Tesis doctoral: Life cycle assessment applied to the sustainable design of prestressed bridges in coastal environments

Hoy 22 de noviembre de 2019 ha tenido lugar la defensa de la tesis doctoral de D. Ignacio J. Navarro Martínez titulada “Life cycle assessment applied to the sustainable design of prestressed bridges in coastal environments“, dirigida por Víctor Yepes Piqueras y José V. Martí Albiñana. La tesis recibió la calificación de “Sobresaliente Cum Laude” por unanimidad. Presentamos a continuación un pequeño resumen de la misma.

Resumen:

La sostenibilidad ha ido adquiriendo una presencia relevante en nuestra sociedad desde su primera definición en 1987 por parte de la Comisión Brundtland. Desde entonces, la comunidad científica ha llevado a cabo importantes esfuerzos en el desarrollo de normativas, herramientas y criterios para lograr diseños en esa línea. A pesar de ello, estos esfuerzos no han sido suficientes para lograr trazar un futuro realmente sostenible a corto plazo. Como respuesta al estado actual e insuficiente de desarrollo, las Naciones Unidas han establecido recientemente los Objetivos de Desarrollo Sostenible, los cuales deben alcanzarse en 2030. En dichos Objetivos se atiende explícitamente al papel de las infraestructuras, que se revelan como elementos clave para asegurar la consecución de los mencionados Objetivos. Sin embargo, a pesar de las relevantes implicaciones del diseño de infraestructuras, y a pesar de que la mayoría de las infraestructuras están diseñadas para servir a un grupo significativo de personas durante un periodo intergeneracional de tiempo, el diseño sostenible y resiliente de infraestructuras todavía carece de una metodología estandarizada que considere sus ciclos de vida desde una perspectiva holística. En la actualidad, tanto las metodologías de evaluación del ciclo de vida ambiental como las económicas muestran un estado de desarrollo relativamente maduro. Sin embargo, la dimensión social todavía se considera en estado embrionario, comprometiendo por tanto el empleo de métodos de evaluación multidimensionales de la sostenibilidad.

Flamante doctor junto con el tribunal (Salvador Ivorra, Juan José del Coz y Julián Alcalá) y los directores de tesis (Víctor Yepes y José V. Martí)

La presente tesis propone una metodología extendida basada en la norma ISO 14040 de enfoque puramente medioambiental para evaluar la sostenibilidad del ciclo de vida de las infraestructuras mediante la consideración simultánea y coherente de las tres dimensiones de la misma, a saber, el medio ambiente, la economía y la sociedad. Se propone aquí una nueva metodología para evaluar las infraestructuras desde la dimensión social, integrando al mismo tiempo dichas evaluaciones en un marco basado en la norma ISO 14040. A continuación, se aplica una técnica de toma de decisión multicriterio para integrar las tres perspectivas. Con el fin de tener en cuenta las incertidumbres no probabilísticas implicadas en la asignación de pesos al emplear dichas técnicas, se propone aquí un nuevo enfoque neutrosófico para la determinación de los pesos resultantes de la aplicación de la técnica AHP con grupos de decisores. Se ha considerado como caso de estudio el diseño sostenible de un puente de hormigón pretensado en un entorno costero para construir la metodología propuesta. El enfoque holístico en la evaluación de la sostenibilidad de las infraestructuras se revela esencial frente a las habituales evaluaciones basadas únicamente en la consideración de la dimensión medioambiental. Se ha observado que el mantenimiento preventivo resulta más sostenible a lo largo del ciclo de vida en comparación con las estrategias de mantenimiento reactivo. Esta tesis proporciona una guía para el diseño sostenible de estructuras de hormigón, aunque la metodología sugerida puede aplicarse a cualquier tipo de infraestructura.

Referencias:

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2019). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights. Structure and Infrastructure Engineering, DOI: 10.1080/15732479.2019.1676791

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2019). A review of multi-criteria assessment techniques applied to sustainable infrastructures design. Advances in Civil Engineering, 2019: 6134803. DOI:10.1155/2019/6134803

NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2019). Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective. Environmental Impact Assessment Review, 74:23-34. DOI:1016/j.eiar.2018.10.001

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2018). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 196: 698-713. DOI:10.1016/j.jclepro.2018.06.110

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environmental Impact Assessment Review, 72:50-63. DOI:1016/j.eiar.2018.05.003

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3):845. DOI:3390/su10030845

Lógica neutrosófica aplicada al análisis de la sostenibilidad de puentes en ambientes marinos

Acaban de publicarnos un artículo en la revista Structure and Infrastructure Engineering (revista indexada en el JCR) sobre la aplicación de la lógica neutrosófica (una generalización de la lógica difusa y la lógica intuicionista) al diseño y mantenimiento de puentes en ambiente marino. El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La metodología propuesta utiliza la lógica neutrosófica para obtener los pesos en un Proceso Analítico Jerárquico (AHP) que considerar la subjetividad de los expertos en el proceso de toma de decisión. Se ha aplicado al diseño sostenible de puentes y su mantenimiento considerando simultáneamente las tres dimensiones de la sostenibilidad.

El artículo se puede descargar gratuitamente en el siguiente enlace:

https://www.tandfonline.com/eprint/2KZDAHNK4BPJKPSY4XSF/full?target=10.1080/15732479.2019.1676791

ABSTRACT:

Essential infrastructures such as bridges are designed to provide a long-lasting and intergenerational functionality. In those cases, sustainability becomes of paramount importance when the infrastructure is exposed to aggressive environments, which can jeopardise their durability and lead to significant maintenance demands. The assessment of sustainability is however often complex and uncertain. The present study assesses the sustainability performance of 16 alternative designs of a concrete bridge deck in a coastal environment on the basis of a neutrosophic group analytic hierarchy process (AHP). The use of neutrosophic logic in the field of multi-criteria decision-making, as a generalisation of the widely used fuzzy logic, allows for a proper capture of the vagueness and uncertainties of the judgements emitted by the decision-makers. TOPSIS technique is then used to aggregate the different sustainability criteria. From the results, it is derived that only the simultaneous consideration of the economic, environmental and social life cycle impacts of a design shall lead to adequate sustainable designs. Choices made based on the optimality of a design in only some of the sustainability pillars will lead to erroneous conclusions. The use of concrete with silica fume has resulted in a sustainability performance of 46.3% better than conventional concrete designs.

.
.
REFERENCIA:
NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2020). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights. Structure and Infrastructure Engineering, 16(7): 949-967. DOI:10.1080/15732479.2019.1676791

Últimas investigaciones sobre mantenimiento de puentes en ambiente marino

https://es.wikipedia.org/wiki/Costas_bonaerenses

Dentro de nuestro grupo de investigación, y dentro del proyecto DIMALIFE, se está ultimando la tesis doctoral de Ignacio J. Navarro sobre la evaluación del ciclo de vida aplicada al diseño sostenible de puentes pretensados en ambiente marino. Esta tesis, cuya lectura está programada para este mes de noviembre, la he codirigido con el profesor José V. Martí.

Por su interés, voy a sintetizar de forma muy breve las principales contribuciones de la tesis y las principales referencias de los artículos científicos publicados al respecto, por si os resultan útiles.

  • En el artículo [1] se realizó un análisis de los costes del ciclo de vida asociados a distintos diseños para tableros de puente en ambiente marino. Los impactos de la fase de mantenimiento en este tipo de ambientes pueden suponer más del 50% de los costes totales del ciclo de vida. Los diseños basados en tratamientos superficiales hidrófugos, adición de humo de sílice, o reducciones significativas de la relación agua/cemento proporcionan reducciones de los costes del ciclo de vida superiores al 45% respecto al diseño real tomado como referencia en el trabajo.
  • En el artículo [2] se proponen indicadores sociales aplicados a puentes, y se propone una metodología adaptada a las normas ISO ambientales para evaluar el impacto social a lo largo del ciclo de vida de una infraestructura. Se analizan los impactos sociales a lo largo del ciclo de vida de un puente en ambiente marino, derivados de su construcción y su mantenimiento. Además, en el artículo se optimiza el mantenimiento para maximizar el beneficio social.
  • En el artículo [3] se analizan 15 diseños alternativos de un tablero de puente en ambiente marino, y de sus impactos ambientales a lo largo de su ciclo de vida. Los impactos ambientales se evalúan atendiendo a la metodología Ecoindicador 99. En el trabajo se comprueba que los impactos ambientales durante la fase de mantenimiento son muy significativos. Además, la optimización del mantenimiento se revela fundamental para reducir impactos a lo largo del ciclo de vida.
  • En el artículo [4] se ha llevado a cabo la optimización del mantenimiento para distintos diseños alternativos en puentes en ambientes marinos considerando criterios ambientales y económicos. La optimización se ha llevado a cabo considerando criterios de fiabilidad estructural. Los diseños con hormigones con humo de sílice han resultado en el mejor comportamiento en términos económicos, con una reducción de costes de ciclo de vida del 76% respecto a un diseño con hormigón convencional. En lo ambiental, el uso de tratamientos superficiales hidrófugos ha dado lugar a una reducción de los impactos del ciclo de vida del puente de referencia del 82,8%.
  • En el artículo [5] se ha revisado cómo se evalúa la sostenibilidad en las infraestructuras, a la vista de la formulación de los Objetivos de Desarrollo Sostenible establecidos para 2030. Se ha detectado un importante déficit metodológico en la evaluación de la sostenibilidad de las infraestructuras.
  • Por último, en el artículo [6] se ha aplicado la lógica neutrosófica (una generalización de la lógica difusa y la lógica intuicionista) para obtener los pesos mediante la metodología AHP para considerar la subjetividad de los expertos en el proceso de toma de decisión. Se ha aplicado al diseño sostenible de puentes y su mantenimiento. Se comprueba que el diseño sostenible requiere la consideración simultánea de las tres dimensiones de la sostenibilidad.

Con todo, aún se encuentran en fase de redacción y envío un par de artículos científicos que complementan la tesis. En cuanto tengamos más noticias, os avisaré de lo que vamos haciendo. Os dejo, de momento, las referencias que he utilizado.

Referencias:

  1. NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3):845. DOI:3390/su10030845
  2. NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environmental Impact Assessment Review, 72:50-63. DOI:1016/j.eiar.2018.05.003
  3. NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2018). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 196: 698-713. DOI:10.1016/j.jclepro.2018.06.110
  4. NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2019). Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective. Environmental Impact Assessment Review, 74:23-34. DOI:1016/j.eiar.2018.10.001
  5. NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2019). A review of multi-criteria assessment techniques applied to sustainable infrastructures design. Advances in Civil Engineering, 2019: 6134803. DOI:10.1155/2019/6134803
  6. NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2019). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights. Structure and Infrastructure Engineering, DOI: 10.1080/15732479.2019.1676791

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Tipos de mantenimiento

2704 - MantenimientoExisten seis tipos básicos de mantenimiento: mantenimiento correctivo, mantenimiento preventivo, mantenimiento conductivo, mantenimiento predictivo, mantenimiento cero horas y mantenimiento modificativo. Este vídeo de Renovetec analiza las características principales de cada uno de estos tipos de mantenimiento.

https://www.youtube.com/watch?v=yTMId3P-6Wk

Referencias:

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5. Ref. 402.

¿Por qué es tan difícil asignar recursos a la conservación de las carreteras?

Figura 1. Conservación de carretera Guayaquil-Santa Elena.

En muchos foros se repite, a modo de mantra, que la falta de conservación de nuestras carreteras (y calles, en el caso de las ciudades) se debe fundamentalmente a un problema de orden económico. Por algún motivo u otro (crisis económica, dificultad para aprobar presupuestos, falta de voluntad política, etc.), la falta aparente de recursos obliga a realizar una conservación correctiva o reactiva de las carreteras, como ya se justificó en un artículo anterior, provoca estados subóptimos en la infraestructura y tiene como consecuencia el incremento del riesgo de accidentes, la reducción de la velocidad de los vehículos, las restricciones de paso y la elección por los usuarios de itinerarios alternativos con mayor tiempo de recorrido. Conviene insistir, en este punto, una conservación deficiente genera mayores costes a los usuarios relacionados con el valor del tiempo de viaje, con el vehículo y con los accidentes de tráfico. La justificación económica de las restricciones presupuestarias queda en entredicho cuando se consideran los costes totales del transporte.

Sin embargo, en nuestro grupo de investigación hemos desarrollado modelos que, incluso en el caso de disponer de presupuestos restrictivos, pueden optimizar el estado o condición no de una carretera, sino de una red completa, considerando, además, distintas funciones objetivo (costes económicos, sociales y medioambientales). Para entender mejor el problema, expongo a continuación la dificultad intrínseca de este tipo de problemas y justificaré las razones por las que muchos gestores del mantenimiento de carreteras toman decisiones que se alejan de ser óptimas.

La clave para entender la magnitud del problema radica en la dificultad que tienen los gestores de la red de carreteras para tomar decisiones debido a la explosión combinatoria de las soluciones posibles al tener en cuenta distintos tipos de tratamientos de preservación, mantenimiento y rehabilitación (P+M+R), y los periodos de aplicación. Dicho de otra forma, en una red de carreteras se trata de decidir en qué tramo de la red se aplica un tratamiento de los múltiples posibles y cuándo se debe realizar. Las decisiones tomadas conforman el programa de conservación de la red de carreteras.

En la Figura 2 se representan las variables fundamentales que conforman el problema. En una red de carreteras tenemos N activos (tramos considerados), S posibles tratamientos, cada uno de los cuales se aplicará en el instante t en los T años considerados en el programa de conservación.

Figura 2. Programa de conservación (Torres-Machí, 2015)

El programa de conservación resultante de las decisiones tomadas para un horizonte de T años nos dirá para cada uno de los años dónde actuar y qué tipo de tratamiento se deberá efectuar. En la Figura 3 queda representada un posible programa fruto de las decisiones tomadas.

Figura 3. Ejemplo de programa de conservación (Torres-Machí, 2015)

Lo difícil de este problema, como hemos dicho anteriormente, es acertar con el mejor programa de conservación. No hay más remedio que aplicar técnicas de optimización para resolver el problema si los presupuestos son limitados. Existen dos enfoques: el secuencial y el holístico. El primero se centra en un activo (un tramo de carretera o una calle de una ciudad) y decide qué tratamientos se van a aplicar y en qué momento. En este caso el problema tiene N·S^T soluciones. En cambio, el enfoque holístico considera toda la red: se trata de elegir qué activo tiene prioridad en la red y luego decidir qué tratamiento y cuándo se aplica. Aquí se dispara el número de posibles soluciones a S^(N·T). A modo de ejemplo, teniendo en cuenta solo dos tratamientos (S=2), un horizonte de 10 años (T=10) y 7 tramos diferentes de carretera (N=7), el número de posibles soluciones es de 1,18E+21.

La única forma de abordar este problema es con algoritmos heurísticos de optimización multiobjetivo. Os dejo algunas referencias de cómo hemos resuelto en nuestro grupo de investigación este problema y en un artículo posterior os explico cómo formular el problema de optimización (funciones objetivo, restricciones, etc.). Como ya dije en artículos anteriores, la puerta está abierta a quien quiera participar en nuestro grupo.

Referencias:

  • SALAS, J.; YEPES, V. (2019). MS-ReRO and D-ROSE methods: assessing relational uncertainty and evaluating scenarios’ risks and opportunities on multi-scale infrastructure systems. Journal of Cleaner Production, (accepted, in press).
  • SIERRA, L.A.; PELLICER, E.; YEPES, V. (2017). Method for estimating the social sustainability of infrastructure projects. Environmental Impact Assessment Review, 65:41-53.
  • SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Journal of Cleaner Production, 176:521-534.
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2017). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Environmental Impact Assessment Review, 67:61-72.
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513.
  • TORRES-MACHÍ, C. (2015). Optimización heurística multiobjetivo para la gestión de activos de infraestructuras de transporte terrestre. Tesis doctoral. Universitat Politècnica de València – Pontificia Universidad Católica de Chile.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E.; YEPES, V.; VIDELA, C. (2015). Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making. Transportation Research Record, 2523:56-63.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; VIDELA, C.; PELLICER, E.; YEPES, V. (2014). An iterative approach for the optimization of pavement maintenance management at the network level. The Scientific World Journal, Volume 2014, Article ID 524329, 11 pages.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; YEPES, V.; PELLICER, E. (2014). Current models and practices of economic and environmental evaluation for sustainable network-level pavement management. Revista de la Construcción, 13(2): 49-56.
  • TORRES-MACHI, C.; PELLICER, E.; YEPES, V.; CHAMORRO, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Journal of Cleaner Production, 148:90-102.
  • YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Indicadores de estado y de prestaciones de las infraestructuras

En una entrada anterior vimos las distintas estrategias de conservación de las infraestructuras y cómo estas influían en el coste que debían pagar los usuarios. Estas estrategias pueden modificar el estado o las prestaciones de la infraestructura, que sin duda se degradan con el tiempo. Llegado a este punto, conviene diferenciar los conceptos de «estado» y «prestaciones» de una infraestructura.

La gestión de las infraestructuras (carreteras, puentes, etc.) supone un proceso en el que se deben asignar de forma eficiente los recursos limitados, en la dirección marcada por los objetivos estratégicos de la organización responsable de dicha gestión. Para ello, es necesario contar con una serie de indicadores que permitan medir de forma cuantitativa o cualitativa los resultados derivados de las acciones realizadas sobre dichos activos en relación con los objetivos.

Dichos indicadores pueden ser de estado o de prestaciones. El estado o condición de una infraestructura se define como su estado físico, que puede afectar o no a sus prestaciones. En cambio, la prestación o rendimiento se define como la capacidad de la infraestructura para proveer un determinado nivel de servicio a los usuarios. Se pueden llamar también prestaciones funcionales, pues indican el nivel de habilitación de una infraestructura para desarrollar su función principal, que es la prestación del servicio, aunque también podrían incluir otras características o efectos no directamente relacionados con el servicio a los usuarios.

Saber diferenciar ambos conceptos es básico para cualquier organización responsable de la gestión de una infraestructura. Así, por ejemplo, las prestaciones de un puente pueden no verse afectadas por el estado hasta que se produzca un fallo. Es fácil encontrar un puente de hormigón con defectos superficiales (corrosión de armaduras, desconchados, etc.) que mantiene intacta su funcionalidad y su integridad estructural. También podría darse el caso de un puente en muy buen estado que no sea capaz de soportar determinadas cargas de tráfico o que imponga restricciones de gálibo que afecten al tráfico.

Puente “traga camiones” de Leganés. https://www.lavanguardia.com

Pero, ¿cuáles son las razones para disponer de indicadores en la gestión de las infraestructuras? Son imprescindibles para tomar decisiones que afectan a estos activos. Permiten identificar las necesidades de intervención, proporcionan una guía para los procesos y criterios en la toma de decisiones y son los elementos que permiten controlar el progreso hacia los objetivos y metas trazados por la organización responsable de la gestión.

En el caso de una carretera, los indicadores utilizados en su gestión se suelen agrupar en diferentes categorías que corresponden a los objetivos de la organización responsable de dicha gestión. Se podrían considerar, entre otros, los siguientes: conservación de la carretera, seguridad vial, movilidad y accesibilidad, medioambiente, operaciones y mantenimiento, y eficiencia económica.

Si se dispone de mediciones de dichos indicadores, estos permiten comparar sus valores con determinados estándares, umbrales o niveles mínimos. Esta información es determinante para identificar las necesidades de intervención y, por tanto, cataliza todo el proceso posterior de selección de intervenciones y asignación de recursos económicos.

En artículos posteriores hablaremos de cómo podremos utilizar estos índices para el caso particular de las carreteras y de cómo aplicar técnicas procedentes de la optimización multiobjetivo y de la toma de decisiones multicriterio para asignar los presupuestos restrictivos de los que dispone una organización, de modo que la condición de las carreteras sea la máxima posible. Ya adelantamos que el problema no es sencillo, pero afortunadamente nuestro grupo de investigación ya dispone de las herramientas necesarias para planificar el mantenimiento y la conservación de una red de carreteras o de calles en una ciudad con presupuestos muy restrictivos.

Referencias:

  • CLEMENTE, J.J. (2012). La toma de decisión en el marco de la gestión de activos de infraestructuras de transporte terrestre. Trabajo de investigación. Universitat Politècnica de València.
  • SALAS, J.; YEPES, V. (2019). MS-ReRO and D-ROSE methods: assessing relational uncertainty and evaluating scenarios’ risks and opportunities on multi-scale infrastructure systems. Journal of Cleaner Production, (accepted, in press).
  • SIERRA, L.A.; PELLICER, E.; YEPES, V. (2017). Method for estimating the social sustainability of infrastructure projects. Environmental Impact Assessment Review, 65:41-53.
  • SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Journal of Cleaner Production, 176:521-534.
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2017). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Environmental Impact Assessment Review, 67:61-72.
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513.
  • TORRES-MACHÍ, C. (2015). Optimización heurística multiobjetivo para la gestión de activos de infraestructuras de transporte terrestre. Tesis doctoral. Universitat Politècnica de València – Pontificia Universidad Católica de Chile.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E.; YEPES, V.; VIDELA, C. (2015). Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making. Transportation Research Record, 2523:56-63.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; VIDELA, C.; PELLICER, E.; YEPES, V. (2014). An iterative approach for the optimization of pavement maintenance management at the network level. The Scientific World Journal, Volume 2014, Article ID 524329, 11 pages.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; YEPES, V.; PELLICER, E. (2014). Current models and practices of economic and environmental evaluation for sustainable network-level pavement management. Revista de la Construcción, 13(2): 49-56.
  • TORRES-MACHI, C.; PELLICER, E.; YEPES, V.; CHAMORRO, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Journal of Cleaner Production, 148:90-102.
  • YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Cómo influyen las estrategias de conservación y el coste que pagan los usuarios de las carreteras?

Figura 1. Las generaciones futuras tendrán que pagar por unas infraestructuras deterioradas

En esta entrada, vamos a justificar cómo ciertas estrategias de gestión del mantenimiento y conservación de las carreteras pueden aumentar significativamente los costos para los usuarios. Para lograrlo, en primer lugar, definiremos las diferentes estrategias disponibles, y posteriormente analizaremos cuál de ellas tiene un impacto negativo en los costos que deben asumir los usuarios.

Si bien es cierto que estas nuevas infraestructuras nacen con un periodo de vida relativamente largo, no menos cierto es que una parte significativa de dicha infraestructura está empezando a notar el paso del tiempo; es más, parece que podemos vivir dentro de un horizonte no tan lejano, un verdadero colapso en los niveles de servicio prestados por estos activos. Lo peor de todo ello es que estas infraestructuras se financiaron a largo plazo y la siguiente generación (Figura 1) se encontrará con la sorpresa de tener que pagar por infraestructuras con niveles de servicio pésimos. Es lo que en otro artículo califiqué como la “crisis de las infraestructuras”. Todo esto nos lleva a la cuestión central del problema: la necesidad urgente de contar con un plan racional y recursos suficientes para mantener las infraestructuras básicas de un país.

En la Figura 2 podemos ver una gráfica donde se representa no solo la degradación del estado o de las prestaciones de la carretera, sino las distintas estrategias que se tienen al alcance para modificar dicho deterioro.

Figura 2. Estrategias de conservación (Clemente, 2012)

Así, la estrategia preventiva o proactiva tiene como objetivo mantener en el tiempo el estado físico del elemento en un nivel adecuado, evitando que alcance elevados niveles de deterioro que puedan afectar a su funcionalidad y disparar los costes de reparación. Estas actuaciones son normalmente de alcance y coste limitado y se realizan con cierta periodicidad en función de la evolución observada o incluso de manera programada antes de que el defecto se llegue a manifestar. La estrategia correctiva o reactiva es la que deja al elemento que se deteriore al límite, en cuyo momento se efectúan intervenciones de gran calado, como por ejemplo grandes rehabilitaciones integrales o estructurales, que lo devuelven, o lo intentan devolver, a su estado original. Sin embargo, son actuaciones de mayor coste, aunque más separadas en el tiempo. Por último, se podría optar por un deterioro controlado hasta la retirada. En este caso se pasa directamente a retirar el elemento cuando se ha alcanzado su vida útil de servicio y se sustituye por otro similar. Durante este periodo no se interviene, o se hace mínimamente para no afectar la funcionalidad.

Por tanto, la estrategia óptima no es evidente, pues depende tanto de factores endógenos (características constructivas de la carretera, edad, etc.) y exógenos (condiciones del clima, nivel de tráfico, etc.) y en consecuencia no se pueden generalizar las conclusiones. Este problema, por consiguiente, es uno de los focos más importantes de nuestro grupo de investigación. Os he puesto referencias de algunas de nuestras publicaciones.

Pero el problema se hace más complejo cuando se tienen en cuenta los costes de los usuarios. En efecto, las características de la carretera y el nivel y la composición de la demanda de tráfico influyen en los costes de los usuarios. Un mal estado del pavimento, incrementa claramente el coste soportado por el usuario. Y lo que es peor, un estado subóptimo de la infraestructura debido a una estrategia de conservación reactiva, tiene como consecuencia el incremento del riesgo de accidentes, la reducción de la velocidad de los vehículos, las restricciones de paso y la elección por los usuarios de itinerarios alternativos con mayor tiempo de recorrido. Insisto en este punto. Una conservación deficiente genera mayores costes a los usuarios relacionados con el valor del tiempo de viaje, con el vehículo y con los accidentes de tráfico.

En la Figura 3 se puede ver que existe un hipotético nivel de conservación óptimo que minimiza los costes totales del transporte, teniendo en cuenta el coste del usuario, el coste de conservación y el coste de construcción. Sin una estrategia clara de conservación, los responsables de una red de carreteras suelen realizar una conservación correctiva, que tiene un aparente ahorro económico en el corto plazo, pero que traslada al futuro unos costes que pueden ser muy elevados tanto para los contribuyentes que sufragan la inversión como para los usuarios.

Figura 3. Costes totales del transporte

A continuación os dejo algunas de las referencias y de los trabajos que se han publicado al respecto. Todo lo que estamos haciendo ahora se encuentra dentro de un proyecto de investigación competitivo al que hemos denominado DIMALIFE (BIA2017-85098-R): Diseño y mantenimiento óptimo, robusto y basado en fiabilidad de puentes e infraestructuras viarias de alta eficiencia social y medioambiental bajo presupuestos restrictivos”. Si alguien se anima trabajar en estos temas de investigación con nosotros o hacer una tesis doctoral, tiene las puertas abiertas.

Además, igual os interesa leer los enlaces que publicamos en una entrada anterior: ¿Qué hemos hecho para conservar nuestras carreteras?

Referencias:

  • CLEMENTE, J.J. (2012). La toma de decisión en el marco de la gestión de activos de infraestructuras de transporte terrestre. Trabajo de investigación. Universitat Politècnica de València.
  • SALAS, J.; YEPES, V. (2019). MS-ReRO and D-ROSE methods: assessing relational uncertainty and evaluating scenarios’ risks and opportunities on multi-scale infrastructure systems. Journal of Cleaner Production, (accepted, in press).
  • SIERRA, L.A.; PELLICER, E.; YEPES, V. (2017). Method for estimating the social sustainability of infrastructure projects. Environmental Impact Assessment Review, 65:41-53.
  • SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Journal of Cleaner Production, 176:521-534.
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2017). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Environmental Impact Assessment Review, 67:61-72.
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513.
  • TORRES-MACHÍ, C. (2015). Optimización heurística multiobjetivo para la gestión de activos de infraestructuras de transporte terrestre. Tesis doctoral. Universitat Politècnica de València – Pontificia Universidad Católica de Chile.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E.; YEPES, V.; VIDELA, C. (2015). Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making. Transportation Research Record, 2523:56-63.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; VIDELA, C.; PELLICER, E.; YEPES, V. (2014). An iterative approach for the optimization of pavement maintenance management at the network level. The Scientific World Journal, Volume 2014, Article ID 524329, 11 pages.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; YEPES, V.; PELLICER, E. (2014). Current models and practices of economic and environmental evaluation for sustainable network-level pavement management. Revista de la Construcción, 13(2): 49-56.
  • TORRES-MACHI, C.; PELLICER, E.; YEPES, V.; CHAMORRO, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Journal of Cleaner Production, 148:90-102.
  • YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Esto me suena… ¿Son seguros nuestros puentes?

Puente de la Constitución de 1812, Cádiz, en agosto de 2015. TCadizwiki [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], from Wikimedia Commons

Os dejo en esta presentación una nueva entrevista que me ha realizado el periodista José Antonio García Muñoz, conocido como Ciudadano García, sobre temas de ingeniería. Como ya he comentado en alguna entrada anterior, la labor de divulgación de las ciencias, y en particular de la ingeniería, resulta una tarea agradable y enriquecedora.

La entrevista, en este caso, se ha centrado en la seguridad y el mantenimiento de nuestros puentes. En efecto, una noticia aparecida el 9 de diciembre de 2018 en El País con el siguiente titular “Fomento admite que hay 66 puentes con graves problemas de seguridad” abrió cierta inquietud en la opinión pública sobre la seguridad de nuestros puentes. Esta inquietud irrumpió el agosto pasado con el derrumbe de un puente en Génova (Italia). La pregunta que se hace el ciudadano de a pié es saber si cuando circula por carretera o por ferrocarril nuestras infraestructuras son lo suficientemente seguras.

Tener la oportunidad de comunicar aspectos de nuestra profesión a más de 300.000 oyentes supone todo un reto, más si lo que se busca es transmitir de forma sencilla y para todo el mundo, aspectos técnicos que, a veces, solo somos capaces de hacerlo con colegas o estudiantes. Insisto, todo un reto y una oportunidad que se agradece.

Pues de todo ello hablamos el pasado viernes 14 de diciembre de 2018. Os dejo la entrevista, realizada en directo. Espero que os guste.

Cuantificación del estado de conservación de los puentes: índices de estado o condición

Guía para la realización de inspecciones principales de obras de paso en la Red de Carreteras del Estado. Ministerio de Fomento (2012)

Una noticia aparecida el 9 de diciembre de 2018 en El País con el siguiente titular “Fomento admite que hay 66 puentes con graves problemas de seguridad” abrió cierta inquietud en la opinión pública sobre la seguridad de nuestros puentes. Esta inquietud irrumpió el agosto pasado con el derrumbe de un puente en Génova (Italia). La pregunta que se hace el ciudadano de a pié es saber si cuando circula por carretera o por ferrocarril nuestras infraestructuras son lo suficientemente seguras. Además, este desasosiego se acentúa cuando, por una parte, la grave crisis económica que ha sufrido nuestro país ha reducido significativamente los presupuestos dedicados al mantenimiento de las infraestructuras y cuando, además, los datos que el Ministerio de Fomento dispone sobre el estado de los puentes, extraídos de su Sistema de Gestión de Puentes (SGP), no es suficientemente transparente, a diferencia de otros países, como Alemania. La que he denominado como “crisis de las infraestructuras“, en efecto, no es un problema solo de España, sino que afecta de forma generalizada a muchos países de nuestro entorno.

Pues bien, la noticia del 9 de diciembre nos decía que 66 puentes presentan graves problemas de seguridad. La justificación es que, tras la valoración de su estado por expertos, se calculan unos índices (extensión, gravedad y evolución) a los que se aplican algoritmos para obtener una clasificación final que va de 0 a 100. Esos 66 puentes obtenían más de 81 puntos, lo cual significa que presentan “patologías potencialmente graves que pueden afectar a su comportamiento resistente” y son objeto de un seguimiento especial. Teniendo en cuenta que el parque de las obras de paso en España son de casi 23000 puentes, ello supone que un 0,28% de ellos superan el umbral de los 81 puntos. Parecerían pocos puentes, pero bastaría el colapso de uno solo de ellos para que se pudiese reproducir una tragedia como la ocurrida en Génova este verano. Por tanto, no debemos restar importancia a estas cifras. De hecho, nuestro grupo de investigación, a través del proyecto DIMALIFE, está muy preocupado por investigar estos tema.

¿Significa esto que en España nuestros puentes no son seguros? En absoluto. No hay que alarmarse, pero hay que tomar medidas. Lo que le ocurre a cualquier infraestructura (puente, presa, puerto, túnel, hospital, etc.) es que todas ellas, sin excepción, presentan una disminución de sus prestaciones y funcionalidades que, pasado cierto umbral, hace que dejen de ser útiles, finalizando su vida útil. La vida de las infraestructuras se puede prolongar con un adecuado mantenimiento y acometiendo reparaciones, pero llega un momento que el coste de alargar la vida útil puede ser insostenible. Por tanto, los puentes “envejecen”.

Todo el mundo está de acuerdo en que los aviones deben someterse a exámenes periódicos y revisiones profundas, realizadas por expertos, que garanticen la seguridad en vuelo de estos aparatos. Asimismo, también resulta evidente que todas las personas deberíamos someternos a chequeos médicos periódicos para detectar a tiempo enfermedades que, sin una detección precoz, son inevitablemente mortales. Pues lo mismo le pasa a las infraestructuras, que deben acudir de vez en cuando al “médico de cabecera”, que si detecta algún problema grave, manda al paciente al “médico especialista” y éste, en caso necesario, opera al paciente o le somete al tratamiento correspondiente. Pues lo mismo le ocurre a los puentes, donde existen inspecciones básicas o rutinarias, inspecciones principales e inspecciones especiales. De ello ya hablamos en una entrada anterior. Siguiendo con la analogía médica, la “analítica” realizada a los puentes ha mostrado que su “colesterol” está por encima de 250. Ello no significa la muerte inmediata del paciente, pero sí que es necesario un cambio de hábitos (ejercicio físico, dieta alimentaria, etc.) o medicación para reducir dicho índice. En caso de no hacer nada, nuestro puente puede tener un “problema coronario” que puede acabar en un “ataque al corazón”. Por tanto, la buena noticia es que hemos detectado los problemas y ahora se trata de poner a nuestros puentes bajo un “tratamiento médico” estricto.

Para aclarar alguno de los conceptos sobre los que se ha basado la noticia de El País, voy a recoger aquí los aspectos básicos. Están basados en una monografía del Ministerio de Fomento denominada “Guía para la realización de inspecciones principales de obras de paso en la Red de Carreteras del Estado“. Tal y como indica la guía, para cada uno de los daños que existan en un determinado elemento de un puente, se recogen en campo los índices de extensión, gravedad y evolución (apartado 4.5.3). Con estos datos se obtiene, en primer lugar, un Índice de Deterioro para cada daño, que puede tomar un valor entre 0 y 100. Con todos los índices de los deterioros existentes en un puente, se puede valorar el estado de conservación con el Índice de Estado o Condición de la Estructura, que también tiene un valor entre 0 y 100. Existen también índices intermedios para valorar los elementos, componentes y zonas de la estructura, de esta forma se puede localizar rápidamente el origen de la causa de determinado índice en la condición de la estructura.

Los índices de deterioro se dividen en cinco intervalos, con los significados siguientes:

  • Índice entre 0 y 20: Deterioro sin consecuencias importantes “a priori”
  • Índice entre 21 y 40: Deterioro que puede tener una evolución patológica o reducir las condiciones de servicio o de durabilidad del elemento si no se repara en el tiempo adecuado.
  • Índice entre 41 y 60: Deterioro que indica una patología que supone una reducción de las condiciones de servicio o de la durabilidad del elemento.
  • Índice entre 61 y 80: Deterioro que se puede traducir en una modificación del comportamiento resistente o funcional.
  • Índice entre 81 y 100: Deterioro que compromete la seguridad del elemento.

De la misma forma, el Índice de Estado de la Estructura se divide en cinco intervalos:

  • Índice entre 0 y 20: Estructura sin patologías evidentes o con deterioros sin consecuencias relevantes para la durabilidad, condiciones de servicio o seguridad de la estructura.
  • Índice entre 21 y 40: Estructura con deterioros que pueden tener una evolución patológica que afecte a la durabilidad o a las condiciones de servicio de la estructura. Es conveniente seguir su evolución temporal para su determinación objetiva.
  • Índice entre 41 y 60: Estructura con deterioros que evidencian una patología que puede suponer una reducción de las condiciones de servicio o de la durabilidad de la estructura. Será necesario seguir la evolución de la patología en las posteriores inspecciones. Puede requerir una actuación a medio plazo para mejorar la durabilidad de la estructura.
  • Índice entre 61 y 80: Estructura con deterioros o patologías que se pueden traducir en una modificación del comportamiento resistente o una reducción importante de los niveles de servicio. Requiere una actuación a corto-medio plazo. En función de la naturaleza del daño puede requerir una inspección especial.
  • Índice entre 81 y 100: Estructura con deterioros o patologías que comprometen la seguridad del elemento/estructura. Requiere una inspección especial y una actuación urgente. En algunos casos puede ser necesario una limitación del uso.

Como vemos, los índices establecen pautas para que el gestor decida intervenir en una estructura, realizar estudios especiales, programar actuaciones a medio plazo o asignar presupuestos. Con todo, los inspectores tiene capacidad de ir más allá de esta cuantificación cuando detectan problemas o imponderables difíciles de cuantificar, como por ejemplo, el grado de “actualización” de la estructura a las normas vigentes.

La conclusión es clara. Al igual que los aviones requieren inspecciones periódicas minuciosas para garantizar la seguridad en el vuelo y las personas debemos realizar chequeos médicos periódicos, las infraestructuras (puentes, presas, túneles, puertos, hospitales, estadios de fútbol, etc.) deben someterse a inspecciones programadas y, sobre todo, se debe disponer de un presupuesto suficiente que garantice el mantenimiento y la rehabilitación si fuera necesario. Todo lo que no sea eso, será poner en riesgo no solo la seguridad de las personas, sino el estado de bienestar.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Mantenimiento de puentes

Imagen del “Silver Bridge” tras el colapso (1967). Public Domain, https://commons.wikimedia.org/w/index.php?curid=2500886

En general, las necesidades de los trabajos de mantenimiento y conservación han ido creciendo en todos los países desarrollados con redes de infraestructuras importantes. En principio, estas labores estaban enfocadas desde el punto de vista de resolver problemas de la estructura ya deteriorada, mediante reparaciones y acciones puntuales, para pasar, actualmente, en los sistemas de gestión más desarrollados, a tratarse de labores preventivas que eviten llegar a la situación de degradación última de la estructura, en la cual se disparan los costes de adecuación.

Mapa conceptual sobre sistemas de gestión de puentes. Elaborado por V. Yepes

Os dejo a continuación la presentación de una clase sobre mantenimiento de puentes que impartí recientemente en la asignatura “Gestión del mantenimiento de infraestructuras”, del Grado en Ingeniería Civil de la Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos de Valencia.

Descargar (PDF, 1.59MB)