En las estructuras de edificación resulta interesante emplear forjados de losas planas por las ventajas funcionales, constructivas y económicas que presentan. Dentro de las soluciones de techo plano, los forjados reticulares con casetones recuperables de aligeramiento o bien perdidos de hormigón o poliestireno. Estos forjados tienen cada vez mayor presencia en el mercado como consecuencia de su adaptabilidad a geometrías en planta irregulares o complicadas, la facilidad que permiten en su replanteo de las perforaciones requeridas por las cada vez más numerosas instalaciones y su versatilidad para adecuarse a las exigencias de resistencia a fuego.
Un forjado reticular es un tipo de forjado constituido por una cápsula de nervios de hormigón armado, de pequeña anchura y a corta distancia unos de otros. Este sistema permite suprimir las vigas, macizando únicamente las zonas cercanas a los apoyos, dichos macizados son denominados capiteles y son los encargados de recibir las cargas del forjado y distribuirlas por los pilares.
Los casetones resisten el peso de los operarios. Sin embargo, representan una dificultad en cuanto a la circulación durante el proceso de puesta en obra de las armaduras y durante los trabajos de hormigonado.
Para garantizar que se ha realizado un buen montaje de este tipo de encofrado, hay que revisar una serie de puntos clave antes del hormigonado:
Verticalidad de los puntales. Ello garantizará que los puntales trabajen a compresión, tal y como se diseñaron.
La palanca del puntal debe estar hacia abajo, de esta forma se garantiza la máxima fricción entre las planchuelas y la caña del puntal, impidiendo que la caña descienda.
El encofrado debe arriostrarse a todos los pilares para evitar desplazamientos horizontales.
Refuerzo del apuntalamiento en las áreas macizadas.
Os paso el siguiente vídeo (www.cefaestructures.com) que explica la construcción forjado reticular mixto con pilares metálicos.
También os paso un vídeo de la Universidad de Alicante donde se puede ver el proceso constructivo detalle pilar extremo sobre muro de contención y enlace en forjado reticular para la asignatura de Construcción de Estructuras I.
También os paso el vídeo de Enrique Alario sobre el montaje de este tipo de forjado reticular de casetones recuperables.
Durante la vida de servicio los edificios se deterioran y llegan a la obsolescencia, debido entre otras causas a los efectos del clima, la utilización y el desgaste (Esteve, 2015). El deterioro empieza en el mismo momento en el que termina su construcción. El mantenimiento y las reparaciones garantizan la prolongación de la vida útil, logrando evitar el deterioro y, finalmente, su destrucción. Por tanto, la vida útil está estrechamente ligada al mantenimiento de una edificación.
El British Standars Institute define el mantenimiento de un edificio como “el trabajo acometido para mantener, restaurar o mejorar cada parte del edificio, sus servicios y sus alrededores, con las normas actualmente aceptadas, y para sostener la utilidad y el valor del edificio”. En definitiva, el mantenimiento es el conjunto de operaciones y cuidados necesarios para que los edificios e instalaciones puedan seguir funcionando adecuadamente.
Los edificios pueden fallar por numerosas razones: fallos de diseño, fallos de construcción, fallos de mantenimiento, fallos de materiales o fallos de utilización. Aunque los fallos de mantenimiento, se pueden descomponer en dos partes:
Mantenimiento que ha sido llevado a cabo incorrectamente.
No se ha realizado ningún mantenimiento durante toda la vida del edificio. Este último es el más común.
En un estudio llevado a cabo en Hong Kong en el año 2000 por Lam (2009), se reveló que aproximadamente el 40% de los fallos de mantenimiento estaban relacionados con el diseño, el 30% estaban relacionados con la construcción o instalación y el 30% restante estaban relacionados con la gestión del mantenimiento.
Investigaciones como la de Chew et al. (2004) y Flores-Colen y J. Brito (2010) establecen que el proceso inevitable de deterioro se puede controlar y que la vida de servicio de los edificios puede extenderse si se mantienen adecuadamente. Las estrategias de mantenimiento son esenciales para controlar las primeras fases de degradación y para prevenir el fallo de los elementos del edificio. Además, la selección de las estrategias apropiadas y con mejor relación efectividad-coste pueden minimizar la disminución en el rendimiento de los edificios durante su ciclo de vida completo.
Para poder realizar adecuadamente la planificación de las tareas de mantenimiento, es necesario disponer de información fiable sobre la vida de servicio de los componentes de edificación. Si la durabilidad de los materiales se conoce, se puede identificar el intervalo de tiempo necesario para el mantenimiento y reparación de los componentes de las edificaciones. Según Straub (2011), faltan referencias fiables sobre la vida de servicio de los productos de construcción.
Por último, los costes de mantenimiento representan la mayor parte del coste total en la vida completa de un edificio. Según Griffin (1993), el coste inicial, correspondiente al diseño y construcción, podría representar únicamente alrededor del 25% del coste total, mientras que los costes de mantenimiento y operación supondrían del 50% al 80% del coste durante su vida de servicio.
Referencias:
Chew, M. Y. L., Tan, S. S., & Kang, K. H. (2004). Building maintainability – review of state of the art. Journal of Architectural Engineering, 10(3), 80-87.
Esteve, V.F. (2015). Estado del arte de los factores que afectan a la durabilidad de las edificaciones. Trabajo Fin de Máster. Máster en planificación y gestión de la ingeniería civil. Universitat Politècnica de València.
Flores-Colen, I., & De Brito, J. (2010). A systematic approach for maintenance budgeting of buildings faades based on predictive and preventive strategies. Construction and Building Materials, 24(9), 1718-1729.
Griffin, J. J. (1993). Life cycle cost analysis: A decision aid. Blackie Academic & Professional, London.
Lam, K. C. (2000). Quality assurance in management of building services maintenance. Building Services Engineering Department, The Hong Kong Polytechnic Univ.
Straub, A. (2011). To a new dutch service life database of building products. COBRA 2011 – Proceedings of RICS Construction and Property Conference, 135-145.
La plataforma de carga y descarga para obras de construcción es un medio auxiliar utilizado frecuentemente para la recepción y entrada de material dentro de un edificio en construcción. Consiste en una estructura metálica montada sobre dos perfiles metálicos estructurales con una longitud tal que permite la fijación de los mismos al forjado a través de puntales del tipo refuerzo. La citada plataforma se monta en el borde del forjado, de manera que queda en voladizo respecto al mismo, con el fin de depositar sobre ella materiales para carga y descarga.
En el vídeo que os paso se analiza su montaje, uso y desmontaje, así como las medidas preventivas correspondientes.
Las grúas autodesplegables son máquinas de elevación capaces de montarse por sí mismas sin necesidad de requerir otra grúa auxiliar. Este tipo de grúas son habituales en los modelos de grúas torre de un solo vano. Son rápidas de montar (en aproximadamente media hora, según el modelo), aunque algo más caras y de alcance algo más limitado. El despliegue se facilita mediante articulaciones y mecanismos precisos. Este tipo de grúas plegables permiten ser transportadas por carretera, sin desmontar ninguna pieza. Incluso si son transportadas en góndola, tampoco precisan de otra grúa auxiliar para ser descargadas.
Como una imagen a veces vale más que mil palabras, os paso un pequeño vídeo de apenas 8 minutos donde se muestra cómo se pueden montar de forma autónoma varios modelos de grúa torre. En este caso, los modelos son Terex Comedil CBR-28, CBR-32, y CBR-40. Espero que os sea de utilidad.
Referencias:
YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.
Green building practices emerged to mitigate the effects of the increasing impact on the environment and to improve the building construction process. In this context, a systematic bibliometric analysis is provided. As a result, 124 articles were found in 40 internationally recognized scientific journals related to green buildings. A quantitative analysis is done to the articles in order to know about the authors and countries with most publications; in addition to their evolution from 1980 to 2011. Then a qualitative analysis which aims to obtain the key aspects and obstacles to consider in Green Building and recommendations are given for each aspect. The goal of this paper is to provide building researchers and practitioners a better understanding of how to effectively make decisions to promote energy conservation and sustainability of green buildings. (link)
¿Resulta razonable el uso masivo de las vigas planas en las estructuras de edificación? Si lo que se pretende es no condicionar el compartimentado interior en una vivienda, esta solución puede ser acertada. Pero en un artículo que publicamos en la revista Hormigón y Acero en el año 2008, quisimos comprobar cómo afectaba al coste este tipo de estructuras. El artículo completo se puede descargar en abierto en la siguiente dirección: http://e-ache.com/modules/hormigonyacero/hormigonyacero.php?revista=1541.
Creo que algunas de las conclusiones a las que llegamos son realmente interesantes, como el incremento más que significativo de coste de este tipo de estructuras respecto a las vigas descolgadas.
PAYÁ, I.; GONZÁLEZ-VIDOSA, F.; YEPES, V. (2008). Influencia del empleo de vigas planas y del tipo de hormigón en el diseño óptimo de pórticos de edificación.Hormigón y Acero, 248(59):43-52.
RESUMEN
Este artículo utiliza la cristalización simulada para el diseño de pórticos de edificación de hormigón armado optimizados económicamente. Se analiza la influencia del uso de hormigones de distinta resistencia característica a compresión, del empleo de vigas planas o descolgadas y de la agrupación de variables para simplificar la ejecución de la estructura. Para ello, se optimizan pórticos de 2 vanos de 5 m de luz y de 8 plantas con una altura por planta de 3 m. El número de variables de diseño de estos problemas varía entre 101 y 153. El trabajo concluye que el empleo de un solo tipo de hormigón HA-25 para toda la estructura incrementa su coste únicamente un 3.02%. Si además se agrupan variables, para facilitar la constructibilidad, existe un incremento adicional del 0.52%, lo cual es poco significativo. Sin embargo, el empleo de vigas planas encarece el coste en un 41.69% respecto al caso de vigas descolgadas, cuando el hormigón empleado es HA-25.
SUMMARY
This paper uses the Simulated Annealing algorithm for the design of economically optimized reinforced concrete frames commonly used in building construction. The influence of the following factors is analyzed: a) the concrete compressive strength, b) the beams depth (same as the one of the floor slabs or higher) and c) the grouping of some of the design variables. The structures studied are two bays and eight floors frames, being the span length of 5 m. and the columns height of 3 m. The number of design variables of these problems varies between 101 and 153. Results show that the use of a single concrete grade (25 MPa) in the structure increases its cost only by 3.02%. If, besides some variables are grouped in order to increase the frame constructability, the optimized structure is only 0.52% more expensive. However, if, additionally, beams of the same depth as the floor slabs are used, the cost of the optimized structure increases by 41.69%.
Las dos torres gemelas, que conforman la llamada “Puerta de Europa”, se inauguraron en 1996. Más conocidas como las torres KIO, es un proyecto de los arquitectos estadounidenses Philip Cortelyou Johnson (Cleveland, Ohio, EE.UU, 1906 – New Canaan, Connecticut, EE.UU., 2005) y John Henry Burgee (Chicago, Illinois, EE.UU, 1933). Las Torres KIO son dos torres de cristal, granito y metal, inversamente simétricas, destacando su inclinación de 15º respecto a la vertical. Constituyen los primeros rascacielos inclinados que se edificaron en el mundo, con una altura de 115 metros y 26 plantas. Están situadas, en la Plaza de Castilla de Madrid, próximas al centro financiero de AZCA.
La solución estructural es singular, la inclinación de ambos edificios se ha conseguido mediante acero estructural, unido a un núcleo rígido, una caja prismática de hormigón armado que alberga las escaleras y ascensores. Para contrarrestar el empuje de los pisos hacia el lado inclinado, un sistema de cables une la parte alta del edificio con un contrapeso subterráneo de hormigón ubicado en el lado opuesto.
Aunque su construcción comenzó en 1989, por los sucesivos paros en las obras debidos a motivos económicos, no se inauguraron hasta 1996. Os dejo un vídeo donde se explica la construcción de estos edificios singulares. Espero que os guste.
Un muro pantalla o pantalla de hormigón in situ es un tipo de pantalla, o estructura de contención flexible, empleado habitualmente en ingeniería civil. Según el Código Técnico de Edificación (CTE-DB-SE C), son elementos de contención de tierras que se emplean para realizar excavaciones verticales en aquellos casos en los que el terreno, los edificios u otras estructuras cimentadas en las inmediaciones de la excavación, no serían estables sin sujeción, o bien, se trata de eliminar posibles filtraciones de agua a través de los taludes de la excavación y eliminar o reducir a límites admisibles las posibles filtraciones a través del fondo de la misma, o de asegurar la estabilidad de éste frente a fenómenos de sifonamiento.
Las pantallas de hormigón armado moldeadas en el suelo nacen en los años 50 como solución para resolver los problemas que plantean las excavaciones profundas próximas a edificios y estructuras subterráneas o por debajo del nivel freático. Esta técnica de la ingeniería civil surge como una aplicación de la larga experiencia en la utilización de lodos tixotrópicos existente en el campo petrolero.
Es la tipología de cimentaciones más difundida en áreas urbanas para edificios con sótano en un predio entre medianeras, en parkings y a modo de barreras de contención de agua subterránea en túneles y carreteras. El proceso constructivo se puede dividir, de forma resumida, en las siguientes fases: construcción del murete guía, excavación de la zanja por bataches, colocación de la armadura, colocación de las juntas o encofrados laterales, hormigonado, construcción de la viga de coronación y excavación del recinto exterior. Detalles de este proceso lo podemos ver en los siguientes vídeos que os paso, que espero que os gusten.
La sujeción de fachadas mediante apeos se realiza en aquellas ocasiones en que se desea la conservación de la fachada de un edificio, bien por su interés arquitectónico, bien por el valor que esta imprime al espacio público que delimita, mientras este se demuele y se reconstruye una nueva estructura que la sustente. El diseño, el cálculo y la ejecución del apeo se realizará para mantener la fachada “colgada” en su posición original, garantizando su estabilidad y evitando su desplome por acciones horizontales durante la demolición del edificio y hasta que la fachada esté correctamente unida a la nueva estructura.
Figura 1. Análisis de los elementos sobre los que actuará el apeo
Os dejo un pequeño vídeo donde se explica este procedimiento constructivo de forma sencilla. Espero que os guste.
Figura 1. Encofrado tipo túnel. http://soda.ustadistancia.edu.co/enlinea/leonardomartinez-sist%20industrializados-2/momento_2.html
Un encofrado tipo túnel, también llamado sistema de muros portante, sirve para la construcción rápida e industrializada de estructuras de hormigón armado mediante placas verticales (muros) y placas horizontales (losas) que permite estructuras de gran resistencia y rigidez lateral. Se han logrado importantes beneficios de productividad al utilizar el encofrado tipo túnel para construir edificaciones celulares como hoteles, viviendas de baja y alta altura, albergues, residencias estudiantiles, prisiones y alojamientos militares.
Las dimensiones normales de las unidades de encofrado tipo túnel son de 8 a 11 m de largo y de 2,5 a 7,0 m de ancho. Las unidades individuales pueden unirse para formar túneles de mayor longitud. Los espesores de las pantallas y losas son relativamente pequeños, variando entre 12 y 25 cm, dependiendo de la cantidad de pisos, las solicitaciones y la luz en la losa. Entre las ventajas de este sistema se pueden señalar la normalización del diseño estructural, la rapidez en la construcción y su relativa economía, con encofrados de acero en forma de “U invertida”; aunque en viviendas, la distribución de espacios, instalaciones, etc., deben planificarse con cierto detalle.
Se pueden distinguir dos tipologías de encofrado túnel. La primera se forma con paneles independientes, donde los diedros se montan y desmontan para formar el túnel. La segunda la forman diedros unidos mediante una pieza móvil o clave. En este segundo sistema, el encofrado túnel se compone de dos medios cuerpos que, juntos, forman una célula. Juntando varias células, se puede construir el edificio. Una vez se coloca la ferralla y las instalaciones, se hormigonan las paredes y las losas en una sola operación.
http://spanish.formworkscaffoldingsystems.com
Eficiencia del proceso
Para el tipo de sitio de construcción y estructura adecuada, el encofrado tipo túnel es una forma muy rápida de construcción. Además, permite obtener acabados superficiales de alta calidad. Gracias a su diseño ingenieril, se logra una alta precisión dimensional en la estructura terminada. Además, este método requiere una fuerza laboral más reducida pero con habilidades múltiples en el lugar de la obra. La naturaleza repetitiva del trabajo facilita la planificación de las actividades de construcción.
Seguridad
Los sistemas de encofrado tipo túnel incluyen características normalizadas para la seguridad, como barandillas de protección. Muchos sistemas suelen tener protecciones de borde incorporadas. La mayoría de los encofrados tipo túnel se entregan en el sitio parcialmente ensamblados, lo que reduce la manipulación manual. El montaje se completa a nivel del suelo. La estructura completa del encofrado proporciona una plataforma de trabajo robusta y estable. La naturaleza repetitiva del trabajo permite que los operarios del sitio se familiaricen rápidamente con los aspectos de seguridad de su trabajo. Los proveedores de encofrados a menudo proporcionan materiales y recursos para capacitar a la fuerza laboral. El uso de herramientas eléctricas para el montaje es moderado.
Otras características de sostenibilidad
El sistema de encofrado es fácil de limpiar y reutilizar, lo que genera menos desperdicio en comparación con los encofrados tradicionales. Los sistemas de encofrado tipo túnel pueden ser muy rentables para ciertos tipos de estructuras. La naturaleza repetitiva del trabajo, junto con el encofrado diseñado, permite a los equipos del sitio ajustar finamente sus operaciones, lo que reduce al mínimo el desperdicio de concreto.
Consideraciones adicionales
El encofrado tipo túnel es particularmente económico para proyectos con 100 o más unidades celulares, pero también existen ejemplos en el extranjero donde se utilizan para viviendas de baja altura y construcciones con bastidores celulares mucho más pequeños. Se requiere un espacio suficiente para permitir una eliminación segura del túnel de la estructura en construcción. Es necesario una planificación adecuada para asegurar el espacio suficiente en el sitio para el transporte, almacenamiento, ensamblaje y desmontaje. El montaje requiere operarios completamente familiarizados con el sistema de encofrado.
Dejo a continuación unos cuantos vídeos explicativos del sistema. Espero que sean de vuestro interés.
A continuación os dejo un enlace de un catálogo donde se describen estos encofrados y su procedimiento constructivo: http://www.eit-es.com/catalogos/Encofrado%20Tunel.pdf