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎝
√

1− n∏
i=1, j=i

(
1− β2ξ

i β
2ζ
j

) 2
n(n+1)

⎞⎟⎟⎟⎟⎟⎠
1
ξ+ζ

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(36)

Thus, the proof have been finished.

Example 5. Assume that p̃1 = {{0.7, 0.8}, {0.4}}, p̃2 = {{0.3}, {0.6, 0.7}}, p̃3 = {{0.1, 0.3}, {0.4, 0.6}} and
p̃4 = {{0.5}, {0.5}} are four DHPFNs, and suppose that ξ = 2, ζ = 3. Then, according to the DHPFGGHM
operator, we can obtain the fused results as follows. For the membership degree function α, the fused results are
shown as:

189



Mathematics 2019, 7, 344

α1 = DHPFGGHM2,3(0.7, 0.3, 0.1, 0.5) =

√√√√
1−

⎛⎜⎜⎜⎜⎜⎝1− n∏
i=1, j=i

(
1−

(
1− α2

i

)ξ(
1− α2

j

)ζ) 2
n(n+1)

⎞⎟⎟⎟⎟⎟⎠
1
ξ+ζ

=

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
1−

(
1− 0.72

)2 ×
(
1− 0.72

)3
)
×
(
1−

(
1− 0.72

)2 ×
(
1− 0.32

)3
)

×
(
1−

(
1− 0.72

)2 ×
(
1− 0.12

)3
)
×
(
1−

(
1− 0.72

)2 ×
(
1− 0.52

)3
)

×
(
1−

(
1− 0.32

)2 ×
(
1− 0.32

)3
)
×
(
1−

(
1− 0.32

)2 ×
(
1− 0.12

)3
)

×
(
1−

(
1− 0.32

)2 ×
(
1− 0.52

)3
)
×
(
1−

(
1− 0.12

)2 ×
(
1− 0.12

)3
)

×
(
1−

(
1− 0.12

)2 ×
(
1− 0.52

)3
)
×
(
1−

(
1− 0.52

)2 ×
(
1− 0.52

)3
)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
10
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
2+3

= 0.3461

Similarly, we can obtain

α2 = DHPFGGHM2,3(0.7, 0.3, 0.3, 0.5) = 0.4236
α3 = DHPFGGHM2,3(0.8, 0.3, 0.1, 0.5) = 0.3545
α4 = DHPFGGHM2,3(0.8, 0.3, 0.3, 0.5) = 0.4343

Hence, we can get α = {0.3461, 0.4236, 0.3545, 0.4343}.
For the non-membership degree function β, the fused results are shown as:

β1 = DHPFGGHM2,3(0.4, 0.6, 0.4, 0.5) =

⎛⎜⎜⎜⎜⎜⎝
√

1− n∏
i=1, j=i

(
1− β2ξ

i β
2ζ
j

) 2
n(n+1)

⎞⎟⎟⎟⎟⎟⎠
1
ξ+ζ

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√1−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
1− 0.42×2 × 0.42×3

)
×
(
1− 0.42×2 × 0.62×3

)
×
(
1− 0.42×2 × 0.42×3

)
×
(
1− 0.42×2 × 0.52×3

)
×
(
1− 0.62×2 × 0.62×3

)
×
(
1− 0.62×2 × 0.42×3

)
×
(
1− 0.62×2 × 0.52×3

)
×
(
1− 0.42×2 × 0.42×3

)
×
(
1− 0.42×2 × 0.52×3

)
×
(
1− 0.52×2 × 0.52×3

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
10

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
2+3

= 0.5100

Similarly, we can obtain

β2 = DHPFGGHM2,3(0.4, 0.6, 0.6, 0.5) = 0.5516
β3 = DHPFGGHM2,3(0.4, 0.7, 0.4, 0.5) = 0.5734
β4 = DHPFGGHM2,3(0.4, 0.7, 0.6, 0.5) = 0.5968

Hence, we can get β = {0.5100, 0.5516, 0.5734, 0.5968}.Therefore,

DHPFGGHM(p̃1, p̃2, p̃3, p̃4) =

{ {0.3461, 0.4236, 0.3545, 0.4343},
{0.5100, 0.5516, 0.5734, 0.5968}

}
.
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It can be easily proven that the DHPFGGHM operator satisfies the following properties.

Property 7. (Idempotency) If all p̃ j =
(
hj, gj

)
( j = 1, 2, · · · , n) are equal, i.e., p̃ j = p̃ for all j, then

DHPFGGHMξ,ζ(p̃1, p̃2, . . . , p̃n) = p̃ (37)

Property 8. (Boundedness) Let p̃j =
(
hj, gj

)
( j = 1, 2, · · · , n) be a collection of DHPFNs, and let

p̃+ = ∪α j∈hj,β j∈gj

{{
maxi(αi)

}
,
{
mini(βi)

}}
, p̃− = ∪α j∈hj,β j∈gj

{{
mini(αi)

}
,
{
maxi(βi)

}}
Then

p̃− ≤ DHPFGGHMξ,ζ(p̃1, p̃2, . . . , p̃n) ≤ p̃+ (38)

Property 9. (Monotonicity) Let p̃j =
(
hj, gj

)
and p̃′j =

(
h′j, g′j

)
, j = 1, 2, · · · , n, be two set of DHPFNs.

If p̃ j ≤ p̃′j, for all j, then

DHPFGGHMξ,ζ(p̃1, p̃2, . . . , p̃n) ≤ DHPFGGHMξ,ζ
(
p̃′1, p̃′2, . . . , p̃′n

)
(39)

3.4. The DHPFGGWHM Aggregation Operator

Using Definition 11, we can conclude that the DHPFGGHM operator didn’t take the importance of
arguments being fused into account. However, in many practical MADM problems, we should consider
the weights of attributes. To overcome the limitations of the DHPFGGHM operator, we propose a
novel DHPFGGWHM operator as follows.

Definition 12. Assume that ξ, ζ > 0 and p̃j =
(
hj, gj

)
( j = 1, 2, · · · , n) are a collection of DHPFNs. Then,

the DHPFGGWHM operator can be defined as:

DHPFGGWHMξ,ζw (p̃1, p̃2, . . . , p̃n) =
1
ξ+ ζ

(
n⊗

i=1

n⊗
j=i

(
ξp̃i ⊕ ζp̃ j

)wiwj
)

(40)

According to the operation laws of the DHPFNs described in Definition 5, we can obtain Theorem 4.

Theorem 4. Assume that ξ, ζ > 0 and p̃j =
(
hj, gj

)
( j = 1, 2, · · · , n) are a collection of DHPFNs with the

weighting vector w = (w1, w2, . . . , wn)
T which satisfies wj > 0, i = 1, 2, . . . , n and

n∑
j=1

wj = 1. Then, their

fused result obtained by utilizing the DHPFGGWHM operator is also a DHPFN, and

DHPFGGWHMξ,ζw (p̃1, p̃2, . . . , p̃n) =
1
ξ+ζ

(
n⊗

i=1

n⊗
j=i

(
ξp̃i ⊕ ζp̃ j

)wiwj
)

= ∪αi∈hi,α j∈hj,βi∈gi,α j∈hj,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
√√√

1−
⎛⎜⎜⎜⎜⎝1− n∏

i=1, j=i

(
1−

(
1− α2

i

)ξ(
1− α2

j

)ζ)wiwj
⎞⎟⎟⎟⎟⎠

1
ξ+ζ

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎝
√

1− n∏
i=1, j=i

(
1− β2ξ

i β
2ζ
j

)wiwj
⎞⎟⎟⎟⎟⎟⎠

1
ξ+ζ

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(41)
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Proof. Based on Definition 5, we can obtain:

ξp̃i = ∪αi∈hi,βi∈gi

⎧⎪⎪⎨⎪⎪⎩
⎧⎪⎪⎨⎪⎪⎩
√

1−
(
1− α2

i

)ξ⎫⎪⎪⎬⎪⎪⎭,
{
βξi

}⎫⎪⎪⎬⎪⎪⎭ (42)

ζp̃ j = ∪α j∈hj,β j∈gj

⎧⎪⎪⎨⎪⎪⎩
⎧⎪⎪⎨⎪⎪⎩
√

1−
(
1− α2

j

)ζ⎫⎪⎪⎬⎪⎪⎭,
{
βζj

}⎫⎪⎪⎬⎪⎪⎭ (43)

Thus,

ξp̃i ⊕ ζp̃ j = ∪αi∈hi,α j∈hj,βi∈gi,α j∈hj,

⎧⎪⎪⎨⎪⎪⎩
⎧⎪⎪⎨⎪⎪⎩
√

1−
(
1− α2

i

)ξ(
1− α2

j

)ζ⎫⎪⎪⎬⎪⎪⎭,
{
βξi β
ζ
j

}⎫⎪⎪⎬⎪⎪⎭ (44)

Therefore, (
ξp̃i ⊕ ζp̃ j

)wiwj

= ∪αi∈hi,α j∈hj,βi∈gi,α j∈hj,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎜⎜⎝
√

1−
(
1− α2

i

)ξ(
1− α2

j

)ζ⎞⎟⎟⎟⎟⎠wiwj
⎫⎪⎪⎬⎪⎪⎭,

⎧⎪⎪⎨⎪⎪⎩
√

1−
(
1− β2ξ

i β
2ζ
j

)wiwj

⎫⎪⎪⎬⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(45)

Thereafter,
n⊗

i=1

n⊗
j=i

(
ξp̃i ⊕ ζp̃ j

)wiwj

= ∪αi∈hi,α j∈hj,βi∈gi,α j∈hj,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎝
√

n∏
i=1, j=i

(
1−

(
1− α2

i

)ξ(
1− α2

j

)ζ)⎞⎟⎟⎟⎟⎟⎠
wiwj⎫⎪⎪⎬⎪⎪⎭,

⎧⎪⎪⎨⎪⎪⎩
√

1− n∏
i=1, j=i

(
1− β2ξ

i β
2ζ
j

)wiwj

⎫⎪⎪⎬⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(46)

Therefore,

DHPFGGWHMξ,ζw (p̃1, p̃2, . . . , p̃n) =
1
ξ+ζ

(
n⊗

i=1

n⊗
j=i

(
ξp̃i ⊕ ζp̃ j

)wiwj
)

= ∪αi∈hi,α j∈hj,βi∈gi,α j∈hj,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
√√√

1−
⎛⎜⎜⎜⎜⎝1− n∏

i=1, j=i

(
1−

(
1− α2

i

)ξ(
1− α2

j

)ζ)wiwj
⎞⎟⎟⎟⎟⎠

1
ξ+ζ

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎝
√

1− n∏
i=1, j=i

(
1− β2ξ

i β
2ζ
j

)wiwj
⎞⎟⎟⎟⎟⎟⎠

1
ξ+ζ

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(47)

Thus, we have finished the proof.

Example 6. Assume that p̃1 = {{0.7, 0.8}, {0.4}}, p̃2 = {{0.3}, {0.6, 0.7}}, p̃3 = {{0.1, 0.3}, {0.4, 0.6}} and
p̃4 = {{0.5}, {0.5}} are four DHPFNs, and suppose that ξ = 2, ζ = 3 and wj = (0.3, 0.2, 0.1, 0.4). Then,
according to the DHPFGGWHM operator, we can obtain the fused results as follows. For the membership degree
function α, the fused results are shown as:
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α1 = DHPFGGWHM2,3(0.7, 0.3, 0.1, 0.5) =

√√√
1−

⎛⎜⎜⎜⎜⎝1− n∏
i=1, j=i

(
1−

(
1− α2

i

)ξ(
1− α2

j

)ζ)wiwj
⎞⎟⎟⎟⎟⎠

1
ξ+ζ

=

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1−
(
1−

(
1− 0.72

)2 ×
(
1− 0.72

)3
)0.3×0.3

×
(
1−

(
1− 0.72

)2 ×
(
1− 0.32

)3
)0.3×0.2

×
(
1−

(
1− 0.72

)2 ×
(
1− 0.12

)3
)0.3×0.1

×
(
1−

(
1− 0.72

)2 ×
(
1− 0.52

)3
)0.3×0.4

×
(
1−

(
1− 0.32

)2 ×
(
1− 0.32

)3
)0.2×0.2

×
(
1−

(
1− 0.32

)2 ×
(
1− 0.12

)3
)0.2×0.1

×
(
1−

(
1− 0.32

)2 ×
(
1− 0.52

)3
)0.2×0.4

×
(
1−

(
1− 0.12

)2 ×
(
1− 0.12

)3
)0.1×0.1

×
(
1−

(
1− 0.12

)2 ×
(
1− 0.52

)3
)0.1×0.4

×
(
1−

(
1− 0.52

)2 ×
(
1− 0.52

)3
)0.4×0.4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
2+3

= 0.5156

Similarly, we can obtain

α2 = DHPFGGWHM2,3(0.7, 0.3, 0.3, 0.5) = 0.5378
α3 = DHPFGGWHM2,3(0.8, 0.3, 0.1, 0.5) = 0.5273
α4 = DHPFGGWHM2,3(0.8, 0.3, 0.3, 0.5) = 0.5503

Hence, we can get α = {0.5156, 0.5378, 0.5273, 0.5503}.
For the non-membership degree function β, the fused results are shown as:

β1 = DHPFGGWHM2,3(0.4, 0.6, 0.4, 0.5) =

⎛⎜⎜⎜⎜⎜⎝
√

1− n∏
i=1, j=i

(
1− β2ξ

i β
2ζ
j

)wiwj
⎞⎟⎟⎟⎟⎟⎠

1
ξ+ζ

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

1−
(
1− 0.42×2 × 0.42×3

)0.3×0.3 ×
(
1− 0.42×2 × 0.62×3

)0.3×0.2 ×
(
1− 0.42×2 × 0.42×3

)0.3×0.1

×
(
1− 0.42×2 × 0.52×3

)0.3×0.4 ×
(
1− 0.62×2 × 0.62×3

)0.2×0.2 ×
(
1− 0.62×2 × 0.42×3

)0.2×0.1

×
(
1− 0.62×2 × 0.52×3

)0.2×0.4 ×
(
1− 0.42×2 × 0.42×3

)0.1×0.1 ×
(
1− 0.42×2 × 0.52×3

)0.1×0.4

×
(
1− 0.52×2 × 0.52×3

)0.4×0.4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
5

= 0.4850

Similarly, we can obtain

β2 = DHPFGGWHM2,3(0.4, 0.6, 0.6, 0.5) = 0.5006
β3 = DHPFGGWHM2,3(0.4, 0.7, 0.4, 0.5) = 0.5338
β4 = DHPFGGWHM2,3(0.4, 0.7, 0.6, 0.5) = 0.5433

Hence, we can get β = {0.4850, 0.5006, 0.5338, 0.5433}. Therefore,

DHPFGGWHM(p̃1, p̃2, p̃3, p̃4) =

{ {0.5156, 0.5378, 0.5273, 0.5503},
{0.4850, 0.5006, 0.5338, 0.5433}

}
.
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It can be easily proven that the DHPFGGWHM operator satisfies the following properties.

Property 10. (Idempotency) If all p̃ j =
(
hj, gj

)
( j = 1, 2, · · · , n) are equal, i.e., p̃ j = p̃ for all j, then

DHPFGGWHMξ,ζw (p̃1, p̃2, . . . , p̃n) = p̃ (48)

Property 11. (Boundedness) Let p̃j =
(
hj, gj

)
( j = 1, 2, · · · , n) be a collection of DHPFNs, and let

p̃+ = ∪α j∈hj,β j∈gj

{{
maxi(αi)

}
,
{
mini(βi)

}}
, p̃− = ∪α j∈hj,β j∈gj

{{
mini(αi)

}
,
{
maxi(βi)

}}
Then

p̃− ≤ DHPFGGWHMξ,ζw (p̃1, p̃2, . . . , p̃n) ≤ p̃+ (49)

Property 12. (Monotonicity) Let p̃j =
(
hj, gj

)
and p̃′j =

(
h′j, g′j

)
, j = 1, 2, · · · , n, be two sets of DHPFNs. If

p̃ j ≤ p̃′j, for all j, then

DHPFGGWHMξ,ζw (p̃1, p̃2, . . . , p̃n) ≤ DHPFGGWHMξ,ζw

(
p̃′1, p̃′2, . . . , p̃′n

)
(50)

4. An Approach to MADM with DHPFNs Information

In this section, we shall use the DHPFGWHM and DHPFGGWHM operators to deal with MADM
problems with dual hesitant Pythagorean fuzzy information. Suppose that there are m alternatives
η =

{
η1, η2, · · · , ηm

}
, and each alternative is characterized by n attributes δ = {δ1, δ2, · · · , δn}with the

weighting vector being wj = {w1, w2, · · · , wn}. Then, the dual hesitant Pythagorean fuzzy matrix can be
constructed as P̃ =

(
p̃i j

)
m×n

, with each element p̃i j =
(
hij, gij

)
(i = 1, 2, · · · , m, j = 1, 2, · · · , n) indicating

a dual hesitant Pythagorean fuzzy number, where hij means the membership degree set with several
values in [0, 1], and gij means the no-membership degree set with several values in [0, 1].

In what follows, we apply the DHPFGWHM or DHPFGGWHM operator to MADM problems for
supplier selection in supply chain management with dual hesitant Pythagorean fuzzy information.

Step 1. In order to derive the fused results of each alternative, for alternatives η =
{
η1, η2, · · · , ηm

}
,

based on the weighting vector wj = {w1, w2, · · · , wn} and dual hesitant Pythagorean fuzzy information
p̃i j =

(
hij, gij

)
(i = 1, 2, · · · , m, j = 1, 2, · · · , n) given in matrix P̃ =

(
p̃i j

)
m×n

, we can aggregate all the
DHPFNs by the DHPFGWHM operator

p̃i = DHPFGWHMξ,ζw (p̃i1, p̃i2, . . . , p̃in) =

(
n⊕

k=1

n⊕
j=k

(
wikwij

(
p̃ξikp̃ζi j

))) 1
ξ+ζ

= ∪αik∈hik,αi j∈hij,βi j∈gij,αi j∈hij,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎝
√

1− n∏
k=1, j=k

(
1− α2ξ

ik α
2ζ
i j

)wiwj
⎞⎟⎟⎟⎟⎟⎠

1
ξ+ζ

⎫⎪⎪⎪⎬⎪⎪⎪⎭,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
√√√

1−
⎛⎜⎜⎜⎜⎝1− n∏

k=1, j=k

(
1−

(
1− β2

ik

)ξ(
1− β2

i j

)ζ)wiwj
⎞⎟⎟⎟⎟⎠

1
ξ+ζ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(51)
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or the DHPFGGWHM operator

p̃i = DHPFGGWHMξ,ζw (p̃i1, p̃i2, . . . , p̃in) =
1
ξ+ζ

(
n⊗

k=1

n⊗
j=k

(
ξp̃ik ⊕ ζp̃i j

)wikwij
)

= ∪αik∈hik,αi j∈hij,βi j∈gij,αi j∈hij,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
√√√

1−
⎛⎜⎜⎜⎜⎝1− n∏

k=1, j=k

(
1−

(
1− α2

ik

)ξ(
1− α2

i j

)ζ)wiwj
⎞⎟⎟⎟⎟⎠

1
ξ+ζ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎝
√

1− n∏
k=1, j=k

(
1− β2ξ

ik β
2ζ
i j

)wiwj
⎞⎟⎟⎟⎟⎟⎠

1
ξ+ζ

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(52)

to obtain the overall fused results p̃i(i = 1, 2, · · · , m).

Step 2. To obtain the rank of all the alternatives, we need to adapt the score function and accuracy
function described in Definition 4. Firstly, based on the score function equation, we can compute the
score values S(p̃i) (i = 1, 2, · · · , m) of p̃i(i = 1, 2, · · · , m). If all the score values of p̃i(i = 1, 2, · · · , m) are
different, we can easily obtain the ordering of alternatives. Then, if there is no difference between
any two scores S(p̃i) and S

(
p̃ j
)
, we need to compute the accuracy values H(p̃i) and H

(
p̃ j
)

of p̃i and p̃ j,
respectively, and then determine the ordering of all the alternatives ηi and η j based on the accuracy
results H(p̃i) and H

(
p̃ j
)
.

Step 3. Determine the ordering of all the alternatives ηi(i = 1, 2, · · · , m) and select the best one(s)
according to the scores values S(p̃i)(i = 1, 2, · · · , m) and accuracy results H(p̃i). Thus, we have finished
the decision making process by using the DHPFGWHM operator or the DHPFGGWHM operator.

5. Numerical Example and Comparative Analysis

5.1. Numerical Example

In this section we present a numerical example for supplier selection in supply chain management
with dual hesitant Pythagorean fuzzy information in order to demonstrate the method proposed in this
paper. Suppose there is a problem to do with the supplier selection in supply chain management which
is a classical MADM problem. There are five prospective suppliers ηi(i = 1, 2, 3, 4, 5) for four attributes
δ j( j = 1, 2, 3, 4). The four attributes include product quality (δ1), service (δ2), delivery, (δ3) and price
(δ4), respectively. In order to avoid influencing each other, the decision makers are required to evaluate
the five suppliers ηi(i = 1, 2, 3, 4, 5) under the above four attributes in anonymity. The decision matrix
P̃ =

(
p̃i j

)
5×4

is presented in Table 1, where p̃i j(i = 1, 2, 3, 4, 5, j = 1, 2, 3, 4) are in the form of DHPFNs.
(Suppose the weighting vector is wj = (0.25, 0.34, 0.27, 0.14))

Table 1. Dual hesitant Pythagorean fuzzy decision matrix.

Alternatives δ1 δ2 δ3 δ4

η1 {{0.4,0.5},{0.7}} {{0.5,0.6},{0.4,0.5)} {{0.3,0.4},{0.8)} {{0.5,0.6},{0.6}}
η2 {{0.7},{0.5}} {{0.3,0.5,0.6},{0.5}} {{0.3},{0.7,0.8,0.9}} {{0.6),{0.5,0.6)}
η3 {{0.6,0.8},{0.3}} {{0.3},{0.8,0.9}} {{0.3,0.4,0.5},{0.7}} {{0.6,0.7,0.8},{0.4}}
η4 {{0.8},{0.4})} {{0.7,0.8,0.9},{0.3}} {{0.2,0.3},{0.4}} {{0.2},{0.7,0.8,0.9}}
η5 {{0.1,0.2},{0.3}} {{0.3,0.4,0.5},{0.6}} {{0.5,0.6},{0.3}} {{0.3,0.4,0.5},{0.6}}

In what follows, we can utilize our developed methods to deal with the supplier selection in
supply chain management with dual hesitant Pythagorean fuzzy information.

Step 1. We aggregate the dual hesitant Pythagorean fuzzy information given in the matrix by utilizing
the DHPFGWHM operator to obtain the overall preference values p̃i of the supplier in supply chain
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management ηi(i = 1, 2, 3, 4, 5). Taking the alternative η1 as an example (here, we take ξ = ζ = 2),
we have

p̃1 = DHPFGWHMξ,ζw (p̃11, p̃12, p̃13, p̃14) =

(
4⊕

k=1

4⊕
j=k

(
wikwij

(
p̃ξikp̃ζi j

))) 1
ξ+ζ

= ∪αik∈hik,αi j∈hij,βi j∈gij,αi j∈hij,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎝
√

1− 4∏
k=1, j=k

(
1− α2ξ

ik α
2ζ
i j

)wiwj
⎞⎟⎟⎟⎟⎟⎠

1
ξ+ζ

⎫⎪⎪⎪⎬⎪⎪⎪⎭,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
√√√

1−
⎛⎜⎜⎜⎜⎝1− 4∏

k=1, j=k

(
1−

(
1− β2

ik

)ξ(
1− β2

i j

)ζ)wiwj
⎞⎟⎟⎟⎟⎠

1
ξ+ζ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

{ {{0.4, 0.5}, {0.7}}, {{0.5, 0.6}, {0.4, 0.5) }, {{0.3, 0.4}, {0.8)}, {{0.5, 0.6}, {0.6}}}
= {{0.4234, 0.4461, 0.4335, 0.4547, 0.4824, 0.4964, 0.4887, 0.5023, 0.4448, 0.4642,

0.4536, 0.4719, 0.4957, 0.5087, 0.5016, 0.5143}, {0.6319, 0.6725}}

Step 2. Compute the scores results s(p̃i) (i = 1, 2, 3, 4, 5) of the overall dual hesitant Pythagorean fuzzy
preference values p̃i (i = 1, 2, 3, 4, 5):

s(p̃1) = 0.3998, s(p̃2) = 0.4536, s(p̃3) = 0.4669
s(p̃4) = 0.6255, s(p̃5) = 0.4674

Step 3. Determine the ordering of all the suppliers ηi(i = 1, 2, 3, 4, 5) based on the scores values
s(p̃i) (i = 1, 2, 3, 4, 5): η4 
 η5 
 η3 
 η2 
 η1, and it is clear that the most desirable supplier is η4.

Similarly, if we utilize the DHPFGGWHM operator to solve this MADM, the decision making
steps can be described as follows.

Step 1′. Aggregate all dual hesitant Pythagorean fuzzy values p̃i j( j = 1, 2, 3, 4) by using the
DHPFGGWHM operator to derive the overall dual hesitant Pythagorean fuzzy values p̃i(i = 1, 2, · · · , 5)
of the supplier ηi. Taking supplier η1 for an example (here, we take ξ = ζ = 2), we have

p̃1 = DHPFGGWHMξ,ζw (p̃11, p̃12, p̃13, p̃14) =
1
ξ+ζ

(
4⊗

k=1

4⊗
j=k

(
ξp̃ik ⊕ ζp̃i j

)wikwij
)

= ∪αik∈hik,αi j∈hij,βi j∈gij,αi j∈hij,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
√√√

1−
⎛⎜⎜⎜⎜⎝1− 4∏

k=1, j=k

(
1−

(
1− α2

ik

)ξ(
1− α2

i j

)ζ)wiwj
⎞⎟⎟⎟⎟⎠

1
ξ+ζ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎝
√

1− 4∏
k=1, j=k

(
1− β2ξ

ik β
2ζ
i j

)wiwj
⎞⎟⎟⎟⎟⎟⎠

1
ξ+ζ

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

{ {{0.4, 0.5}, {0.7}}, {{0.5, 0.6}, {0.4, 0.5) }, {{0.3, 0.4}, {0.8)}, {{0.5, 0.6}, {0.6}}}
= {{0.4929, 0.5022, 0.5190, 0.5287, 0.5186, 0.5283, 0.5460, 0.5560, 0.5140, 0.5236,

0.5406, 0.5506, 0.5406, 0.5505, 0.5686, 0.5790}, {0.6421, 0.6493}}

Step 2′. Compute the scores results s(p̃i) (i = 1, 2, 3, 4, 5) of the overall dual hesitant Pythagorean fuzzy
values p̃i(i = 1, 2, 3, 4, 5) of the supplier p̃i:

s(p̃1) = 0.4349, s(p̃2) = 0.4549, s(p̃3) = 0.3976
s(p̃4) = 0.5240, s(p̃5) = 0.4780
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Step 3′. Determine the ordering of all the suppliers ηi(i = 1, 2, 3, 4, 5) based on the score results
s(p̃i) (i = 1, 2, 3, 4, 5) of p̃i(i = 1, 2, · · · , 5): η4 
 η5 
 η2 
 η1 
 η3 and it is clear that the most desirable
supplier in supply chain management is η4.

According to the above analysis, we can easily find that although the overall rating values of the
alternatives are slightly different by using two operators respectively, the most desirable supplier in
supply chain management is η4.

5.2. Influence of Parameters on the Final Result

The parameters ξ and ζ play an important role in the final ranking of alternatives. We may obtain
different ordering results by assigning different values to ξ and ζ. By altering the values of ξ and
ζ, different ranking results are obtained, as shown in Tables 2 and 3. Therefore, the DHPFGWHM
and DHPFGGWHM operators are shown to be considerably flexible by using a parameter vector.
Tables 2 and 3 show that the ranking results increase and become steady with the increase of values
in the parameter vector. That is, the final results become increasingly objective by considering the
interrelationship among the attribute values. These features of the DHPFGWHM and DHPFGGWHM
operators are crucial in real MADM problems.

Table 2. Ordering by the DHPFGWHM operators.

Parameter s(η1) s(η2) s(η3) s(η4) s(η5) Ordering

ξ = ζ = 0.5 0.2989 0.3322 0.3126 0.4804 0.3732 η4 
 η5 
 η2 
 η3 
 η1
ξ = ζ = 1 0.3504 0.3921 0.3834 0.5540 0.4208 η4 
 η5 
 η2 
 η3 
 η1
ξ = ζ = 2 0.3998 0.4536 0.4669 0.6255 0.4674 η4 
 η5 
 η3 
 η2 
 η1
ξ = ζ = 3 0.4288 0.4887 0.5197 0.6621 0.4933 η4 
 η3 
 η5 
 η2 
 η1
ξ = ζ = 4 0.4493 0.5117 0.5559 0.6846 0.5108 η4 
 η3 
 η2 
 η5 
 η1
ξ = ζ = 5 0.4647 0.5280 0.5822 0.7001 0.5235 η4 
 η3 
 η2 
 η5 
 η1

Table 3. Ordering by the DHPFGGWHM operators.

Parameter s(η1) s(η2) s(η3) s(η4) s(η5) Ordering

ξ = ζ = 0.5 0.5484 0.5775 0.5431 0.6850 0.5728 η4 
 η2 
 η5 
 η1 
 η3
ξ = ζ = 1 0.4901 0.5176 0.4710 0.6165 0.5256 η4 
 η5 
 η2 
 η1 
 η3
ξ = ζ = 2 0.4349 0.4549 0.3976 0.5240 0.4780 η4 
 η5 
 η2 
 η1 
 η3
ξ = ζ = 3 0.4033 0.4146 0.3563 0.4591 0.4515 η4 
 η5 
 η2 
 η1 
 η3
ξ = ζ = 4 0.3815 0.3854 0.3290 0.4139 0.4344 η5 
 η4 
 η2 
 η1 
 η3
ξ = ζ = 5 0.3653 0.3633 0.3094 0.3817 0.4223 η5 
 η4 
 η1 
 η2 
 η3

5.3. Comparative Analysis

The prominent characteristic of the DHPFGWHM and DHPFGGWHM operators is that they can
consider the interrelationship among the DHFNs. Next, we shall compare our developed methods
with the dual hesitant Pythagorean fuzzy weighted average (DHPFWA) and dual hesitant Pythagorean
fuzzy weighted geometric (DHPFWG) operators [53], with the comparative analysis results listed
as follows.

According to Table 1 and attribute weights, the fused values obtained by the DHPFGWA
operator are:

p̃1 = DHPFWA(p̃11, p̃12, p̃13, p̃14) =
4⊕

j=1
wjp̃1 j

=

{{
0.4325, 0.4527, 0.4522, 0.4711, 0.4793, 0.4967, 0.4962, 0.5126,
0.4580, 0.4766, 0.4761, 0.4936, 0.5013, 0.5174, 0.5170, 0.5323

}
,
{

0.5872,
0.6334

}}
;
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p̃2 = DHPFWA(p̃21, p̃22, p̃23, p̃24) =
4⊕

j=1
wjp̃2 j

= {{0.5005, 0.5461, 0.5788}, {0.5476, 0.5617, 0.5677, 0.5823, 0.5860, 0.6011}};

p̃3 = DHPFWA(p̃31, p̃32, p̃33, p̃34) =
4⊕

j=1
wjp̃3 j

=

{{
0.4547, 0.4812, 0.5178, 0.4775, 0.5022, 0.5364, 0.5071, 0.5296, 0.5610,
0.5595, 0.5784, 0.6051, 0.5757, 0.5936, 0.6190, 0.5973, 0.6139, 0.6376

}
,
{

0.5480,
0.5704

}}
;

p̃4 = DHPFWA(p̃41, p̃42, p̃43, p̃44) =
4⊕

j=1
wjp̃4 j

= {{0.6278, 0.6347, 0.6796, 0.6852, 0.7529, 0.7570}, {0.3923, 0.3997, 0.4063}};

p̃5 = DHPFWA(p̃51, p̃52, p̃53, p̃54) =
4⊕

j=1
wjp̃5 j

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0.3434, 0.3574, 0.3761, 0.3936, 0.4053, 0.4213, 0.3763, 0.3888, 0.4056,
0.4214, 0.4321, 0.4467, 0.4172, 0.4281, 0.4428, 0.4568, 0.4663, 0.4794,
0.3531, 0.3666, 0.3848, 0.4017, 0.4132 0.4287, 0.3849, 0.3971, 0.4134,
0.4288, 0.4393, 0.4535, 0.4247, 0.4353, 0.4497, 0.4634, 0.4727, 0.4855

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭, {0.4184}

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭.

Then, based on the score function of the dual hesitant Pythagorean fuzzy elements (DHPFEs),
we can obtain the score results of p̃i as:

s(p̃1) = 0.4317, s(p̃2) = 0.4822, s(p̃3) = 0.4977
s(p̃4) = 0.6592, s(p̃5) = 0.5005

Then, we rank all the suppliers in supply chain management ηi(i = 1, 2, 3, 4, 5) in accordance with
the scores s(p̃i) (i = 1, 2, 3, 4, 5) of the overall dual hesitant Pythagorean fuzzy values p̃i(i = 1, 2, · · · , 5):
η4 
 η5 
 η3 
 η2 
 η1 and thus the most desirable supplier in supply chain management is obtained,
which is η4.

According to Table 1 and attribute weights, the fused values by the DHPFWG operator are:

p̃1 = DHPFWG(p̃11, p̃12, p̃13, p̃14) =
4⊗

j=1

(
p̃1 j

)wj

=

{{
0.4119, 0.4226, 0.4452, 0.4567, 0.4383, 0.4496, 0.4737, 0.4859,
0.4356, 0.4468, 0.4708, 0.4829, 0.4634, 0.4754, 0.5009, 0.5138

}
,
{

0.6574,
0.6735

}}
;

p̃2 = DHPFWG(p̃21, p̃22, p̃23, p̃24) =
4⊗

j=1

(
p̃2 j

)wj

= {{0.4086, 0.4861, 0.5171}, {0.5694, 0.5822, 0.6203, 0.6311, 0.6945, 0.7026}};

p̃3 = DHPFWG(p̃31, p̃32, p̃33, p̃34) =
4⊗

j=1

(
p̃3 j

)wj

=

{{
0.3931, 0.4017, 0.4093, 0.4335, 0.4430, 0.4513, 0.4677, 0.4779, 0.4869,
0.4224, 0.4316, 0.4398, 0.4658, 0.4760, 0.4850, 0.5026, 0.5135, 0.5232

}
,
{

0.6622,
0.7404

}}
;

p̃4 = DHPFWG(p̃41, p̃42, p̃43, p̃44) =
4⊗

j=1

(
p̃4 j

)wj

= {{0.6278, 0.6347, 0.6796, 0.6852, 0.7529, 0.7570}, {0.3923, 0.3997, 0.4063}};

p̃5 = DHPFWG(p̃51, p̃52, p̃53, p̃54) =
4⊗

j=1

(
p̃5 j

)wj

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0.2617, 0.2724, 0.2811, 0.2749, 0.2862, 0.2952, 0.2885, 0.3004, 0.3099,
0.3031, 0.3156, 0.3256, 0.3113, 0.3241, 0.3344, 0.3270, 0.3404, 0.3512,
0.3112, 0.3240, 0.3342, 0.3269, 0.3403, 0.3511, 0.3431, 0.3572, 0.3686,
0.3605, 0.3753, 0.3872, 0.3702, 0.3854, 0.3976, 0.3889, 0.4049, 0.4177

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭, {0.4811}

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭.
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Then, based on the score function of the DHPFEs, we can obtain the score results of p̃i as:

s(p̃1) = 0.3851, s(p̃2) = 0.4099, s(p̃3) = 0.3584
s(p̃4) = 0.4939, s(p̃5) = 0.4410

Then, we rank all the suppliers in supply chain management ηi(i = 1, 2, 3, 4, 5) in accordance with
the scores s(p̃i) (i = 1, 2, 3, 4, 5) of the overall dual hesitant Pythagorean fuzzy values p̃i(i = 1, 2, · · · , 5):
η4 
 η5 
 η2 
 η1 
 η3 and thus the most desirable supplier in supply chain management is obtained,
which is η4.

According to Table 4, we can easily conclude that the ordering is slightly different and that these are
some of the best alternatives. However, our defined operators are mainly characteristic of the advantages
that can consider the interrelationship between the arguments being fused into consideration and
consider the human hesitance in practical MADM problems. Obviously, the DHPFWA and DHPFWG
operators defined by Wei and Lu [53] cannot consider the interrelationship between the arguments
being fused. In addition, in a complicated decision-making environment, the decision maker’s risk
attitude is an important factor to think about, and our methods can do this by altering the parameters
ξ and ζ, whereas the DHPFWA and DHPFWG operators presented by Wei and Lu [53] do not have
the ability to dynamically adjust to the parameters according to the decision maker’s risk attitude,
meaning it is difficult to solve risk multiple attribute decision making in real practice.

Table 4. Ordering of the suppliers by the DHPFGGWHM operators.

Methods Ordering

The DHPFWA operator [53] η4 
 η5 
 η3 
 η2 
 η1
The DHPFWG operator [53] η4 
 η5 
 η2 
 η1 
 η3
The DHPFGWHM operator η4 
 η5 
 η3 
 η2 
 η1

The DHPFGGWHM operator η4 
 η5 
 η2 
 η1 
 η3

6. Conclusions

Dual hesitant Pythagorean fuzzy numbers have applied the advantages of DHFSs and PFSs. They
can flexibly denote decision-making information as well as effectively characterize the reliability of
information. Thus, it is meaningful to study MADM problems with DHPFNs. In this paper, based
on the generalized Heronian mean operator and generalized geometric Heronian mean operator,
we developed some dual hesitant Pythagorean fuzzy Heronian mean aggregation operators: dual
hesitant Pythagorean fuzzy generalized weighted Heronian mean (DHPFGWHM) operator and
dual hesitant Pythagorean fuzzy generalized geometric weighted Heronian mean (DHPFGGWHM)
operator. The significant merits of these defined operators are investigated. Moreover, we have
adopted DHPFGWHM and DHPFGGWHM operators to build a decision-making model for MADM
problems. In the end, we utilize a concrete instance for suppliers selection in supply chain management
to demonstrate our defined model and to testify its accuracy and scientific ability. However, our
developed methods can only deal with MADMs with dual hesitant Pythagorean fuzzy information,
and it is clear that these operators cannot handle more complicated decision making problems, such as
when the sum square of the membership and non-membership is more than 1. In the future, we shall
continue studying MADM problems with the application and extension of the developed operators to
other domains [67,68] and proposed more suitable methods [69–75].
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30. Leśniak, A.; Kubek, D.; Plebankiewicz, E.; Zima, K.; Belniak, S. Fuzzy AHP Application for Supporting
Contractors’ Bidding Decision. Symmetry 2018, 10, 642. [CrossRef]

31. Adeel, A.; Akram, M.; Ahmed, I.; Nazar, K. Novel m-Polar Fuzzy Linguistic ELECTRE-I Method for Group
Decision-Making. Symmetry 2019, 11, 471. [CrossRef]

32. Turskis, Z.; Goranin, N.; Nurusheva, A.; Boranbayev, S. A Fuzzy WASPAS-Based Approach to Determine
Critical Information Infrastructures of EU Sustainable Development. Sustainability 2019, 11, 424. [CrossRef]

33. Ziemba, P.; Becker, J. Analysis of the Digital Divide Using Fuzzy Forecasting. Symmetry 2019, 11, 166.
[CrossRef]

34. Hu, C.-K.; Liu, F.-B. A Hybrid Fuzzy DEA/AHP Methodology for Ranking Units in a Fuzzy Environment.
Symmetry 2017, 9, 273. [CrossRef]
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Abstract: As an extension of the fuzzy set, the hesitant fuzzy set is used to effectively solve the
hesitation of decision-makers in group decision-making and to rigorously express the decision
information. In this paper, we first introduce some new hesitant fuzzy Hamacher power-aggregation
operators for hesitant fuzzy information based on Hamacher t-norm and t-conorm. Some desirable
properties of these operators is shown, and the interrelationships between them are given.
Furthermore, the relationships between the proposed aggregation operators and the existing hesitant
fuzzy power-aggregation operators are discussed. Based on the proposed aggregation operators,
we develop a new approach for multiple-attribute decision-making problems. Finally, a practical
example is provided to illustrate the effectiveness of the developed approach, and the advantages of
our approach are analyzed by comparison with other existing approaches.

Keywords: hesitant fuzzy element (HFE); Hamacher operations; hesitant fuzzy Hamacher
power-aggregation operators; multiple-attribute decision-making (MADM)

1. Introduction

Since the fuzzy set (FS) was introduced by Zadeh [1], it has received much attention for its
applicability. Some classical extensions of the FS, such as the interval-valued fuzzy set (IVFS) [2],
intuitionistic fuzzy set (IFS) [3], interval-valued intuitionistic fuzzy set (IVIFS) [4], type-2 fuzzy set
(T2FS) [5], type-n fuzzy set (TnFS) [5], and fuzzy multiset (FMS) [6], were then developed. However,
it is often faced with the fact that the difficulty of setting membership degree for an element in a set
arises not from the possibility distribution of possible values (as in T2FS) or the margin of error (as in
IVFS or IFS), but from the hesitation between several different values. The concept of hesitant fuzzy
set (HFS) was introduced by Narukawa and Torra [7,8] to deal with such cases. The HFS has the
advantage of representing the membership degree of one element to a set by a set of possible values
between 0 and 1, so it is an effective tool to represent a decision-maker’s hesitation in expressing
his/her preferences for objects than the FS or its classical extensions. In this regard, the HFS theory has
been applied to many practical applications such as decision-making [9–18].

The goal of multiple-attribute decision-making (MADM), based on preferences provided by the
decision-makers, is to select the most desirable alternative(s) from a given set of feasible alternatives.
MADM methods classified as conventional and fuzzy. The conventional MADM methods are seen
inadequate to handle uncertainty in linguistic terms [19]. Hence, it is proposed to apply MADM
methods with the FS and its extensions to cope with vagueness in a decision-making process.
Furthermore, these fuzzy methods enable more concrete results. Besides, the FS and its extensions helps
to decision-makers to express their opinions by means of linguistic terms. Therefore, more sensitive
results can be obtained by applying fuzzy MADM methods to various science and engineering fields
such as supplier selection and forecasting [20–23].
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The aggregation operators are most commonly used as tools to combine each individual preference
information into the overall preference information and to elicit collective preference value for each
alternative. The power average (PA) and power-ordered weighted average (POWA), introduced by
Yager [24], are the nonlinear weighted average aggregation tools whose weight vectors depend on the
input arguments and allow the argument values to support each other [25]. In particular, compared
to most aggregation operators, the PA and POWA operators have the advantage of incorporating
information about the relationship between argument values that are combined. So these operators
have received a lot of attention from researchers in recent years, particularly Xu and Yager [25],
Zhou et al. [26] and Zhang [15] introduced some new power-aggregation operators, including the
weighted generalizations of these operators. However, these power-aggregation operators only deal
with arguments, which are exact numerical values.

In real life, we often face situations where input arguments are expressed not as exact numerical
values but as interval numbers [27], intuitionistic fuzzy numbers [28–30], interval-valued intuitionistic
fuzzy numbers [31], linguistic variables [32–34], uncertain linguistic variables [35–37], or hesitant fuzzy
elements (HFEs) [10,11]. Many extensions of power-aggregation operators have been proposed
to address these situations: the uncertain power-aggregation operators [25,38,39], intuitionistic
fuzzy power-aggregation operators [26,40], interval-valued intuitionistic fuzzy power-aggregation
operators [40], linguistic power-aggregation operators [41–44] and hesitant fuzzy power-aggregation
operators [15,18]. In particular, with respect to HFEs, Zhang [15] proposed a family of hesitant
fuzzy power-aggregation operators, including the hesitant fuzzy power-weighted average/geometric
(HFPWA or HFPWG), generalized hesitant fuzzy power-weighted average/geometric (GHFPWA or
GHFPWG), hesitant fuzzy power-ordered weighted average/geometric (HFPOWA or HFPOWG),
and generalized hesitant fuzzy power-ordered weighted average/geometric (GHFPOWA or
GHFPOWG) operators, and applied them to solve multiple criteria group decision-making problems
under hesitant fuzzy environment.

It is worthwhile to mention that operational rules play a key role in integrating information
using power-aggregation operators. A lot of research about power-aggregation operators for the
FS and its extensions has been done by operational rules using various pairs of triangular norm
(shortly t-norm) and triangular conorm (shortly t-conorm) [45] in recent years. The aforementioned
hesitant fuzzy power-aggregation operators, such as the HFPWA, HFPWG, GHFPWA, GHFPWG,
HFPOWA, HFPOWG, GHFPOWA, and GHFPOWG operators, are based on the algebraic product
and algebraic sum operational rules on HFEs, which are a pair of the special dual t-norm and
t-conorm [45]. The algebraic product and algebraic sum are the basic operations on HFEs, they
are not the only ones. The Einstein t-norm and t-conorm, as another pair of special t-norm and dual
t-conorm, are alternatives to the algebraic product and algebraic sum, respectively, for operational
rules on HFEs. Yu [16] extended the Einstein t-norm and t-conorm to HFEs, and developed
some hesitant fuzzy Einstein aggregation operators based on the Einstein product and Einstein
sum operational rules on HFEs. By mean of these operational rules on HFEs, Yu et al. [18]
proposed a wide range of hesitant fuzzy power-aggregation operators, such as the hesitant fuzzy
Einstein power-weighted average/geometric (HFEPWA or HFEPWG), generalized hesitant fuzzy
Einstein power-weighted average/geometric (GHFEPWA or GHFEPWG), hesitant fuzzy Einstein
power-ordered weighted average/geometric (HFEPOWA or HFEPOWG), and generalized hesitant
fuzzy Einstein power-ordered weighted average/geometric (GHFEPOWA or GHFEPOWG) operators,
and applied them to deal with MADM with hesitant fuzzy information. Hamacher [46] proposed a
more generalized t-norm and t-conorm, called the Hamacher t-norm and t-conorm. These Hamacher
t-norm and t-conorm are more general and flexible because they are a generalization of the algebraic
t-norm and t-conorm and the Einstein t-norm and t-conorm [46]. Tan et al. [17] gave some operations
on HFEs based on Hamacher t-norm and t-conorm, and developed some hesitant fuzzy Hamacher
aggregation operators. In this paper, by means of Hamacher operations on HFEs, we propose a family
of hesitant fuzzy Hamacher power-aggregation operators that allow decision-makers to have more
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choices in MADM problems. This study is very necessary because it is an integrated treatment of
works by Zhang [15] and Yu et al. [18].

To do so, this paper is organized as follows: In Section 2, some basic concepts and notions of
HFSs and Hamacher operations of HFEs based on the Hamacher t-norm and t-conorm are reviewed.
Some results of Hamacher operations of HFEs are investigated. In Section 3, we present a wide range
of hesitant fuzzy Hamacher power-aggregation operators for hesitant fuzzy information, some of their
basic properties are discussed, and the relationships between the proposed operators and the existing
hesitant fuzzy aggregation operators are investigated. In Section 4, we apply the proposed operators to
develop an approach to MADM with hesitant fuzzy information. An example application of the new
approach is provided, and a comparison with other hesitant fuzzy MADM approaches is performed.
Some concluding remarks is given in Section 5.

2. Basic Concepts and Operations

2.1. Triangular Norms and Conorms

The operators play an important role in the beginning of FS theory. The t-norm and t-conorm
used to define generalized union and intersection, respectively, is one of the important concepts in FS
theory. They are defined as follows.

Definition 1. [45] A triangular norm (t-norm) is a binary operation T on the unit interval [0, 1], i.e., a function
T : [0, 1]× [0, 1] → [0, 1], such that for all x, y, z ∈ [0, 1], the following four axioms are satisfied:

(1) (Boundary condition) T(1, x) = x;
(2) (Commutativity) T(x, y) = T(y, x);
(3) (Associativity) T(x, T(y, z)) = T(T(x, y), z);
(4) (Monotonicity) T(x1, y1) ≤ T(x2, y2) if x1 ≤ x2 and y1 ≤ y2.

The corresponding triangular conorm (t-conorm) of T (or the dual of T) is the function S : [0, 1]× [0, 1] → [0, 1]
defined by S(x, y) = 1 − T(1 − x, 1 − y) for each x, y ∈ [0, 1].

Among many t-norms and t-conorms, there are the following basic t-norms and t-conorms:
minimum TM and maximum SM, algebraic product TA and algebraic sum SA, Einstein product TE and
Einstein sum SE, bounded difference TB and bounded sum SB, and drastic product TD and drastic
sum SD, given respectively as follows:

• TM(x, y) = min(x, y), SM(x, y) = max(x, y);

• TA(x, y) = xy, SA(x, y) = x + y − xy;

• TE(x, y) =
xy

1 + (1 − x)(1 − y)
, SE(x, y) =

x + y
1 + xy

;

• TB(x, y) = max(0, x + y − 1), SB(x, y) = min(1, x + y);

• TD(x, y) =

{
0, if (x, y) ∈ [0, 1)2

min(x, y), otherwise
, SD(x, y) =

{
1, if (x, y) ∈ (0, 1]2

max(x, y), otherwise.

These t-norms and t-conorms are ordered as follows:

TD ≤ TB ≤ TE ≤ TA ≤ TM, and SM ≤ SA ≤ SE ≤ SB ≤ SD. (1)

From (1), since the drastic product TD and minimum TM are the smallest and the largest t-norms,
respectively, we know that TD ≤ T ≤ TM for any t-norm T. In particular, the algebraic product TA and
the Einstein product TE are two prototypic examples of the class of strict Archimedean t-norms [45].
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Hamacher [46] proposed, as more generalized t-norm and t-conorm, the Hamacher t-norm and
t-conorm as follows:

Tζ
H(x, y) =

xy
ζ + (1 − ζ)(x + y − xy)

, Sζ
H(x, y) =

x + y − xy − (1 − ζ)xy
ζ + (1 − ζ)xy

, ζ > 0. (2)

From (2), when ζ = 1, then the Hamacher t-norm and t-conorm reduce to the algebraic t-norm TA
and t-conorm SA, respectively; when ζ = 2, then then the Hamacher t-norm and t-conorm reduce to
the Einstein t-norm TE and t-conorm SE, respectively.

2.2. Hesitant Fuzzy Sets and Hesitant Fuzzy Elements

In the following, some basic concepts of hesitant fuzzy set and hesitant fuzzy element are briefly
reviewed [7,8,10].

Definition 2. [7,8] Let X be a fixed set, a hesitant fuzzy set (HFS) on X is defined in terms of function h that
returns a subset of [0, 1] when applied to X. The HFS can be represented as the following mathematical symbol:

E = {〈x, hE(x)〉|x ∈ X}, (3)

where hE(x) is a set of values in [0, 1] that denote the possible membership degrees of the element x ∈ X to the
set E. For convenience, we refer to h = hE(x) as a hesitant fuzzy element (HFE) and to H the set of all HFEs.

Given three HFEs h, h1 and h2, Torra and Narukawa [7,8] and Xia and Xu [10] defined the
following HFE operations:

(1) hc = ∪γ∈h{1 − γ};
(2) h1 ∪ h2 = ∪γ1∈h1,γ2∈h2{γ1 ∨ γ2};
(3) h1 ∩ h2 = ∪γ1∈h1,γ2∈h2{γ1 ∧ γ2};
(4) hλ = ∪γ∈h{γλ}, λ > 0;
(5) λh = ∪γ∈h{1 − (1 − γ)λ}, λ > 0;
(6) h1 ⊕ h2 = ∪γ1∈h1,γ2∈h2{γ1 + γ2 − γ1γ2};
(7) h1 ⊗ h2 = ∪γ1∈h1,γ2∈h2{γ1γ2}.

Xia and Xu [10] also defined the following comparison rules for HFEs:

Definition 3. [10] For a HFE h, s(h) = ∑γ∈h γ

l(h) is called the score function of h, where l(h) is the number of
elements in h. For two HFEs h1 and h2,

• if s(h1) > s(h2), then h1 is superior to h2, denoted by h1 > h2;
• if s(h1) = s(h2), then h1 is indifferent to h2, denoted by h1 = h2.

Let h1 and h2 be two HFEs. In the most case, l(h1) �= l(h2); for convenience, let l =

max{l(h1), l(h2)}. To compare h1 and h2, Xu and Xia [11] extended the shorter HFE until the length
of both HFEs was the same. The simplest way to extend the shorter HFE is to add the same value
repeatedly. In fact, we can extend the shorter ones by adding any values in them. The selection of
these values mainly depends on the decision-makers’ risk preferences. Optimists anticipate desirable
outcomes and may add the maximum value, while pessimists expect unfavorable outcomes and may
add the minimum value [11]. In this paper, we assume that the decision-makers are all pessimistic
(other situation can also be studied similarly).

Xu and Xia [11] proposed various distance measures for HFEs, including the hesitant normalized
Hamming distance defined as follows:

d(h1, h2) =
1
l

l

∑
i=1

∣∣∣hσ(i)
1 − hσ(i)

2

∣∣∣ , (4)
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where hσ(i)
1 and hσ(i)

2 are the ith largest values in h1 and h2, respectively.
Intrinsically, the addition and multiplication operators proposed by Xia and Xu [10] are algebraic

sum and algebraic product operational rules on HFEs, respectively, and are a special pair of dual
t-norm and t-conorm. Recently, Tan et al. [17] extended these operations to obtain more general
operations on HFEs by means of the Hamacher t-norm and t-conorm as follows:

Definition 4. [17] For any given three HFEs h, h1, h2, and ζ > 0, the Hamacher operations on HFEs are
defined as follows:

(1) h1 ⊕H h2 = ∪γ1∈h1,γ2∈h2

{
γ1+γ2−γ1γ2−(1−ζ)γ1γ2

1−(1−ζ)γ1γ2

}
;

(2) h1 ⊗H h2 = ∪γ1∈h1,γ2∈h2

{
γ1γ2

ζ+(1−ζ)(γ1+γ2−γ1γ2)

}
;

(3) λ ·H h = ∪γ∈h

{
(1+(ζ−1)γ)λ−(1−γ)λ

(1+(ζ−1)γ)λ+(ζ−1)(1−γ)λ

}
, λ > 0;

(4) h∧Hλ = ∪γ∈h

{
ζγλ

(1+(ζ−1)(1−γ))λ+(ζ−1)γλ

}
, λ > 0.

In particular, if ζ = 1, then these operations on HFEs reduce to those proposed by Xia and Xu [10];
if ζ = 2, then these operations on HFEs reduce to the following:

(1) h1 ⊕ε h2 = ∪γ1∈h1,γ2∈h2

{
γ1+γ2

1−γ1γ2

}
;

(2) h1 ⊗ε h2 = ∪γ1∈h1,γ2∈h2

{
γ1γ2

1+(1−γ1)(1−γ2)

}
;

(3) λ ·ε h = ∪γ∈h

{
(1+γ)λ−(1−γ)λ

(1+γ)λ+(1−γ)λ

}
, λ > 0;

(4) h∧ελ = ∪γ∈h

{
2γλ

(2−γ)λ+γλ

}
, λ > 0,

which are defined as Einstein operations on HFEs by Yu [16].

Theorem 1. Let h, h1 and h2 be three HFEs, λ > 0, λ1 > 0 and λ2 > 0, then
(1) h1 ⊕H h2 = h2 ⊕H h1;
(2) h ⊕H (h1 ⊕H h2) = (h ⊕H h1)⊕H h2;
(3) λ1 ·H (λ2 ·H h) = (λ1λ2) ·H h;
(4) λ ·H (h1 ⊕H h2) = (λ ·H h1)⊕H (λ ·H h2);
(5) h1 ⊗H h2 = h2 ⊗H h1;
(6) h ⊗H (h1 ⊗H h2) = (h ⊗H h1)⊗H h2;
(7) (h1 ⊗H h2)

∧Hλ = h∧Hλ
1 ⊗H h∧Hλ

2 ;
(8) (h∧Hλ1)∧Hλ2 = h∧H(λ1λ2).

Proof. Since (1), (2), (5) and (6) are trivial, we prove (3), (4), (7) and (8).

(3) Since λ2 ·H h = ∪γ∈h

{
(1+(ζ−1)γ)λ2−(1−γ)λ2

(1+(ζ−1)γ)λ2+(ζ−1)(1−γ)λ2

}
, then we have

λ1 ·H (λ2 ·H h)

= ∪γ∈h

⎧⎪⎪⎨⎪⎪⎩
(

1 + (ζ − 1) (1+(ζ−1)γ)λ2−(1−γ)λ2

(1+(ζ−1)γ)λ2+(ζ−1)(1−γ)λ2

)λ1 −
(

1 − (1+(ζ−1)γ)λ2−(1−γ)λ2

(1+(ζ−1)γ)λ2+(ζ−1)(1−γ)λ2

)λ1

(
1 + (ζ − 1) (1+(ζ−1)γ)λ2−(1−γ)λ2

(1+(ζ−1)γ)λ2+(ζ−1)(1−γ)λ2

)λ1
+ (ζ − 1)

(
1 − (1+(ζ−1)γ)λ2−(1−γ)λ2

(1+(ζ−1)γ)λ2+(ζ−1)(1−γ)λ2

)λ1

⎫⎪⎪⎬⎪⎪⎭
= ∪γ∈h

{
(1 + (ζ − 1)γ)(λ1λ2) − (1 − γ)(λ1λ2)

(1 + (ζ − 1)γ)(λ1λ2) + (ζ − 1)(1 − γ)(λ1λ2)

}
= (λ1λ2) ·H h.
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(4) Since h1 ⊕H h2 = ∪γ1∈h1,γ2∈h2

{
γ1+γ2−γ1γ2−(1−ζ)γ1γ2

1−(1−ζ)γ1γ2

}
, by the operational law (3) in

Definition 4, we have

λ ·H (h1 ⊕H h2)

= ∪γ1∈h1,γ2∈h2

⎧⎨⎩ (1 + (ζ − 1) γ1+γ2−γ1γ2−(1−ζ)γ1γ2
1−(1−ζ)γ1γ2

)λ − (1 − γ1+γ2−γ1γ2−(1−ζ)γ1γ2
1−(1−ζ)γ1γ2

)λ

(1 + (ζ − 1) γ1+γ2−γ1γ2−(1−ζ)γ1γ2
1−(1−ζ)γ1γ2

)λ + (ζ − 1)(1 − γ1+γ2−γ1γ2−(1−ζ)γ1γ2
1−(1−ζ)γ1γ2

)λ

⎫⎬⎭
= ∪γ1∈h1,γ2∈h2

{
((1 + (ζ − 1)γ1)(1 + (ζ − 1)γ2))

λ − ((1 − γ1)(1 − γ2))
λ

((1 + (ζ − 1)γ1)(1 + (ζ − 1)γ2))
λ + (ζ − 1) ((1 − γ1)(1 − γ2))

λ

}
.

Since λ ·H h1 = ∪γ1∈h1

{
(1+(ζ−1)γ1)

λ−(1−γ1)
λ

(1+(ζ−1)γ1)λ+(ζ−1)(1−γ1)λ

}
and λ ·H h2 = ∪γ2∈h2

{
(1+(ζ−1)γ2)

λ−(1−γ2)
λ

(1+(ζ−1)γ2)λ+(ζ−1)(1−γ2)λ

}
,

we have

(λ ·H h1)⊕H (λ ·H h2)

= ∪γ1∈h1,γ2∈h2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎣
(1+(ζ−1)γ1)

λ−(1−γ1)
λ

(1+(ζ−1)γ1)λ+(ζ−1)(1−γ1)λ + (1+(ζ−1)γ2)
λ−(1−γ2)

λ

(1+(ζ−1)γ2)λ+(ζ−1)(1−γ2)λ

− (1+(ζ−1)γ1)
λ−(1−γ1)

λ

(1+(ζ−1)γ1)λ+(ζ−1)(1−γ1)λ
(1+(ζ−1)γ2)

λ−(1−γ2)
λ

(1+(ζ−1)γ2)λ+(ζ−1)(1−γ2)λ

−(1 − ζ) (1+(ζ−1)γ1)
λ−(1−γ1)

λ

(1+(ζ−1)γ1)λ+(ζ−1)(1−γ1)λ · (1+(ζ−1)γ2)
λ−(1−γ2)

λ

(1+(ζ−1)γ2)λ+(ζ−1)(1−γ2)λ

⎤⎥⎥⎥⎦
1 − (1 − ζ) (1+(ζ−1)γ1)λ−(1−γ1)λ

(1+(ζ−1)γ1)λ+(ζ−1)(1−γ1)λ · (1+(ζ−1)γ2)λ−(1−γ2)λ

(1+(ζ−1)γ2)λ+(ζ−1)(1−γ2)λ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
= ∪γ1∈h1,γ2∈h2

{
((1 + (ζ − 1)γ1)(1 + (ζ − 1)γ2))

λ − ((1 − γ1)(1 − γ2))
λ

((1 + (ζ − 1)γ1)(1 + (ζ − 1)γ2))
λ + (ζ − 1) ((1 − γ1)(1 − γ2))

λ

}
.

Hence λ ·H (h1 ⊕H h2) = (λ ·H h1)⊕H (λ ·H h2).
(7) Since h1 ⊗H h2 = ∪γ1∈h1,γ2∈h2

{
γ1γ2

ζ+(1−ζ)(γ1+γ2−γ1γ2)

}
, by the operational law (4) in Definition 4,

we have

(h1 ⊗H h2)
∧Hλ

= ∪γ1∈h1,γ2∈h2

⎧⎪⎨⎪⎩
ζ
(

γ1γ2
ζ+(1−ζ)(γ1+γ2−γ1γ2)

)λ

(
1 + (ζ − 1)(1 − γ1γ2

ζ+(1−ζ)(γ1+γ2−γ1γ2)
)
)λ

+ (ζ − 1)
(

γ1γ2
ζ+(1−ζ)(γ1+γ2−γ1γ2)

)λ

⎫⎪⎬⎪⎭
= ∪γ1∈h1,γ2∈h2

{
ζγλ

1 γλ
2

((1 + (ζ − 1)(1 − γ1))(1 + (ζ − 1)(1 − γ2)))
λ + (ζ − 1)γλ

1 γλ
2

}
.
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Since h∧Hλ
1 = ∪γ1∈h1

{
ζγλ

1
(1+(ζ−1)(1−γ1))λ+(ζ−1)γλ

1

}
and h∧Hλ

2 = ∪γ2∈h2

{
ζγλ

2
(1+(ζ−1)(1−γ2))λ+(ζ−1)γλ

2

}
,

we have

h∧Hλ
1 ⊗H h∧Hλ

2

= ∪γ1∈h1,γ2∈h2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζγλ
1

(1+(ζ−1)(1−γ1))λ+(ζ−1)γλ
1
· ζγλ

2
(1+(ζ−1)(1−γ2))λ+(ζ−1)γλ

2⎡⎢⎢⎣ ζ + (1 − ζ)

(
ζγλ

1
(1+(ζ−1)(1−γ1))λ+(ζ−1)γλ

1
+

ζγλ
2

(1+(ζ−1)(1−γ2))λ+(ζ−1)γλ
2

− ζγλ
1

(1+(ζ−1)(1−γ1))λ+(ζ−1)γλ
1
· ζγλ

2
(1+(ζ−1)(1−γ2))λ+(ζ−1)γλ

2

)
⎤⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
= ∪γ1∈h1,γ2∈h2

{
ζγλ

1 γλ
2

((1 + (ζ − 1)(1 − γ1))(1 + (ζ − 1)(1 − γ2)))
λ + (ζ − 1)γλ

1 γλ
2

}
.

Hence (h1 ⊗H h2)
∧Hλ = h∧Hλ

1 ⊗H h∧Hλ
2 .

(8) Since h∧Hλ1 = ∪γ∈h

{
ζγλ1

(1+(ζ−1)(1−γ))λ1+(ζ−1)γλ1

}
, we have

(h∧H λ1)∧H λ2

= ∪γ∈h

⎧⎪⎨⎪⎩
ζ
(

ζγλ1

(1+(ζ−1)(1−γ))λ1+(ζ−1)γλ1

)λ2

(
1 + (ζ − 1)(1 − ζγλ1

(1+(ζ−1)(1−γ))λ1+(ζ−1)γλ1
)
)λ2

+ (ζ − 1)
(

ζγλ1

(1+(ζ−1)(1−γ))λ1+(ζ−1)γλ1

)λ2

⎫⎪⎬⎪⎭
= ∪γ∈h

{
ζγ(λ1λ2)

(1 + (ζ − 1)(1 − γ))(λ1λ2) + (ζ − 1)γ(λ1λ2)

}
= h∧H(λ1λ2).

However, the operational laws (λ1 ·H h)⊕H (λ2 ·H h) = (λ1 + λ2) ·H h and h∧Hλ1 ⊗H h∧Hλ2 =

h∧H(λ1+λ2) do not hold in general. To illustrate these, we give an example as follows:

Example 1. Let h = {0.3, 0.5}, λ1 = λ2 = 1 and ζ = 3, then

(λ1 ·H h)⊕H (λ2 ·H h) = h ⊕H h = ∪i,j=1,2

{
γi + γj + γiγj

1 + 2γiγj

}
= {0.5874, 0.7308, 0.7308, 0.8333},

(λ1 + λ2) ·H h = 2 ·H h = ∪i=1,2

{
(1 + 2γi)

2 − (1 − γi)
2

(1 + 2γi)2 + 2(1 − γi)2

}
= {0.5874, 0.8333}.

From Definition 3, we have s((λ1 ·H h)⊕H (λ2 ·H h)) = 0.7199 > 0.7104 = s((λ1 + λ2) ·H h) and thus
(λ1 ·H h)⊕H (λ2 ·H h) �= (λ1 + λ2) ·H h. Furthermore, we have s(h∧Hλ1 ⊗H h∧Hλ2) = 0.0971 < 0.1060 =

s(h∧H(λ1+λ2)) and thus h∧Hλ1 ⊗H h∧Hλ2 �= h∧H(λ1+λ2).

3. Hesitant Fuzzy Hamacher Power-Weighted Aggregation Operators

In this section, based on the Hamacher operation, we shall extend the power-aggregation operators
to accommodate the situations where the input arguments are HFEs.
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3.1. Hesitant Fuzzy Hamacher Power-Weighted Average/geometric Operators

Based on the PA operator [24] and hesitant fuzzy Hamacher weighted average (HFHWA)
operator [17], we firstly define the hesitant fuzzy Hamacher power-weighted average (HFHPWA)
operator as follows.

Definition 5. Let hi (i = 1, 2, . . . , n) be a collection of HFEs and w = (w1, w2, . . . , wn)T be the weight vector
of hi (i = 1, 2, . . . , n) such that wi ∈ [0, 1] and ∑n

i=1 wi = 1. A hesitant fuzzy Hamacher power-weighted
average (HFHPWA) operator is a function Hn → H such that

HFHPWAζ(h1, h2, . . . , hn) = ⊕H
n
i=1

(
wi(1 + T(hi)) ·H hi

∑n
i=1 wi(1 + T(hi))

)
, (5)

where parameter ζ > 0, T(hi) = ∑n
j=1,j �=i wjSup(hi, hj) and Sup(hi, hj) is the support for hi from hj, satisfying

the following conditions:
(1) Sup(hi, hj) ∈ [0, 1];
(2) Sup(hi, hj) = Sup(hj, hi);
(3) Sup(hi, hj) ≥ Sup(hs, ht) if d(hi, hj) ≤ d(hs, ht), where d is the hesitant normalized Hamming

distance measure between two HFEs given in Equation (4).

Here, the support measure (Sup) can be used to measure the closeness of a preference value with
other preference value because it is essentially similarity measure.

Theorem 2. Let hi (i = 1, 2, . . . , n) be a collection of HFEs and w = (w1, w2, . . . , wn)T be the weight vector
of hi (i = 1, 2, . . . , n) such that wi ∈ [0, 1] and ∑n

i=1 wi = 1, then the aggregated value by HFHPWA operator
is also a HFE, and

HFHPWAζ(h1, h2, . . . , hn)

= ∪γ1∈h1,γ2∈h2,...,γn∈hn

⎧⎪⎨⎪⎩ ∏n
i=1 (1 + (ζ − 1)γi)

wi (1+T(hi ))
∑n

i=1 wi (1+T(hi )) − ∏n
i=1 (1 − γi)

wi (1+T(hi ))
∑n

i=1 wi (1+T(hi ))

∏n
i=1 (1 + (ζ − 1)γi)

wi (1+T(hi ))
∑n

i=1 wi (1+T(hi )) + (ζ − 1)∏n
i=1 (1 − γi)

wi (1+T(hi ))
∑n

i=1 wi (1+T(hi ))

⎫⎪⎬⎪⎭ . (6)

Proof. Equation (6) can be proved by mathematical induction on n as follows.
For n = 1, the result of Equation (6) is clear.
Suppose that Equation (6) holds for n = k, that is

HFHPWAζ(h1, h2, . . . , hk)

= ∪γ1∈h1,γ2∈h2,...,γk∈hk

⎧⎪⎨⎪⎩ ∏k
i=1 (1 + (ζ − 1)γi)

wi(1+T(hi))

∑k
i=1 wi(1+T(hi)) − ∏k

i=1 (1 − γi)

wi(1+T(hi))

∑k
i=1 wi(1+T(hi))

∏k
i=1 (1 + (ζ − 1)γi)

wi(1+T(hi))

∑k
i=1 wi(1+T(hi)) + (ζ − 1)∏k

i=1 (1 − γi)

wi(1+T(hi))

∑k
i=1 wi(1+T(hi))

⎫⎪⎬⎪⎭ .
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Then, when n = k + 1, by Definitions 4 and 5, we have

HFHPWAζ(h1, h2, . . . , hk+1) = ⊕H
k
i=1

(
wi(1 + T(hi)) ·H hi

∑k+1
i=1 wi(1 + T(hi))

)
⊕H

(
wk+1(1 + T(hk+1)) ·H hk+1

∑k+1
i=1 wi(1 + T(hi))

)

= ∪γ1∈h1,γ2∈h2,...,γk∈hk

⎧⎪⎪⎨⎪⎪⎩
∏k

i=1 (1 + (ζ − 1)γi)

wi(1+T(hi))

∑k+1
i=1 wi(1+T(hi)) − ∏k

i=1 (1 − γi)

wi(1+T(hi))

∑k+1
i=1 wi(1+T(hi))

∏k
i=1 (1 + (ζ − 1)γi)

wi(1+T(hi))

∑k+1
i=1 wi(1+T(hi)) + (ζ − 1)∏k

i=1 (1 − γi)

wi(1+T(hi))

∑k+1
i=1 wi(1+T(hi))

⎫⎪⎪⎬⎪⎪⎭
⊕H ∪γk+1∈hk+1

⎧⎪⎪⎨⎪⎪⎩
(1 + (ζ − 1)γk+1)

wk+1(1+T(hk+1))

∑k+1
i=1 wi(1+T(hi)) − (1 − γk+1)

wk+1(1+T(hk+1))

∑k+1
i=1 wi(1+T(hi))

(1 + (ζ − 1)γk+1)

wk+1(1+T(hk+1))

∑k+1
i=1 wi(1+T(hi)) + (ζ − 1) (1 − γk+1)

wk+1(1+T(hk+1))

∑k+1
i=1 wi(1+T(hi))

⎫⎪⎪⎬⎪⎪⎭ .

Let a1 = ∏k
i=1 (1 + (ζ − 1)γi)

wi(1+T(hi))

∑k+1
i=1 wi(1+T(hi)) , b1 = ∏k

i=1 (1 − γi)

wi(1+T(hi))

∑k+1
i=1 wi(1+T(hi)) , a2 =

(1 + (ζ − 1)γk+1)

wk+1(1+T(hk+1))

∑k+1
i=1 wi(1+T(hi)) and b2 = (1 − γk+1)

wk+1(1+T(hk+1))

∑k+1
i=1 wi(1+T(hi)) , then

HFHPWAζ(h1, h2, . . . , hk+1)

= ∪γ1∈h1,γ2∈h2,...,γk∈hk

{
a1 − b1

a1 + (ζ − 1)b1

}
⊕H ∪γk+1∈hk+1

{
a2 − b2

a2 + (ζ − 1)b2

}

= ∪γ1∈h1,...,γk∈hk ,γk+1∈hk+1

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[ a1−b1
a1+(ζ−1)b1

+ a2−b2
a2+(ζ−1)b2

− a1−b1
a1+(ζ−1)b1

· a2−b2
a2+(ζ−1)b2

−(1 − ζ) a1−b1
a1+(ζ−1)b1

· a2−b2
a2+(ζ−1)b2

]
1 − (1 − ζ) a1−b1

a1+(ζ−1)b1
· a2−b2

a2+(ζ−1)b2

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
= ∪γ1∈h1,γ2∈h2,...,γk+1∈hk+1

{
a1a2 − b1b2

a1a2 + (ζ − 1)b1b2

}

= ∪γ1∈h1,γ2∈h2,...,γk+1∈hk+1

⎧⎪⎨⎪⎩ ∏k+1
i=1 (1 + (ζ − 1)γi)

wi (1+T(hi ))

∑k+1
i=1 wi (1+T(hi )) − ∏k+1

i=1 (1 − γi)

wi (1+T(hi ))

∑k+1
i=1 wi (1+T(hi ))

∏k+1
i=1 (1 + (ζ − 1)γi)

wi (1+T(hi ))

∑k+1
i=1 wi (1+T(hi )) + (ζ − 1)∏k+1

i=1 (1 − γi)

wi (1+T(hi ))

∑k+1
i=1 wi (1+T(hi ))

⎫⎪⎬⎪⎭ ,

i.e., Equation (6) holds for n = k + 1. Thus, Equation (6) holds for all n.

Remark 1. (1) If Sup(hi, hj) = k, for all i �= j, then

HFHPWAζ(h1, h2, . . . , hn) = ⊕H
n
i=1 (wi ·H hi)

= ∪γ1∈h1,γ2∈h2,...,γn∈hn

{
∏n

i=1 (1 + (ζ − 1)γi)
wi − ∏n

i=1 (1 − γi)
wi

∏n
i=1 (1 + (ζ − 1)γi)

wi + (ζ − 1)∏n
i=1 (1 − γi)

wi

}
, (7)

which indicates that when all supports are the same, the HFHPWA operator reduces to the hesitant fuzzy
Hamacher weighted average (HFHWA) operator [17].

(2) For the HFHPWA operator, if ζ = 1, then the HFHPWA operator reduces to the following:

HFHPWA1(h1, h2, . . . , hn) = ∪γ1∈h1,γ2∈h2,...,γn∈hn

{
1 −

n

∏
i=1

(1 − γi)
wi(1+T(hi))

∑n
i=1 wi(1+T(hi))

}
(8)
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which is called the hesitant fuzzy power-weighted average (HFPWA) operator and if ζ = 2, then the HFHPWA
operator reduces to the hesitant fuzzy Einstein power-weighted average (HFEPWA) operator [18]:

HFHPWA2(h1, h2, . . . , hn)

= ∪γ1∈h1,γ2∈h2,...,γn∈hn

⎧⎪⎨⎪⎩∏n
i=1 (1 + γi)

wi(1+T(hi))
∑n

i=1 wi(1+T(hi)) − ∏n
i=1 (1 − γi)

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

∏n
i=1 (1 + γi)

wi(1+T(hi))
∑n

i=1 wi(1+T(hi)) + ∏n
i=1 (1 − γi)

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

⎫⎪⎬⎪⎭ . (9)

To analyze the relationship between the HFHPWA operator and the HFPWA operator,
we introduce the following lemma.

Lemma 1. [47,48] Let xi > 0, wi > 0, i = 1, 2, . . . , n, and ∑n
i=1 wi = 1, then ∏n

i=1 xwi
i ≤ ∑n

i=1 wixi,
with equality if and only if x1 = x2 = · · · = xn.

Theorem 3. Let hi (i = 1, 2, . . . , n) be a collection of HFEs and w = (w1, w2, . . . , wn)T be the weight vector
of hi such that wi ∈ [0, 1] and ∑n

i=1 wi = 1, then

HFHPWAζ(h1, h2, . . . , hn) ≤ HFPWA(h1, h2, . . . , hn).

Proof. For any γi ∈ hi (i = 1, 2, . . . , n), by Lemma 1, we have

n

∏
i=1

(1 + (ζ − 1)γi)
wi(1+T(hi))

∑n
i=1 wi(1+T(hi)) + (ζ − 1)

n

∏
i=1

(1 − γi)
wi(1+T(hi))

∑n
i=1 wi(1+T(hi))

≤
n

∑
i=1

wi(1 + T(hi))

∑n
i=1 wi(1 + T(hi))

(1 + (ζ − 1)γi) + (ζ − 1)
n

∑
i=1

wi(1 + T(hi))

∑n
i=1 wi(1 + T(hi))

(1 − γi) = ζ.

Then,

∏n
i=1 (1 + (ζ − 1)γi)

wi(1+T(hi))
∑n

i=1 wi(1+T(hi)) − ∏n
i=1 (1 − γi)

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

∏n
i=1 (1 + (ζ − 1)γi)

wi(1+T(hi))
∑n

i=1 wi(1+T(hi)) + (ζ − 1)∏n
i=1 (1 − γi)

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

= 1 − ζ ∏n
i=1 (1 − γi)

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

∏n
i=1 (1 + (ζ − 1)γi)

wi(1+T(hi))
∑n

i=1 wi(1+T(hi)) + (ζ − 1)∏n
i=1 (1 − γi)

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

≤ 1 − ζ ∏n
i=1 (1 − γi)

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

ζ
= 1 −

n

∏
i=1

(1 − γi)
wi(1+T(hi))

∑n
i=1 wi(1+T(hi)) ,

which implies that ⊕H
n
i=1

(
wi(1+T(hi))·H hi
∑n

i=1 wi(1+T(hi))

)
≤ ⊕n

i=1

(
wi(1+T(hi))hi

∑n
i=1 wi(1+T(hi))

)
. Thus, we obtain

HFHPWAζ(h1, h2, . . . , hn) ≤ HFPWA(h1, h2, . . . , hn).

Theorem 3 shows that the values aggregated by the HFHPWA operator are not larger than those
obtained by the HFPWA operator. That is to say, the HFHPWA operator reflects the decision-maker’s
pessimistic attitude than the HFPWA operator in aggregation process. Furthermore, based on
Theorem 2, we have the properties of the HFHPWA operator as follows.

Theorem 4. Let hi (i = 1, 2, . . . , n) be a collection of HFEs and w = (w1, w2, . . . , wn)T be the weight vector
of hi such that wi ∈ [0, 1] and ∑n

i=1 wi = 1, then we have the followings:
(1) Boundedness: If h− = min{γi|γi ∈ hi} and h+ = max{γi|γi ∈ hi}, then

h− ≤ HFHPWAζ(h1, h2, . . . , hn) ≤ h+.
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(2) Monotonicity: Let h′i (i = 1, 2, . . . , n) be a collection of HFEs, if w = (w1, w2, . . . , wn)T is also the
weight vector of h′i , and γi ≤ γ′

i for any hi and h′i (i = 1, 2, . . . , n), then

HFHPWAζ(h1, h2, . . . , hn) ≤ HFHPWAζ(h′1, h′2, . . . , h′n).

Proof. (1) Let f (x) = 1+(ζ−1)x
1−x , x ∈ [0, 1), then f ′(x) = ζ

(1−x)2 > 0 and thus f (x) is an increasing

function. Since h− ≤ γi ≤ h+ for all i, then f (h−) ≤ f (γi) ≤ f (h+), i.e., 1+(ζ−1)h−
1−h− ≤ 1+(ζ−1)γi

1−γi
≤

1+(ζ−1)h+
1−h+ . For convenience, let ti =

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))
. Since w = (w1, w2, . . . , wn)T is the weight vector

of hi satisfying wi ∈ [0, 1] and ∑n
i=1 wi = 1, then for all i, we have(

1 + (ζ − 1)h−

1 − h−

)ti

≤
(

1 + (ζ − 1)γi
1 − γi

)ti

≤
(

1 + (ζ − 1)h+

1 − h+

)ti

⇔
(

1 +
ζh−

1 − h−

)ti

≤
(

1 + (ζ − 1)γi
1 − γi

)ti

≤
(

1 +
ζh+

1 − h+

)ti

⇔
n

∏
i=1

(
1 +

ζh−

1 − h−

)ti

≤
n

∏
i=1

(
1 + (ζ − 1)γi

1 − γi

)ti

≤
n

∏
i=1

(
1 +

ζh+

1 − h+

)ti

⇔ 1 +
ζh−

1 − h− ≤
n

∏
i=1

(
1 + (ζ − 1)γi

1 − γi

)ti

≤ 1 +
ζh+

1 − h+

⇔ ζ +
ζh−

1 − h− ≤
n

∏
i=1

(
1 + (ζ − 1)γi

1 − γi

)ti

+ (ζ − 1) ≤ ζ +
ζh+

1 − h+

⇔ 1

ζ + ζh+
1−h+

≤ 1

∏n
i=1

(
1+(ζ−1)γi

1−γi

)ti
+ (ζ − 1)

≤ 1

ζ + ζh−
1−h−

⇔ 1 − h+

ζ
≤ ∏n

i=1 (1 − γi)
ti

∏n
i=1 (1 + (ζ − 1)γi)

ti + (ζ − 1)∏n
i=1 (1 − γi)

ti
≤ 1 − h−

ζ

⇔ 1 − h+ ≤ ζ ∏n
i=1 (1 − γi)

ti

∏n
i=1 (1 + (ζ − 1)γi)

ti + (ζ − 1)∏n
i=1 (1 − γi)

ti
≤ 1 − h−

⇔ h− ≤ 1 − ζ ∏n
i=1 (1 − γi)

ti

∏n
i=1 (1 + (ζ − 1)γi)

ti + (ζ − 1)∏n
i=1 (1 − γi)

ti
≤ h+

⇔ h− ≤ ∏n
i=1 (1 + (ζ − 1)γi)

ti − ∏n
i=1 (1 − γi)

ti

∏n
i=1 (1 + (ζ − 1)γi)

ti + (ζ − 1)∏n
i=1 (1 − γi)

ti
≤ h+.

Thus, we have h− ≤ HFHPWAζ(h1, h2, . . . , hn) ≤ h+.
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(2) Let f (x) = 1+(ζ−1)x
1−x , x ∈ [0, 1), then by (1), f (x) is an increasing function. If for all hi and h′i,

γi ≤ γ′
i , then 1+(ζ−1)γi

1−γi
≤ 1+(ζ−1)γ′

i
1−γ′

i
. For convenience, let ti =

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))
, then we have

(
1 + (ζ − 1)γi

1 − γi

)ti

≤
(

1 + (ζ − 1)γ′
i

1 − γ′
i

)ti

⇔
n

∏
i=1

(
1 + (ζ − 1)γi

1 − γi

)ti

+ (ζ − 1) ≤
n

∏
i=1

(
1 + (ζ − 1)γ′

i
1 − γ′

i

)ti

+ (ζ − 1)

⇔ 1

∏n
i=1

(
1+(ζ−1)γi

1−γi

)ti
+ (ζ − 1)

≥ 1

∏n
i=1

(
1+(ζ−1)γ′

i
1−γ′

i

)ti
+ (ζ − 1)

⇔ ζ ∏n
i=1 (1 − γi)

ti

∏n
i=1 (1 + (ζ − 1)γi)

ti + (ζ − 1)∏n
i=1 (1 − γi)

ti
≥ ζ ∏n

i=1
(
1 − γ′

i
)ti

∏n
i=1
(
1 + (ζ − 1)γ′

i
)ti + (ζ − 1)∏n

i=1
(
1 − γ′

i
)ti

⇔ 1 − ζ ∏n
i=1 (1 − γi)

ti[
∏n

i=1 (1 + (ζ − 1)γi)
ti

+(ζ − 1)∏n
i=1 (1 − γi)

ti

] ≤ 1 − ζ ∏n
i=1
(
1 − γ′

i
)ti[

∏n
i=1
(
1 + (ζ − 1)γ′

i
)ti

+(ζ − 1)∏n
i=1
(
1 − γ′

i
)ti

]

⇔ ∏n
i=1 (1 + (ζ − 1)γi)

ti − ∏n
i=1 (1 − γi)

ti[
∏n

i=1 (1 + (ζ − 1)γi)
ti

+(ζ − 1)∏n
i=1 (1 − γi)

ti

] ≤ ∏n
i=1
(
1 + (ζ − 1)γ′

i
)ti − ∏n

i=1
(
1 − γ′

i
)ti[

∏n
i=1
(
1 + (ζ − 1)γ′

i
)ti

+(ζ − 1)∏n
i=1
(
1 − γ′

i
)ti

] .

Thus, by Theorem 2, HFHPWAζ(h1, h2, . . . , hn) ≤ HFHPWAζ(h′1, h′2, . . . , h′n).

However, the HFHPWA operator is neither idempotent nor commutative, as illustrated by the
following example.

Example 2. Let h1 = {0.8, 0.6}, h2 = {0.9, 0.5} and h3 = {0.7, 0.6} be three HFEs, w = (0.3, 0.5, 0.2)T

be the weight vector of h1, h2 and h3. Assume that Sup(hi, hj) (i, j = 1, 2, 3, i �= j) is the support for hi from
hj given by Sup(hi, hj) = 1 − d(hi, hj), where d(hi, hj) is the hesitant Hamming distance between hi and hj.
Then by Theorem 2, we have

HFHPWA5(h1, h2, h3) = {0.8388, 0.6555, 0.7942, 0.5797, 0.8261, 0.6332, 0.7786, 0.5549},

HFHPWA5(h2, h3, h1) = {0, 8013, 0.7683, 0.6723, 0.6255, 0.7650, 0.7275, 0.6208, 0.5701},

HFHPWA5(h3, h3, h3) = {0.7000, 0.6559, 0.6704, 0.6237, 0.6793, 0.6334, 0.6485, 0.6000}.

From Definition 3, we have s(h1) = s(h2) = 0, 7, s(h3) = 0.65, s(HFHPWA5(h1, h2, h3)) = 0.7076,
s(HFHPWA5(h2, h3, h1)) = 0.6938 and s(HFHPWA5(h3, h3, h3)) = 0.6514. Then s(HFHPWA5(h3, h3,
h3)) �= s(h3) and thus HFHPWA5(h3, h3, h3) �= h3, which implies that the HFHPWA operator is
not idempotent. Furthermore, since s(HFHPWA5(h1, h2, h3)) �= s(HFHPWA5(h2, h3, h1)), we have
HFHPWA5(h1, h2, h3) �= HFHPWA5(h2, h3, h1). Thus, the HFHPWA operator is not commutative.

Based on the power geometric (PG) operator [25] and hesitant fuzzy Hamacher weighted
geometric (HFHWG) operator [17], we also define the hesitant fuzzy Hamacher power-weighted
geometric operator as follows.

Definition 6. Let hi (i = 1, 2, . . . , n) be a collection of HFEs and w = (w1, w2, . . . , wn)T be the weight vector
of hi (i = 1, 2, . . . , n) such that wi ∈ [0, 1] and ∑n

i=1 wi = 1. A hesitant fuzzy Hamacher power-weighted
geometric (HFHPWG) operator is a function Hn → H such that

HFHPWGζ(h1, h2, . . . , hn) = ⊗H
n
i=1

⎛⎝h
∧H

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i

⎞⎠ , (10)
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where parameter ζ > 0, T(hi) = ∑n
j=1,j �=i wjSup(hi, hj) and Sup(hi, hj) is the support for hi from hj.

Theorem 5. Let hi (i = 1, 2, . . . , n) be a collection of HFEs and w = (w1, w2, . . . , wn)T be the weight vector
of hi (i = 1, 2, . . . , n) such that wi ∈ [0, 1] and ∑n

i=1 wi = 1, then the aggregated value by HFHPWG operator
is also a HFE, and

HFHPWGζ(h1, h2, . . . , hn) = ∪γ1∈h1,γ2∈h2,...,γn∈hn

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
ζ ∏n

i=1 (γi)
wi (1+T(hi ))

∑n
i=1 wi (1+T(hi ))⎡⎢⎣ ∏n

i=1 (1 + (ζ − 1)(1 − γi))
wi (1+T(hi ))

∑n
i=1 wi (1+T(hi ))

+(ζ − 1)∏n
i=1 (γi)

wi (1+T(hi ))
∑n

i=1 wi (1+T(hi ))

⎤⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (11)

Proof. Similar to the proof of Theorem 2, Equation (11) can be proved by mathematical induction
on n.

Remark 2. (1) If Sup(hi, hj) = k, for all i �= j, then

HFHPWGζ(h1, h2, . . . , hn) = ⊗H
n
i=1

(
h∧Hwi

i

)
(12)

which indicates that when all supports are the same, the HFHPWG operator reduces to the hesitant fuzzy
Hamacher weighted geometric (HFHWG) operator [17].

(2) If ζ = 1, then then the HFHPWG operator reduces to the following:

HFHPWG1(h1, h2, . . . , hn) = ∪γ1∈h1,γ2∈h2,...,γn∈hn

{
n

∏
i=1

(γi)
wi(1+T(hi))

∑n
i=1 wi(1+T(hi))

}
(13)

which is called the hesitant fuzzy power-weighted geometric (HFPWG) operator and if ζ = 2, then the HFHPWG
operator reduces to the hesitant fuzzy Einstein power-weighted geometric (HFEPWG) operator [18]:

HFHPWG2(h1, h2, . . . , hn)

= ∪γ1∈h1,γ2∈h2,...,γn∈hn

⎧⎪⎨⎪⎩ 2 ∏n
i=1 (γi)

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

∏n
i=1 (2 − γi)

wi(1+T(hi))
∑n

i=1 wi(1+T(hi)) + ∏n
i=1 (γi)

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

⎫⎪⎬⎪⎭ . (14)

Theorem 6. Let hi (i = 1, 2, . . . , n) be a collection of HFEs and w = (w1, w2, . . . , wn)T be the weight vector
of hi such that wi ∈ [0, 1] and ∑n

i=1 wi = 1, then

HFHPWGζ(h1, h2, . . . , hn) ≥ HFPWG(h1, h2, . . . , hn).

Proof. For any γi ∈ hi (i = 1, 2, . . . , n), by Lemma 1, we have

n

∏
i=1

(1 + (ζ − 1)(1 − γi))
wi(1+T(hi))

∑n
i=1 wi(1+T(hi)) + (ζ − 1)

n

∏
i=1

(γi)
wi(1+T(hi))

∑n
i=1 wi(1+T(hi))

≤
n

∑
i=1

wi(1 + T(hi))

∑n
i=1 wi(1 + T(hi))

(1 + (ζ − 1)(1 − γi)) + (ζ − 1)
n

∑
i=1

wi(1 + T(hi))

∑n
i=1 wi(1 + T(hi))

γi = ζ.

Then,

ζ ∏n
i=1 (γi)

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

∏n
i=1 (1 + (ζ − 1)(1 − γi))

wi(1+T(hi))
∑n

i=1 wi(1+T(hi)) + (ζ − 1)∏n
i=1 (γi)

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

≥
n

∏
i=1

(γi)
wi(1+T(hi))

∑n
i=1 wi(1+T(hi)) ,
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which implies that ⊗H
n
i=1

⎛⎝h
∧H

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i

⎞⎠ ≥ ⊗n
i=1

⎛⎝h
wi(1+T(hi))hi

∑n
i=1 wi(1+T(hi))

i

⎞⎠, i.e.,

HFHPWGζ(h1, h2, . . . , hn) ≥ HFPWG(h1, h2, . . . , hn).

Theorem 6 shows that the HFHPWG operator reflects the decision-maker’s more optimistic
attitude than the HFPWG operator in aggregation process. Furthermore, similar to Theorem 4, we have
the properties of the HFHPWG operator as follows.

Theorem 7. bLet hi (i = 1, 2, . . . , n) be a collection of HFEs and w = (w1, w2, . . . , wn)T be the weight vector
of hi such that wi ∈ [0, 1] and ∑n

i=1 wi = 1, then we have the followings:
(1) Boundedness: If h− = min{γi|γi ∈ hi} and h+ = max{γi|γi ∈ hi}, then

h− ≤ HFHPWGζ(h1, h2, . . . , hn) ≤ h+.

(2) Monotonicity: Let h′i (i = 1, 2, . . . , n) be a collection of HFEs, if w = (w1, w2, . . . , wn)T is also the
weight vector of h′i , and γi ≤ γ′

i for any hi and h′i (i = 1, 2, . . . , n), then

HFHPWGζ(h1, h2, . . . , hn) ≤ HFHPWGζ(h′1, h′2, . . . , h′n).

Proof. (1) Let g(x) = 1+(ζ−1)(1−x)
x , x ∈ (0, 1], then g′(x) = −ζ

x2 < 0, thus g(x) is a decreasing function.

Since h− ≤ γi ≤ h+ for all i, then g(h−) ≥ g(γi) ≥ g(h+), i.e., 1+(ζ−1)(1−h+)
h+ ≤ 1+(ζ−1)(1−γi)

γi
≤

1+(ζ−1)(1−h−)
h− . Since w = (w1, w2, . . . , wn)T is the weight vector of hi satisfying wi ∈ [0, 1] and

∑n
i=1 wi = 1, then for all i, let ti =

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))
, we have

(
1 + (ζ − 1)(1 − h+)

h+

)ti

≤
(

1 + (ζ − 1)(1 − γi)

γi

)ti

≤
(

1 + (ζ − 1)(1 − h−)
h−

)ti

⇔
n

∏
i=1

(
1 + (ζ − 1)(1 − h+)

h+

)ti

≤
n

∏
i=1

(
1 + (ζ − 1)(1 − γi)

γi

)ti

≤
n

∏
i=1

(
1 + (ζ − 1)(1 − h−)

h−

)ti

⇔ ζ

h+
− (ζ − 1) ≤

n

∏
i=1

(
1 + (ζ − 1)(1 − γi)

γi

)ti

≤ ζ

h− − (ζ − 1)

⇔ ζ

h+
≤

n

∏
i=1

(
1 + (ζ − 1)(1 − γi)

γi

)ti

+ (ζ − 1) ≤ ζ

h−

⇔ h−

ζ
≤ 1

∏n
i=1

(
1+(ζ−1)(1−γi)

γi

)ti
+ (ζ − 1)

≤ h+

ζ

⇔ h−

ζ
≤ ∏n

i=1 (γi)
ti

∏n
i=1 (1 + (ζ − 1)(1 − γi))

ti + (ζ − 1)∏n
i=1 (γi)

ti
≤ h+

ζ

⇔ h− ≤ ζ ∏n
i=1 (γi)

ti

∏n
i=1 (1 + (ζ − 1)(1 − γi))

ti + (ζ − 1)∏n
i=1 (γi)

ti
≤ h+

Thus, we have h− ≤ HFHPWGζ(h1, h2, . . . , hn) ≤ h+.
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(2) Let g(x) = 1+(ζ−1)(1−x)
x , x ∈ (0, 1], then by (1), g(x) is a decreasing function. Then for all i,

γi ≤ γ′
i , we have 1+(ζ−1)(1−γi)

γi
≥ 1+(ζ−1)(1−γ′

i)

γ′
i

. For convenience, let ti =
wi(1+T(hi))

∑n
i=1 wi(1+T(hi))

, then we have

(
1 + (ζ − 1)(1 − γi)

γi

)ti

≥
(

1 + (ζ − 1)(1 − γ′
i)

γ′
i

)ti

⇔
n

∏
i=1

(
1 + (ζ − 1)(1 − γi)

γi

)ti

≥
n

∏
i=1

(
1 + (ζ − 1)(1 − γ′

i)

γ′
i

)ti

⇔
n

∏
i=1

(
1 + (ζ − 1)(1 − γi)

γi

)ti

+ (ζ − 1) ≥
n

∏
i=1

(
1 + (ζ − 1)(1 − γ′

i)

γ′
i

)ti

+ (ζ − 1)

⇔ 1

∏n
i=1

(
1+(ζ−1)(1−γi)

γi

)ti
+ (ζ − 1)

≤ 1

∏n
i=1

(
1+(ζ−1)(1−γ′

i)

γ′
i

)ti
+ (ζ − 1)

⇔ ζ ∏n
i=1 (γi)

ti[
∏n

i=1 (1 + (ζ − 1)(1 − γi))
ti

+(ζ − 1)∏n
i=1 (γi)

ti

] ≤ ζ ∏n
i=1
(
γ′

i
)ti[

∏n
i=1
(
1 + (ζ − 1)(1 − γ′

i)
)ti

+(ζ − 1)∏n
i=1
(
γ′

i
)ti

] .

Thus, by Theorem 5, HFHPWGζ(h1, h2, . . . , hn) ≤ HFHPWGζ(h′1, h′2, . . . , h′n).

However, the HFHPWG operator is also neither idempotent nor commutative, as illustrated by
the following example.

Example 3. Let h1, h2 and h3 be three HFEs, w be the weight vector of them, and Sup(hi, hj) (i, j = 1, 2, 3,
i �= j) be the support for hi from hj given in Example 2. Then by Theorem 5, we have

HFHPWG5(h1, h1, h1) = {0.8000, 0.7095, 0.7390, 0.6455, 0.7573, 0.6644, 0.6945, 0.6000},

HFHPWG5(h1, h2, h3) = {0.8277, 0.6398, 0.7678, 0.5751, 0.8077, 0.6177, 0.7467, 0.5532},

HFHPWG5(h2, h3, h1) = {0, 7881, 0.7438, 0.6611, 0.6145, 0.7445, 0.6989, 0.6152, 0.5686}.

According to Definition 3, we have s(HFHPWG5(h1, h1, h1)) = 0.7013, s(HFHPWG5(h1, h2, h3)) =

0.6920 and s(HFHPWG5(h2, h3, h1)) = 0.6793. Then s(HFHPWG5(h1, h1, h1)) �= s(h1) and thus
HFHPWG5(h1, h1, h1) �= h1, which implies that the HFHPWG operator is not idempotent. Furthermore,
since s(HFHPWG5(h1, h2, h3)) �= s(HFHPWG5(h2, h3, h1)), we have HFHPWG5(h1, h2, h3) �=
HFHPW5(h2, h3, h1). Thus, the HFHPWG operator is not commutative.

Theorem 8. Let hi (i = 1, 2, . . . , n) be a collection of HFEs and w = (w1, w2, . . . , wn)T be the weight vector
of hi such that wi ∈ [0, 1] and ∑n

i=1 wi = 1, then we have
(1) HFHPWAζ(hc

1, hc
2, . . . , hc

n) = (HFHPWGζ(h1, h2, . . . , hn))c;
(2) HFHPWGζ(hc

1, hc
2, . . . , hc

n) = (HFHPWAζ(h1, h2, . . . , hn))c.
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Proof. Since (2) is similar (1), we only prove (1).

HFHPWAζ(hc
1, hc

2, . . . , hc
n)

= ∪γ1∈h1,γ2∈h2,...,γn∈hn

⎧⎪⎨⎪⎩ ∏n
i=1 (1 + (ζ − 1)(1 − γi))

wi(1+T(hi))
∑n

i=1 wi(1+T(hi)) − ∏n
i=1 (γi)

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

∏n
i=1 (1 + (ζ − 1)(1 − γi))

wi(1+T(hi))
∑n

i=1 wi(1+T(hi)) + (ζ − 1)∏n
i=1 (γi)

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

⎫⎪⎬⎪⎭

= ∪γ1∈h1,γ2∈h2,...,γn∈hn

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 − ζ ∏n

i=1 (γi)
wi(1+T(hi))

∑n
i=1 wi(1+T(hi))⎡⎢⎣ ∏n

i=1 (1 + (ζ − 1)(1 − γi))
wi(1+T(hi))

∑n
i=1 wi(1+T(hi))

+(ζ − 1)∏n
i=1 (γi)

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

⎤⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
= (HFHPWGζ(h1, h2, . . . , hn))

c.

3.2. Generalized Hesitant Fuzzy Hamacher Power-Weighted Average/Geometric Operators

Definition 7. Let hi (i = 1, 2, . . . , n) be a collection of HFEs, w = (w1, w2, . . . , wn)T be the weight vector of
hi (i = 1, 2, . . . , n) such that wi ∈ [0, 1] and ∑n

i=1 wi = 1. For a parameter λ > 0, a generalized hesitant fuzzy
Hamacher power-weighted average (GHFHPWA) operator is a function Hn → H such that

GHFHPWAζ(h1, h2, . . . , hn) =

(
⊕H

n
i=1

(
wi(1 + T(hi)) ·H h∧Hλ

i
∑n

i=1 wi(1 + T(hi))

))∧H
1
λ

, (15)

where parameter ζ > 0, T(hi) = ∑n
j=1,j �=i wjSup(hi, hj) and Sup(hi, hj) is the support for hi from hj.

Theorem 9. Let hi (i = 1, 2, . . . , n) be a collection of HFEs and w = (w1, w2, . . . , wn)T be the weight vector of
hi (i = 1, 2, . . . , n) such that wi ∈ [0, 1] and ∑n

i=1 wi = 1, then the aggregated value by GHFHPWA operator is
also a HFE, and

GHFHPWAζ(h1, h2, . . . , hn)

= ∪γ1∈h1,γ2∈h2,...,γn∈hn

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ

⎛⎝∏n
i=1 a

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i − ∏n
i=1 b

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i

⎞⎠
1
λ

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎝∏n
i=1 a

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i + (ζ2 − 1)∏n
i=1 b

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i

⎞⎠
1
λ

+(ζ − 1)

⎛⎝∏n
i=1 a

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i − ∏n
i=1 b

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i

⎞⎠
1
λ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (16)

where ai = (1 + (ζ − 1)(1 − γi))
λ + (ζ2 − 1)γλ

i and bi = (1 + (ζ − 1)(1 − γi))
λ − γλ

i .
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Proof. We first use the mathematical induction on n to prove

⊕H
n
i=1

(
wi(1 + T(hi)) ·H h∧Hλ

i
∑n

i=1 wi(1 + T(hi))

)

= ∪γ1∈h1,γ2∈h2,...,γn∈hn

⎧⎪⎪⎨⎪⎪⎩
∏n

i=1 a
wi(1+T(hi))

∑n
i=1 wi(1+T(hi))

i − ∏n
i=1 b

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i

∏n
i=1 a

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i + (ζ − 1)∏n
i=1 b

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i

⎫⎪⎪⎬⎪⎪⎭ . (17)

(1) When n = 1, since wi(1+T(hi))
∑n

i=1 wi(1+T(hi))
= 1, we have

⊕H
n
i=1

(
wi(1 + T(hi)) ·H h∧Hλ

i
∑n

i=1 wi(1 + T(hi))

)
= h∧Hλ

1

= ∪γ1∈h1

{
ζγλ

1

(1 + (ζ − 1)(1 − γ1))λ + (ζ − 1)γλ
1

}

= ∪γ1∈h1

{
a1 − b1

a1 + (ζ − 1)b1

}
.

Thus, Equation (17) holds for n = 1.
(2) Suppose that Equation (17) holds for n = k, that is

⊕H
k
i=1

(
wi(1 + T(hi)) ·H h∧Hλ

i

∑k
i=1 wi(1 + T(hi))

)

= ∪γ1∈h1,γ2∈h2,...,γk∈hk

⎧⎪⎪⎨⎪⎪⎩
∏k

i=1 a

wi(1+T(hi))

∑k
i=1 wi(1+T(hi))

i − ∏k
i=1 b

wi(1+T(hi))

∑k
i=1 wi(1+T(hi))

i

∏k
i=1 a

wi(1+T(hi))

∑k
i=1 wi(1+T(hi))

i + (ζ − 1)∏k
i=1 b

wi(1+T(hi))

∑k
i=1 wi(1+T(hi))

i

⎫⎪⎪⎬⎪⎪⎭ ,

then, when n = k + 1, by the operational laws in Definition 4, we have

⊕H
k+1
i=1

(
wi(1 + T(hi)) ·H h∧Hλ

i

∑k+1
i=1 wi(1 + T(hi))

)

= ⊕H
k
i=1

(
wi(1 + T(hi)) ·H h∧Hλ

i

∑k+1
i=1 wi(1 + T(hi))

)
⊕H

(
wk+1(1 + T(hk+1)) ·H h∧Hλ

k+1

∑k+1
i=1 wi(1 + T(hi))

)

= ∪γ1∈h1,γ2∈h2,...,γk∈hk

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∏k

i=1 a

wi(1+T(hi))

∑k+1
i=1 wi(1+T(hi))

i − ∏k
i=1 b

wi(1+T(hi))

∑k+1
i=1 wi(1+T(hi))

i

∏k
i=1 a

wi(1+T(hi))

∑k+1
i=1 wi(1+T(hi))

i + (ζ − 1)∏k
i=1 b

wi(1+T(hi))

∑k+1
i=1 wi(1+T(hi))

i

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⊕H ∪γk+1∈hk+1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a

wk+1(1+T(hk+1))

∑k+1
i=1 wi(1+T(hi))

k+1 − b

wk+1(1+T(hk+1))

∑k+1
i=1 wi(1+T(hi))

k+1

a

wk+1(1+T(hk+1))

∑k+1
i=1 wi(1+T(hi))

k+1 + (ζ − 1)b

wk+1(1+T(hk+1))

∑k+1
i=1 wi(1+T(hi))

k+1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= ∪γ1∈h1,γ2∈h2,...,γk∈hk ,γk+1∈hk+1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∏k+1

i=1 a

wi(1+T(hi))

∑k+1
i=1 wi(1+T(hi))

i − ∏k+1
i=1 b

wi(1+T(hi))

∑k+1
i=1 wi(1+T(hi))

i

∏k+1
i=1 a

wi(1+T(hi))

∑k+1
i=1 wi(1+T(hi))

i + (ζ − 1)∏k+1
i=1 b

wi(1+T(hi))

∑k+1
i=1 wi(1+T(hi))

i

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

i.e., Equation (17) holds for n = k + 1. Thus, Equation (17) holds for all n.

221



Mathematics 2019, 7, 594

Hence, by the operational laws in Definition 4, we have

GHFHPWAζ(h1, h2, . . . , hn) =

(
⊕H

n
i=1

(
wi(1 + T(hi)) ·H h∧H λ

i
∑n

i=1 wi(1 + T(hi))

))∧H
1
λ

= ∪γ1∈h1,γ2∈h2,...,γn∈hn

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ

⎛⎜⎝ ∏n
i=1 a

wi (1+T(hi ))
∑n

i=1 wi (1+T(hi ))
i −∏n

i=1 b

wi (1+T(hi ))
∑n

i=1 wi(1+T(hi ))
i

∏n
i=1 a

wi (1+T(hi ))
∑n

i=1 wi (1+T(hi ))
i +(ζ−1)∏n

i=1 b

wi (1+T(hi ))
∑n

i=1 wi(1+T(hi ))
i

⎞⎟⎠
1
λ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎝1 + (ζ − 1)(1 − ∏n
i=1 a

wi (1+T(hi ))
∑n

i=1 wi(1+T(hi ))
i −∏n

i=1 b

wi (1+T(hi ))
∑n

i=1 wi(1+T(hi ))
i

∏n
i=1 a

wi (1+T(hi ))
∑n

i=1 wi (1+T(hi ))
i +(ζ−1)∏n

i=1 b

wi (1+T(hi ))
∑n

i=1 wi (1+T(hi ))
i

)

⎞⎟⎠
1
λ

+(ζ − 1)

⎛⎜⎝ ∏n
i=1 a

wi (1+T(hi ))
∑n

i=1 wi(1+T(hi ))
i −∏n

i=1 b

wi (1+T(hi ))
∑n

i=1 wi (1+T(hi ))
i

∏n
i=1 a

wi (1+T(hi ))
∑n

i=1 wi(1+T(hi ))
i +(ζ−1)∏n

i=1 b

wi (1+T(hi ))
∑n

i=1 wi(1+T(hi ))
i

⎞⎟⎠
1
λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= ∪γ1∈h1,γ2∈h2,...,γn∈hn

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ

⎛⎝∏n
i=1 a

wi (1+T(hi ))
∑n

i=1 wi(1+T(hi ))

i − ∏n
i=1 b

wi (1+T(hi ))
∑n

i=1 wi(1+T(hi ))

i

⎞⎠
1
λ

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎝∏n
i=1 a

wi (1+T(hi ))
∑n

i=1 wi (1+T(hi ))

i + (ζ2 − 1)∏n
i=1 b

wi (1+T(hi ))
∑n

i=1 wi(1+T(hi ))

i

⎞⎠
1
λ

+(ζ − 1)

⎛⎝∏n
i=1 a

wi (1+T(hi ))
∑n

i=1 wi (1+T(hi ))

i − ∏n
i=1 b

wi (1+T(hi ))
∑n

i=1 wi(1+T(hi ))

i

⎞⎠
1
λ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

which completes the proof of the theorem.

Remark 3. (1) If Sup(hi, hj) = k, for all i �= j, then

GHFHPWAζ(h1, h2, . . . , hn) =
(
⊕H

n
i=1

(
wi ·H h∧Hλ

i

))∧H
1
λ (18)

and thus, the GHFHPWA operator reduces to the generalized hesitant fuzzy Hamacher weighted average
(GHFHWA) operator [17].

(2) If ζ = 1, then the GHFHPWA operator reduces to the generalized hesitant fuzzy power-weighted
average (GHFPWA) operator [15]:

GHFHPWA1(h1, h2, . . . , hn) = ∪γ1∈h1,γ2∈h2,...,γn∈hn

⎧⎨⎩
(

1 −
n

∏
i=1

(
1 − γλ

i

) wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

) 1
λ

⎫⎬⎭ (19)
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and if ζ = 2, then the GHFHPWA operator reduces to the generalized hesitant fuzzy Einstein power-weighted
average (GHFEPWA) operator [18]:

GHFHPWA2(h1, h2, . . . , hn)

= ∪γ1∈h1,γ2∈h2,...,γn∈hn

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2

⎛⎝∏n
i=1 a

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i − ∏n
i=1 b

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i

⎞⎠
1
λ

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎝∏n
i=1 a

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i + 3 ∏n
i=1 b

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i

⎞⎠
1
λ

+

⎛⎝∏n
i=1 a

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i − ∏n
i=1 b

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i

⎞⎠
1
λ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (20)

where ai = (2 − γi)
λ + 3γλ

i , bi = (2 − γi)
λ − γλ

i .
(3) If λ = 1, then ai = ζ(1 + (ζ − 1)γi) and bi = ζ(1 − γi), and thus the GHFHPWA operator reduces

to the HFHPWA operator.
In particular, if w = ( 1

n , 1
n , . . . , 1

n )
T, then the GHFHPWA operator reduces to the generalized hesitant

fuzzy Hamacher power average (GHFHPA) operator:

GHFHPAζ(h1, h2, . . . , hn) =

(
⊕H

n
i=1

(
(1 + T′(hi)) ·H h∧H λ

i
∑n

i=1(1 + T′(hi))

))∧H
1
λ

= ∪γ1∈h1,γ2∈h2,...,γn∈hn

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ

⎛⎝∏n
i=1 a

(1+T′(hi ))
∑n

i=1(1+T′(hi ))

i − ∏n
i=1 b

(1+T′(hi ))
∑n

i=1(1+T′(hi ))

i

⎞⎠
1
λ

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎝∏n
i=1 a

(1+T′(hi ))
∑n

i=1(1+T′(hi ))

i + (ζ2 − 1)∏n
i=1 b

(1+T′(hi ))
∑n

i=1(1+T′(hi ))

i

⎞⎠
1
λ

+(ζ − 1)

⎛⎝∏n
i=1 a

wi (1+T(hi ))
∑n

i=1 wi(1+T(hi ))

i − ∏n
i=1 b

wi (1+T(hi ))
∑n

i=1 wi(1+T(hi ))

i

⎞⎠
1
λ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (21)

where ai = (1 + (ζ − 1)(1 − γi))
λ + (ζ2 − 1)γλ

i , bi = (1 + (ζ − 1)(1 − γi))
λ − γλ

i and T′(hi) =
1
n ∑n

j=1,j �=i Sup(hi, hj).

Definition 8. Let hi (i = 1, 2, . . . , n) be a collection of HFEs and w = (w1, w2, . . . , wn)T be the weight vector
of hi (i = 1, 2, . . . , n) such that wi ∈ [0, 1] and ∑n

i=1 wi = 1. For λ > 0, a generalized hesitant fuzzy Hamacher
power-weighted geometric (GHFHPWG) operator is a function Hn → H such that

GHFHPWGζ(h1, h2, . . . , hn) =
1
λ
·H
(
⊗H

n
i=1

(
(λ ·H hi)

∧H
wi(1+T(hi))

∑n
i=1 wi(1+T(hi))

))
, (22)

where ζ > 0, T(hi) = ∑n
j=1,j �=i wjSup(hi, hj) and Sup(hi, hj) is the support for hi from hj.
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Theorem 10. Let hi (i = 1, 2, . . . , n) be a collection of HFEs and w = (w1, w2, . . . , wn)T be the weight vector
of hi (i = 1, 2, . . . , n) such that wi ∈ [0, 1] and ∑n

i=1 wi = 1, then the aggregated value by GHFHPWG operator
is also a HFE, and

GHFHPWGζ(h1, h2, . . . , hn)

= ∪γ1∈h1,γ2∈h2,...,γn∈hn

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎝∏n
i=1 c

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i + (ζ2 − 1)∏n
i=1 d

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i

⎞⎠
1
λ

−
⎛⎝∏n

i=1 c
wi(1+T(hi))

∑n
i=1 wi(1+T(hi))

i − ∏n
i=1 d

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i

⎞⎠
1
λ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎝∏n
i=1 c

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i + (ζ2 − 1)∏n
i=1 d

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i

⎞⎠
1
λ

+(ζ − 1)

⎛⎝∏n
i=1 c

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i − ∏n
i=1 d

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i

⎞⎠
1
λ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (23)

where ci = (1 + (ζ − 1)γi)
λ + (ζ2 − 1)(1 − γi)

λ and di = (1 + (ζ − 1)γi)
λ − (1 − γi)

λ.

Proof. Similar to the proof of Theorem 9, Equation (23) can be proved by mathematical induction
on n.

In particular, if w = ( 1
n , 1

n , . . . , 1
n )

T , then the GHFHPWG operator reduces to the generalized
hesitant fuzzy Hamacher power geometric (GHFHPG) operator:

GHFHPAζ(h1, h2, . . . , hn) =
1
λ
·H
(
⊗H

n
i=1

(
(λ ·H hi)

∧H
(1+T′(hi))

∑n
i=1(1+T′(hi))

))

= ∪γ1∈h1,γ2∈h2,...,γn∈hn

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎝∏n
i=1 c

(1+T′(hi))
∑n

i=1(1+T′(hi))

i + (ζ2 − 1)∏n
i=1 d

(1+T′(hi))
∑n

i=1(1+T′(hi))

i

⎞⎠
1
λ

−
⎛⎝∏n

i=1 c
(1+T′(hi))

∑n
i=1(1+T′(hi))

i − ∏n
i=1 d

(1+T′(hi))
∑n

i=1(1+T′(hi))

i

⎞⎠
1
λ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎝∏n
i=1 c

(1+T′(hi))
∑n

i=1(1+T′(hi))

i + (ζ2 − 1)∏n
i=1 d

(1+T′(hi))
∑n

i=1(1+T′(hi))

i

⎞⎠
1
λ

+(ζ − 1)

⎛⎝∏n
i=1 c

(1+T′(hi))
∑n

i=1(1+T′(hi))

i − ∏n
i=1 d

(1+T′(hi))
∑n

i=1(1+T′(hi))

i

⎞⎠
1
λ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (24)

where ci = (1 + (ζ − 1)γi)
λ + (ζ2 − 1)(1 − γi)

λ, di = (1 + (ζ − 1)γi)
λ − (1 − γi)

λ and T′(hi) =
1
n ∑n

j=1,j �=i Sup(hi, hj).

Remark 4. (1) If ζ = 1, then the GHFHPWG operator reduces to the generalized hesitant fuzzy power-weighted
geometric (GHFPWG) operator [15]:

GHFHPWG1(h1, h2, . . . , hn) = ∪γ1∈h1,γ2∈h2,...,γn∈hn

⎧⎨⎩
(

n

∏
i=1

(
γλ

i

) wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

) 1
λ

⎫⎬⎭ . (25)
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and if ζ = 2, then the GHFHPWG operator reduces to the generalized hesitant fuzzy Einstein power-weighted
geometric (GHFEPWG) operator [18]:

GHFHPWG2(h1, h2, . . . , hn)

= ∪γ1∈h1,γ2∈h2,...,γn∈hn

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎝∏n
i=1 c

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i + 3 ∏n
i=1 d

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i

⎞⎠
1
λ

−
⎛⎝∏n

i=1 c
wi(1+T(hi))

∑n
i=1 wi(1+T(hi))

i − ∏n
i=1 d

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i

⎞⎠
1
λ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎝∏n
i=1 c

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i + 3 ∏n
i=1 d

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i

⎞⎠
1
λ

+(ζ − 1)

⎛⎝∏n
i=1 c

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i − ∏n
i=1 d

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i

⎞⎠
1
λ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (26)

where ci = (1 + γi)
λ + 3(1 − γi)

λ, di = (1 + γi)
λ − (1 − γi)

λ. (2) If Sup(hi, hj) = k, for all i �= j, then

GHFHPWGζ(h1, h2, . . . , hn) =
1
λ
·H
(
⊗H

n
i=1 (λ ·H hi)

∧Hwi
)

(27)

and thus, the GHFHPWG operator reduces to the generalized hesitant fuzzy Hamacher weighted geometric
(GHFHWG) operator [17].

(3) If λ = 1, then ci = ζ(1 + (ζ − 1)(1 − γi)) and di = ζγi, and so the GHFHPWG operator reduces to
the HFHPWG operator.

Theorem 11. Let hi (i = 1, 2, . . . , n) be a collection of HFEs and w = (w1, w2, . . . , wn)T be the weight vector
of hi such that wi ∈ [0, 1] and ∑n

i=1 wi = 1, then we have
(1) GHFHPWAζ(hc

1, hc
2, . . . , hc

n) = (GHFHPWGζ(h1, h2, . . . , hn))c;
(2) GHFHPWGζ(hc

1, hc
2, . . . , hc

n) = (GHFHPWAζ(h1, h2, . . . , hn))c.

Proof. Similar to the proof of Theorem 8.

3.3. Hesitant Fuzzy Hamacher Power-Ordered Weighted Average/Geometric Operators

Motivated by the idea of the POWA operator [24], POWG operator [25] and Hamacher operations,
we define the hesitant fuzzy Hamacher power-ordered weighted average (HFHPOWA) operator and
hesitant fuzzy Hamacher power-ordered weighted geometric (HFHPOWG) operator as follows.

Definition 9. Let hi (i = 1, 2, . . . , n) be a collection of HFEs. A hesitant fuzzy Hamacher power-ordered
weighted average (HFHPOWA) operator is a function Hn → H such that

HFHPOWAζ(h1, h2, . . . , hn) = ⊕H
n
i=1

(
ui ·H hσ(i)

)
, (28)

where parameter ζ > 0, hσ(i) is the ith largest HFE of hj (j = 1, 2, . . . , n), and ui (i = 1, 2, . . . , n) is a collection
of weights such that

ui = g
(

Ri
TV

)
− g

(
Ri−1

TV

)
, Ri =

i

∑
j=1

Vσ(j), TV =
n

∑
i=1

Vσ(i),

Vσ(i) = 1 + T(hσ(i)), T(hσ(i)) =
n

∑
j=1,j �=i

Sup(hσ(i), hσ(j)), (29)
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where T(hσ(i)) denotes the support of ith largest HFE by all of the other HFEs, Sup(hσ(i), hσ(j)) indicates the
support of the ith largest HFE for the jth largest HFE, and g : [0, 1] → [0, 1] is a basic unit-interval monotone
(BUM) function with the following properties: (1) g(0) = 0; (2) g(1) = 1; and (3) g(x) ≥ g(y) if x > y.

Theorem 12. Let hi (i = 1, 2, . . . , n) be a collection of HFEs, then the aggregated value by HFHPOWA operator
is also an HFE, and

HFHPOWAζ(h1, h2, . . . , hn)

= ∪γσ(1)∈hσ(1) ,γσ(2)∈hσ(2) ,...,γσ(n)∈hσ(n)

⎧⎪⎨⎪⎩
∏n

i=1

(
1 + (ζ − 1)γσ(i)

)ui − ∏n
i=1

(
1 − γσ(i)

)ui

∏n
i=1

(
1 + (ζ − 1)γσ(i)

)ui
+ (ζ − 1)∏n

i=1

(
1 − γσ(i)

)ui

⎫⎪⎬⎪⎭ , (30)

where ui (i = 1, 2, . . . , n) is a collection of weights satisfying the condition (29).

Remark 5. (1) If Sup(hi, hj) = k for all i �= j and g(x) = x, then ui =
1
n , i = 1, 2, . . . , n, and so

HFHPOWAζ(h1, h2, . . . , hn) = ⊕H
n
i=1

(
1
n
·H hi

)
which indicates that the HFHPOWA operator reduces to the hesitant fuzzy Hamacher average (HFHA) operator
[17].

(2) If ζ = 1, then the HFHPOWA operator reduces to the hesitant fuzzy power-ordered weighted average
(HFPOWA) operator [15]:

HFHPOWA1(h1, h2, . . . , hn) = ⊕n
i=1

(
uihσ(i)

)
= ∪γσ(1)∈hσ(1) ,γσ(2)∈hσ(2) ,...,γσ(n)∈hσ(n)

{
1 −

n

∏
i=1

(
1 − γσ(i)

)ui

}
, (31)

where ui (i = 1, 2, . . . , n) is a collection of weights satisfying the condition (29). If ζ = 2, then the HFHPOWA
operator (30) reduces to the hesitant fuzzy Einstein power-ordered weighted average (HFEPOWA) operator [18]:

HFHPOWA2(h1, h2, . . . , hn)

= ∪γσ(1)∈hσ(1) ,γσ(2)∈hσ(2) ,...,γσ(n)∈hσ(n)

⎧⎪⎨⎪⎩
∏n

i=1

(
1 + γσ(i)

)ui − ∏n
i=1

(
1 − γσ(i)

)ui

∏n
i=1

(
1 + γσ(i)

)ui
+ ∏n

i=1

(
1 − γσ(i)

)ui

⎫⎪⎬⎪⎭ , (32)

where ui (i = 1, 2, . . . , n) is a collection of weights satisfying the condition (29).

Similar to Theorems 3 and 4, we have the properties of HFHPOWA operator as follows.

Theorem 13. If hi (i = 1, 2, . . . , n) is a collection of HFEs and ui (i = 1, 2, . . . , n) is the collection of the
weights which satisfies the condition (29), then

HFHPOWAζ(h1, h2, . . . , hn) ≤ HFPOWA(h1, h2, . . . , hn).

Theorem 14. If hi (i = 1, 2, . . . , n) is a collection of HFEs and ui (i = 1, 2, . . . , n) is the collection of the
weights which satisfies the condition (29), then we have the followings:

(1) Boundedness: If h− = min{γi|γi ∈ hi} and h+ = max{γi|γi ∈ hi}, then

h− ≤ HFHPOWAζ(h1, h2, . . . , hn) ≤ h+.
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(2) Monotonicity: Let h′i (i = 1, 2, . . . , n) be a collection of HFEs, if for any hσ(i) and h′
σ(i) (i = 1, 2, . . . , n),

γσ(i) ≤ γ′
σ(i) , then

HFHPOWAζ(h1, h2, . . . , hn) ≤ HFHPWAζ(h′1, h′2, . . . , h′n).

Definition 10. Let hi (i = 1, 2, . . . , n) be a collection of HFEs. A hesitant fuzzy Hamacher power-ordered
weighted geometric (HFHPOWG) operator is a function Hn → H such that

HFHPOWGζ(h1, h2, . . . , hn) = ⊗H
n
i=1

(
h∧Hui

σ(i)

)
, (33)

where parameter ζ > 0, hσ(i) is the ith largest HFE of hj (j = 1, 2, . . . , n), and ui (i = 1, 2, . . . , n) is a collection
of weights satisfying the condition (29).

Theorem 15. If hi (i = 1, 2, . . . , n) is a collection of HFEs, then the aggregated value by HFHPOWG operator
is also an HFE, and

HFHPOWGζ(h1, h2, . . . , hn)

= ∪γσ(1)∈hσ(1) ,γσ(2)∈hσ(2) ,...,γσ(n)∈hσ(n)

⎧⎪⎨⎪⎩
ζ ∏n

i=1 γ
ui
σ(i)

∏n
i=1

(
1 + (ζ − 1)(1 − γσ(i))

)ui
+ (ζ − 1)∏n

i=1 γ
ui
σ(i)

⎫⎪⎬⎪⎭ , (34)

where hσ(i) is the ith largest HFE of hj (j = 1, 2, . . . , n) and ui (i = 1, 2, . . . , n) is the collection of the weights
satisfying the condition (29).

Remark 6. (1) If Sup(hi, hj) = k, for all i �= j, and g(x) = x, then

HFHPOWGζ(h1, h2, . . . , hn) = ⊗H
n
i=1

(
h∧H

1
n

i

)
which indicates that the HFHPOWG operator reduces to the hesitant fuzzy Hamacher geometric (HFHG)
operator [17].

(2) If ζ = 1, then the HFHPOWG operator (34) reduces to the hesitant fuzzy power-ordered weighted
geometric (HFPOWG) operator [15]:

HFHPOWG1(h1, h2, . . . , hn) = ⊗n
i=1

(
hσ(i)

)ui

= ∪γσ(1)∈hσ(1) ,γσ(2)∈hσ(2) ,...,γσ(n)∈hσ(n)

{
n

∏
i=1

γ
ui
σ(i)

}
, (35)

where ui (i = 1, 2, . . . , n) is a collection of weights satisfying the condition (29). If ζ = 2, then the
HFHPOWG operator (34) reduces to the hesitant fuzzy Einstein power-ordered weighted geometric (HFEPOWG)
operator [18]:

HFHPOWG2(h1, h2, . . . , hn)

= ∪γσ(1)∈hσ(1) ,γσ(2)∈hσ(2) ,...,γσ(n)∈hσ(n)

⎧⎪⎨⎪⎩
2 ∏n

i=1 γ
ui
σ(i)

∏n
i=1

(
2 − γσ(i)

)ui
+ ∏n

i=1 γ
ui
σ(i)

⎫⎪⎬⎪⎭ , (36)

where ui (i = 1, 2, . . . , n) is a collection of weights satisfying the condition (29).

Similar to Theorems 6–8, we have the properties of HFHPOWG operator as follows.
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Theorem 16. If hi (i = 1, 2, . . . , n) is a collection of HFEs and ui (i = 1, 2, . . . , n) is the collection of the
weights which satisfies the condition (29), then

HFHPOWGζ(h1, h2, . . . , hn) ≥ HFPOWG(h1, h2, . . . , hn).

Theorem 17. If hi (i = 1, 2, . . . , n) is a collection of HFEs and ui (i = 1, 2, . . . , n) is the collection of the
weights which satisfies the condition (29), then we have the followings:

(1) Boundedness: If h− = min{γi|γi ∈ hi} and h+ = max{γi|γi ∈ hi}, then

h− ≤ HFHPOWGζ(h1, h2, . . . , hn) ≤ h+.

(2) Monotonicity: Let h′i (i = 1, 2, . . . , n) be a collection of HFEs, if for any hσ(i) and h′
σ(i) (i = 1, 2, . . . , n),

γσ(i) ≤ γ′
σ(i) , then

HFHPOWGζ(h1, h2, . . . , hn) ≤ HFHPOWGζ(h′1, h′2, . . . , h′n).

Theorem 18. If hi (i = 1, 2, . . . , n) is a collection of HFEs and ui (i = 1, 2, . . . , n) is the collection of the
weights satisfying the condition (29), then we have

(1) HFHPOWAζ(hc
1, hc

2, . . . , hc
n) = (HFHPOWGζ(h1, h2, . . . , hn))c;

(2) HFHPOWGζ(hc
1, hc

2, . . . , hc
n) = (HFHPOWAζ(h1, h2, . . . , hn))c.

In what follows, we define the generalized hesitant fuzzy Hamacher power-ordered weighted
average (GHFHPOWA) operator and generalized hesitant fuzzy Hamacher power-ordered weighted
geometric (GHFHPOWG) operator.

Definition 11. Let hi (i = 1, 2, . . . , n) be a collection of HFEs. For λ > 0, a generalized hesitant fuzzy
Hamacher power-ordered weighted average (GHFHPOWA) operator is a function Hn → H such that

GHFHPOWAζ(h1, h2, . . . , hn) =
(
⊕H

n
i=1

(
ui ·H h∧Hλ

σ(i)

))∧H
1
λ , (37)

where ζ > 0, hσ(i) is the ith largest HFE of hj (j = 1, 2, . . . , n), and ui (i = 1, 2, . . . , n) is a collection of weights
satisfying the condition (29).

Theorem 19. Let hi (i = 1, 2, . . . , n) be a collection of HFEs, then the aggregated value by GHFHPOWA
operator is also an HFE, and

GHFHPOWAζ(h1, h2, . . . , hn)

= ∪γσ(1)∈hσ(1) ,γσ(2)∈hσ(2) ,...,γσ(n)∈hσ(n)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ζ
(
∏n

i=1 aui
i − ∏n

i=1 bui
i
) 1

λ⎡⎣ (
∏n

i=1 aui
i + (ζ2 − 1)∏n

i=1 bui
i
) 1

λ

+(ζ − 1)
(
∏n

i=1 aui
i − ∏n

i=1 bui
i
) 1

λ

⎤⎦

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
, (38)

where ai = (1 + (ζ − 1)(1 − γσ(i))
λ + (ζ2 − 1)γλ

σ(i), bi = (1 + (ζ − 1)(1 − γσ(i)))
λ − γλ

σ(i) and ui (i =
1, 2, . . . , n) is a collection of weights satisfying the condition (29).
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Remark 7. (1) If λ = 1, then ai = ζ(1 + (ζ − 1)γσ(i)) and bi = ζ(1 − γσ(i)), and thus the GHFHPOWA
operator reduces to the HFHPOWA operator. In fact, by Equation (38), we have

GHFHPOWAζ(h1, h2, . . . , hn)

= ∪γσ(1)∈hσ(1) ,γσ(2)∈hσ(2) ,...,γσ(n)∈hσ(n)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ζ
(
∏n

i=1 aui
i − ∏n

i=1 bui
i
) 1

λ⎡⎣ (
∏n

i=1 aui
i + (ζ2 − 1)∏n

i=1 bui
i
) 1

λ

+(ζ − 1)
(
∏n

i=1 aui
i − ∏n

i=1 bui
i
) 1

λ

⎤⎦

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
= ∪γσ(1)∈hσ(1) ,γσ(2)∈hσ(2) ,...,γσ(n)∈hσ(n)

{
∏n

i=1 aui
i − ∏n

i=1 bui
i

∏n
i=1 aui

i + (ζ − 1)∏n
i=1 bui

i

}

= ∪γσ(1)∈hσ(1) ,γσ(2)∈hσ(2) ,...,γσ(n)∈hσ(n)

⎧⎪⎨⎪⎩
∏n

i=1

(
1 + (ζ − 1)γσ(i)

)ui − ∏n
i=1

(
1 − γσ(i)

)ui

∏n
i=1

(
1 + (ζ − 1)γσ(i)

)ui
+ (ζ − 1)∏n

i=1

(
1 − γσ(i)

)ui

⎫⎪⎬⎪⎭
= HFHPOWAζ(h1, h2, . . . , hn).

(2) If ζ = 1, then the GHFHPOWA operator reduces to the generalized hesitant fuzzy power-ordered
weighted average (GHFPOWA) operator [15]:

GHFHPOWA1(h1, h2, . . . , hn) = ∪γσ(1)∈hσ(1) ,γσ(2)∈hσ(2) ,...,γσ(n)∈hσ(n)

⎧⎨⎩
(

1 −
n

∏
i=1

(
1 − γλ

σ(i)

)ui

) 1
λ

⎫⎬⎭ , (39)

where ui (i = 1, 2, . . . , n) is a collection of weights satisfying the condition (29), and if ζ = 2, then the
GHFHPOWA operator reduces to the generalized hesitant fuzzy Einstein power-ordered weighted average
(GHFEPOWA) operator [18]:

GHFHPOWA2(h1, h2, . . . , hn)

= ∪γσ(1)∈hσ(1) ,γσ(2)∈hσ(2) ,...,γσ(n)∈hσ(n)

⎧⎨⎩ 2
(
∏n

i=1 aui
i − ∏n

i=1 bui
i
) 1

λ(
∏n

i=1 aui
i + 3 ∏n

i=1 bui
i
) 1

λ +
(
∏n

i=1 aui
i − ∏n

i=1 bui
i
) 1

λ

⎫⎬⎭ , (40)

where ai = (2 − γσ(i))
λ + 3γλ

σ(i), bi = (2 − γσ(i))
λ − γλ

σ(i) and ui (i = 1, 2, . . . , n) is a collection of weights
satisfying the condition (29).

Definition 12. Let hi (i = 1, 2, . . . , n) be a collection of HFEs. For λ > 0, a generalized hesitant fuzzy
Hamacher power-ordered weighted geometric (GHFHPOWG) operator is a function Hn → H such that

GHFHPOWGζ(h1, h2, . . . , hn) =
1
λ
·H
(
⊗H

n
i=1

((
λ ·H hσ(i)

)∧Hui
))

, (41)

where ζ > 0, hσ(i) is the ith largest HFE of hj (j = 1, 2, . . . , n), and ui (i = 1, 2, . . . , n) is a collection of weights
satisfying the condition (29).
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Theorem 20. Let hi (i = 1, 2, . . . , n) be a collection of HFEs, then the aggregated value by GHFHPOWG
operator is also an HFE, and

GHFHPOWGζ(h1, h2, . . . , hn)

= ∪γσ(1)∈hσ(1) ,γσ(2)∈hσ(2) ,...,γσ(n)∈hσ(n)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎡⎣ (∏n
i=1 cui

i + (ζ2 − 1)∏n
i=1 dui

i
) 1

λ

− (∏n
i=1 cui

i − ∏n
i=1 dui

i
) 1

λ

⎤⎦
⎡⎣ (

∏n
i=1 cui

i + (ζ2 − 1)∏n
i=1 dui

i
) 1

λ

+(ζ − 1)
(
∏n

i=1 cui
i − ∏n

i=1 dui
i
) 1

λ

⎤⎦

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
, (42)

where ci = (1 + (ζ − 1)γσ(i))
λ + (ζ2 − 1)(1 − γσ(i))

λ, di = (1 + (ζ − 1)γσ(i))
λ − (1 − γσ(i))

λ and ui
(i = 1, 2, . . . , n) is a collection of weights satisfying the condition (29).

Remark 8. (1) If λ = 1, then ci = ζ(1+ (ζ − 1)(1− γσ(i))) and di = ζγσ(i), and the GHFHPOWG operator
reduces to the HFHPOWG operator.

(2) If ζ = 1, then the GHFHPOWG operator reduces to the generalized hesitant fuzzy power-ordered
weighted geometric (GHFPOWG) operator [15]:

GHFHPOWG1(h1, h2, . . . , hn) = ∪γσ(1)∈hσ(1) ,γσ(2)∈hσ(2) ,...,γσ(n)∈hσ(n)

⎧⎨⎩
(

n

∏
i=1

(
γλ

σ(i)

)ui

) 1
λ

⎫⎬⎭ , (43)

where ui (i = 1, 2, . . . , n) is a collection of weights satisfying the condition (29), and if ζ = 2, then the
GHFHPOWG operator reduces to the generalized hesitant fuzzy Einstein power-ordered weighted geometric
(GHFEPOWG) operator [18]:

GHFHPOWG2(h1, h2, . . . , hn)

= ∪γσ(1)∈hσ(1) ,γσ(2)∈hσ(2) ,...,γσ(n)∈hσ(n)

⎧⎨⎩
(
∏n

i=1 cui
i + 3 ∏n

i=1 dui
i
) 1

λ − (∏n
i=1 cui

i − ∏n
i=1 dui

i
) 1

λ(
∏n

i=1 cui
i + 3 ∏n

i=1 dui
i
) 1

λ +
(
∏n

i=1 cui
i − ∏n

i=1 dui
i
) 1

λ

⎫⎬⎭ , (44)

where ci = (1 + γσ(i))
λ + 3(1 − γσ(i))

λ, di = (1 + γσ(i))
λ − (1 − γσ(i))

λ, and ui (i = 1, 2, . . . , n) is a
collection of weights satisfying the condition (29).

4. Method for Multiple-Attribute Decision-Making Based on Hesitant Fuzzy Hamacher
Power-Aggregation Operators

In this section, we use hesitant fuzzy Hamacher power-aggregation operators to develop an
approach to MADM with hesitant fuzzy information.

Let X = {x1, x2, . . . , xn} be a set of n alternatives, and G = {g1, g2, . . . , gm} be a set of m attributes,
whose weight vector is w = (w1, w2, . . . , wm)T , satisfying wi > 0 (i = 1, 2, . . . , m) and ∑m

i=1 wi = 1,
where wi denotes the importance degree of the attribute gi. Suppose the group of decision-makers
provides the evaluating value that the alternative xj (i = 1, 2, . . . , n) satisfies the attribute gi (j =

1, 2, . . . , m) represented by the HFEs hij (i = 1, 2, . . . , m; j = 1, 2, . . . , n). All these HFEs are contained in
the hesitant fuzzy decision matrix D =

(
hij
)

m×n.

The following steps can be used to solve the MADM problem under the hesitant fuzzy
environment, and obtain an optimal alternative:

Step 1: Obtain the normalized hesitant fuzzy decision matrix. In general, the attribute set G
can be divided two subsets: G1 and G2, where G1 and G2 are the set of benefit attributes and cost
attributes, respectively. If all the attributes are of the same type, then the evaluation values do not
need normalization, whereas if there are benefit attributes and cost attributes in MADM, in such cases,
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we may transform the evaluation values of cost type into the evaluation values of the benefit type by
the following normalization formula:

rij =

{
hij, j ∈ G1

hc
ij, j ∈ G2,

(45)

where hc
ij = ∪γij∈h̄ij

{1 − γij} is the complement of hij. Then we obtain the normalized hesitant fuzzy

decision matrix H =
(
rij
)

m×n.
Step 2: Calculate the supports

Sup(rij, rkj) = 1 − d(rij, rkj), j = 1, 2, . . . , n, i, k = 1, 2, . . . , m, (46)

which satisfy conditions (1)–(3) in Definition 5. Here we assume that d(rij, rkj) is the hesitant normalized
Hamming distance between rij and rkj given in Equation (4).

Step 3: Calculate the weights of evaluating values. Use the weights wi (i = 1, 2, . . . , m) of attributes
gi (i = 1, 2, . . . , m) to calculate the weighted support T(rij) of the HFE rij by the other HFEs rkj
(k = 1, 2, . . . , m, and k �= i):

T(rij) =
m

∑
k=1,k �=i

wkSup(rij, rkj) (47)

and then use the weights wi (i = 1, 2, . . . , m) of attributes gi (i = 1, 2, . . . , m) to calculate the weights ρij
(i = 1, 2, . . . , m) that are associated with HFEs rij (i = 1, 2, . . . , m):

ρij =
wi(1 + T(rij))

∑m
i=1 wi(1 + T(rij))

, i = 1, 2, . . . , m, (48)

where ρij ≥ 0, i = 1, 2, . . . , m, and ∑m
i=1 ρij = 1.

Step 4: Compute overall assessments of alternatives. Use the HFHPWA operator (Equation (6)):

rj = HFHPWAζ(h1, h2, . . . , hn)

= ∪γ1j∈r1j ,γ2j∈r2j ,...,γmj∈rmj

{
∏m

i=1
(
1 + (ζ − 1)γij

)ρij − ∏m
i=1
(
1 − γij

)ρij

∏m
i=1
(
1 + (ζ − 1)γij

)ρij + (ζ − 1)∏m
i=1
(
1 − γij

)ρij

}
, (49)

or the HFHPWG operator (Equation (11)):

rj = HFHPWGζ(h1, h2, . . . , hn)

= ∪γ1j∈r1j ,γ2j∈r2j ,...,γmj∈rmj

{
ζ ∏m

i=1
(
γij
)ρij

∏m
i=1
(
1 + (ζ − 1)(1 − γij)

)ρij + (ζ − 1)∏m
i=1
(
γij
)ρij

}
. (50)

to aggregate all the evaluating values r̄ij (1 = 1, 2, . . . , m) of the jth column and get the overall rating
value r̄j corresponding to the alternative xj (j = 1, 2, . . . , n).

Step 5: Rank the order of all alternatives. Use the method in Definition 3 to rank the overall
rating values rj (j = 1, 2, . . . , n), rank all the alternatives xj (j = 1, 2, . . . , n) in accordance with rj
(j = 1, 2, . . . , n) in descending order, and finally select the most desirable alternative(s) with the largest
overall evaluation value.

Step 6: End.

Remark 9. As previously discussed, a family of hesitant fuzzy Hamacher power-aggregation operators,
including the HFHPWA, HFHPWG, GHFHPWA, GHFHPWG, HFHPOWA, HFHPOWG, GHFHPOWA,
and GHFHPOWG operators, is proposed for aggregating hesitant fuzzy information. This family is composed
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of two kinds: the HFHPWA operator and HFHPWG operator, and other aggregation operators are developed
based on them. Therefore, in Step 3, the HFHPWA and HFHPWG operators are chosen to aggregate hesitant
fuzzy information.

Example 4. There is a five-member board of directors of a company. They plan to invest their money in a suitable
project with a lot of potential over the next five years [17]. Assume that the board of directors will evaluate the four
possible projects X = {x1, x2, x3, x4}. To evaluate and rank these projects, four attributes G = {g1, g2, g3, g4}
are suggested by the Balances Score Card Methodology, i.e., (1) g1 is the financial perspective; (2) g2 is the
customer satisfaction; (3) g3 is the internal business process perspective; and (4) g4 is the learning and growth
perspective. Please note that these attributes are all benefit attributes and the corresponding weight vector is
w = (0.2, 0.3, 0.15, 0.35)T. The five members of the board of directors provide the evaluating values of the
projects xj (j = 1, 2, 3, 4) with respect to attributes gi (i = 1, 2, 3, 4) and construct their hesitant fuzzy decision
matrix D = (hij)4×4 (see Table 1), where hij ∈ H is a HFE that denotes all of the possible values for alternative
xj under the attribute gi.

Table 1. Hesitant fuzzy decision matrix D.

x1 x2 x3 x4

g1 {0.2, 0.4, 0.7} {0.2, 0.4, 0.7, 0.9} {0.3, 0.5, 0.6, 0.7} {0.3, 0.5, 0.6}
g2 {0.2, 0.6, 0.8} {0.1, 0.2, 0.4, 0.5} {0.2, 0.4, 0.5, 0.6} {0.2, 0.4}
g3 {0.2, 0.3, 0.6, 0.7, 0.9} {0.3, 0.4, 0.6, 0.9} {0.3, 0.5, 0.7, 0.8} {0.5, 0.6, 0.7}
g4 {0.3, 0.4, 0.5, 0.7, 0.8} {0.5, 0.6, 0.8, 0.9} {0.2, 0.5, 0.6, 0.7} {0.8, 0.9}

Then we use the above proposed approach to choose the optimal project.
Step 1: Since these attributes are all benefit attributes, it is not necessary to normalize the decision matrix D.
Step 2: Use Equation(46) to calculate the supports Sup(hij, hkj) (j = 1, 2, 3, 4, i, k = 1, 2, 3, 4, i �= k).

For simplicity, we denote (Sup(hij, hkj))1×4 by Supik, which refers to the supports between the ith and kth
columns of D:

Sup12 = Sup21 = (0.900, 0.750, 0.900, 0.800), Sup13 = Sup31 = (0.800, 0.950, 0.950, 0.867),

Sup14 = Sup41 = (0.800, 0.850, 0.975, 0.633), Sup23 = Sup32 = (0.860, 0.750, 0.850, 0.667),

Sup24 = Sup42 = (0.860, 0.600, 0.925, 0.495), Sup34 = Sup43 = (0.920, 0.850, 0.925, 0.767).

Step 3: Use Equation (47) to calculate the weighted support T(hij) of HFE hij by the other HFEs hkj
(k = 1, 2, 3, 4, k �= i), which are contained in the matrix T = (T(hij))4×4:

T =

⎛⎜⎜⎜⎝
0.6700 0.6650 0.7538 0.5916
0.6100 0.4725 0.6313 0.4333
0.7400 0.7125 0.7688 0.6420
0.5560 0.4775 0.6113 0.3902

⎞⎟⎟⎟⎠
and use Equation (48) to calculate the weights ρij of HFEs hij (i = 1, 2, 3, 4), which are contained in the matrix
V = (ρij)4×4:

V =

⎛⎜⎜⎜⎝
0.2058 0.2150 0.2101 0.2149
0.2977 0.2852 0.2932 0.2903
0.1609 0.1659 0.1589 0.1663
0.3356 0.3339 0.3378 0.3285

⎞⎟⎟⎟⎠ .

Step 4: Let ζ = 0.5 and use the HFHPWA operator (Equation (49)) to aggregate all of the evaluating
values hij (i = 1, 2, 3, 4) in the jth column of D and then, derive the overall rating value hj (j = 1, 2, 3, 4) of the
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alternative xj (j = 1, 2, 3, 4). The overall rating values hj are not listed here because of limited space. Using
Definition 3, we calculate the score functions s(hj) of hj (j = 1, 2, 3, 4) as follows:

s(h1) = 0.5741, s(h2) = 0.6195, s(h3) = 0.5256, s(h4) = 0.6646.

Then we rank the hj (j = 1, 2, 3, 4) in descending order of s(hj):

h4 > h2 > h1 > h3.

Step 5: Rank all the alternatives xj (j = 1, 2, 3, 4) as follows:

x4 � x2 � x1 � x3.

Thus, the best alternative is x4.

Furthermore, let ζ = 0.1, 0.3, 0.5, 3, 5, 7, respectively, which represents different preferences for
decision-makers on decision information. We can obtain the corresponding score values and rankings of
the alternatives (listed in Table 2).

Table 2. Score values obtained with the HFHPWA operator and rankings of alternatives.

Aggregation Operator Score Values Rankings

HFHPWA0.1 s(h1) = 0.5957, s(h2) = 0.6501, s(h3) = 0.5318, s(h4) = 0.7000 x4 � x2 � x1 � x3
HFHPWA0.3 s(h1) = 0.5826, s(h2) = 0.6314, s(h3) = 0.5298, s(h4) = 0.6780 x4 � x2 � x1 � x3
HFHPWA0.5 s(h1) = 0.5741, s(h2) = 0.6195, s(h3) = 0.5256, s(h4) = 0.6646 x4 � x2 � x1 � x3
HFHPWA3 s(h1) = 0.5419, s(h2) = 0.5752, s(h3) = 0.5063, s(h4) = 0.6186 x4 � x2 � x1 � x3
HFHPWA5 s(h1) = 0.5350, s(h2) = 0.5653, s(h3) = 0.5017, s(h4) = 0.6095 x4 � x2 � x1 � x3
HFHPWA7 s(h1) = 0.5313, s(h2) = 0.5598, s(h3) = 0.4993, s(h4) = 0.6047 x4 � x2 � x1 � x3

To explain how the different parameter value ζ plays a role in the aggregation operator, we use the different
values ζ, given by decision-makers. As shown in Table 2, the score values obtained by the HPHPWA operator
become smaller as the parameter value ζ increases. Thus, decision-makers can choose the parameter value ζ

according to their preferences.

Table 3. Score values obtained with the HFHPWG operator and rankings of alternatives.

Aggregation Operator Score Values Rankings

HFHPWG0.1 s(h1) = 0.4397, s(h2) = 0.4118, s(h3) = 0.4187, s(h4) = 0.4673 x4 � x1 � x3 � x2
HFHPWG0.3 s(h1) = 0.4520, s(h2) = 0.4321, s(h3) = 0.4373, s(h4) = 0.4824 x4 � x1 � x3 � x2
HFHPWG0.5 s(h1) = 0.4603, s(h2) = 0.4444, s(h3) = 0.4483, s(h4) = 0.4930 x4 � x1 � x3 � x2
HFHPWG3 s(h1) = 0.4935, s(h2) = 0.4936, s(h3) = 0.4904, s(h4) = 0.5410 x4 � x2 � x1 � x3
HFHPWG5 s(h1) = 0.5009, s(h2) = 0.5027, s(h3) = 0.5005, s(h4) = 0.5536 x4 � x2 � x1 � x3
HFHPWG7 s(h1) = 0.5049, s(h2) = 0.5126, s(h3) = 0.5061, s(h4) = 0.5608 x4 � x2 � x3 � x1

If the HFHPWA operator is replaced by HFHPWG operator in the above Step 4, Table 3 lists the score
values of overall rating values and rankings of alternatives. The score values obtained by the HFHPWG operator
become larger as parameter ζ increases. Comparing Table 2 with Table 3, we can observe that the score value
obtained by the HFHPWA operator greater than the score value obtained by the HFHPWG operator for the same
parameter value ζ and the same aggregation value. For HFHPWA operators, the parameter value does not affect
the final rankings of the alternatives, but for the HFHPWG operators it is shown that the choice of parameter
value has a greater impact on the score values and thus the rankings of the alternatives. In the above analysis,
we see that while the best alternative obtained by the HFHPWA operator are the same as that obtained by the
HFHPWG operator, the rankings of the alternatives differs between the HFHPWA and HFHPWG operators.
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To compare our approach with some other approaches, we apply Xia and Xu’s approach [10],
Zhu et al.’s approach [13], and Tan et al.’s approach [17] to above example. The results of the rankings
of the alternatives are shown in Table 4 below.

Table 4. Rankings of alternatives by other approaches.

Approach Use Tool Rankings

Xia and Xu [10] HFWA operator x4 � x2 � x1 � x3
HFWG operator x4 � x1 � x3 � x2

Zhu et al. [13] Hesitant fuzzy TOPSIS x4 � x2 � x1 � x3

Tan et al. [17] HFHWA operator x4 � x2 � x1 � x3
HFHWG operator x4 � x3 � x1 � x2 (ζ ∈ (0, 0.36])

x4 � x1 � x3 � x2 (ζ ∈ (0.36, 1.39])
x4 � x1 � x2 � x3 (ζ ∈ (1.39, 3.50])
x4 � x2 � x1 � x3 (ζ ∈ (3.50, 10.0])

From this analysis, we can see that the best alternative is the same for the both HFHPWA and
HFHPWG operators, or both HFWA and HFWG operators, or both HFHWA and HFHWG operators,
but the ranking of alternatives is different between the HFHPWA and HFHPWG operators, or HFWA
and HFWG operators, or HFHWA and HFHWG operators. It reflects that the final results may be
different by different types of hesitant fuzzy aggregation operators. Also, the ranking of alternatives
obtained by the hesitant fuzzy TOPSIS method is the same those by the HFHPWA, HFWA, and HFHWA
operators. This result shows the validity of the proposed approach in this paper.

Compared with the existing hesitant fuzzy MADM approaches, our proposed approach has
two advantages: First, decision-makers often have an optimistic or pessimistic attitude in the face
of decision information. In this case, optimistic attitude often leads to a preference for risk-seeking,
and pessimistic one results in a preference for avoiding risk. The parameter ζ takes into account the
decision-maker’s subjective attitude to decision-making problem and are therefore useful in obtaining
a better decision result. Second, different parameter values clearly indicate changes in the ranking of
alternatives. Compared to a fixed evaluated result obtained by existing aggregation operators such as
the HFWA and HFWG operators, our evaluated result can better reflect the variety.

5. Conclusions

Hesitant fuzzy information aggregation is one of key issues in the hesitant fuzzy MADM,
an important field of research in decision science in an uncertain environment as well as HFS theory.
Based on Hamacher operations of HFEs, in this paper, we have developed a family of hesitant
fuzzy Hamacher power-aggregation operators, including the HFHWPA, HFHPWG, GHFHPWA,
GHFHPWG, HFHPOWA, HFHPOWG, GHFHPOWA, and GHFHPOWG operators. Some basic
properties of the proposed aggregation operators, such as boundedness and monotonicity, and the
relationships between them have been investigated and discussed. We compared the proposed
aggregation operators with the hesitant fuzzy aggregation operators developed by Yu et al. [18] and
Zhang [15] and represented their corresponding relations. These proposed hesitant fuzzy Hamacher
power-aggregation operators are integrated treatment of operators proposed by Yu et al. [18] and
Zhang [15], and provide a complement to the existing work on HFSs. An approach of the hesitant
fuzzy MADM based on the HFHPWA and HFHPWG operators has been developed and an example
of money investment selection has been provided to describe the hesitant fuzzy MADM process.
Some advantages of our proposed approach are shown by comparison with those previously proposed
by Xia and Xu [10], Zhu et al. [13] and Tan et al. [17].

In future work, we will present a series of hesitant fuzzy power-aggregation operators using
Frank t-norm and t-conorm and apply them to develop approaches for multiple-attribute group
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decision-making. Furthermore, we will discuss the extension of power-aggregation operators to
probabilistic hesitant fuzzy environment.
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Abstract: This paper deals with the air traffic controller (ATCo) work shift scheduling problem.
This is a multi-objective optimization problem, as it involves identifying the best possible distribution
of ATCo work and rest periods and positions, ATCo workload and control center changes in
order to cover an airspace sector configuration, while, at the same time, complying with ATCo
working conditions. We propose a three-phase problem-solving methodology based on the variable
neighborhood search (VNS) to tackle this problem. The solution structure should resemble the
previous template-based solution. Initial infeasible solutions are built using a template-based heuristic
in Phase 1. Then, VNS is conducted in Phase 2 in order to arrive at a feasible solution. This constitutes
the starting point of a new search process carried out in Phase 3 to derive an optimal solution based
on a weighted sum fitness function. We analyzed the performance in the proposed methodology
of VNS against simulated annealing, as well as the use of regular expressions compared with the
implementation in the code to verify the feasibility of the analyzed solutions, taking into account four
representative and complex instances of the problem corresponding to different airspace sectorings.

Keywords: air traffic management; work-shift scheduling problem; variable neighborhood search;
performance analysis

1. Introduction

The key concept at the heart of air traffic management (ATM) network operations is air traffic flow
and capacity management (ATFCM). ATFCM should optimize traffic flows so that airlines can operate
safe and efficient flights depending on air traffic control capacity. In Europe, the network manager
operations center (NMOC) constantly monitors the balance between the airspace capacity and traffic
load. NMOC activities are divided into four –strategic, pre-tactical, tactical and post-operational–
phases [1].

The strategic phase is related to capacity prediction at ATC centers by air navigation service
providers (ANSPs). ANSPs prepare a routing scheme with the help of NMOC seven days ahead
of operations.

The pre-tactical phase is related to the definition of the initial network plan. The NMOC publishes
the agreed plan for the day of operations, informing ATC units and aircraft operators about the ATFCM
measures affecting European airspace from one to six days ahead of operations.

The tactical phase updates the plan for the day of operations according to real-time traffic demand
where the NMOC monitors the situation and continuously optimizes capacity. Delays are minimized
by providing aircraft affected by changes with alternative solutions on the day of operations.
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The post-operational phase is related to operational process improvement by comparing planned
and measured outcomes covering all ATFCM domains and units. Operational processes are measured
in order to develop best practices and/or analyze lessons learned after the day of operations.

In this paper, we focus on the pre-tactical phase. This phase has to solve the very important
problem of determining how the available air traffic controllers (ATCos) are assigned to each open
sector to cover a sectorization structure (established in the strategic phase) for a specified amount of
time. This assignment has to comply with a number of strong constraints accounting for the ATCo
working conditions.

The sectorization changes throughout the day depend on aircraft traffic. More sectors are opened
if the air traffic volume increases. This steps up the demand for ATCos who can only handle a limited
amount of traffic.

This is a timetabling and scheduling problem. Timetabling and scheduling problems are
combinatorial problems, which, on the grounds of size and complexity, cannot be solved by exact
methods. For examples of other timetabling and scheduling problem-solving approaches, see [2,3].

ATCo scheduling software has already been developed within the ATM field [4]. These tools have
both strengths and weaknesses [5]. Hardly any of this software has been reported in detail, sometimes
because they are in-house tools. Three ATCo scheduling problem codifications were reported alongside
three optimization techniques [6]. Another solution [7] is composed of a hybrid technique combining
propositional satisfiability problem solving [8] and hill climbing.

A simplified version of the ATCo work shift scheduling problem for Spanish airports was solved
by minimizing the number of ATCos required to cover a given airspace sectoring in compliance with
Spanish ATCo working conditions [9]. The search process employs regular expressions to check
solution feasibility. The solutions that output an optimal number of ATCos are used as the starting
point for another optimization process targeting balanced ATCo workloads. This simplified version of
the problem analyses straightforward scenarios and accounts for a core with only one type of sector
for a 24-h period. Consequently, there are no constraints on ATCo distribution across sectors.

Cores including two sector types (en-route and approach sectors) and accounting for ATCos with
different operating credentials were considered in [10]. This proposal focuses on the optimization
of only one shift in accordance with a previously specified number of ATCos to cover a specified
airspace sector configuration. This proposal adopts a multi-objective approach, accounting for ATCo
work and rest periods, positions and workload distribution, the number of control center changes,
and the solution structure. It proposes a three-phase problem-solving methodology. In the first
phase, a template-based heuristic was used to identify unfeasible solutions. In the second phase,
a number of independent simulated annealing (SA) metaheuristic runs were conducted to arrive
at feasible solutions using regular expressions to check compliance with ATCo working conditions.
In the third phase, simulated annealing was conducted by multiple independent runs to optimize the
objective functions of the original feasible solutions again taking into account ATCo working conditions.
This optimization process took into account the ordinal information on objective importance using the
rank-order centroid function to transform a multiple into a single optimization problem.

In this paper, we consider the same multi-objective problem as [10], albeit using an adaptation of
variable neighborhood search (VNS) rather than SA in the three-phase problem-solving methodology.
Four representative and complex instances of the problem corresponding to different airspace
sectorings provided by the Spanish ATM Research, Development and Innovation Reference Center
(CRIDA) are now used to compare the performance of both metaheuristics in the three-phase
problem-solving methodology. Moreover, the use of regular expressions to verify the ATCo labor
conditions (constraints) is compared against implementation in the code in terms of execution times.

The paper is structured as follows. Section 2 describes the ATCo work-shift scheduling problem.
Section 3 describes the proposed problem-solving methodology. Section 3.1 presents a template-based
heuristic to identify unfeasible solutions. Then, some notions of VNS and its adaptation to the ATCo
work-shift scheduling problem are provided in Section 3.2. Finally, we describe the second and third
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phases of the methodology aimed at reaching a feasible and an optimal solution in Sections 3.3 and 3.4,
respectively. In Section 4, four real instances are used to illustrate the proposed methodology and
to compare the performance of SA against the proposed adaptation of VNS and analyze the use of
regular expressions. Finally, some conclusions are provided in Section 6.

2. Problem Description

There are limits on the amount of traffic that human ATCos can handle. Therefore, air traffic
conditions the number of ATCos required, as airspace sectors are created and reduced to deal
with demand, resulting in varying numbers of ATCos. The sectorization of the airspace according
to estimated traffic for a specified period can be defined in advance and is denoted as airspace
sector configuration.

A core is composed of a set of sectors, and any one sector may belong to several cores. A control
center may be responsible for managing one or more cores. Each core should be solved separately,
unless there are sectors belonging to more than one core. In this case, ATCos should be simultaneously
assigned to the respective cores.

There are two types of sectors: approach and en-route sectors. Depending on airport procedures,
approach sectors are generally five to 10 nautical miles (9 to 18 km) from the airport, whereas en-route
sectors are usually further way.

Two ATCos with different roles operate each sector. The executive ATCo communicates with
aircraft, instructing pilots on how to avoid each other, whereas the planner ATCo foresees possible
conflicts between aircrafts which he or she reports to the executive ATCo. ATCos are accredited to
operate a particular sector and categorized as PTD or CON ATCos. A PTD ATCo can operate en-route
and approach sectors, whereas a CON ATCo can only operate en-route sectors. Figure 1 is an example
of an airspace sectorization for the Barcelona eastern route in Spain. Each interval is associated with a
configuration (3C, 4A, 6A, . . . ), where the number represents the number of open sectors and the letter
refers to the sector configuration, i.e., there are two sectorizations with a different spatial distribution
of the same number of sectors (5A and 5B in Figure 1).

Figure 1 shows one of the four examples used to illustrate our problem-solving methodology.
The airspace is divided into three sectors (configuration 3C), after which one of the sectors is divided
into a further two sectors. The result is configuration 4A, which is operational for one hour. The next
configuration is 6A used for 40 min. See Figure 10 for further details.

Figure 1. Barcelona eastern route airspace sectoring.

A day (24 h) is divided into night (N), morning (M) and afternoon (A) periods, covered by five
different ATC shifts: long morning (LMS) (5:40–14:00 h.), morning (MS) (6:20–14:00), afternoon (AS)
(14:00–21:20), long afternoon (LAS) (14:00–22:20) and night (NS) (21:20–6:20). At certain times, ATCo
shifts overlap: AS and LAS from 14:00 to 21:20; NS and LAS from 21:20 to 22:20, NS and LMS from 5:40
to 6:20, and MS and LMS from 6:20 to 14:00. NS ATCos are the only ATCos at work from 22:20 to 5:40.

On top of the division by shifts, ATCo working conditions also have to be taken into account.
Royal Decree 1001/2010 and Law 9/2010, regulating the provision of air traffic services, stipulate these
conditions, including constraints on minimum and maximum working and resting times, how long
ATCos can spend in different positions, the maximum number of sectors that an ATCo can operate
during a shift, etc. A list of ATCo working conditions is available in [10].

The ATCo work shift scheduling problem that we intend to solve should achieve the following
objectives in accordance with a specified airspace sectorization and a specified number of ATCos with
their respective accreditations:
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• ATCo work and rest periods and position should respect the specified values.
• The number of control center changes should be reduced to the minimum.
• The solution structure should resemble the previous template-based solution for ease of

understanding by control center staff with a view to potential manual changes.
• ATCo workload distribution should be balanced.

Experts from the Reference Center for Research, Development and Innovation in ATM
(CRIDA, www.crida.es), a non-profit joint venture between ENAIRE, Spain’s air navigation manager,
the Universidad Politécnica de Madrid, and Ineco, a global infrastructure engineering and consultancy
leader, ranked the above objectives by importance.

3. Problem-Solving Methodology

This section outlines a three-phase methodology to solve the stated ATCo work shift scheduling
problem for a given airspace sectorization. Phase 1 sets out a heuristic which is used to construct ten
different initial solutions by modifying rest period lengths using an optimized template. These initial
solutions require more ATCos than are available and do not satisfy all working conditions.

In Phase 2, an algorithm based on variable neighborhood search (VNS) is applied to the infeasible
solutions achieved in the first phase, in order to yield a feasible solution. The aim is to reduce the
number of ATCos used to meet the number of available ATCos, while penalizing the number of times
labour conditions are violated until a feasible solution is achieved.

A VNS-based algorithm is run again on the feasible solution output in Phase 2. This algorithm
should optimize the objective functions. The objective functions represent the ATCo work and rest
periods and positions, ATCo workload distribution, the number of control center changes, and the
similarity of the solution structure to the previous template-based solution. The original multi-objective
optimization problem is then transformed into a single weighted optimization problem taking into
account the objectives ranked by importance by CRIDA experts. This ordinal information is used
to specify the centroid-based weights. Solutions are represented by a matrix. The matrix columns
represent time slots, and the rows ATCos. Time slots are equivalent to five minutes because five
is the greatest common divisor for the applicable constraint times (e.g., ATCos have to work for at
least 15 min in the new sector and a sector has to be open for at least 20 min). The Phase 1 heuristic
establishes the number of rows, which will not necessarily be the same across the initial solutions.

Each matrix element (i, j) represents the state of ATCo i in time slot j. It is symbolized by three
letters. The value 111 represents a resting ATCo, uppercase letters [A-Z] indicate that the ATCo is
working as an executive operator, whereas lowercase letters [a-z] are used for planner positions.

Figure 2 illustrates solutions using colors to represent sectors. Rest periods are colored
white. Figure 2 shows the solution for the airspace sector configuration illustrated in the Figure 1.
This configuration is manned by 15 ATCos (number of rows).

Figure 2. Example of solution representation.
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3.1. Phase 1: A Heuristic for the Construction of Initial Solutions

We propose a heuristic to build a set of initial solutions with different rest periods. The Phase 2
algorithm then outputs a feasible solution based on the initial solutions output in Phase 1. The proposed
heuristic is based on an optimized template (see Figure 3), with three ATCos covering a sector for 96
time slots (eight hours). ATCo positions (executive or planner) are not assigned until later.

Figure 3. Shift template.

All work periods of are of equal length and twice as long as rest periods. The heuristic builds
different, albeit similarly structured, initial solutions if the rest period duration varies. As the working
conditions specify that each rest period should last at least 15 min (three slots) and the minimum and
maximum work periods are six and twenty four slots, respectively, a rest period must be at least three
and at most twelve slots long. Thus, the heuristic builds ten different initial solutions.

The steps of the heuristic are as follows. First, starting from an empty solution, the heuristic adds
templates to cover the airspace sectoring. Note that more ATCos than available could be incorporated
to the solution in this process. Then, ATCo positions (executive or planner) are allocated taking into
account the number of open sectors in each time slot.

Next, we repair the solution to improve feasibility. To do this, we try to transfer a work period
without the minimum length from one ATCo to another and extend a work period that does not have
the minimum length using a work period from another ATCo.

Finally, we allocate available resources, i.e., we assign an available ATCo to each row in the built
initial solution, taking into account the sectors in that row and the ATCo accreditations.

More details about the implementation of the heuristic are available in [10].

3.2. Variable Neighborhood Search and Its Adaptation to the ATC Work-Shift Scheduling Problem

The idea underlying variable neighborhood search (VNS) is to successively explore a set of
predefined neighborhoods to find better solutions [11]. VNS explores a set of neighborhoods either at
random or systematically in search of local optima. Conducting a local search of diverse neighborhoods
potentially generates different local optima, where the global optimum is a local optimum for a given
neighborhood. Different neighborhoods generate different landscapes.

The basic version of VNS is shown in Algorithm 1. However, other variants of this basic VNS, such
as variable neighborhood descent, reduced variable neighborhood search and variable neighborhood
decomposition search can be found in the literature. They depend on:

• The order in which the neighborhoods are used: forward VNS, which starts with k = 1 and
increases k by one if no better solutions are found; otherwise set k ← 1; backward VNS,
which starts with k = kmax and decreases k by one if no better solutions are found, and extended
version, which uses parameters kmin and kstep, sets k ← kmin and increases k by kstep if no better
solution is found.

• The acceptance of worse solutions. For instance, skewed VNS accepts if f (x′′)− αd(x, x′′) < f (x),
being d(x, x′′) the distance between candidate solutions.
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Algorithm 1 Basic VNS.

Require: Nk: set of neighborhood structures, k = 1, ..., kmax
Ensure: Best solution found.

1: k = 1
2: Generate an initial solution x
3: repeat

4: Randomly generate x′ ∈ Nk(x)
5: x′′= Local-search(x′,Nk)
6: if ( f (x′′) < f (x)) then

7: x = x′′
8: k = 1
9: else

10: k = k + 1
11: end if
12: until stopping criterion

The variable neighborhood descent (VND), proposed by [12], changes the neighborhood
deterministically. First, the set of neighborhoods and their order are determined, then the algorithm
selects an initial solution, and it iterates until it has gone through all the neighborhoods. In each
iteration, it performs a search process to reach a local optimum and evaluates if this local optimum is
better than the previously derived best solution. If better, it becomes the starting solution for a new
local search; otherwise, the algorithm moves on to the next neighborhood to be explored.

The reduced VNS, proposed by [13], is similar to basic VNS except that no iterative improvement
procedure is applied. It explores different neighborhoods randomly and quickly reaches good quality
solutions for large instances.

The variable neighborhood decomposition search, put forward by [13], generates subproblems by
keeping all but k solutions components fixed, and applies local search only to the k ”free” components.

In the biased VNS, reported by [13], once a good solution has been found after a good exploitation,
it is usually necessary to move away from this good neighbor to try to find a better solution. This new
search is usually very similar to a multi-start heuristic, but this method is usually too expensive in
terms of efficiency. Therefore, the algorithm chooses to move towards the best neighbor depending on
a distance function between the candidate solutions multiplied by a parametrizable value α.

Parallel VNS, described by [14], is a variant aimed at parallelizing the local search processes
within VNS to derive and then compare several solutions resulting from starting points.

The VNS adaptation used in this paper is similar to VND in the sense that the algorithm restarts
the search process once a solution is found that improves upon the previously best solution. However,
whereas VND restarts the process using the same neighborhood definition, our version repeats the
search process in all the previously used neighborhood definitions.

Besides, the basic VNS randomly generates a solution from the neighborhood under consideration
and starts a local search from this solution, whereas our adaptation of VNS starts the search from
the solution in the previous iteration since the local search process is not completely deterministic,
rendering the previous step (randomly generate the initial solution) unnecessary.

The following four types of neighborhoods have been considered for the VNS adaptation proposed
in this paper:

1. First neighborhood. It is based on a time slot exchange between two ATCos fulfilling the following
constraints (see Figure 4):

(a) The length of the time interval to be exchanged cannot be greater than 18 slots.
(b) The first ATCo must be located in a row that is higher up than the second ATCo in the

solution matrix.
(c) The time interval for the first ATCo must correspond to a work period, whereas, for the

second controller, it has to be a rest period.
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(d) The exchange process will only be performed if the second ATCo was previously working
in the same sector and position just before or after the exchanged time slot (see Figure 4)
i.e., we are extending the work period for the second ATCo.

Figure 4. First neighborhood example.

2. Second neighborhood. It also consists of a time slot exchange between two ATCos, the only difference
from the first neighborhood definition above being that the two time periods involved in the
exchange process must be work periods (see Figure 5).

Figure 5. Second neighborhood example.

3. Third neighborhood. This neighborhood is similar to the first one except for the fact that the
exchange process will be performed if the second ATCo was previously working in the same
sector and position just before or after the exchange time slot (see Figure 6), i.e., it is not necessary
to extend the work period for the second ATCo.

Figure 6. Third neighborhood example.

4. Fourth neighborhood. This neighborhood is similar to the second one except for the fact that the
exchange process will be performed if the second ATCo was previously working in the same
sector and position just before or after the exchange time slot (Figure 7), i.e., it is not necessary to
extend the work period for the second ATCo.

Figure 7. Fourth neighborhood example.

Figure 8 describes how the four neighborhood definitions are used in our VNS adaptation for
Phases 2 and 3, where time_int represents the time interval length to be exchanged, neighborhood
identifies which of the neighborhood definitions under consideration is used, and laps refers to the
times number the neighborhood definitions have been used.
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Figure 8. Adapted VNS algorithm for Phases 2 and 3.

The time interval length to be exchanged is initially set to one time slot (time_int = 1) and we use
the first neighborhood definition (neighborhood = 1). Then, if the local search outputs a new solution
that is better than the current BestSolution in Phase 2, we check if the new solution is feasible. If it is,
we output that solution and Phase 2 finishes. If the new solution is not feasible or we are performing
Phase 3, then the new solution becomes the BestSolution and a new iteration is carried out.

If the solution achieved in the local search is worse than the current BestSolution, the time
interval length is increased, and the local search is executed again. If the time interval length is 18
and the output solution is still worse than the current BestSolution, then we start using the second
neighborhood definition and the time interval length is initialized (time_int = 1). If we have used the
four neighborhood definitions each with time interval lengths up to 18 and no solutions outperform
the current BestSolution, then we use the first neighborhood definition again and repeat the process.
This process ends when a feasible solution is reached (in Phase 2) or we have used the neighborhood
definitions four times (laps = 4). In the second case, the current BestSolution is the optimal solution.

The local search consists of generating all the possible solutions within the neighborhood with
a given time interval (time_int). The generation process is parallelized and the respective solutions
are stored in a list in the order in which they are generated. Four seeds are then established to
initialize a search process within the list. We use the first seed, which identifies a solution in the list,
and randomly move one position to the left or right along the list. If the fitness of the initial solution
is not outperformed after exploring 25% of the solutions in the list, then we take the second seed
and repeat the process. Once all four seeds have been used, the best solution visited in the process
is returned.

Finally, note that we did not consider the same the neighborhood definition as in the SA used
by [10] in the VNS adaptation proposed in this paper because the local searches we perform generate all
the solutions in the respective neighborhood. This does not pose a problem for the four neighborhood
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definitions that we use in terms of cardinality. However, the number of solutions in a neighborhood
based on the definition used in [10] is very high, which would lead to unaffordable computation times.

3.3. Phase 2: Deriving a Feasible Solution

In Phase 2, VNS is run on an initial solution output in Phase 1. VNS should reduce the number of
ATCos covering all open sectors in a given airspace sector configuration to below the available number
of ATCos, subject to the ATCo working condition constraints.

The solution matrix output by the Phase 2 search is reordered as follows: the ATCo with the
smallest workload is placed at the top, followed by the ATCo with the second smallest workload,
and so on. On the other hand, the ATCos with the largest workloads are placed at the bottom.
This permutation tends to reduce the number of ATCos as the search progresses.

The fitness function considered in Phase 2 is:

max f =

{
w1h + w2g, if c > n

g, if c ≥ n
(1)

where c is the number of ATCos for the current solution, n is the number of available ATCos, g is
the penalty for all unsatisfied constraints (working conditions) and w1 and w2 represent the relative
importance of the components h and g.

Function h should reduce the number of ATCos in the solution below:

h =
1
c2

c

∑
i=1

ihi, (2)

where c is the number of ATCos and hi is the number of work time slots for the i-th ATCo. The term 1
c2

means that a decrease in the number of ATCos improves the objective value enormously. Objective
values are greater for solutions with a large workload and for ATCos with higher indexes (at the
bottom of the solution matrix).

Looking at the objective function and the row permutation of the solutions in Phase 2, the search
process appears to reallocate work periods from ATCos at the top of the solution matrix to ATCos in
the bottom rows (with the largest workload). This augments the rest periods for the ATCos at the top
of the matrix, thus decreasing the number of ATCos required to cover the airspace sector configuration.

Functions h and g must be normalized in order to correctly use the weighted fitness function,
see [10].

Note that, in the four neighborhood definitions, condition (b) “The first ATCo must be located
in the solution matrix in a row that is higher up than the second ATCo” is considered in the Phase 2
search process only when the number of ATCos in the solutions is greater than the available number
of ATCos and is, otherwise, obviated.

Besides, the neighborhoods are initially used in the order in which they were listed in Section 3.2,
but numerical experiments prove that the 4-1-3-2 order provides better solutions once the available
number of ATCos is reached.

As already mentioned, VNS is conducted starting from an initial solution output in Phase 1. If a
feasible solution is not reached in the search process, then we start again with another initial solution
output in phase 1 (10 initial solutions were output in Phase 1). The Phase 3 search process starts from
the respective feasible solution. This means that Phase 3 is only executed once. Note that a multi-start
SA was proposed by [10], in which Phase 2 was executed for the 10 initial solutions derived from
Phase 1, and Phase 3 was executed from each feasible solution reached in Phase 2.

3.4. Phase 3: Reaching the Optimal Solution

In Phase 3, VNS is run again, this time on the feasible solution output in Phase 2, in order to
optimize the following four objective functions:
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1. Objective 1: Desirable ATCo work and rest periods, and positions. This objective accounts for three
equally important sub-objectives.

(a) The time ATCos remain in the same sector and working position (planner or executive) should be as
close as possible to 45 min.

(b) The optimal working time between breaks should be 90 min.
(c) The percentage of ATCo working time in executive positions must be between 40% and 60% of the

total working time (not including rest periods).

2. Objective 2: Similar solution structure to previous template-based solution. Control center staff will
find such a solution easier to understand, and this should facilitate any manual changes. To do
this, we analyzed the template-based structure which was used as a benchmark. We concluded
that rest and work periods for the same sector should be closely clustered.

3. Objective 3: Minimization of the number of control center changes. This objective can be achieved by
reducing the number (not the duration) of rest periods.

4. Objective 4: Balanced ATCo workloads. ATCo workloads should be balanced in order to avoid high
workloads for some, and low workloads for other, ATCs. This is achieved using the standard
deviation of the work periods in the different solution matrix rows.

For the mathematical notation and the normalization process of the above objectives and
sub-objectives, see [10].

We then transform the original multi-objective optimization problem into a single weighted
optimization problem, whose weights, wi, are derived using the rank-order centroid (ROC) method [15].
This single weighted optimization accounts for the ordinal information provided by CRIDA experts.

Finally, note that, in the four neighborhood definitions, condition (b) “The first ATCo must be
located in the solution matrix in a row that is higher up than for the second ATCo” is not considered in
the Phase 3 search process. Moreover, numerical experiments prove that the 2-1-3-4 neighborhood order
provides better solutions. Note also that the infeasible solutions generated using the corresponding
neighborhood definition in the Phase 3 local searches are not stored in the list.

4. Results: VNS and SA Performance Analysis

In this section, we illustrate the proposed methodology and compare the performance of VNS
against SA in Phases 2 and 3 on the basis of four representative and complex instances of the problem
corresponding to different airspace sectorings selected by CRIDA experts.

4.1. Illustrative Instances

Instance 1. Morning shift in Barcelona control center (10 different open sectors). Figure 9 shows
the airspace sectoring of the Barcelona control center. It consists of a morning shift covering from 5:20
to 13:00 with 10 different open sectors:

• 3 open sectors (LECBLEGL, LECBLGU, LECBPPI) from 5:20 to 6:00,
• 4 open sectors (LECBLEGL, LECBLGU, LECBP1I, LECBPP2) from 6:00 to 7:40,
• 5 open sectors (LECBP1I, LECBPP2, LECBLVL, LECBLVS, LECBLVU) from 7:40 to 8:40,
• 6 open sectors (LECBPP2, LECBLVL, LECBLVS, LECBLVU, LECBP1L, LECBP1U) from 8:40 to

12:00, and
• 5 (LECBP1I, LECBPP2, LECBLVL, LECBLVS, LECBLVU) from 12:00 to 13:00. All the sectors and

controllers involved belong to the western route core. The number of available controllers is 16,
and their accreditation type is CON.
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Figure 9. Sectorization of instance 1.

The problem posed by this instance is the percentage resting time constraint, where all ATCos
must rest for 25% of the shift. If 16 ATCos cover 6 sectors (two templates of 3 sectors with 8 ATCos,
which is optimized), the ATCos must work exactly 75% of the time. This implies that the work
distribution slack is zero, and the working time for all ATCos is exactly equal, whereas all other
constraints are met.

Instance 2. Morning shift in Barcelona control center (11 open sectors). Figure 10 shows the airspace
sectoring of the Madrid control center. It consists of a morning shift, which covers from 5:20 to 13:00
with 11 open sectors: 3 open sectors from 5:20 to 8:40, 4 open sectors from 5:40 to 6:40, 6 open sectors
from 6:40 to 7:20, 5 open sectors from 7:20 to 10:00, 5 open sectors from 10:00 to 11:00, and from 11:00
to 13:00. All the sectors and ATCos involved belong to the eastern route core. There are 15 available
ATCos, whom are CON accredited.

Figure 10. Sectorization of instance 2.

The problem posed by this instance is sector opening and closing. We must also cover 6 sectors
opened for 40 min with only 15 controllers. Note that an additional ATCo would be necessary if these
sectors were to remain open for longer.

Instance 3. Morning shift in Barcelona control center (9 open sectors). Figure 11 shows the airspace
sectoring of the Barcelona control center for a morning shift, covering from 6:20 to 14:00 with 9 sectors
open: 2 open sectors from 6:20 to 8:20, 4 sectors open from 8:20 to 10:20, 5 sectors open from 10:20 to
12:20, and 4, from 12:20 to 14:00. All the sectors and ATCos involved belong to the eastern route core.
There are 14 available ATCos, all whom hold CON accreditation.

Figure 11. Sectorization of instance 3.

It is a relatively simple example, but there are quite a few changes of sectors that complicate the
fulfillment of all constraints.
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Instance 4. Afternoon shift in Barcelona control center (6 open sectors). Figure 12 shows the airspace
sectoring of the Barcelona control center for an afternoon shift, covering from 14:00 to 21:20. There are
6 open sectors in the Barcelona western route core: 4 sectors open from 14:00 to 19:20, and 2 sectors
open from 19:20 to 21:20; and 9 sectors open in the Barcelona eastern route core: 5 sectors open from
14:00 to 19:20, 4 sectors open from 19:20 to 21:00, and 2 sectors open from 21:00 to 21:20. The number
of available ATCos is 28, whose accreditation type is CON, 14 belonging to the eastern and 14 to the
western core.

Figure 12. Sectorization of instance 4.

The main problem posed by this instance is its size. A large number of ATCos are needed to cover
all sectors. In addition, there is a progressive closure of sectors, where ATCos are highly unlikely to
comply with the minimum consecutive work constraint, among others.

Figures 13–15 illustrate an initial solution of this last instance, the corresponding feasible solution
and the optimal solution reached using VNS in Phases 2 and 3, respectively. Looking at Figure 13,
we find that optimized templates are used where three ATCos cover a sector for 96 time slots and the
number of necessary ATCos (43) is greater than the number that are actually available ATCos (28).
Figure 14 shows the feasible solution derived from Phase 2 using VNS. Now the number of ATCos
matches 28, and all labor conditions are met. Finally, Figure 15 shows the optimal solution derived
in Phase 3 using VNS. If we compare the initial feasible and the optimal solutions, it is clear that the
structure of the optimal solution is like the previous template-based solution, where work and rest
periods are more concentrated.

Figure 13. An initial solution in instance 4.
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Figure 14. A feasible solution in instance 4.

Figure 15. Optimal solution in instance 4.

Table 1 shows three out of the four original objectives, optimizing the ATCo work and rest
periods and positions, the number of control center changes (rest periods), and the distribution of the
ATCo workload.

Table 1. Objective functions in the initial and optimal solution in Instance 4.

ATCo Work and Rest Periods and Positions Objective 3 ATCo Workloads

Sub-Object. 1 Sub-Object. 2 Sub-Object. 3 Rest Periods σ min max

Initial 27.9, 44.9, 71.7% 24.4, 24.4, 38.3% 81.3, 85.4, 86.4% 122 87.3 17 293.5

VNS 9.37, 11.45, 23.95% 10.12, 12.65, 14.55% 95, 98, 100% 160 58.13 115 330

The first column (sub-object. 1) shows the percentage of cases with a difference less than or equal
to 10, 15 and 25 min, respectively, with respect to the goal of 45 min. The second column (sub-object. 2)
shows the percentage of cases with a difference less than or equal to 15, 20 and 25 min, respectively,
with respect to the goal of 90 min. The third column (sub-object. 1) shows the ATCo percentages whose
differences are lower than or equal to 5%, 10% and 15%, respectively. The fourth column shows the
number of rest periods, and, finally, the fifth column (ATCo workloads) lists the standard deviation,
and the minimum and the maximum value of the ATCo workloads.

As expected, the optimal solution outperforms the initial one for all the objectives
under consideration.

4.2. Computational Improvements

All the constraints with respect to the ATCo labor conditions must be checked to verify the
feasibility of the analyzed solutions in the different iterations of the VNS execution. In Phase 2, this
constraint verification is associated with the fitness function, since this phase is aimed at reaching a
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feasible solution, whereas the Phase 3 search process is carried out within the feasible region, on which
ground we have to check the feasibility of the visited solutions.

Verifying constraints is very time consuming. Therefore, we have carried out a comparative
analysis to check if this process is faster using regular expressions, which, apart from structuring the
constraint modularly could lead to better computation times than implementing such constraints in
the code.

Figure 16 shows the mean execution times throughout the iterations in the proposed VNS
adaptation using both regular expressions and the code implementation for Instance 4. Contrary
to what we had initially thought, the code implementation outperforms the use of regular expressions
for higher numbers of iterations. This is due to the complexity of some of the constraints to be checked,
requiring lot more than one number of regular expression.

Figure 16. Computation improvements.

Additionally, the parallelization of the constraint verification process could improve computation
times. Figure 16 shows the different execution times with and without different degrees of
parallelization (up to 12 simultaneous threads), again for Instance 4. As expected, parallelization offers
faster speeds with respect to sequential execution. We find that there are significant improvements as
the number of threads increases, up to four threads.

These results are logical taking into account the computer that we used, which had a quad-core
processor. Therefore, it works better when the number of threads used in the execution is also four.
When more than four threads are used, they all share the CPU time and sometimes have to wait in
a queue to be processed. These CPU inputs and outputs are time consuming and make the process
less efficient. However, a CPU with a higher number of cores would take better advantage of more
parallelized threads.

Similar results were output for the other three instances.

5. Discussion

In this section, we compare the performance of VNS against the multi-start SA used by [10] for
the four complex instances under consideration, taking into account both the quality of the solution
reached by means of the fitness function and the four original objectives and execution times.

Each instance was executed 10 times using a Intel(R) Xeon(R) E3-1240 PC with 3.50 GHz and
16 GB of RAM, running Windows 10.

Table 2 shows the minimum, mean and maximum values of the fitness function in the optimal
solutions achieved by the VNS and SA. The mean values for SA are clearly higher than for VNS in
all four instances under consideration. We can thus conclude that SA slightly outperforms VNS with
respect to the quality of the solutions reached.
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Table 2. Optimal fitness values in Phase 3 for SA and VNS.

SA VNS

Min Mean Max Min Mean Max

Inst. 1 0.8637 0.8689 0.875 0.853 0.857 0.863
Inst. 2 0.8714 0.8742 0.8769 0.845 0.853 0.858
Inst. 3 0.8915 0.8946 0.8968 0.876 0.887 0.896
Inst. 4 0.8527 0.8604 0.867 0.854 0.855 0.856

Let us analyze in depth the optimal solutions derived by both metaheuristics in the four instances
under consideration.

Tables 3–6 show the values of the initial solution and solutions reached by VNS and SA for the
four instances under consideration, respectively, in terms of the four original objectives, optimizing
the ATCo work and rest periods and positions, the similarity to the previous template-based solution,
the number of control center changes (rest periods), and the distribution of the ATCo workload.

Note that Tables 3–6 provide mean values, and the respective best values for each column are
highlighted in bold.

Table 3. Objective functions in the initial solution and solutions reached by SA and VNS for Instance 1.

ATC Work and Rest Periods and Positions Obj. 2 Obj. 3 ATCo Workloads

Sub-Object. 1 Sub-Object. 2 Sub-Object. 3 Similarity Rest Periods σ Min Max

Initial 26.7, 41.2, 70.8 18.2, 20.9, 30.8 87.3, 94.2, 94.5 81.9 51.2 67.1 35 292.5
SA 35.6, 35.6, 85.6 31.4, 66.6, 66.6 100,100,100 71.77 51 20.45 255 325
VNS 47.9, 52, 86.7 25.9, 61.1, 61.1 100,100,100 68.7 54 25.4 240 330

Table 4. Objective functions in the initial solution and solutions reached by SA and VNS for Instance 2.

ATC Work and Rest Periods and Positions Obj. 2 Obj. 3 ATCo Workloads

Sub-Object. 1 Sub-Object. 2 Sub-Object. 3 Similarity Rest Periods σ Min Max

Initial 24.3, 38, 62.5 16.4, 17.1, 25.4 61.9, 66.7, 67.3 75.6 59.3 116.6 15 319.5
SA 65.2, 65.2, 80 38.3, 38.3, 38.3 100,100,100 74.88 46 18.5 280 340
VNS 50, 63.1, 86.8 30.9, 41.8, 45.4 100,100,100 71 54 16.3 275 330

Table 5. Objective functions in the initial solution and solutions reached by SA and VNS for Instance 3.

ATC Work and Rest Periods and Positions Obj. 2 Obj. 3 ATCo Workloads

Sub-Object. 1 Sub-Object. 2 Sub-Object. 3 Similarity Rest Periods σ Min Max

Initial 25.3, 38.1, 67.6 16.5, 19.2, 25.2 85.1, 90.4, 94.1 84.7 43.5 60.8 70 238.5

SA 75, 75, 88.1 30.1, 30.1, 30.1 100,100,100 80.55 38 34.9 220 320
VNS 54.6, 63.9, 91.8 32.4, 40, 47.5 100,100,100 79.6 42 21.2 210 280

Table 6. Objective functions in the initial solution and solutions reached by SA and VNS for Instance 4.

ATC Work and Rest Periods and Positions Obj. 2 Obj. 3 ATCo Workloads

Sub-Object. 1 Sub-Object. 2 Sub-Object. 3 Similarity Rest Periods σ Min Max

Initial 27.9, 44.9, 71.7 24.4, 24.4, 38.3 81.3, 85.4, 86.4 67.6 122 87.3 17 293.5
SA 56.6, 56.6, 76.6 40, 40, 40 100,100,100 73.05 77 32 200 320
VNS 64.7, 74.6, 90 41.2, 53.9, 58.8 84,88.7,88.7 68.6 193 19.2 212.5 290

Looking at sub-object. 1, we find that VNS outperforms SA for 8 out the 12 mean values shown in
Tables 3–6; whereas SA is better than VS for sub-object. 2 in the first instance but not for instances 3
and 4.
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As expected, the initial solution outperforms the solutions reached by SA and VNS in terms of
similarity to previous template-based solution. However, SA outperforms VNS with respect to this
objective in all four instances under consideration.

Regarding the number of rest periods, SA outperforms VNS for all four instances under
consideration. For all four instances, the number of rest periods in VNS is [10.67, 17]% higher than
for SA.

Finally, looking at the standard deviation representing the ATCo workload dispersion, we find
that SA outperforms VNS for the first instance, whereas VNS is better for Instances 2, 3 and 4. In all
four cases, the ATCo workload dispersions were very similar in both metaheuristics.

These tables were shown to CRIDA experts, who analyzed the quality of the solutions reached by
VNS and SA for the four complex instances. They concluded that, although the solutions derived by
SA slightly outperform those reached using VNS in terms of the fitness function, the quality of both
solutions were very similar four the four instances under consideration and that the key factor was
then the time it took to reach that solutions, i.e., the computation times.

Tables 7 and 8 show the minimum, mean and maximum computation times (in minutes) in Phases
2 and 3, respectively, for the original multi-start SA proposed by [10], an improved non multi-start SA
using a constraint implementation in the code rather than regular expressions and with parallelization
(4 threads), and the proposed adaptation of VNS (also using a constraint implementation in the code
and with parallelization). The metaheuristic with the lowest computation time is highlighted in bold.

Table 7. Computation times (in minutes) in Phase 2.

Original SA Improved SA VNS

Min Mean Max Min Mean Max Min Mean Max

Instance 1 206.21 254.71 333.24 5.79 6.02 6.25 8.73 9.26 10.15
Instance 2 207.34 249.59 308.14 16.34 17.64 19.76 4.28 7.14 11.29
Instance 3 111.7 128.96 157.88 3.64 6.75 12.92 4.11 4.65 5.50
Instance 4 394.69 507.25 619.82 48.88 49.53 50.48 100.71 111.85 122.18

Table 8. Computation times (in minutes) in Phase 3.

Original SA Improved SA VNS

Min Mean Max Min Mean Max Min Mean Max

Instance 1 177.59 214.76 262.47 40.52 54.04 68.54 21.48 31.12 43.84
Instance 2 79.87 95.19 122.37 27.52 36.89 50.47 28.55 30.68 33.08-
Instance 3 103.19 139.24 210.34 24.67 25.33 26.46 16.01 19.75 24.68
Instance 4 802.16 958.25 1114.35 177.25 247.87 360.72 431.15 479.66 507.79

The first thing that we found is that the computation times for the improved SA are much lower
than for the original SA in both phases and for the four instances under consideration, as was expected.
Besides, computation times for Phase 3 are quite a lot higher than in Phase 2, accounting for the biggest
share of the accumulated computation times shown in Table 9.

Table 9. Mean accumulated computation times (in minutes).

Original SA Improved SA VNS

Instance 1 469.49 60.09 40.38
Instance 2 344.79 54.54 37.81
Instance 3 268.21 32.1 24.40
Instance 4 1465.52 297.43 591.52

If we focus on Phase 2, VNS and SA outperform each other in two out of the four instances.
However, although the mean computation times for Instances 1 and 3 are similar, VNS clearly
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outperforms SA in Instance 2, whereas the opposite applies for Instance 4 (SA is more than 70 min
faster than VNS). Note that Instance 4 involves a larger number of open sectors and required ATCos.

In Phase 3, VNS clearly outperforms SA in instance 1 but it is only slightly better for Instances 2
and 3. In Instance 4, SA clearly outperforms VNS with a difference of close to 200 min in the mean
computation times.

Looking at the mean accumulated computation times in Table 9, we find that VNS clearly
outperforms SA in Instances 1 and 2, they are similar for Instance 3, but SA is quite a lot better
in Instance 4.

We have analyzed other sectorizations provided by CRIDA in order to verify whether or not the
performance of VNS is sensitive to the instance dimension, as in the case of Instance 4, and we have
confirmed this hypothesis: the improved SA outperforms VNS when the dimensionality (number
of open sectors and required ATCos) is high in all cases, whereas VNS is clearly better in any other
situation with a low and medium number of dimensions.

Note that although the mean computation time accumulated in Instance 4 is about 5 h (297.43 min)
with the improved SA, which could be considered a high computation time, the complexity of this
instance is the highest (9 simultaneously open sectors and 28 ATCos) that could materialize in Spanish
airports. Consequently, the maximum computation time of this instance, 50.58 min + 360.72 min
� 7 h could be considered, as an upper bound for the computation times. In most cases, solutions are
reached in the less than an hour.

Taking into account that the pre-tactical phase takes place one to six days before the day of
operations, the CRIDA experts considered this a good upper bound for computation times.

6. Conclusions

We have proposed a new methodology based on an adaptation of VNS for solving the ATCo
work-shift scheduling problem. This problem involves covering a given airspace sectoring with
a certain number of ATCos while satisfying a set of ATCo labor conditions according to Spanish
regulations. The problem takes into account four objectives: ATCo work and rest periods and position
should be as close as possible to fixed values, the solution structure should be similar to the previous
template-based solution, the number of control center changes should be minimized, and the ATCo
workload distribution should be balanced.

A comparative analysis proves that the constraint verification in search processes is faster
with the implementation in the code of such constraints than using regular expressions. Besides,
the parallelization of the constraint verification process has also been analyzed in terms of
computation times.

Finally, the proposed methodology has been applied to four real complex scenarios selected by
Spanish air navigation experts for the purposes of both methodology illustration and performance
comparison against two versions of simulated annealing (SA).

Although the SA-derived solutions slightly outperform VNS solutions in terms of the fitness
function, air navigation experts regard the quality of both solutions as very similar, where the key
factor then is the time it takes to reach that solutions (computation times). VNS clearly outperforms
SA in terms of computation times when the instance dimension (number of open sectors and ATCos
required) is low or medium, but the improved version of SA is better for high dimensional instances.

Finally, although the CRIDA experts considered than the computation times for the most complex
instances, such as instance 4, were good enough for the pre-tactical phase, which takes place one to six
days before the day of operations, we propose as a future research line a further analysis to reduce
these computation times together with the comparison of the considered metaheuristics with other in
the literature.
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Abstract: Optimization problems are relevant to various areas of human activity. In different cases,
the problems are solved by applying appropriate optimization methods. A range of optimization
problems has resulted in a number of different methods and algorithms for reaching solutions. One of
the problems deals with the decision-making area, which is an optimal option selected from several
options of comparison. Multi-Attribute Decision-Making (MADM) methods are widely applied for
making the optimal solution, selecting a single option or ranking choices from the most to the least
appropriate. This paper is aimed at providing MADM methods as a component of mathematics-based
optimization. The theoretical part of the paper presents evaluation criteria of methods as the objective
functions. To illustrate the idea, some of the most frequently used methods in practice—Simple
Additive Weighting (SAW), Technique for Order of Preference by Similarity to Ideal Solution
(TOPSIS), Complex Proportional Assessment Method (COPRAS), Multi-Objective Optimization by
Ratio Analysis (MOORA) and Preference Ranking Organization Method for Enrichment Evaluation
(PROMETHEE)—were chosen. These methods use a finite number of explicitly given alternatives.
The research literature does not propose the best or most appropriate MADM method for dealing
with a specific task. Thus, several techniques are frequently applied in parallel to make the right
decision. Each method differs in the data processing, and therefore the results of MADM methods
are obtained on different scales. The practical part of this paper demonstrates how to combine the
results of several applied methods into a single value. This paper proposes a new approach for
evaluating that involves merging the results of all applied MADM methods into a single value,
taking into account the suitability of the methods for the task to be solved. Taken as a basis is the
fact that if a method is more stable to a minor data change, the greater importance (weight) it has
for the merged result. This paper proposes an algorithm for determining the stability of MADM
methods by applying the statistical simulation method using a sequence of random numbers from the
given distribution. This paper shows the different approaches to normalizing the results of MADM
methods. For arranging negative values and making the scales of the results of the methods equal,
Weitendorf’s linear normalization and classical and author-proposed transformation techniques have
been illustrated in this paper.

Keywords: optimization; decision-making; MADM; SAW; COPRAS; TOPSIS; PROMETHEE;
MOORA; normalization; stability

1. Introduction

In a specific activity, a person consciously and intuitively seeks to find the best solutions to emerging
problems or tasks. The action of making the best or most effective use of a situation or resource
is called optimization. The Simple Additive Weighting (SAW), Technique for Order of Preference
by Similarity to Ideal Solution (TOPSIS), Complex Proportional Assessment Method (COPRAS),
Multi-Objective Optimization by Ratio Analysis (MOORA) and Preference Ranking Organization
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Method for Enrichment Evaluation (PROMETHEE) methods applied in this paper have been described
in different research papers as Multiple Criteria Decision Making (MCDM) [1–6], Multiple Attribute
Decision Making (MADM) [7–9], Multiple Criteria Decision Analysis (MCDA) [10] or Multi-Attribute
Decision Analysis (MADA) [11], and Multi-Criteria Analysis (MCA) [12,13]. Since this work is focused
on decision-making and the number of alternatives are explicitly given and finite, the name MADM
will be used to define the above-listed methods.

MADM methods are aimed at identifying the most satisfactory of several comparative alternatives
or at ranking options according to their relevance in terms of the evaluated objective [14]. The methods
are used for selecting the most satisfactory alternative/solution provided that there is no such alternative
for which all criteria values are the best.

To solve an optimization problem with classical optimization methods, the function of its objective
is fixed, establishing the set of objects to be optimized or the allowable area to be determined.
The minimum or maximum values of the function are sought depending on the purpose of the
problem being solved. The theoretical part of this work presents MADM methods as a component of
mathematical optimization methods, and evaluation criteria for SAW, TOPSIS, COPRAS, MOORA
and PROMETHEE methods appear as objective functions, which is a new form of presenting and
interpreting methods. To illustrate the idea of this publication, some of the most widely applied
MADM methods have been selected. The presented methodology can be transferred to other methods
as well.

The judging matrix and the vector of criterion weights are the components of most of MADM
methods. The judging matrix covers statistical data or the values of expert evaluation according to
the criteria defining the objective [14]. Since the impact of criteria on the outcome of the problem to
be solved is different, the significance (weights) of criteria is determined [15]. Criterion weights can
be clarified directly or by employing certain weighting methods. The main idea of most of the used
MADM methods is merging criterion values and their weights into a single evaluation characteristic
(i.e., the summarized criterion of the method). Data on MADM methods are static, and their values do
not vary in the problem-solving process.

Most of the assignments solved by people include problems that do not have sufficient numerical
data or problems where the investigated objects are impossible to measure. In such cases, the judgment
matrix is supplemented by the data obtained from the expert evaluation. Particular focus is switched
to selecting experts in a particular field, considering their characteristics related to professional
competence, work experience, scientific degree, research activity and the ability to address specific
issues in the field given. MADM methods operate in numerical values, although the criteria themselves
can be both quantitative and qualitative. The qualitative meanings of criteria, in some cases, facilitate
expert evaluation that can be individual when the expert expresses individual opinions independently
of other experts or shared and accepted in a group of professionals.

The research literature does not propose the best or most appropriate MADM method for dealing
with a specific problem. This question is relevant, and thus there are many research papers focused
on determining the stability of the method on the basis that any mathematical model or method can
be applied in practice in the case that they remain stable with respect to the applied parameters [16].
A mathematical model is considered to be stable if a small change in the results is consistent with
minor variations in the parameters for the model. Multiple MADM methods are applied in most
complex decision-making tasks to ensure the accuracy of the final result. In the cases when several
MADM methods are used for evaluation, it becomes unclear what results of which method are reliable.
This paper proposes a new approach that helps the expert make the right decision. The core of the
suggested approach is to apply several MADM methods and to determine the suitability/impact of
the employed MADM methods on the problem solved (i.e., to clarify the stability of the method).
The final result consists of the estimates of several methods taking into account the weight of the effect
of each method.
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The paper verifies the stability of multi-criteria methods when slightly changing data in the matrix
of the initial solution (i.e., expert evaluations and weights of the vector, fixing recurrence frequency of
the best alternative to the initial data). Previous papers of the author considered that the higher the
number of imitations, the more accurate the evaluation of the stability of the multi-criteria method
(i.e., the range of the varying result decreased). A sufficient number of recurrences was established
when the result of evaluating MADM stability remained almost unchanged, because 105 times could
be treated as an adequate number of estimations [17].

The practical part of the paper combines the results of several MADM methods into a single
outcome and shows a few ways to normalize results obtained using MADM methods of different scales.

2. Literature Review

Analytical mathematical optimization problems were solved in as early as the 17th century. The first
solution proposed investigating the problem of finding the minimum/maximum and was described by
P. Fermat (XVII). Newton developed the method of fluxions. The technique was rediscovered and
published in the paper “New Method for the Greatest and the Least” by G. W. Leibniz in 1684. Further,
efforts exerted by Euler and Lagrange led to working out solutions to extreme tasks. In 1824, Fourier
created the first algorithm for solving linear arithmetic constraints [18]. This algorithm made further
advances in the field, such as the main duality theorem, the Farkas lemma, the Motzkin transfer theorem
and others [19]. The traditionally employed model of optimization includes linear programming,
sequential quadratic programming, nonlinear programming, and dynamic programming [20]. In 1939,
the first formulation of the linear programming problem and the method for solving this problem were
proposed by Leonid Kantorovich. In 1947, Danzig created the simplex method that was effectively
used to solve linear programming problems [21]. Derivative-based stochastic optimization began with
a seminal paper by Robbins and Monro (1951) that launched the entire field [22]. Richard Bellman
developed the dynamic programming method in the 1950s [23].

Decision-making methods based on optimality were introduced by Pareto in 1896 and applied
to a wide range of problems. The Multi-Objective Evolutionary Algorithm (MOEA) [24] is used to
find the optimal Pareto solutions for specific problems [25]. Keeney and Raiffa [26] and Fishburn [27]
introduced the Multi-Attribute Value Theory (MAVT), the Multi-Attribute Value Analysis (MAVA) and
Multi-Attribute Utility Theory (MAUT) methods. Data envelopment analysis (DEA), introduced by
Charnes et al., is a linear programming method for measuring the efficiency of multiple decision-making
units by analysing the problems of multiple inputs and outputs [28].

Multiple criteria decision-making methods evolved from operations research theory by solving
problems such as the development of computational and mathematical tools to support the subjective
assessment of performance criteria by decision-makers [29]. MADM, as a discipline, has a relatively
short history of approximately 30 years. Its role has increased significantly in different application
areas along with the development of new methods and improved old methods in particular.

A work by Hwang and Yoon presented a plethora of methods for solving MADM problems [7]:
Methods for Cardinal Preference of Attribute over Linear Assignment method [30], Simple Additive
Weighting (SAW) method [31], Hierarchical Additive Weighting method, ELECTRE method,
and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) [7]. The most
familiar and commonly used is the SAW method reflecting the idea of multi-criteria methods—merging
criterion values and their weights into a single value [32].

Peng and Wang proposed the concept of hesitant uncertain linguistic Z-numbers (HULZNs)
and presented the Multi-Criteria Group Decision-Making (MCGDM) method by integrating power
operators employing the Vlse Kriterijumska Optimizacija I Kompromisno Resenje (VIKOR) [5] model.
Peng and Wang merged the Multi-Objective Optimization by Ratio Analysis plus the Full Multiplicative
From (MULTIMOORA) and power aggregation operators in order to create a comprehensive decision
model for MCGDM problems with Z-numbers [33]. Outranking ELECTRE [34] and PROMETHEE [35]
methods were described in the publication on multiple criteria decision analysis by Belton and Stewart
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in 2001 [10]. Opricovic and Tzeng conducted a comparative analysis of VIKOR and TOPSIS methods
in 2004 [5,36].

New methods have recently emerged that are actively used in different fields of science: Weighted
Aggregated Sum Product Assessment (WASPAS) [37], Complex Proportional Assessment Method
(COPRAS) [38], Multi-Objective Optimization by Ratio Analysis (MOORA) [39], COPRAS grey
(COPRAS-G), fuzzy additive ratio assessment (ARAS-F) [40], ARAS grey (ARAS-G) and MULTIMOORA
(MOORA plus the full multiplicative form) [41,42], KEmeny Median Indicator Ranks Accordance
(KEMIRA) [43], ARAS [44], and newest extensions of the ELECTRE [45] and PROMETHEE [46,47]
methods. The examples of partial aggregation methods include Step-Wise Weight Assessment Ratio
Analysis (SWARA) [48] and factor relationship (FARE).

Criterion weights are one of the components of MCMD methods and therefore have a strong
impact on the final result [15]. For defining criterion weights, subjective evaluation is the most
frequently applied technique when experts examine the significance of criteria, although objective
and generalized estimates are known [49]. Weights can be set directly or using weighting methods
such as Analytic Hierarchy Process (AHP) [50,51], Fuzzy Analytic Hierarchy Process (FAHP) [52,53],
SWARA [54], Criterion Impact LOSs (CILOS) [55], Integrated Determination of Objective Criteria
Weights (IDOCRIW) [14,56], etc. Recalculation of the weights of criteria under the Bayes theorem is
proposed in the paper [56]. Regardless of the method, the principles of evaluation remain to take the
position that the weight of the most important criterion is the highest. It was agreed that the sum of all
weights should be equal to 1 [1]. Any measurement scale may be used for evaluations.

Based on a study by Sabaei et al., the most common decision management methods used in
Scopus database publications are AHP, ELECTRE, and PROMETHEE [57]. The early 1990s witnessed
the shift of focus toward methods that consider indifference and ensure the transparency of analysis
processes [58]. An analogous study conducted by Mardani et al. aimed at determining the popularity
of decision-making methods. The results showed that hybrid MADM and fuzzy MADM approaches
(27.92%) were used more often than other methods. The most commonly used methods are AHP and
fuzzy AHP [59] (24.87%), ELECTRE, fuzzy ELECTRE [60], MCDA and MCA (12.69%), and TOPSIS,
fuzzy TOPSIS [61], PROMETHEE and fuzzy PROMETHEE [62] (5.08%) [1].

Mardani et al. carried out research and published the obtained material in the paper “Multiple
Criteria Decision-Making Techniques and Their Applications,” (i.e., a literature review for the period
from 2000 to 2014 [2]). Another paper by Mardani et al. reviewed decision-making methods from the
field of energy management for the period 1995–2015 [1].

The concept of sensitivity analysis in decision theory means the effective use and implementation
of quantitative decision models, the purpose of which is to assess the stability of an optimal solution
under changes in parameters, the impact of the lack of controllability of specific parameters and the need
for the precise estimation of parameter values [63]. The first significant works on sensitivity analysis
in the field of decision-making were done by Evans [63], who formulated the concepts of sensitivity
analysis in linear programming to develop a formal approach applicable to classical decision-theoretic
problems [64] and presented two simple computational procedures for sensitivity analysis of additive
multi-attribute value models that yielded variations in attribute weights. Insua [65] developed a
conceptual framework for sensitivity analysis in discrete multi-criteria decision-making, which allowed
simultaneous variations in judgmental data and applied to many paradigms for decision analysis.
Janssen [66] discussed the sensitivity of the rankings of alternatives to the overall uncertainty in scores,
and priorities were analyzed using the Monte Carlo approach. Butler [67] presented a simulation
approach allowing simultaneous changes in the weights and generating results that could be easily
analyzed to provide insights into multi-criteria model recommendations statistically.

Wolters and Mareschal [68] proposed three novel types of sensitivity analysis focused on and
elaborated for the PROMETHEE methods. Masuda [69] studied the sensitivity problems of the AHP
method. In his work, he concentrated on how changes in the entire columns of the decision-making
matrix might affect the values of the composite priorities of alternatives. Triantaphyllou [70] presented
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a methodology for performing a sensitivity analysis of the weights of decision criteria and identifying
the performance values of the alternatives expressed in terms of decision criteria. The estimation of the
effect/impact of uncertainty in the SAW method was performed by Podvezko [71], who determined the
points of varying ranges of criterion weights of the investigated process, evaluated compatibility level
and stability of expert opinions and assessed the effect of uncertainty on ranking comparable objects
employing the imitation method. The impact of varying weights on the final result in the SAW method
was studied by Zavadskas [72] and Memariani [73]. The influence of the elements of the decision
matrix on the final ranking result was analyzed by Alinezhad [74]. The effect of the importance of
criterion weights on the results of the TOPSIS method was studied by Yu [75] and Alinezhada [76].
Misra focused on a comparison of AHP, Decision-Making Trial and Evaluation Laboratory (DEMATEL),
COPRAS, and TOPSIS methods [77]. Podvezko [32] compared SAW, TOPSIS and COPRAS methods.
Moghassem [78] increased and decreased all criterion weights by 5%, 10%, 15%, and 20% in analyzing
the sensitivity of TOPSIS and VIKOR. Hsu conducted the sensitivity analysis of TOPSIS by increasing
and decreasing the top three weights by 10% [79].

3. MADM Methods as a Component of Mathematics-Based Optimization Techniques

To formulate the optimization problem, the paper presents a set of optimized elements and the
measure of goodness of its elements (quality estimates).

The optimization problem takes the form of

opt
x∈D

f (x), (1)

where f (x) : D→ Y is the objective function or criterion; D is the set or permissible area of the
optimized objects; and opt is the minimum or maximum value of function f (x).

The literature provides a number of different classifications of optimization problems. Typically,
specific decision-making methods are created for each category of problems according to the
characteristics of that particular class. Weights do not vary in SAW, TOPSIS, COPRAS, MOORA and
PROMETHEE methods. Weights are determined using subjective or objective weighting methods.
The number of comparable alternatives is finite in these methods.

MADM methods can be presented as a mathematical optimization problem as follows:

iνopt(r) = arg maxi f ν(r,ω), i = 1, . . . , n, (2)

where ν is the number of the MADM method. The merit of alternatives i = 1, . . . , n is evaluated
according to criteria j = 1, . . . , m, and the values are defined as r =

(
rij
)
. The influence of criteria on the

evaluation result is different, and therefore the vector ω = (ω j), j = 1, . . . , m, of the weights of criteria
is determined, thus defining the importance of criteria.

3.1. SAW (Simple Additive Weighting) Method (ν = 1)

i1opt(r) = arg maxi

∑m

j=1
(ω j (̃rij) (3)

where the values of r̃i j are normalized according to the formula:

r̃i j =
rij∑n

i=1 rij
. (4)
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When the values of criteria are multi-dimensional, they are transformed. The values of the
maximized criteria are calculated according to the formula:

rij =
rij

maxrij
. (5)

Then, the highest value of rij is equal to 1. The value of minimized criteria ri is correspondingly
calculated according to the formula:

rij =
minrij

ri j
. (6)

Then, the lowest value of rij is equal to 1. For standard criteria, the principle of simple linear
scalarization is applied.

3.2. TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) Method (ν = 2)

i2opt(r)= arg maxi

√∑m
j=1 (ω j (̃rij − r̃−j ))

2√∑m
j=1 (ω j (̃rij − r̃+j ))

2
+

√∑m
j=1 (ω j (̃rij − r̃−j ))

2
. (7)

The method refers to vector data normalization:

r̃i j =
rij√∑n
i=1 r2

i j

, (8)

where r̃i j is the normalized value of the jth criterion for the ith alternative.
The vector of the best R+ value and the worst R− value of criteria (ideal alternative) are calculated as

R+ =
{̃
r+1 , r̃+2 , . . . , r̃+m

}
= {(max

i
r̃i j/ j ∈ J1), (min

i
r̃i j/ j ∈ J2)},

R− =
{̃
r−1 , r̃−2 , . . . , r̃−m

}
= {(min

i
r̃i j/ j ∈ J1), (max

i
r̃i j/ j ∈ J2)}, (9)

where J1 is a set of indices of the maximized criteria, J2 is a set of indices of the minimized criteria,
and r̃−j (̃r

+
j ) is the worst (best) value of the jth criterion.

The basic principle of the method is to find an alternative at the shortest overall distance from the
best values of criteria and the maximum distance from the worst values. The method does not require
the rearrangement of the minimized (maximized) criteria to the maximized (minimized) ones.

3.3. PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluation) Method (ν = 3)

i3opt(r)= arg maxiFi = arg maxi
(
F+

i − F−i
)
=

= arg maxi(
∑n

g=1 π
(
Ai,Ag

)
−∑n

g=1 π
(
Ag,Ai

)
) =

= arg maxi(
∑n

g=1
∑m

j=1 ω jph
(
dj
(
Ai,Ag

))
−∑n

g=1
∑m

j=1 ω jph
(
dj
(
Ag,Ai

))
),

(10)

where i = 1, 2, . . . , n;
∑m

j=1 ω j = 1; dj
(
Ai, Ag

)
= rij − rgj is the difference of alternatives Ai and Ag of

inequality values rij and rgj of the jth criterion Rj; and ph(d) = ph
(
dj
(
Ai,Ag

))
is the value of the hth

priority function for the selected jth criterion.
The PROMETHEE method uses the basic ideas of other methods like combining the values of

weights and normalized criteria into a single estimate (SAW method) and the pairwise comparison of
criteria (AHP method). Instead of the normalized criteria values, the value of the priority function
ph(d), 0 ≤ ph(d) ≤ 1 is used, and all possible pairs of alternatives for each of the criteria are compared
with each other. A higher value of ph(d) corresponds to a better alternative; if the difference d is lower
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than the established critical value q, then ph(d) = 0. If d is greater than the maximum limit s for the
values of criteria, then ph(d) = 1.

In practice, six (h = 6) functions of priorities ph(d) are applied [3,80].
The priority function of the usual criterion is equal to

p1(d) =
{

0, when d ≤ 0
1, when d > 0.

(11)

The function chart is shown in Figure 1a.
The priority function of the U-shape criterion is equal to

p2(d) =
{

0, when d ≤ q
1, when d > q.

(12)

The function chart is shown in Figure 1b.
The priority function of the V-shape criterion (linear priority) is equal to

p3(d) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, when d ≤ 0

d
s , when 0 < d ≤ s

1, when d > s.
(13)

The function chart is shown in Figure 1c.
The priority function of the level criterion is equal to

p4(d) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, when d ≤ q

0.5, when q < d ≤ s
1, when d > s.

(14)

The function chart is shown in Figure 1d.
The priority function of the V-shape with indifference criterion is equal to

p5(d) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, when d ≤ q

d − q
s − q , when q < d ≤ s

1, when d > s.
(15)

The function chart is shown in Figure 1e.
The priority function of the Gaussian criterion is equal to

p6(d) =

⎧⎪⎪⎨⎪⎪⎩ 0, when d ≤ 0
1− exp

(
− d2

2σ2

)
, when d > 0.

(16)

The function chart is shown in Figure 1f.
As mentioned above, PROMETHEE, similarly to the other multi-criteria decision methods, applies

the idea of the SAW method instead of the normalized values r̃i j of criteria and uses the values of the
functions ph(d) of specifically selected priorities, where the argument d is the difference between the
values of the criterion.
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Figure 1. Function charts of criterion priorities: (a) function chart of the priorities of the usual
criterion; (b) function chart of the priorities of the U-shape criterion; (c) function chart of the priorities
of the V-shape criterion; (d) function chart of the priorities of the level criterion; (e) function chart
of the priorities of the V-shape with indifference criterion; (f) function chart of the priorities of the
Gaussian criterion.

3.4. COPRAS (Complex Proportional Assessment) Method (ν = 4)

i4opt(r)= arg maxi(
∑m

j
ω+ j̃r+i j +

∑n
i=1

∑m
j ω− j̃r−i j∑m

j ω− j̃r−i j
∑n

i=1

(∑m
j ω− j̃r−i j

)−1
) (17)

where ω+ j(ω− j) are the maximized (minimized) weights of criteria; and r̃−i j (̃r+i j) are the normalized
values of the minimized (maximized) criteria for each ith alternative. The values of the estimates of
alternatives are normalized according to Equation (4).

The application of the COPRAS method separately assesses the effect of the minimized and
maximized criteria on the result of the carried out evaluation [38,81].

3.5. MOORA (Multi-Objective Optimization on the Basis of Ratio Analysis) Method (ν = 5)

i5opt(r)= arg maxi(
∑g

j=1
r̃i j −

∑m

j=g+1
r̃i j). (18)

For the value of r̃i j, vector normalization according to Equation (8) is applied. The initial version
of the MOORA method did not take into account the importance of the criteria expressed in weights.
The method calculation principle is the sum of the values of the minimized normalized criteria (from
g + 1 to m) subtracted from the sum of the maximized normalized alternative criteria (from 1 to g).
For developing the MOORA method, Brauers started using the weights of criteria [39]. The improved
MOORA method is applied for calculations.

The presented methods have been selected as some of those most frequently applied in practice.
Similarly, other familiar criteria such as VIKOR, ELECTRE, and others for evaluating the MADM
method can be presented as objective functions.

4. Experimental Application of the Methodology Merging MADM Methods

The application of a few MADM methods may result in ranking the scale of evaluation results
and reported findings, which is not a clear case of what decision should be made. Each method has an
individual theoretical basis and logic, and therefore results in differences.
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This chapter describes the methodology for merging the results of MADM methods and presents
its practical application. The methodology proposes making calculations using several MADM
methods and thus merging their results according to the importance of the method for the problem
solved into a single value. SAW, COPRAS, TOPSIS, PROMETHEE and MOORA methods are used in
the calculations.

To sum up the results of different methods into the single value, normalizing result data beforehand
is required. Linear, classical, vector, logarithmic and other normalization techniques are known. Unlike
other methods, the results received applying PROMETHEE are both positive and negative numbers.
To transform the results of the PROMETHEE method and other MADM techniques to the uniform
scale, PROMETHEE result data must be converted into positive values.

4.1. Methodology for Merging the Results of MADM Methods

The weight, representing the importance of the MADM method, is defined as Ως. The result of
the stability of a separate method is defined as Sς and is expressed in percentage.

The weights of methods are normalized in the following way:

Ως =
Sς∑ν
ς=1 Sς

,
ν∑
ς=1

Ως = 1. (19)

The best alternative is established as

iopt(μ) = argmax
ν∑
ς=1

Ως·μi,ς. (20)

where μi,ς is the normalized result of the ςth MADM method of the ith alternative.
To merge the results of different methods into a single value, normalizing data on the obtained

results is required beforehand. Linear, classical, vector, logarithmic and other normalization techniques
are known. Unlike other methods, the results received applying PROMETHEE are both positive and
negative numbers. To transform the results of the PROMETHEE and other MADM methods to the
uniform scale, first, PROMETHEE result data must be converted into positive values.

For handling negative values and making the scales of the results of other methods equal,
Wietendorf’s [82] linear normalization rearranging data in the range of [0, 1] is suitable:

xtr =
x− xmin

xmax − xmin
, (21)

where xtr is the normalized result of the method and xtr ∈ [0, 1], x is the initial obtained result of the
method, xmin is the lowest value of the results of methods, and xmax is the highest value of the results
of methods.

Another method for making data on MADM results equal in order to employ classical
normalization [83] is as follows:

μ̃iζ =
μi,ζ∑n

i=1 μi,ζ
. (22)

Thus, the results of the PROMETHEE method are transformed into positive numbers beforehand.
The transformed value of the evaluation result takes the form of F̃i, i = 1, . . . , n. The results of Fi
obtained applying the PROMETHEE method are sorted in ascending order. The lowest result of the
transformed method is equal to F̃1 = 1. Other transformed values are calculated as follows:

F̃i+1 = F̃i + Fi+1 − Fi, i = 1, . . . , n− 1. (23)

265



Mathematics 2019, 7, 915

4.2. Algorithm for Defining MADM Stability

Any mathematical model or method can be applied in practice provided it is stable in terms of the
applied parameters. The stability of MADM is verified by employing the statistical simulation method
using a sequence of random numbers from the given distribution.

The algorithm for evaluating the stability of the MADM method is presented in Figure 2.

Figure 2. The algorithm for evaluating the stability of the Multi-Attribute Decision-Making
(MADM) method.

MADM method ν determines the best alternative i of the initial data and fixes the number of this
alternative Iopt. Verifying the stability of multi-criteria methods brings slight changes in vector data in
the initial judging matrix (i.e., expert evaluations rij and weights wj). The calculation is made with the
newly received values newrij and newwj using the MADM method, thus determining the number of the
best alternative newIopt. The counter sk captures the amount of newIopt recurrence with the initial Iopt.
As mentioned in the introduction, a sufficient number of cycles to evaluate the stability of the method
to the nearest 0.1 was selected with Y = 105.

The stability coefficient that fixes the frequency of the recurrence of the best initial alternative is
calculated by changing preliminary data. The method is more important for the result of the problem
when the stability coefficient is higher.
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When no information on the distribution of parameters for MADM methods is available, the
uniform distribution is used for generating random values of xς from the range [X, X]:

xς = X + q̃ς·
(
X −X

)
, (24)

where q̃ς ε [0, 1].
The random values of alternate estimates and criterion weights are generated by slightly changing

initial data rij and wi by 10% when q̃ς ∈ [0, 1]:

newrij = min rij + q̃ς·
(
max rij −minrij

)
,

newwi = min wi + q̃ς·(max wi −min wi).
(25)

The variation limits [min rij, max rij] of alternative estimates rij are determined as

max rij = rij + 0.1·rij,
min rij = rij − 0.1·rij.

(26)

Accordingly, the variation limits [min wi, max wi] of criterion weights wi are equal to

max wi = wi + 0.1·wi,
min wi = wi − 0.1·wi.

(27)

By applying the algorithm for verifying the stability of the MADM method (Figure 2), the stability
of all multi-criteria decision-making methods described in this paper is checked. The higher the
frequency of the reoccurrence of the best alternative, the more stable the method. The proposed
method considers the uncertainty of data on expert evaluation and therefore decreases the level of the
subjectivity of the conducted evaluation. The evaluation carried out by applying multiple MADM
methods allows selecting the result of the most stable method or merging the results of several methods
into a single value.

4.3. Experimental Application of Merging the Results of MADM Methods

To illustrate the application of the method described in the paper, an example in which the
estimates of alternatives differ slightly from each other has been chosen. The experts assessed the
quality of the course units taught according to six criteria [17]. The descriptions of criteria, as well as
the estimates of weights and course units, are given in Table 1. The mean of alternative estimates (i.e.,
course units), is in the range of [9.03, 9.34].

Table 1. Data on assessing course units.

w Number of the Criterion Alt. 1 Alt. 2 Alt. 3 Alt. 4 Alt. 5

0.27 max 1-clearly produced lecture
material 9.00 9.00 10.00 8.75 9.20

0.11 max 2-arrangement of studies 9.00 9.50 8.00 10.00 7.75
0.33 max 3-competent teaching staff 9.75 9.40 9.25 9.75 10.00

0.17 max 4-relevance and practical
benefits of the material 9.25 8.75 9.00 7.00 8.75

0.05 max 5-variety of techniques for
presenting material 9.25 10.00 9.50 10.00 9.50

0.07 max 6-knowledge testing
assignments 9.25 9.40 9.60 9.75 9.00

Mean of estimates 9.25 9.34 9.27 9.21 9.03
Ranking 3 1 2 4 5
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Regarding the initial data (Table 1), the calculation has been conducted by applying the SAW
(Equation (3)), TOPSIS (Equation (7)), MOORA (Equation (18)), COPRAS (Equation (17)) and
PROMETHEE (Equation (10)) methods. Since all criteria are maximized in the problem solved
(Table 1), the calculation of the SAW and COPRAS methods coincides [34]. Thus, only the SAW method
will be mentioned below in the paper. The calculations of the PROMETHEE method used the function
chart of the priority of the V-shape with indifference criterion (Equation (15)) with parameters q {0.25;
1.75; 0.3; 0.25; 0.2} and s {1.2; 2; 0.6; 1.5; 0.75}. The parameters q and s were not changed, testing the
stability of the PROMETHEE method.

The final ranked results are presented in Figure 3. The best alternative is ranked 1, whereas the
worst-rated alternative takes 5. Calculations revealed that the results of the methods differ: SAW
method results {0.2022; 0.2001; 0.2020; 0.1958; 0.1999}, TOPSIS {0.6029; 0.5272; 0.6004; 0.3640; 0.5413;
3}, MOORA {4.2080; 4.1196; 4.2103; 3.9963; 4.1316}, PROMETHEE {0.2127; −0.3252; 0.0889; −0.2309;
0.2544} [84]. Therefore, it is not possible to unambiguously identify the best course unit from the
results obtained.

 

0
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4
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6

SAW TOPSIS MOORA PROMETHEE

Alt.1 Alt.2 Alt.3 Alt.4 Alt.5

Figure 3. The results obtained using MADM methods. SAW: Simple Additive Weighting; TOPSIS:
Technique for Order of Preference by Similarity to Ideal Solution; MOORA: Multi-Objective Optimization
by Ratio Analysis; PROMETHEE: Preference Ranking Organization Method for Enrichment Evaluation.

According to the algorithm described above, the stability of the following methods has been
determined: SAW 30.7%, TOPSIS 30.9%, MOORA 29.3% and PROMETHEE 26.8%.

The stability of all methods is low due to the similarity of the initial data. Even small variations in
the initial data have changed ranking of the best alternative. Having applied Equation (19), the weights
of methods are calculated: ΩSAW = 0.2608, ΩTOPSIS = 0.2625, ΩMOORA = 0.249, ΩPROMETHEE = 0.2277
(Figure 4). The weights of the methods are slightly different, and the most stable is the TOPSIS method.
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Figure 4. A comparison of stability determined by applying MADM methods.

In order to merge the results of all methods, their estimates need to be unified. Thus, the MADM
results are normalized in the range of [0, 1] (Table 2). Wietendorf’s [82] linear normalization is suitable
for the results of different scales as well as for the negative values of the PROMETHEE method.

Table 2. Normalized MADM result in the range of [0, 1].

Methods Alt. 1 Alt. 2 Alt. 3 Alt. 4 Alt. 5

SAW 1 0.66563 0.9609 0 0.6375
TOPSIS 1 0.68297 0.9895 0 0.7424

MOORA 0.98925 0.57617 1 0 0.6322
PROMETHEE 0.92816 0 0.7145 0.1626 1

Equation (20) is applied in summing up the estimates of the normalized methods considering
their weights. The numerical results are presented in Figure 5. A comparison of the obtained results
(Figure 5) with data provided in Table 1 shows changes in the findings. The weights of criteria had a
significant impact on the result. Compared to the ranked results employing all methods, the merged
MADM result matched with that determined by applying the TOPSIS method. The latter method had
a higher weight (i.e., importance), in the problem solved.
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Figure 5. Merging the results of MADM methods following linear normalization.
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Table 2 shows that Wietendorf’s (Equation (21)) linear normalization has a disadvantage (i.e., zero
estimates of alternatives). The weight of the method does not affect the worst-rated alternative as its
result is normalized to the zero value.

When the results of two worst-rated alternative methods slightly differ from each other using
different normalization, the result may change. Thus, no similar problems are encountered in finding
the best alternative.

Another calculation method (i.e., technique for making values equal), involves classical
normalization (Equation (22)) and pre-arranging the results of the PROMETHEE method using
Equation (23). The transformed positive results of the PROMETHEE method are 1.5379, 1, 1.4141,
1.0943, and 1.5795. Table 3 shows the re-estimation of the methods using classical normalization [84].
The results of the MADM methods merged using Equation (20) are shown in Figure 6.

Table 3. Transformed MADM results applying classical normalization.

Methods Alt. 1 Alt. 2 Alt. 3 Alt. 4 Alt. 5

SAW 0.2022 0.2001 0.2020 0.1958 0.1999
TOPSIS 0.2287 0.2000 0.2278 0.1381 0.2054

MOORA 0.2036 0.1993 0.2037 0.1934 0.1999
PROMETHEE 0.2321 0.1509 0.2134 0.1652 0.2384
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Figure 6. Merging the results of MADM methods following classical normalization.

The numerical results of the initial data (Table 1) and the merged results following classical
(Figure 6) and linear (Figure 5) normalization are shown in Figure 7.
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Figure 7. The results of evaluating alternatives, means of numerical values.

Before comparing the obtained information, the results were normalized so that the sum of all
estimates of alternatives should be equal to one. The chart shows that the means of the estimates of the
initial data differ slightly from each other. The merged results demonstrate that linear normalization
leads to significant variations in the outcomes, which is clearly expressed in the evaluation of the fourth
alternative. Differences in the results obtained following classical normalization are not significantly
expressed in the chart.

The results expressed in ranks are shown in Figures 8 and 9. These charts indicate the mean ranks
of the initial data, the ranks of the results of the merged MADM methods (following linear and classical
normalization) and the means of the ranks of the results obtained by employing MADM methods.
The best alternative is ranked 1, whereas the worst-rated alternative takes 5.
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Figure 8. The results of evaluating alternatives, means of the ranked values.
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Figure 9. A comparison of the results of evaluating alternatives.

The results of the initial data differ from those achieved by evaluating the outcomes of the first
and second alternatives. The merged results coincided following linear and classical normalization.
The mean values of the results of MADM methods mainly coincided with the merged results of MADM
methods. Since the values of the weights of MADM methods Ω are similar to each other (Figure 4),
they did not have a significant effect on the final result. The average results of MADM ranks of the first
and third alternatives may lead to different interpretations due to their estimates being equal to 1.5 and
2. The combined results have unequivocally identified the best alternative as Alt. 1.

Table 3 shows that the sum of the estimates for each alternative is equal to 1, which facilitates
comparing them. A comparison of the ranked results provided in Figures 5 and 6 demonstrates that
the employed methods of the linear and classical normalization of MADM results have determined all
alternatives equally. For comparing the mean values of the initial estimates with the findings obtained
using MADM methods, the ranking results have changed due to the effect of criterion weights.

5. Discussion and Conclusions

The paper has considered MADM methods as an integral part of the mathematical optimization
theory. To illustrate the idea, some of the most applicable methods, SAW, TOPSIS, MOORA,
PROMETHEE and COPRAS, have been preferred, and their evaluation criteria have been presented
as objective functions, although this paper’s methodology is not limited to the use of only these
methods. Other MADM methods such as VIKOR, ELECTRE, Evaluation Based on Distance from
Average Solution (EDAS), etc. can be similarly introduced as objective functions. The forthcoming
papers of the author will focus on exploring more extensively the limitations to constraints on the
variables of the above-listed and new MADM methods and will concentrate on the properties of the
objective functions and their limitations.

The MADM methods introduced in this paper are employed for selecting the best alternative
evaluated according to the established criteria. The purpose of classical optimization is analogous
to MADM methods presented in the paper, which means finding an optimal solution from several
or many possible options. The use of MADM makes sense in comparing alternatives that do not
contain any dominant alternatives when considering all evaluation criteria. The data used in the
presented MADM methods are not changed by searching for the optimal solution from all available
ones. The decision matrix and the vector of criterion weights are static data, and the number of optional
alternatives is finite.
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Merging the results of the MADM methods in accordance with their importance showed their
possibilities in evaluation. There is a large number of MADM methods, and therefore the literature
does not provide unambiguous recommendations for the most appropriate one. Therefore, multiple
MADM methods are frequently applied in practice. A methodology for merging the results of MADM
methods was presented in this paper, based on summing up the normalized MADM results into a
single value and considering the methods’ stability.

The findings have demonstrated that weights have a significant influence on the result. In order
to analyze the influence of the weights of criteria and methods on the obtained result, a problem
example was presented in the practical part of the paper, and the averages of evaluating alternatives
had little difference between them. Criterion weights have been found to significantly alter the primary
outcomes. The established stability of the applied methods did not differ significantly: ΩSAW = 0.2608,
ΩTOPSIS = 0.2625, ΩMOORA = 0.249, ΩPROMETHEE = 0.2277. Nevertheless, the influence of the weights
of the methods on the result is noticeable. The ranked result obtained employing the TOPSIS method
coincided with the ranked composite result, since the TOPSIS method had a greater influence of
weight than the rest of the techniques had. The average results of MADM ranks of the first and
third alternatives may lead to different interpretations due to their estimates being equal to 1.5 and 2.
The combined results have unequivocally identified the best alternative.

Wietendorf’s linear normalization is appropriate for rearranging the results of different scales
as well as for the negative values of the PROMETHEE method. However, linear normalization has
a disadvantage. Applying Wietendorf’s linear normalization, the estimate of the worst alternative
is converted into zero, and thus the weight of the influence of the method for determining the
worst alternative has no effect on the combined result. The result data managed by applying
classical normalization are convenient to be compared because the sum of all results is equal to one.
In the case of classical normalization, the negative results of the methods require additional data
transformation. The author of this paper proposes a method of transforming negative numbers. Hence,
the normalization method had no influence on the final combined result in this task.

The article provides a method for verifying the stability of the MADM method, which ensures the
validity of the evaluated result. The technique for validating the stability of the MADM method has a
wide range of practical usability in different decision-making problems where evaluation is performed
by employing several MADM methods. The proposed method considers the uncertainty of data on
expert evaluation and therefore decreases the level of the subjectivity of the conducted evaluation.
Further papers will focus more intensely on analyzing the sensitivity of fuzzy AHP methods by
fluctuating the data and on investigating several algorithms of FAHP methods.
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