Prefabricados de hormigón: Procesos, tecnologías y ventajas de los métodos modernos de construcción

Figura 1. Planta de prefabricados de hormigón. https://www.prilhofer.com/aumento-de-la-eficiencia-en-la-produccion-de-prefabricados-de-hormigon

La prefabricación de hormigón ha revolucionado el sector de la construcción al ofrecer soluciones eficientes, duraderas y con un alto nivel de personalización. Al permitir la fabricación en serie de elementos estructurales y ornamentales fuera del lugar de la obra, este método optimiza tanto los tiempos de ejecución como los costes. A lo largo de este artículo, resumiremos las etapas, instalaciones y tecnologías utilizadas en la fabricación de elementos prefabricados de hormigón, así como en los aspectos de automatización y control de calidad que aseguran la precisión y la eficiencia en cada pieza.

1. ¿Qué es la prefabricación de hormigón y cuáles son sus ventajas?

La prefabricación de hormigón consiste en producir elementos en plantas especializadas, fuera de su ubicación final, lo que permite un control exhaustivo de las condiciones de fabricación y garantiza una calidad uniforme. Este enfoque implica la creación de piezas que, tras su transporte y montaje en la obra, conforman total o parcialmente la estructura de edificios, puentes, pavimentos, etc.

Las principales ventajas de la prefabricación son las siguientes:

  • Reducción de tiempos de obra: Los prefabricados se fabrican en paralelo a otros trabajos en obra, reduciendo la duración total del proyecto.
  • Alta calidad y durabilidad: El control exhaustivo en planta permite obtener acabados uniformes y una resistencia elevada, incluso en condiciones ambientales desfavorables.
  • Sostenibilidad: Al reducir los residuos de obra y aprovechar eficientemente los materiales, la prefabricación se alinea con prácticas sostenibles.
  • Versatilidad de diseño: La fabricación en planta permite producir elementos con diferentes formas, texturas y colores, lo que aumenta las posibilidades arquitectónicas.
Figura 2. Principales ventajas de la prefabricación

2. Las plantas de prefabricados de hormigón: Configuración y logística

La planta es el corazón del proceso de prefabricación. Su ubicación y configuración son decisiones clave que influyen en la eficiencia y la viabilidad económica del proyecto. Una planta típica incluye zonas de almacenamiento de materias primas, áreas de dosificación y mezclado, espacios de moldeo y compactación, y cámaras de curado, además de áreas de logística y almacenamiento final.

La ubicación de la planta depende de varios factores estratégicos:

  • Proximidad al mercado: La planta debe estar cerca de la zona de influencia para minimizar los costos de transporte.
  • Distancia a los proveedores: El acceso a materiales básicos como cemento, áridos y acero afecta la competitividad.
  • Infraestructuras y vías de transporte: La cercanía a carreteras o ferrocarriles facilita el envío de elementos a obra.
  • Condiciones climáticas: En zonas con clima extremo, la prefabricación reduce los riesgos y retrasos en obra, siendo especialmente útil en países con estaciones frías.
Figura
Figura 3. Fabricación de viguetas de hormigón pretensado. http://preforsa.es/

3. Materias primas y su almacenamiento

La calidad de los prefabricados de hormigón depende de la cuidadosa gestión de sus materias primas, que incluyen cemento, áridos, aditivos y agua.

  • Cemento: Se almacena en silos cerrados para protegerlo de la humedad y el polvo ambiental. Generalmente, se emplean varios tipos de cemento, cada uno almacenado de forma separada para evitar mezclas accidentales.
  • Áridos: Se clasifican y almacenan por granulometrías (arena, gravilla, grava) en depósitos separados y protegidos de la contaminación y el agua. Este cuidado es esencial, ya que la humedad afecta directamente a la durabilidad del hormigón.
  • Aditivos: Los aditivos pueden ser pulverulentos o líquidos y se almacenan en condiciones específicas. Los pulverulentos se guardan en recipientes impermeables, mientras que los líquidos se conservan en garrafas protegidas de heladas para mantener sus propiedades.
  • Agua: En muchas plantas, el agua proviene de redes de suministro locales, aunque también se usan sistemas de reutilización de agua de lluvia o de limpieza de moldes para reducir el consumo.

4. Procesos de fabricación: Dosificación, mezclado y vertido

La dosificación y mezcla de los componentes son fases críticas para obtener un hormigón homogéneo. Las plantas modernas utilizan amasadoras automáticas de alta precisión que ajustan las proporciones de los materiales según las especificaciones del proyecto. El agua y los aditivos se miden con cuidado, y se emplean medidores de humedad en los áridos para asegurar la consistencia y evitar errores.

  • Control de humedad: Los medidores de humedad ayudan a ajustar la cantidad de agua en la mezcla, fundamental para alcanzar la resistencia y durabilidad requeridas.
  • Amasadoras: Existen amasadoras de doble eje horizontal y planetarias, que garantizan un mezclado homogéneo en un tiempo mínimo, optimizando el uso de materiales y evitando la segregación de los componentes.

Una vez obtenida la mezcla, el hormigón se vierte en moldes que definirán las dimensiones y los acabados del prefabricado. Los moldes, que generalmente son de acero, deben soportar la presión del hormigón y garantizar un desmoldeado fácil.

  • Compactación: El hormigón se compacta mediante vibración para eliminar las bolsas de aire y lograr una densidad uniforme. En algunos casos, se utiliza hormigón autocompactante que elimina la necesidad de vibración.
  • Tipos de moldes: Los moldes metálicos son ideales para prefabricados estructurales, mientras que los moldes de plástico o materiales desechables se emplean para elementos ornamentales.

El hormigón se vierte en los moldes con dispositivos como cubilotes, cubas aéreas o incluso mangueras en sistemas automatizados. Estas herramientas distribuyen el hormigón por la planta, manteniendo un flujo constante y reduciendo los tiempos de ciclo. La correcta dosificación y el vertido garantizan que cada elemento cumpla con los estándares de calidad y consistencia requeridos.

Figura 4. Mesa basculante. https://www.seea.com.br/imagens/downloads/moldtech-catalogo-espanhol.pdf

 

5. El curado: Clave para la durabilidad del hormigón

El curado es esencial para lograr la resistencia y durabilidad del hormigón. En las plantas de prefabricación, el curado se realiza en ambientes controlados que aceleran la hidratación del cemento.

  • Cámaras de curado: Elementos como baldosas y bloques suelen ser curados en cámaras con condiciones de temperatura y humedad óptimas, lo que permite un curado uniforme y minimiza el riesgo de fisuración.
  • Moldes calefactados: En algunos casos, los moldes están equipados con sistemas de calefacción para mantener una temperatura constante durante el curado, optimizando la reacción del hormigón y reduciendo los tiempos de fabricación.

6. Control de calidad y automatización en la producción

Las plantas modernas han implementado sistemas de automatización que permiten un control exhaustivo de cada etapa de la producción. La automatización no solo aumenta la precisión y reduce los errores, sino que también facilita la trazabilidad de cada pieza prefabricada.

El sistema de carrusel es un método industrializado que permite fabricar elementos superficiales, como losas y paneles de fachada, en línea. Las bandejas de los carruseles pasan por estaciones de trabajo automatizadas, desde la limpieza y la aplicación de desencofrante hasta el vertido y el acabado del hormigón.

Un software de gestión supervisa cada paso del carrusel, optimizando los tiempos de producción y permitiendo el ajuste de cada proceso en función de las especificaciones del cliente. De esta forma, se mantiene una trazabilidad completa y se gestiona eficientemente el inventario de piezas terminadas.

El control de calidad se realiza mediante ensayos de resistencia y consistencia. En muchos casos, las plantas cuentan con laboratorios internos para realizar pruebas de resistencia a compresión y verificar que el hormigón cumple con las normativas. Los parámetros como la densidad, el contenido de aire y la resistencia a la compresión se revisan para asegurar que las piezas cumplan con los estándares de calidad requeridos.

7. Logística y almacenamiento: La última fase del proceso

Una vez fabricados, los elementos pueden transportarse directamente a la obra o almacenarse temporalmente en la planta. La logística es clave para asegurar una entrega puntual y en condiciones óptimas.

  • Almacenamiento en planta: Las plantas disponen de áreas de acopio donde los elementos se almacenan en condiciones seguras, evitando daños y manteniendo la organización.
  • Transporte a obra: Los prefabricados más grandes o pesados requieren el uso de puentes-grúa para su carga en camiones, mientras que las piezas más pequeñas pueden paletizarse y transportarse en volúmenes mayores. El almacenamiento y el transporte son esenciales para reducir los costes y cumplir los plazos de entrega.
Figura 5. Transporte de elementos prefabricados a acopio. https://imi.com.pa/planta-de-prefabricados-de-concreto/#!

Conclusión

La fabricación de prefabricados de hormigón es un proceso industrializado que combina control de calidad, automatización y logística para ofrecer soluciones constructivas de alta eficiencia. Este método permite construir con precisión y rapidez, optimizando los recursos y permitiendo una personalización considerable en los proyectos. Con el avance de las tecnologías de automatización y la mejora en el control de calidad, la prefabricación de hormigón seguirá siendo una pieza fundamental en la construcción moderna, ya que permite realizar obras de forma más rápida, sostenible y con mejores acabados arquitectónicos.

Os dejo algunos vídeos de estas plantas de prefabricados.

Dejo a continuación un folleto sobre moldes para elementos prefabricados de hormigón.

Descargar (PDF, 21.9MB)

Referencias:

CALAVERA, J.et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

CORMON, P. (1979). Fabricación del hormigón. Editores Técnicos Asociados, Barcelona, 232 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València.

MORILLA, I. (1992). Plantas de fabricación de hormigón y grava-cemento. Monografías de maquinaria. Asociación Española de la Carretera, Madrid.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 408 pp. Ref. 477. ISBN: 978-84-1396-238-2

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Mezcladora forzada de tren planetario

Es una mezcladora de hormigón que también recibe el nombre de “mezcladora de tren bailarín”. Es una hormigonera típica de las industrias de prefabricados y para mezclas muy secas. Consta de una cuba fija, de mayor diámetro que altura, con su eje vertical. En el interior gira suspendido un reductor con un eje de salida de tipo planetario, al que está acoplado un conjunto de paletas. Su capacidad oscila entre 1 y 4 metros cúbicos. Una duración típica de un ciclo de amasado, llenado y vaciado es de 90 segundos, pudiendo ser reducido cuando se trata de alimentar camiones-hormigonera y ligeramente aumentado para mezclas especiales.

La velocidad de las paletas debe ser tal que la fuerza centrífuga resultante no produzca la separación de los elementos constituyentes del hormigón. Las paletas tienen un doble movimiento de rotación, de forma que la partícula ligada a las paletas describe un movimiento epicicloidal:

  • Alrededor de su eje.
  • Alrededor del eje de la máquina.

 

El motor es vertical, montado sobre un cárter cilíndrico colocado por encima de la cuba. La carga se realiza por la parte superior y la descarga por una compuerta abatible en el fondo, bien en uno de sus laterales, o bien en el centro del mismo.

Os paso algunos vídeos donde podéis ver el funcionamiento.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València. 189 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

BIM, declaraciones ambientales de producto e inercia térmica: tres vías para la consolidación de las soluciones en prefabricado de hormigón

BIM: Digitalización productos/sistemas constructivos

Resumen: En un contexto social y reglamentario cada vez más exigente, coexisten tres tendencias que se presentan como una inmejorable oportunidad para la consolidación definitiva de las soluciones prefabricadas de hormigón como la variante industrializada de la construcción de edificios e infraestructuras, con todas las ventajas que ello proporciona en términos de rapidez de ejecución, control más exhaustivo en proyecto y obra, calidad, precisión dimensional, eficiencia y rentabilidad económica. Tanto BIM, como las declaraciones ambientales de producto y la inercia térmica, son tres aspectos que guardan una correlación.

Palabras clave: prefabricado, hormigón, BIM, DAP’s, inercia térmica, sostenibilidad

Referencia:

LÓPEZ-VIDAL, A.; YEPES, V. (2017). BIM, declaraciones ambientales de producto e inercia térmica: tres vías para la consolidación de las soluciones en prefabricado de hormigón. VII Congreso de ACHE, A Coruña, junio de 2017, 9 pp.

Descargar (PDF, 591KB)

BIM, declaraciones ambientales de producto e inercia térmica: tres vías para la consolidación de las soluciones en prefabricado de hormigón

En un contexto social y reglamentario cada vez más exigente, coexisten tres tendencias que se presentan como una inmejorable oportunidad para la consolidación definitiva de las soluciones prefabricadas de hormigón como la variante industrializada de la construcción de edificios e infraestructuras, con todas las ventajas que ello proporciona en términos de rapidez de ejecución, control más exhaustivo en proyecto y obra, calidad, precisión dimensional, eficiencia y rentabilidad económica. Tanto BIM, como las declaraciones ambientales de producto y la inercia térmica, son tres aspectos que guardan una correlación.

Referencia:

López-Vidal, A.; Yepes, V. (2017). BIM, declaraciones ambientales de producto e inercia térmica: tres vías para la consolidación de las soluciones en prefabricado de hormigón. VII Congreso de ACHE, A Coruña, junio de 2017, 9 pp.

Descargar (PDF, 591KB)

Bancadas de tesado en las plantas de prefabricados

Bancada de tesado 1
Vista del extremo de bancada de tesado. Cortesía: ANDECE.

Los elementos de hormigón pretensado son productos habituales de las plantas de prefabricados. Para poder realizar el tesado de las armaduras activas, se utilizan bancadas de tesado. Estos elementos permiten anclar los cables en los extremos de la pista, donde se encuentra una solera de hormigón que servirá de base al molde. Estas bancadas suelen ser largas, de 100 a 150 m, pues a mayor distancia entre los elementos de anclaje, mayor economía, siempre y cuando no se contrarreste el momento flector a que se le somete.

Las bancadas son estructuras metálicas realizadas con chapas de resistencia suficiente para soportar la tracción de las armaduras. Además, presentan unas cimentaciones muy grandes capaces de estabilizar las fuerzas de pretensado que se apliquen. En otras ocasiones, el propio molde presenta los elementos de anclaje en sus extremos, sirviendo la bancada como fondo de molde. En este caso el molde es autorresistente y se puede mover a otro lugar de la planta.

Extremo de la bancada de tesado. Cortesía: ANDECE.
Extremo de la bancada de tesado. Cortesía: ANDECE.

Se pueden fabricar distintos tipos de piezas en una misma bancada, siempre que no se sobrepase el límite de la fuerza de pretensado capaz de soportar la bancada. La cantidad de cables colocados definirá la magnitud de la fuerza de pretensado aplicada.

Para comprobar que la relación fuerza de pretensado/altura de actuación de los cables se mantiene dentro de los márgenes de seguridad exigibles, las bancadas disponen de una placa visible con un gráfico donde se establecerá los valores máximos. A mayor altura de la resultante de la acción de los cables, menor será la fuerza total admisible.

Extendedora del cable de pretensado en la bancada. Fuente: www.resimart.com
Extendedora del cable de pretensado en la bancada. Fuente: www.resimart.com

Los moldes se comercializan y las bancadas se dimensionan para una fuerza máxima nominal determinada. Esto se corresponde con la fuerza y excentricidad de cables correspondientes al canto máximo que se pueda fabricar. Si la excentricidad es menor, se podría aplicar una fuerza de pretensado superior a la nominal.

A continuación os dejo algunos vídeos donde podemos ver cómo son algunas instalaciones de prefabricados. En este primer vídeo podemos ver cómo se fabrican viguetas pretensadas Tensyland (Prensoland).

Aquí vemos el mismo proceso de fabricación de viguetas, en este caso de la empresa VELOSA.

En este otro vídeo también vemos el proceso de fabricación de viguetas de hormigón pretensado.

Construcción prefabricada de pilas de puente

ph_pilas5
Pilas prefabricadas. Fuente: Grupo Pacadar, www.pacadar.es

La prefabricación en la construcción de pilas de puente constituye una alternativa a la construcción mediante sistemas tradicionales de encofrado, los encofrados trepantes o los deslizantes. Las ventajas de la prefabricación se relacionan con la industrialización del proceso constructivo, mejoras de acabados, reducción de plazos, etc. Este tipo de construcción prefabricada ha evolucionado fuertemente, pudiéndose adecuar hoy día a la construcción de un buen número de tipologías de pilas, al contar con sistemas auxiliares de transporte y montaje cada vez de mayor potencia, desde las correspondientes a pequeños pasos superiores a las de grandes puentes con pilas de incluso más de 40 m de altura. Los medios auxiliares de transporte y montaje permiten manejar pesos de 100 a 200 t, aunque es posible superar ampliamente estos valores.

Las tipologías habituales de pilas prefabricadas son las siguientes:

  • Fustes independientes con o sin capitel de apoyo
  • Pilas pórtico formadas por fustes verticales y cabecero superior de unión
  • Pilas construidas por dovelas horizontales
ph_dinteles1
Montaje de dinteles prefabricados. Fuente: Grupo Pacadar, www.pacadar.es

Quizá uno de los inconvenientes de la prefabricación, en este momento superados, es la unión entre elementos o entre elementos y partes “in situ”, especialmente en aquellas estructuras hiperestáticas. Las secciones de pilas pequeñas, de 60 x 60 cm², suelen empotrarse en cálices dejados en las zapatas de cimentación, rellenándose el hueco libre con hormigón. Sin embargo, para mayores secciones, suele dejarse en la zapata vainas corrugadas de 100 mm de diámetro, con longitud suficiente para el anclaje de las armaduras del fuste. Posteriormente, se rellenan estas vainas con un mortero sin retracción.

El montaje de estos elementos prefabricados se empieza con unos apoyos blandos de madera que sirven para calzar las piezas y evitar las concentraciones de tensiones en la superficie de la junta. Estas juntas posteriormente se rellenan y ajustan con un mortero líquido sin retracción que garantice la transmisión de tensiones.

En pilas altas, las pilas son de sección hueca para optimizar el uso del material, reducir el peso y facilitar el transporte y montaje. Suelen ser habituales las pilas octogonales o a secciones I enlazadas dos a dos para formar una sección en cajón.

También son prefabricados los dinteles colocados sobre las pilas individuales o formando pórtico con varias pilas. Pueden ser también macizos o aligerados con sección en pi.

A continuación podemos ver el montaje de un dintel prefabricado.

 

También podemos ver el montaje de un viaducto en Sot Gran, en Eix Transversal C-25. En el vídeo se ve una secuencia de fotos del montaje por parte de Alvisa de la estructura prefabricada de hormigón del Viaducto Sot Gran para el tramo Espinelves – Santa Coloma de Farners, correspondiente al desdoblamiento del Eje Transversal de la carretera C-25 (Girona – Lleida). Se trata de tres vanos de 28, 39 y 32 m de longitud, con monoviga hiperestática y pilas palmera prefabricadas de 21 m de alto y peso 170 t.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Moldes para hormigón prefabricado

Moldes para hormigón prefabricado. Cortesía: ANDECE
Figura 1. Moldes para hormigón prefabricado. Cortesía: ANDECE

El molde es el elemento que contiene al hormigón fresco, respondiendo su diseño a las exigencias de las piezas que se van a prefabricar. Se exige que los moldes presenten la máxima calidad posible para garantizar la precisión dimensional, la estabilidad, la versatilidad para adaptarse a otras formas, que sean fáciles de usar y durables. Por tanto, los moldes deben mantener su integridad durante el vertido del hormigón y en la aplicación del pretensado, si lo hubiese.

Para elementos lineales como vigas y pilares se emplean moldes estáticos, ligeramente elevados del suelo, con gran flexibilidad en cuanto a cantos, ménsulas, longitud, etc. En el caso de paneles de hormigón arquitectónico, lo usual son moldes horizontales, con un sistema de vibración adaptado al molde. En el caso de paneles no vistos, lo más económico son moldes verticales de caras paralelas, pues ocupan menos espacio en la fábrica, apuran el curado y permiten mayor precisión. Para placas alveolares, se fabrican grandes longitudes de placa, bien por extrusión o por moldeadoras continuas.

Los moldes deben reutilizarse el máximo número de veces posible, sin que ello suponga una merma en la calidad, por la repercusión económica que presenta en el producto final. La reutilización se puede realizar con piezas diferentes, aunque es deseable que se mantenga la tipología, cambiando en este caso solo la longitud o la altura con pequeñas modificaciones. Suelen disponerse en horizontal y de forma continua, aunque también es posible disponerlos en algunos casos en vertical (en batería).

Los moldes suelen ser de acero, pues permite alargar el número de usos y adaptarse a la geometría necesaria. Estos moldes son fáciles de transportar y reubicar dentro de la planta. De hecho, los moldes suelen llenar las plantas de fabricación y a veces es un verdadero problema ubicarlos para facilitar las maniobras y el resto de actividades sin que molesten. El problema que pueden presentar es la corrosión del acero, que puede atenuarse con aditivos inhibidores de la corrosión y con un buen agente desencofrante.

Con todo, también existen moldes de otros materiales como el polietileno expandido, que son desechables. Este material es ligero, barato y permite ahorros de tiempo, aunque su uso está muy centrado en piezas ornamentales. También es cierto que este tipo de materiales, junto con otros como el poliéster o la fibra de vidrio, permite reducir la disipación del calor interno durante el fraguado, lo que permite acelerar el proceso de curado.

Por tanto, una forma de acelerar el curado es usar moldes de acero calefactados. En ellos se permite un aporte de energía que garantice una temperatura fija o una curva de temperatura de curado adecuada a la reacción química interna del hormigón. Los moldes de acero también pueden ser “autorresistentes” en el caso de piezas pretensadas, donde el propio molde puede contener los elementos de anclaje de las armaduras activas, sirviendo de bancada de pretensado. Otra forma de disminuir el tiempo de desencofrado es utilizar aceleradores como aditivos en el hormigón que adelanten el fraguado, el endurecimiento o ambos.

También los moldes pueden disponer de un sistema de vibradores laterales o internos, de forma que se permita eliminar las burbujas de aire y mejorara la distribución de los áridos. Sin embargo, estos vibradores no se utilizan en el caso de emplear hormigón autocompactante. Además, como puede verse en la figura inferior, los moldes suelen presentar unas plataformas y accesos laterales para facilitar el acceso seguro de los operarios.

Molde prefabricado 2
Apertura de caras laterales antes de retirar la viga prefabricada. Escaleras de acceso a la plataforma lateral para el control del proceso. Cortesía: ANDECE.

Con el uso repetido de los moldes, estos se deforman, pierden sección y cogen holguras en sus fijaciones. Todo ello perjudica la calidad de las piezas, por lo que resulta de gran importancia disponer de un buen plan de control y mantenimiento de estos moldes. De todas las operaciones, hay que cuidar la limpieza tras el uso. En el caso de elementos de gran longitud, hay que cuidar la alineación del conjunto del molde y su inmovilización para mantener la pieza dentro de las tolerancias exigidas.

En el siguiente vídeo, de Vifesa Fabricados Industriales, podemos ver moldes modulares para el prefabricado de marcos de hormigón de distintos tamaños.

Referencias:

  • AFECI (2021). Guía sobre encofrados y cimbras. 3ª edición, Asociación de fabricantes de encofrados y cimbras, 76 pp.
  • PEURIFOY, R.L. (1967). Encofrados para estructuras de hormigón. McGraw-Hill y Ediciones Castillo, Madrid, 344 pp.
  • RICOUARD, M.J. (1980). Encofrados. Cálculo y aplicaciones en edificación y obras civiles. Editores Técnicos Asociados, S.A. Barcelona, 312 pp.
  • YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3
  • YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 408 pp. Ref. 477. ISBN: 978-84-1396-238-2

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Optimización en costes y emisiones de puentes de hormigón con fibras

http://www.tierra-armada.com/
http://www.tierra-armada.com/

Recientemente hemos publicado un artículo donde hemos empleado un algoritmo evolutivo híbrido para optimizar tanto el coste como las emisiones de CO2 de puentes en viga artesa, con la particularidad de usar hormigones con fibras de acero. Se trata de un problema combinatorio complejo, con 41 variables de diseño, que se aplicó a un puente de 30 m de luz y una anchura de calzada de 12 m. Os dejo a continuación el artículo completo.

Abstract: 

In this paper, the influence of steel fiber-reinforcement when designing precast-prestressed concrete (PPC) road bridges with a double U-shape cross-section is studied through heuristic optimization. A hybrid evolutionary algorithm (EA) combining a genetic algorithm (GA) with variable-depth neighborhood search (VDNS) is formulated to minimize the economic cost and CO2 emissions, while imposing constraints on all the relevant limit states. The case study proposed is a 30-m span-length with a deck width of 12 m. The problem involved 41 discrete design variables. The algorithm requires the initial calibration. Moreover, the heuristic is run nine times so as to obtain statistical information about the minimum, average and deviation of the results. The evolution of the objective function during the optimization procedure is highlighted. Findings show that heuristic optimization is a forthcoming option for the design of real-life prestressed structures. This paper provides useful knowledge that could offer a better understanding of the steel fiber-reinforcement in U-beam road bridges.

Keywords: hybrid evolutionary algorithm, precast-prestressed concrete, steel fiber-reinforcement, U-shape cross-section.

Reference:

YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2017). Design optimization of precast-prestressed concrete road bridges with steel fiber-reinforcement by a hybrid evolutionary algorithm. International Journal of Computational Methods and Experimental Measurements, 5(2):179-189.

Descargar (PDF, 199KB)

Prefabricación de puentes: retos de futuro, sostenibilidad y BIM

pretil-con-imposta-curva-prevalesaDesde que en 1936 Eugène Freyssinet construyera el primer puente de hormigón pretensado del mundo, en el que las vigas y tableros eran prefabricados, la tecnología ha experimentado un avance imparable. Sin embargo, existen importantes retos de futuro que pasan, sin duda, por la sostenibilidad y por las tecnologías BIM. En relación con lo primero, la generalización de las declaraciones ambientales de producto servirá, sin duda, para valorar con mayor criterio la conveniencia de unas soluciones constructivas frente a otras, sin olvidar los aspectos sociales y económicos. Por otra parte, las tecnologías BIM impondrán un mayor rigor y definición en el proyecto, que sin duda, favorecerán los procesos de industrialización y prefabricación. En este sentido iniciativas como la creación de bibliotecas de elementos prefabricados modelados en BIM favorecerá claramente su uso. Os dejo a continuación un artículo de Alejandro López Vidal, gerente técnico de la ANDECE, que espero os sea de interés.

Descargar (PDF, 1.88MB)

 

Hacia el “cero residuos” en los prefabricados de hormigón

http://www.ambientum.com/
http://www.ambientum.com/

La economía circular es una estrategia que tiene por objeto reducir tanto la entrada de los materiales como la producción de desechos vírgenes, cerrando los «bucles» o flujos económicos y ecológicos de los recursos.  Actualmente es la principal estrategia de Europa para generar crecimiento y empleo, con el respaldo del Parlamento Europeo y el Consejo Europeo. De hecho, la Comisión Europea, como órgano colegiado, ha adoptado la eficiencia de los recursos como un pilar central de su estrategia económica estructural Europa 2020».

Os dejo un pequeño vídeo sobre la fabricación del cemento y economía circular de la Fundación Cema.

A continuación os dejo un artículo de Alejandro  López Vidal sobre este concepto aplicado a los prefabricados de hormigón. El autor es actualmente el director técnico de la Asociación Nacional de la Industria del Prefabricado de Hormigón (ANDECE). En artículo se publicó recientemente en la Revista Técnica CEMENTO HORMIGÓN, nº 976 (2016) sobre la economía circular en los prefabricados de hormigón, en línea con el uso más eficiente de los recursos auspiciada por la Comisión Europea.

Descargar (PDF, 527KB)