Aportaciones al VI Congreso Internacional de Estructuras ACHE

 

Durante los días 3 a 5 de junio de 2014 tendrá lugar en Madrid el VI Congreso Internacional de Estructuras organizado por la Asociación Científico-técnica el Hormigón Estructural (ACHE). Es una magnífica oportunidad de encuentro entre profesionales y especialistas relacionados con las estructuras. Nuestro grupo de investigación no podía faltar a esta cita. Es por ello que, como avance, dejamos a continuación los resúmenes de las comunicaciones que están previstas exponer en el marco de dicho congreso. Os esperamos en el congreso para tener una excusa para compartir ideas.

YEPES, V.;  MARTÍ, J.V.; ALCALÁ, J.; GARCÍA-SEGURA, T. (2014). Diseño eficiente de estructuras con hormigones no convencionales basados en criterios sostenibles multiobjetivo: HORSOST.

El objetivo principal del proyecto de investigación HORSOST consiste en desarrollar una metodología que permita establecer criterios de diseño de estructuras realizadas con hormigón no convencional de forma que se maximice su contribución a la sostenibilidad. Para ello se emplean técnicas de análisis inteligente y minería de datos, algoritmos de optimización heurística multicriterio y el análisis del ciclo de vida (elaboración, transporte, procedimientos constructivos, mantenimiento, etc.). La tipología de estructuras objeto del proyecto son los puentes losa y vigas artesa pretensadas, pilas y estribos de puente, marcos y bóvedas de paso de carreteras. El proyecto se centra en hormigones de alta resistencia, reforzados con fibras y autocompactantes. Se analizan y comparan los criterios de diseño sostenible entre los hormigones convencionales y no convencionales para cada una de las tipologías estructurales.

GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J.; MARTÍ, J.V. (2014). Influencia de la carbonatación y durabilidad en el ciclo de vida del hormigón fabricado con cementos con adiciones.

Este artículo describe la influencia de la carbonatación y la durabilidad en el estudio de las emisiones de CO₂ de un pilar de hormigón armado fabricado con cemento con adiciones. Se han valorado dichas emisiones desde la producción de las materias primas hasta la demolición de la estructura. El uso de cementos con cenizas volantes y escorias de alto horno reduce entre un 20 y 70% las emisiones de producción del cemento. Sin embargo, la absorción de CO₂ por carbonatación disminuye entre un 20 y 80%. Se demuestra la gran influencia de la carbonatación durante la etapa de uso y después de la demolición como material de relleno. Finalmente, se comprueba que las emisiones anuales cuando se utilizan cementos con adiciones son menores. Por tanto, las menores emisiones de producción de los cementos con adiciones compensan la reducción en durabilidad y captura de CO₂ por carbonatación.

GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J.; MARTÍ, J.V. (2014). Optimización multiobjetivo para el estudio de la sostenibilidad del hormigón autocompactante.

El propósito de este artículo es presentar la optimización multiobjetivo como herramienta para el estudio de la sostenibilidad de los hormigones autocompactantes. Se toma como ejemplo una viga en doble T de hormigón de 15 m de luz definida por 20 variables. Una variable recoge ocho posibles dosificaciones de hormigón. Cuatro hormigones convencionales CC y cuatro hormigones autocompactantes SCC representan cuatro clases resistentes. Se utiliza el algoritmo recocido simulado multiobjetivo “Multiobjective Simulated Annealing” (MOSA) para optimizar el coste, las emisiones de CO₂ y la durabilidad. Los resultados muestran la viabilidad económica de las reducciones de las emisiones de CO₂ de las mejoras en durabilidad. Además, las soluciones con menor coste y emisión anual utilizan hormigón autocompactante. Los resultados proporcionan al proyectista estructural criterios para elegir soluciones más sostenibles.

ALCALÁ, J.; YEPES, V.; MARTÍ, J.V.; BÁRCENA, A. (2014). Diseño automático de forjados mixtos con chapa nervada, basado en criterios de eficiencia energética y económicos.

Los forjados mixtos con chapa colaborante son una tipología de estructuras horizontales que está experimentando un crecimiento continuo en las últimas décadas. El objetivo de este trabajo consiste en aplicar técnicas heurísticas para optimizar este tipo de forjados. Estos métodos permiten abordar el problema a partir de la definición completa del forjado mixto, al tiempo que se satisfacen las restricciones estructurales exigidas por la normativa. Se han utilizado dos funciones objetivo en la optimización, una económica y otra que cuantifica el consumo energético asociado a cada diseño particular. Se han empleado algoritmos basados en tres metaheurísticas: búsqueda local de descenso (DLS), cristalización simulada (SA) y aceptación por umbrales (TA). Los mejores resultados se han obtenido con el SA. Finalmente, se ha estudiado la sensibilidad del modelo y un estudio paramétrico con diferentes tramos horizontales.

ALCALÁ, J.; YEPES, V.; MARTÍ, J.V.; RODRÍGUEZ-FACUNDI, A. (2014). Optimización de forjados de losa pretensada utilizando criterios económicos y de sostenibilidad. 

En ese trabajo se muestran las características principales de los forjados de losa postesa obtenidos con técnica heurísticas de optimización estructural. Estos métodos de optimización permiten una definición completa de la estructura, pudiéndose encontrar diseños completos de forjados optimizados tanto con criterios de economía como de sostenibilidad. Los resultados obtenidos en este trabajo muestran una clara tendencia a disponer cantos muy estrictos en los resultados óptimos. Aplicando criterios de sostenibilidad se tiende a hormigones de mayores resistencias que con criterios económicos. Finalmente se han realizado pruebas de sensibilidad a los precios, que muestran mucha independencia de los forjados óptimos frente a las variaciones de precios ensayadas.

DASÍ, M.; YEPES, V.;  LÓPEZ-DESFILÍS, V.J. (2014). Diseño eficiente de pasarelas mixtas basado en criterios sostenibles.

El objetivo de este trabajo ha sido aplicar técnicas de optimización heurística a una pasarela peatonal mixta biapoyada. Se ha elaborado un programa en lenguaje Fortran capaz de generar pasarelas, comprobarlas y evaluar su coste, ya sea económico o en relación con su sostenibilidad (emisiones de CO₂). Se han implementado los siguientes algoritmos: un Randon Walk en dos variantes (RW1 y RW2), un Descent Local Search (DLS), un Simulated Annealing (SA) y un Glowworms Swarm Optimization en dos variantes (GSO1 y GSO2). Se han comparado los resultados en función del menor coste y de la menor emisión de CO₂, con la solución de referencia empleada, encontrando soluciones hasta un 25,40% más económicas atendiendo a criterios de precio y con unas emisiones del 25,44% menores. Finalmente, se ha realizado un estudio de sensibilidad de precios y un breve estudio paramétrico en función de la luz de la pasarela.

MARTÍ, J.V.; YEPES, V.; ALCALÁ, J.; GONZÁLEZ-VIDOSA, F. (2014). Diseño de tableros isostáticos de puentes de vigas artesa prefabricadas pretensadas con criterios económicos.

Este trabajo describe una aproximación al análisis y diseño de puentes de carreteras de tableros isostáticos de vigas artesa prefabricadas pretensadas con criterios económicos. El procedimiento utilizado para resolver el problema combinatorio es una variante del Recocido Simulado (SA en inglés) con un movimiento de vecindad basado en el operador de mutación de los algoritmos genéticos (SAMO). Este algoritmo se aplica al coste económico de las estructuras, incluyendo las etapas de fabricación, transporte y construcción. El problema contiene 59 variables de diseño. Se realiza un estudio paramétrico para distintas luces de vano y un estudio de sensibilidad del coste de la estructura a la variación de los precios del hormigón y del acero, obteniéndose correlaciones útiles para el predimensionamiento y el diseño de la estructura, y comprobándose la adaptación del modelo a la influencia de la variación de los precios.

 

Construcción de un puente de bambú

Bambú. Wikipedia

El bambú es un material habitual de construcción en algunos países. Es uno de los materiales usados desde más remota antigüedad por el hombre para aumentar su comodidad y bienestar. Como crece velozmente su uso para la construcción tiene grandes beneficios en comparación con otros materiales como la madera. El clima de las regiones donde crece el bambú es generalmente cálido y húmedo, lo que conlleva al uso de materiales de baja capacidad de almacenamiento térmico y de diseños que permiten la ventilación cruzada. Las construcciones de bambú satisfacen plenamente estos requerimientos, lo que explica su uso en estas zonas.

Alguna de las ventajas de este material son las siguientes:

  • Las cañas de bambú son de medidas y formas majenables, almacenables y sistematizables.
  • Son elementos de alta resistencia con relación a su peso, de sección hueca y con tabiques transversales rígidos, lo cual las hace muy aptas para evitar su ruptura al curvarse.
  • Son fáciles de dividir en piezas más cortas o en tiras angostas, empleando herramientas simples.

Sin embargo, requieren mano de obra especializada para su manejo y presentan una relativa baja durabilidad debido a los ataques biológicos, baja resistencia a huracanes y fuego, por lo que las medidas de protección son esenciales.

A continuación os dejo un pequeño vídeo donde se puede ver la construcción de un puente con cañas de bambú. Espero que os guste.

Puente del Tercer Milenio (Zaragoza)

De edu1975, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=54504643

El Puente del Tercer Milenio, situado en Zaragoza sobre el río Ebro, es un puente de arco en hormigón atirantado por el tablero (bow-string) diseñado por Juan José Arenas de Pablo y su equipo de ingenieros de Arenas & Asociados. El puente, construido sobre el río Ebro en la nueva Ronda del Rabal e inaugurado el 7 de junio de 2008, integra en la ciudad la margen izquierda del río en el entorno del Meandro Ranillas, conectando los barrios de La Almozara y del Actur. Fue construido como parte de las infraestructuras del recinto ferial de la Exposición Internacional de Zaragoza de 2008 constituyendo durante la misma el principal acceso al recinto.

Aunque el puente puede parecerse al de La Barqueta de Sevilla, una de las diferencias más relevantes es el material, de acero en Sevilla y de hormigón en Zaragoza. El hormigón se usó en este puente por su mayor capacidad para amortiguar la estructura ante posibles vibraciones producidas por el viento o el tráfico.

 

Detalle de la pasarela acristalada para los peatones

 

La tipología elegida, la de arco atirantado por el tablero, permite compensar la falta de solidez del terreno para responder a las cargas. Su estructura presenta una luz de 216 m, con una longitud de tablero de 270 m y 43 m de ancho. Desde el arco y para soportar el tablero se distribuyen dos familias de 32 péndolas soportando cada una de ellas una tensión aproximada de 300 t. Cuenta con 6 carriles de circulación de automóviles, 2 carriles para bicicletas y 2 paseos peatonales acristalados. En su construcción se utilizaron innovaciones técnicas en materiales y sistemas constructivos, destacando entre ellas el uso del hormigón blanco de alta resistencia.

Os recomiendo el artículo sobre este puente firmado por sus propios autores que podéis ver en este enlace. O también este artículo de Arenas sobre su diseño. Os paso un par de vídeos sobre este puente, que espero os gusten.

 

Tablero hiperestático prefabricado montado con lanzavigas

El sistema de lanzamiento consiste en el desplazamiento horizontal de secciones prefabricadas (vigas o dovelas) de un puente. Para ello, se utiliza una viga lanzadora que cubre la distancia entre un estribo y la pila más próxima o entre dos pilas sucesivas. A través de esta lanzadora se desplazan los elementos hasta que se colocan en su posición definitiva.

A continuación os paso un vídeo de la construcción del Viaducto en Egea (Huesca), donde podremos ver el primer tablero hiperestático prefabricado con vano mayor de 60 m montado con lanzavigas. Supone un hito mundial en el ámbito de la construcción. Destacan los más de 50 m de altura de los pilones y una longitud de más de 153 m.

También os paso un reportaje de Aragón TV sobre el mismo tema:

Referencia:

YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 408 pp. Ref. 477. ISBN: 978-84-1396-238-2

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Curso de fabricación y puesta en obra del hormigón.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Puente colgante sobre el Vinalopó (Elche)

Fuente: https://twitter.com/e_goberna/status/947089123231268864

El puente colgante sobre el Vinalopó, en Elche, es una estructura diseñada por FHECOR (Hugo Corres y José Romo) y construida por FCC Construcción. Se trata de un tablero metálico asimétrico, con un canto transversal variable de 0,75 a 0,52 m, de 164,50 m de longitud y 23 m de ancho que se cuelga con 54 péndolas cogidas de dos catenarias de ocho cables cada una. Los cables parten de una estructura contrapeso anclada a tierra, que se eleva hasta una silla desviadora metálica situada en un mástil de hormigón de 43 m de altura, bajando en catenaria hasta el contrapeso de estribo opuesto y salvando una distancia de 244 m entre contrapesos.

Los cables principales se montaron con un sistema de cable guía. Las péndolas y sus conexiones con el cable principal han sido montadas con un sistema especialmente diseñado que circulaba sobre los cables principales previamente instalados. El tablero metálico se montó con grúas, dejando articuladas las uniones de los paños entre sí. El hormigonado de la losa se realizó de una vez, utilizando un hormigón con retardador de fraguado para que tuviera lugar cuando el tablero estuviera totalmente hormigonado. La conexión entre acero y hormigón se realizó mediante pernos conectadores tipo Nelson.

 

Esta estructura se inauguró en julio de 2000, siendo el promotor la Generalitat Valenciana. Os dejo un enlace donde se describe este puente por sus autores: http://e-ache.com/modules/ache/ficheros/Realizaciones/Obra20.pdf

Asimismo, os dejo un par de vídeos donde podéis ver la construcción del puente. Espero que os gusten.

 

La construcción del puente de Verrazano-Narrows

Puente Verrazano-Narrows. Wikipedia.

El Puente de Verrazano-Narrows, diseñado por O.H. Ammann y C. Whitney, es un puente colgante situado a la entrada al puerto de Nueva York, que conecta los distritos de Staten Island y Brooklyn a través del estrecho que comunica las partes superior e inferior de la Bahía de Nueva York. La construcción del puente comenzó 13 de agosto 1959, y la cubierta superior se abrió el 21 de noviembre de 1964, con un coste de 320 millones de dólares. La longitud de su tramo central es de 1.298 m, lo que lo convirtió en el puente colgante más largo del mundo desde el término de su construcción hasta 1981, cuando fue superado por el puente de Humber en Inglaterra.

El puente lleva el nombre del explorador florentino Giovanni da Verrazzano, el primer navegante europeo que se sabe entró en la Bahía de Nueva York y el Río Hudson. Constituye un nexo crítico en el sistema vial local y regional, siendo muy conocido como el punto de partida de la Maratón de la Ciudad de Nueva York. La mayor parte del tráfico marítimo con destino a los puertos de Nueva York y Nueva Jersey debe pasar bajo el puente.

El puente está formado por dos grandes vigas trianguladas en los bordes de 7,3 m de canto. A pesar de tener doble plataforma de tráfico, tiene una esbeltez de 1/178. Ello no quita que el tablero tenga suficiente rigidez a torsión y flexión para evitar la inestabilidad debida a los efectos del viento. Las torres son dos pilares independientes unidos en cabeza por un diafragma de gran canto.

Según el Departamento de Transporte de los Estados Unidos:

  • Cada una de las dos torres contiene 1 millón de pernos y 3 millones de remaches.
  • El diámetro de cada uno de los cuatro cables de suspensión es de 36 pulgadas. Cada cable se compone de 26.108 cables que ascienden a un total de 143.000 millas de longitud
  • Debido a la altura de las torres y su distancia, la curvatura de la superficie de la Tierra tenía que ser tomado en cuenta en el diseño del puente-las torres son 1 5/8 pulgadas más lejos en su parte superior que en sus bases.
  • Debido a la expansión térmica de los cables de acero, la calzada del puente es 12 pies más bajo en verano que en invierno.

Os paso un par de vídeos históricos sobre su construcción que espero os gusten.

 

 

Construcción del puente «Arcos de Alconétar» y la resonancia

https://blog.structuralia.com/las-singularidades-del-puente-arcos-de-alconetar

El puente «Arcos de Alconétar» atraviesa el río Tajo cerca de la frontera con Portugal, en la provincia de Cáceres. Su nombre se corresponde con un puente romano de piedra cuyos restos aún pueden observarse en la cola del embalse de Alcántara. Forma parte de la Ruta de la Plata (autovía A-66). Se trata de dos estructuras gemelas de acero y hormigón (400,7 m de longitud y más de 4.350 toneladas de peso) diseñadas por los ingenieros Sergio Couto, José Antonio Llombart y Jordi Revoltós. La empresa constructora fue OHL. Entró el puente en servicio en julio de 2006.

Destacan dos grandes arcos paralelos de 220 m de luz y 42,5 de altura máxima que se unen a los tableros mediante pilares. Los arcos son metálicos y están empotrados en las zapatas de arranque. Las pilas situadas sobre el arco son metálicas y las de los viaductos de acompañamiento de hormigón HA-30. El acero utilizado es el S355 de tipo CORTEN que proporciona una resistencia a la corrosión atmosférica sin necesidad de pintura, importante a la hora de la conservación posterior. Su proceso constructivo se basa en el abatimiento de los semiarcos, construidos previamente en taller. La obra supuso un hito tecnológico (premio Construmat a la Innovación Tecnológica en Ingeniería Civil de 2007). Nunca se habían superado los 200 m de luz en este sistema constructivo.

A continuación os paso algunos vídeos que permitirán comprender el proceso constructivo y detalles sobre el puente. En primer lugar os dejo una infografía del proceso constructivo.

A continuación, os dejo una presentación de las obras y el método constructivo.

Otro vídeo al respecto es el siguiente:

Por último, os dejo un espectacular vídeo de la resonancia sufrida por el puente.

Referencia: 

Llombart, J.A.; Revoltós, J.; Couto, S. (2006). Puente sobre el río Tajo, en el embalse de Alcántara («Arcos de Alconétar»). Hormigón y Acero, 242:5-38. (enlace)

 

¿Por qué los romanos fueron grandes ingenieros?

El puente de Alcántara sobre el Río Tajo.

A lo largo de estos meses hemos repasado aspectos históricos y constructivos de la ingeniería de todos los tiempos (Egipto, Mesopotamia, Grecia, por ejemplo), sin embargo aún no hemos dicho nada de Roma. Ello merece no sólo un post, sino varios (el puente de Alcántara debería contar, por méritos propios, con un post de oro). Es más, yo diría que es un atrevimiento por mi parte intentar contar en tan breve espacio  lo más relevante de la ingeniería romana, puesto que, con total seguridad nos dejaremos cosas por el camino. Grandes ingenieros españoles como Fernández Casado abordaron con gran interés estos temas, y hoy día hay verdaderos especialistas en el tema, publicaciones, congresos, páginas web, etc. El propio arquitecto e ingeniero de Julio César, Marco Vitruvio nos ha legado el tratado sobre construcción más antiguo que se conserva De Architectura, en 10 libros (probablemente escrito entre los años 23 y 27 a. C.).  Para resolver cómo abordar el problema de divulgar aspectos de interés sobre la ingeniería romana, lo mejor será hacer varias entregas, dejar cuestiones abiertas, dar enlaces a otras páginas web y recibir todas las sugerencias habidas y por haber de los amables lectores. Vamos allá.

La ingeniería tiene un gran desarrollo y perfección en Roma como lo demuestra la construcción de abastecimientos de agua o poblaciones con toda la infraestructura de canales y acueductos que ello conlleva, el saneamiento de las ciudades, las defensas y las vías de comunicación (calzadas y puentes) que tanta importancia tuvieron en el Imperio. Puede decirse que mientras Grecia fue Arquitectura, Roma fue Ingeniería (Fernández, 2001).

Sin embargo, los ingenieros romanos tuvieron más que ver con sus antiguos colegas de Egipto y Mesopotamia que con sus predecesores griegos.  Los romanos tomaron ideas de los países conquistados para usarlas en la guerra y las obras públicas. Fueron pragmáticos, empleando esclavos y tiempo para sus obras. Las innovaciones romanas en ciencia fueron, comparativamente, más limitadas que las de los griegos; sin embargo, contaron con abundantes soldados, administradores, dirigentes y juristas de gran nivel. Los romanos fueron capaces de poner en práctica muchas de las ideas que les habían precedido y se convirtieron, con toda probabilidad, en los mejores ingenieros de la antigüedad. Quizá no fueron originales, pero aplicaron su técnica ampliamente a lo largo de todo un imperio.  Los ingenieros romanos fueron superiores en la aplicación de las técnicas, entre las cuales son notables los puentes que usaron en vías y acueductos. Para juzgar la extensión de los conocimientos técnicos entre las legiones romanas basta leer en los Comentarios de César la descripción de la construcción de puentes de pilotes que tendían sus ejércitos sobre los ríos helados y los terrenos pantanosos.

Existen datos históricos que prueban el conocimiento y empleo de diversos tipos de hormigones en civilizaciones tan antiguas como la egipcia (3000 a.C.), la griega o la cartaginesa. Sin embargo, como en tantas otras ocasiones, es con los romanos cuando la utilización del hormigón en sus más variadas aplicaciones ha dado lugar a innumerables obras, muchas de las cuales -o sus vestigios- han alcanzado nuestro siglo dando fe de ello. Este material les permitía levantar estructuras laminares monolíticas de gran luz, para cúpulas y bóvedas. El hormigón romano se hacía a base de cal mezclada con arena volcánica, llamada puzolana. Se aplicaba en capas, con un material de relleno o árido, como tejas rotas, entre dos superficies de ladrillo que formaban la cara exterior e interior. Al contrario que el hormigón moderno, no iba armado y requería contrafuertes exteriores, al no poder resistir esfuerzos de tracción. Además, no era tan fluido como el actual, lo cual limitaba la complejidad de los encofrados. El hormigón romano constituía un sistema constructivo económico, rápido y eficaz. El encofrado lo construían grupos reducidos de carpinteros expertos; el hormigón se fabricaba y ponía en obra mediante grandes grupos de trabajadores no especializados.

El Puente del Diablo, en Martorell.

Pasemos ahora, brevemente, a los puentes. Una palabra tan familiar hoy día como «Pontífice» tiene su origen en la designación de los ingenieros constructores de puentes, carácter semántico que insiste en el contenido sagrado del trabajo de estos técnicos. Los romanos construyeron muchos puentes de caballete con madera, uno de los cuales se describe con detalle en la obra citada anteriormente de Julio César. Sin embargo, los puentes romanos que se mantienen en pie suelen sustentarse en uno o más arcos de piedra, como el puente de Martorell cerca de Barcelona, en España y el Ponte di Augusto en Rímini, Italia. El Pont du Gard en Nimes, Francia, tiene tres niveles de arquerías que elevan el puente a 48 m sobre el río Gard, con una longitud de 261 m; es el ejemplo mejor conservado de gran puente romano y fue construido en el siglo I a.C. La utilización de arcos de medio punto derivó más tarde en la de arcos apuntados.

Puente de Tiberio de Rímini

Ningún ingeniero hispanorromano excede en renombre al autor del puente de Alcántara. Por la importancia de su obra, de filiación incontrovertible, y por el monumento que honra su memoria, Cayo Julio Lacer ha quedado como representante arquetípico de los antiguos ingenieros españoles. La inscripción que dejó en el arco conmemorativo situado sobre la calzada es explícita acerca de sus intenciones: Pontem Perpetui Mansurum in Saecula: Dejo un puente que permanecerá por los siglos.

Pont du Gard, Francia.

Además de los notables puentes de los acueductos, visibles en Europa y Asia y de los cuales son ejemplos famosos el acueducto de Segovia, y el Pont du Gard, cerca de Nimes, con 50 m de altura y 300 de largo, son altamente notables las famosas vías imperiales como la Via Appia y la Via Flaminia, que atraviesan Italia longitudinalmente. La Vía Appia, que se inicio en 312 a.C., y fue la primera carretera importante recubierta de Europa. Al principio, la carretera medía 260 km e iba desde Roma hasta Capua, pero en 244 a.C., se alargó hasta Brindisi, siendo entonces una obra de prestigio tal, que la aristocracia flanqueó con monumentos funerarios ambos lados del camino a la salida de Capua. Además, tal era la densidad de tráfico pesado en aquella época que el propio Julio César prohibió que ningún vehículo de cuatro ruedas circulara por las calles de Roma, medida moderna a la vista de nuestros problemas actuales. En la cumbre del poder romano la red de carreteras cubría 290,000 km. desde Escocia hasta Persia.

Los ingenieros romanos mejoraron significativamente la construcción de las carreteras, tanto como herramienta al servicio del mantenimiento del poder imperial como por el hecho de que una carretera bien construida implicaba menores costes de mantenimiento a largo plazo. Esta idea de coste del ciclo de vida, tan vigente hoy día, ya era sobradamente conocida por los ingenieros romanos, pues sus carreteras podían durar cien años sin necesitar grandes reparaciones. Es apenas hasta fechas recientes que la construcción de carreteras ha vuelto a la base de “alto costo inicial – poco mantenimiento”.

Las calzadas romanas podía estar enlosadas (stratus lapidibus), afirmadas (iniecta glarea) o simplemente explanadas y sin firme (terrenae). Las sucesivas capas de firme: el statumen o cimiento de piedra gruesa, el rudus, de piedra machacada y el nucleus, de tierra. En ocasiones se disponía de la suma cresta, de grava cementada con cal, o incluso con enlosado. En este tipo de secciones se constata muchas veces una capa inicial compuesta de canto grueso, con grandes bolos en los flancos, a modo de caja y asiento de las capas superiores. Las calzadas romanas eran construidas con zahorras naturales como material básico. Cada capa tiene en torno a 15 cm, entre otras razones porque la energía de compactación que podía aplicarse en aquella época era casi nula y se reduciría al uso del agua sumado a un simple planchado con un rodillo más o menos pesado. El empleo de cal en la estabilización de suelos, terraplenes y capas de firme es también frecuente, y se debería sobre todo a la imposibilidad de dotar al material de la densidad adecuada con aporte exterior de energía de compactación. Era el factor tiempo y el agua los que realizaban la compactación. Las vías romanas estaban dotadas sistemáticamente de firme, y además adecuado tanto al tráfico rodado como al de caballerías. Incluso cuando se asentaban directamente sobre el sustrato rocoso debían de disponer de una capa mínima de rodadura compuesta por material pétreo de grano fino. Según Moreno (2001), muchos de los caminos empedrados que se imputan a los romanos no poseen las características técnicas que las vías romanas poseían, infravalorándose en numerosas ocasiones la capacidad técnica de los ingenieros romanos. Para aquellos que queráis profundizar más en la ingeniería y técnica constructiva de las vías romanas, os recomiendo la referencia de Moreno (2004)  y la página: http://www.viasromanas.net/

Nos dejamos para otros artículos aspectos de la ingeniería romana relacionados con la hidráulica, las obras marítimas, las cimentaciones o los grandes edificios.

Referencias:

ADAM, J.P. (2002).  La construcción romana. Materiales y técnicas. Editorial de los Oficios, 2ª edición, León.

FERNÁNDEZ, M. (2001). Ingeniería militar e ingeniería civil, dos ingeniería íntimamente vinculadas. Revista de Obras Públicas, 3.413: 47-57.

FERNÁNDEZ CASADO, C. (1983). Ingeniería hidráulica romana. Colegio de Ingenieros de Caminos, Canales y Puertos. Madrid.

MORENO, I. (2001). Características de la infraestructura viaria romana. OP ingeniería y territorio, 56: 4-13.

MORENO, I. (2004). Vías romanas. Ingeniería y técnica constructiva. Ed. Ministerio de Fomento CEDEX-CEHOPU.

YEPES, V. (2009). Breve historia de la ingeniería civil y sus procedimientos. Universidad Politécnica de Valencia.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Construcción del puente de Rande en Vigo

Infografía sobre la ampliación del puente de Rande

El puente de Rande es un puente atirantado inaugurado en 1978 que une los municipios de Redondela y Moaña, márgenes del Estrecho de Rande, en la Ría de Vigo, evitando dar un rodeo de más de 50 km. Fue proyectado por el ingeniero italiano Fabrizio de Miranda, el español Florencio del Pozo (que también se encargó de la cimentación) y por Alfredo Passaro. En 1979 obtuvo el Premio Europeo a la Construcción metálica más destacada. Sin embargo, el puente se ha quedado pequeño y debe ampliarse, tal y como veremos en uno de los vídeos que os dejo en la entrada.

El puente en su tramo central es del tipo atirantado. El conjunto se completa con dos viaductos de acceso, formados por dos vigas de cajón continuas, una por cada calzado, de hormigón pretensado. La longitud total de los viaductos es de 863 metros. Por tanto, el puente mide 1.558 m. de longitud total entre el puente metálico más viaductos de acceso.

Las columnas que lo sostienen tienen una altura de 148 m. sobre el fondo marino. Consta de un tablero metálico con un ancho total de 23,46 m., que permite una doble circulación en cada sentido y que se encuentra a una cota de 50 m. sobre el nivel del mar. La luz libre entre las pilas centrales es de 400,14 m., que lo situaron en su momento en el segundo con más luz del mundo para ese tipo de puentes, entre las pilas centrales y las de tierra hay un tramo de 147,42 m. a ambos lados, dando un total de longitud para el puente central atirantado de 694,98 m.

El tablero está suspendido de cables rectos anclados en los bordes del mismo y en las cabezas de las pilas centrales. Las pilas centrales de hormigón armado tienen un altura de 128,10 sobre el nivel del mar y descansan sobre unas fundaciones que llegan a la cota menos 20, cimentadas directamente sobre la roca del fondo de la ría.

Os paso un vídeo, ya antiguo, de ACCIONA sobre la construcción de dicho puente, así como un vídeo actual sobre la presentación del proyecto de ampliación de este puente. Espero que os gusten.

 

Comunicaciones presentadas en el 2º Congreso EIME

En plena celebración del 2º Congreso Nacional sobre Ensañanza de las Matemáticas en Ingeniería de Edificación, desarrollado los días 18 y 19 de julio de 2013 en la Universitat Politècnica de València, aprovecho para presentar los resúmenes de los trabajos que hemos presentado. Espero que sean de vuestro interés.

Los autores agradecen el aporte financiero realizado para este trabajo por el Ministerio de Ciencia e Innovación (Proyecto de Investigación BIA2011-23602) y por la Universitat Politècnica de València (Proyecto de Investigación PAID-06-12).

BÁRCENA, A.; ALCALÁ, J.; YEPES, V.; MARTÍ, J.V. (2013). Diseño automático de forjados de chapa nervada optimizados con criterios de economía y sostenibilidad. 2º Congreso Nacional de la Enseñanza de las Matemáticas en la Ingeniería de Edificación, EIMIE, 18-19 de julio, Valencia, pp. 159-172. ISBN: 978-84-8363-992-4.

Los forjados mixtos con chapa colaborante son una tipología de estructuras horizontales que está experimentando un crecimiento continuo en las últimas décadas. Su optimización presenta un enorme interés para conseguir diseños más asequibles y sostenibles, que permitan un mejor aprovechamiento de los recursos necesarios. El objetivo de este trabajo es aplicar técnicas heurísticas para este tipo de forjados, permitiendo plantearse el problema de una manera más compleja, utilizando una definición completa del forjado mixto y sus componentes, mientras que al mismo tiempo satisface las restricciones de este tipo de estructuras. Los algoritmos de optimización aplicados a la estructura se basan en tres metaheurísticas: búsqueda local de descenso (DLS), recocido simulado (SA) y el umbral de aceptación (TA). Se muestran las principales características, los parámetros que deben calibrarse y los diferentes modos de selección de dichos parámetros, para cada una de las heurísticas. La comparación de los resultados ha permitido señalar la SA como la mejor heurística de todas ellas. Por último, una vez seleccionado el mejor calibración de la SA, se ha estudiado la sensibilidad del modelo y un estudio paramétrico con diferentes tramos horizontales.

GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J.; MARTÍ, J.V. (2013). Optimización multiobjetivo de viga en I de hormigón armado con criterios sostenibles. 2º Congreso Nacional de la Enseñanza de las Matemáticas en la Ingeniería de Edificación, EIMIE, 18-19 de julio, Valencia, pp. 135-148. ISBN: 978-84-8363-992-4.

Este estudio tiene como objetivo presentar una metodología de diseño de una viga en I de hormigón armado de alta resistencia autocompactable o convencional.  Algoritmos heurísticos como recocido simulado multiobjetivo “Multiobjective Simulated Annealing” (MOSA) son utilizados para buscar dentro del espacio de soluciones factibles aquellas que mejoren criterios como coste, emisiones de CO2 o durabilidad. Se tomará como ejemplo una viga en I biapoyada de 15 m de luz definida por 20 variables. La viga deberá cumplir de acuerdo a la Instrucción de Hormigón Estructural (EHE-08) los requisitos de seguridad estructural, así como aspectos constructivos o geométricos. El análisis comparativo de los objetivos servirá como guía para el diseño sostenible de estructuras de hormigón. Los resultados obtenidos muestran una clara tendencia de diseño de estructuras de hormigón hacia la sostenibilidad.

MARTÍ, J.V.; YEPES, V.; ALCALÁ, J.; GARCÍA-SEGURA, T. (2013). Optimización memética de vigas artesa prefabricadas con criterios sostenibles de hormigón con fibras. 2º Congreso Nacional de la Enseñanza de las Matemáticas en la Ingeniería de Edificación, EIMIE, 18-19 de julio, Valencia, pp. 91-104. ISBN: 978-84-8363-992-4.

Esta comunicación describe una metodología heurística empleada para diseñar estructuras bajo criterios sostenibles, con reducción de la emisión de gases de efecto invernadero (CO2) durante la fase de ejecución. La estructura presentada es un tablero de un paso superior de carreteras de vigas artesa  prefabricadas de hormigón reforzado con fibras, empleando para ello un algoritmo memético híbrido, que combina la búsqueda poblacional de soluciones mediante algoritmos genéticos y una búsqueda por entornos variable (VDNS). Este algoritmo se aplica a un tablero formado por dos vigas isostáticas para una luz de 30 m y una losa de 12 m de ancho. La estructura analizada consta de 41 variables discretas. El módulo de la evaluación considera los estados límite último y de servicio que se aplican habitualmente para estas estructuras. El uso del algoritmo memético requiere previamente su calibración. Cada una de las heurísticas se procesa nueve veces, obteniéndose información estadística sobre el valor mínimo, el medio y las desviaciones. El procedimiento presentado permite la aplicación práctica al diseño real y su adaptación al proceso de prefabricación.

MARTÍ, J.V.; YEPES, V.; ALCALÁ, J.; GARCÍA-SEGURA, T. (2013). Diseño de vigas en “U” de hormigón con fibras mediante la heurística SA con criterios económicos. 2º Congreso Nacional de la Enseñanza de las Matemáticas en la Ingeniería de Edificación, EIMIE, 18-19 de julio, Valencia, pp. 299-309. ISBN: 978-84-8363-992-4.

Este artículo se ocupa de la optimización económica de los puentes de carreteras formados por tableros constituidos por una losa de hormigón ejecutada in situ y dos vigas artesa de hormigón reforzado con fibras metálicas pretensadas prefabricadas. Se comprueba la eficacia de la optimización heurística por el método del recocido simulado “simulated annealing” (SA). Los cálculos de las tensiones y de sus envolventes, son programados en lenguaje fortran directamente por los autores. Los algoritmos de optimización heurística se aplican a un tablero de 35 m de  luz y 12 m de ancho. Los parámetros que definen la forma de la sección de la viga se adaptan prácticamente a cualquier tipo de molde de una instalación de prefabricados. El ejemplo que se analiza consta de 60 variables discretas. El módulo de la evaluación incluye los estados límite último y de servicio que se aplican comúnmente para estas estructuras: flexión, cortante, torsor, fisuración, flechas, etc. El uso del algoritmo SA requiere previamente su calibración. La heurística se procesa 9 veces, obteniéndose información estadística sobre el valor mínimo, el medio y las desviaciones. El mejor resultado obtenido tiene un coste de 109.127 €.  Finalmente, entre las principales conclusiones de este estudio, destaca que económicamente es factible el uso de fibras de acero en el hormigón estructural y que las soluciones y los tiempos de proceso computacional son tales, que este método se puede aplicar de un modo práctico a casos reales.

RODRÍGUEZ-CALDERITA, A.M.; ALCALÁ, J.; YEPES, V.; MARTÍ, J.V. (2013). Optimización heurística aplicada al diseño automático de forjados de losa postesa. 2º Congreso Nacional de la Enseñanza de las Matemáticas en la Ingeniería de Edificación, EIMIE, 18-19 de julio, Valencia, pp. 63-75. ISBN: 978-84-8363-992-4.

En ese trabajo se muestran las características principales de los forjados de losa postesa obtenidos tras aplicar métodos heurísticos de optimización. Estos forjados son ventajosos frente a soluciones más convencionales a partir de ciertas luces. El proceso de diseño de estos forjados se puede plantear como un problema de optimización, que abordado con métodos heurísticos puede ser formulado de un modo totalmente realista. Se pueden encontrar diseños completos de forjados optimizados no solo con criterios de economía, sino también de sostenibilidad, pudiendo comparar ambos casos. Los resultados obtenidos en este trabajo muestran una clara tendencia a disponer cantos muy estrictos en los resultados óptimos. Aplicando criterios de sostenibilidad se tiende a hormigones de mayores resistencias que con criterios económicos. Finalmente se han realizado pruebas de sensibilidad a los precios, que muestran mucha independencia de los forjados óptimos frente a las variaciones de precios ensayadas.

TORRES-MACHÍ, C.; YEPES, V.; PELLICER, E.; CHAMORRO, A. (2013). Optimización en la gestión de activos. Aplicación al mantenimiento de múltiples estructuras de edificación. 2º Congreso Nacional de la Enseñanza de las Matemáticas en la Ingeniería de Edificación, EIMIE, 18-19 de julio, Valencia, pp.323-332. ISBN: 978-84-8363-992-4.

En una sociedad desarrollada en la que el nivel de inversión en nuevas infra-estructuras tiende a estabilizarse, su conservación pasa a ser uno de los retos a los que deben enfrentarse sus gestores, de forma que los recursos escasos de los que disponen, sean destinados en la mejor alternativa posible. Sin embargo, la asignación óptima de recursos de conservación es un problema que no tiene una solución directa. De hecho, la resolución del problema de asignación de recursos para el mantenimiento de una infra-estructuras presenta un problema de explosión combinatoria, pues existen ST soluciones factibles para la gestión una infraestructura con S posibles tratamientos de conservación y un periodo de análisis de T años. El objetivo de esta comunicación es presentar un modelo matemático que permite optimizar los recursos asignados al mantenimiento de una infraestructura de edificación, de forma que se maximice el nivel de servicio de la misma, cumpliendo además con unas restricciones presupuestarias y unos niveles mínimos de conservación.

YEPES, V.; ALCALÁ, J.; MARTÍ, J.V.;  GONZÁLEZ-VIDOSA, F. (2013). Cómo predimensionar muros óptimos sin calculadora usando la inteligencia artificial. 2º Congreso Nacional de la Enseñanza de las Matemáticas en la Ingeniería de Edificación, EIMIE, 18-19 de julio, Valencia, pp. 119-134. ISBN: 978-84-8363-992-4.

El trabajo presenta un estudio de diseño automático de muros ménsula de hormigón armado basado en el recocido simulado, dentro de un esquema de búsqueda en entornos variables, como metaheurística de optimización económica. Cada solución se caracteriza por 20 variables de diseño: 4 geométricas relacionadas con el espesor del alzado y de la zapata, así como con las longitudes de la puntera y del talón; 4 tipos de material y 12 variables relacionadas con el armado. El trabajo estudia la importancia relativa de factores tales como el coeficiente de rozamiento suelo-zapata, el ángulo de rozamiento muro-relleno y la limitación de la flecha del alzado. Por último, se presenta un estudio paramétrico de muros de 4 a 10 metros de altura total para diferentes rellenos y condiciones de carga. Se aportan valores medios de costes, volúmenes de hormigón, espesor de alzados y zapatas, longitudes de punteras y talones que pueden ser útiles para el predimensionado económico de muros. Los resultados muestran cómo la inteligencia artificial es capaz de dimensionar de forma automática los muros ménsula de hormigón armado, detectando relaciones aportadas por la experiencia en el cálculo de este tipo de estructuras. Se aporta, como novedad de gran interés práctico, unas reglas sencillas que permiten predimensionar y estimar económicamente de forma rápida este tipo de estructuras.

YEPES, V.; MARTÍ, J.V.; ALCALÁ, J.; GARCÍA-SEGURA, T. (2013). Métodos empleados en el proyecto HORSOST sobre diseño sostenible con hormigón no convencional. 2º Congreso Nacional de la Enseñanza de las Matemáticas en la Ingeniería de Edificación, EIMIE, 18-19 de julio, Valencia, pp. 259-272. ISBN: 978-84-8363-992-4.

El objetivo fundamental del proyecto de investigación HORSOST consiste en establecer pautas de diseño eficiente de estructuras realizadas con hormigón no convencional optimizadas heurísticamente con funciones multiobjetivo relacionadas con la sostenibilidad. Se pretende avanzar en el establecimiento de nuevos diseños que permitan extraer las ventajas que aportan los hormigones especiales, en particular hormigones de alta resistencia, hormigones con fibras, hormigones autocompactantes. Para ello se utiliza el análisis del ciclo de vida de dichas estructuras (elaboración, transporte, procedimientos constructivos, mantenimiento, etc.) considerando aspectos energéticos, medioambientales, sociales y económicos. La optimización heurística permite evaluar los diseños más eficientes, comparar soluciones y generar bases de datos sobre las que aplicar herramientas procedentes de la minería de datos y del aprendizaje automático para extraer información no trivial que permita fórmulas de predimensionamiento. La posibilidad de análisis se debe a que las herramientas matemáticas empleadas presentan un carácter general. Se aplican técnicas como redes neuronales o la teoría del valor extremo además de otras herramientas más habituales como la regresión lineal múltiple o el análisis por componentes principales.