¿Seis sigma en la gestión de la construcción?

En artículos anteriores nos hemos referido a temas tan importantes como el despilfarro y los costes de calidad en las empresas. Seis Sigma constituye una metodología de gestión que ha significado para ciertas empresas una reducción drástica de sus fallos y costes de calidad. Si bien esta metodología se desarrolló fundamentalmente para disminuir la variabilidad de procesos repetitivos, también es verdad que la filosofía que subyace en Seis Sigma posiblemente pueda reducir significativamente el coste y el número de fallos debido a una calidad deficiente en el diseño y la ejecución de los proyectos de construcción. Veamos aquí, como siempre, con ánimo divulgativo, alguno de los aspectos más característicos de esta metodología.

La historia de Seis Sigma se inicia a mediados de los años 80 en Motorola, cuando un ingeniero (Mikel Harry) comienza a estudiar la reducción en la variación de los procesos para mejorarlos. Esta herramienta tenía una fuerte base estadística y pretendía alcanzar unos niveles de calidad en los procesos y en los productos de la organización próximos a los cero defectos. Constituye una metodología sistemática para reducir errores, concentrándose en la mejora de los procesos, el trabajo en equipo y con una gran implicación por parte de la Dirección (de Benito, 2000; Membrado, 2004; Harry y Schroeder, 2004).

En los años 90, Jack Welch, presidente de General Electric, decidió utilizar Seis Sigma consiguiendo resultados económicos espectaculares. Desde entonces, Seis Sigma se ha convertido en una de las herramientas de mejora más empleadas, habiendo sido adoptada por compañías como Motorola, General Electric, Allied Signal, Polaroid, Toshiba, Honeywell, City Bank o American Express. Más recientemente, Seis Sigma ha llegado a Europa, donde numerosas empresas están empezando a implantarla (en España, empresas como Telefónica, e-La Caixa o Iberia).

La letra griega sigma (s) se emplea en estadística para representar la variación típica de una población. El “nivel sigma” de un proceso mide la distancia entre la media y los límites superior e inferior de la especificación correspondiente (Figura 3). Ha sido habitual considerar como suficiente que un proceso tuviese una desviación de ±3s, lo cual significa que dicho proceso era capaz de producir solo 2,7 defectos por cada mil oportunidades. La idea de un “porcentaje de error aceptable” (a veces denominado un “nivel de calidad aceptable”) es un curioso remanente de la era del “control de calidad”. En aquellos tiempos se podían encontrar maneras de justificar estadísticamente los naturales fallos humanas, sosteniendo que nadie podía ser perfecto. Hoy día dicho nivel de calidad es inaceptable para muchos procesos (supondría aceptar 68 aterrizajes forzosos en un aeropuerto internacional cada mes, o bien 54.000 prescripciones médicas erradas por año). Seis Sigma hace referencia a un nivel de calidad capaz de producir con un mínimo de 3,4 defectos por millón de oportunidades (0,09 aterrizajes forzosos en un aeropuerto internacional cada mes, o una prescripción médica errada en 25 años). Esta calidad se aproxima al ideal del cero-defectos y puede ser aplicado no solo a procesos industriales, sino a servicios y, por supuesto, al proceso proyecto-construcción.

Niveles sigma de un proceso
Niveles sigma de un proceso

Sin embargo, los principios estadísticos anteriores poco tienen que ver con lo que actualmente se entiende por Seis Sigma. De hecho, es una filosofía que promueve la utilización de herramientas y métodos estadísticos de manera sistemática y organizada, que permite a las empresas alcanzar considerables ahorros económicos a la vez que mejorar la satisfacción de sus clientes, todo ello en un periodo de tiempo muy corto.

Los cambios radicales se consiguen básicamente traduciendo las necesidades de los clientes al lenguaje de las operaciones y definiendo los procesos y las tareas críticas que hay que realizar de forma excelente. En función de las intervenciones de análisis y mejora siguientes, Seis Sigma lleva el funcionamiento de los productos, servicios y procesos a niveles nunca conseguidos anteriormente.

Seis Sigma se utiliza para eliminar los costes de no calidad (desperdicios, reprocesos, etc.), reducir la variación de un aspecto o característica de un producto, acortar los tiempos de respuesta a las peticiones de los clientes, mejorar la productividad y acortar los tiempos de ciclo de cualquier tipo de proceso, centrándose en aquellas características o atributos que son clave para los clientes y, por tanto, mejorando notablemente su satisfacción. Para ello, la Dirección identifica las cuestiones que más incidencia tienen en los resultados económicos y asigna a los mejores profesionales, tras formarlos intensivamente, a trabajar en los mismos.

Los elementos clave que soportan la filosofía Seis Sigma son los siguientes: (a) conocimiento de los requerimientos del cliente, (b) dirección basada en datos y hechos, (c) mejora de procesos y (d) implicación de la Dirección.

Un elemento básico en Seis Sigma es la formación. Para ello se definen diferentes papeles para distintas personas de la organización, con denominaciones peculiares y características. El directivo que va a definir, concretar, monitorizar y apoyar los proyectos de mejora se designa Champion. Para desarrollar estos proyectos se escogen y preparan expertos conocidos con los nombres de Master Black Belt, Black Belt y Green Belt, quienes se convierten en los agentes de cambio, en conjunto con los equipos de trabajo seleccionados para los mismos.

LA METODOLOGÍA SEIS SIGMA

El proceso comienza con un “cambio radical… de actitud”. La Dirección debe ser consciente de que la mejora continua ya no es suficiente para alcanzar los objetivos estratégicos, financieros y operativos. La mejora radical es necesaria para reducir con rapidez los desperdicios crónicos.

Los proyectos son seleccionados en función de los beneficios. La empresa Seis Sigma aporta una metodología de mejora basada en un esquema denominado DMAIC: Definir los problemas y situaciones a mejorar, Medir para obtener la información y los datos, Analizar la información recogida, Incorporar y emprender mejoras en los procesos y, finalmente, Controlar o rediseñar los procesos o productos existentes. Las claves del DMAIC se encuentran en:

  • Medir el problema. Siempre es necesario tener una clara noción de los defectos que se están produciendo, tanto en cantidad como en coste.
  • Enfocarse al cliente. Sus necesidades y requerimientos son fundamentales, y deben tenerse siempre en consideración.
  • Verificar la causa raíz. Es necesario llegar hasta la causa relevante de los problemas, y no quedarse en los efectos.
  • Romper los malos hábitos. Un cambio verdadero requiere soluciones creativas.
  • Gestionar los riesgos. La prueba y el perfeccionamiento de las soluciones es una parte esencial de Seis Sigma.
  • Medir los resultados. El seguimiento de cualquier solución significa comprobar su impacto real.
  • Sostener el cambio. La clave final es conseguir que el cambio perdure.

La metodología DMAIC hace mucho énfasis en el proceso de medición, análisis y mejora y no está planteada como un proceso de mejora continua, pues los proyectos Seis Sigma deben tener una duración limitada en el tiempo. Los proyectos Seis Sigma surgen bajo el liderazgo de la Dirección, quien identifica las áreas a mejorar, define la constitución de los equipos y garantiza el enfoque hacia el cliente y sus necesidades y a los ahorros económicos. Sin embargo, antes de que un equipo Seis Sigma aborde el ciclo de la mejora, han de desarrollarse una serie de actividades necesarias para el éxito del proyecto: (1) identificación y selección de proyectos, (2) constitución del equipo, (3) definición del proyecto, (4) formación de los miembros del equipo, (5) ejecución del proceso DMAIC y (6) extensión de la solución.

Seis Sigma utiliza casi todo el arsenal de herramientas conocidas en el mundo de la calidad. Sin embargo, no son los instrumentos los que fundamentan por sí solos el éxito de la metodología Seis Sigma; de hecho, es la infraestructura humana y su formación la que con estas herramientas consigue el éxito.

Metodología DMAIC para la mejora
Metodología DMAIC para la mejora

Referencias:

  • DE BENITO, C.M. La mejora continua en la gestión de calidad. Seis sigma, el camino para la excelencia. Economía Industrial, 331, p. 59-66.
  • HARRY, M.; SCHROEDER, R. Six Sigma. Ed. Rosetta Books, 2000.
  • MEMBRADO, J. Curso Seis Sigma. Una estrategia de mejora. Qualitas Hodie, 95, p. 16-21.
  • PÉREZ, J.B.; SABADOR, A. Calidad del diseño en la construcción. Ed. Díaz de Santos, 2004.
  • YEPES, V.; PELLICER, E. (2005). Aplicación de la metodología seis sigma en la mejora de resultados de los proyectos de construcción. Actas IX Congreso Internacional de Ingeniería de Proyectos. Málaga, 22, 23 y 25 de junio de 2005, libro CD, 9 pp. ISBN: 84-89791-09-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Qué es «Lean Construction»?

Profesor Lauri Koskela
Profesor Lauri Koskela

Lean Construction constituye una nueva filosofía orientada hacia la administración de la producción en construcción, cuyo objetivo fundamental es la eliminación de las actividades que no agregan valor (pérdidas). Este modelo denominado «construcción sin pérdidas», propuesto por Lauri Koskela (1992) , analiza los principios y las aplicaciones del JIT (justo a tiempo) y TQM (gestión de la calidad total). Esta filosofía introduce cambios conceptuales en la gestión de la construcción con el objeto de mejorar la productividad enfocando todos los esfuerzos en la estabilidad del flujo de trabajo.

Una herramienta de planificación y control desarrollada por Ballard y Howell para reducir las pérdidas del proceso productivo es la denominada «último planificador» (Last Planner System). El método incluye la definición de unidades de producción y el control del flujo de actividades, mediante asignaciones de trabajo. Asimismo, sirve para detectar el origen de los problemas y tomar las decisiones correspondientes para ajustar las operaciones, lo cual incide directamente en la productividad.

Os dejo unos vídeos introductorios al tema que espero os gusten.

Enlaces de interés:

Lean Construction Institute: http://www.leanconstruction.org/

Spanish Group for Lean Construction: http://www.leanconstruction.es/

¿Por qué las máquinas pierden tanto tiempo en las obras?

Cargadora de descarga lateral¿Qué hace una máquina desde que llega a una obra? ¿Por qué se pierde dinero en una obra cuando las máquinas se encuentran paradas? Resulta evidente que es totalmente engañoso intentar hacer un presupuesto de una obra con datos erróneos en relación con la producción de los equipos, el uso del tiempo de la máquina, la organización de la obra, etc. Existen técnicos sin mucha experiencia que piensan que los datos de producción o incluso los costes horarios de las máquinas son datos que alguien nos tiene que dar y que se pueden buscar en folletos e incluso por internet. En este post vamos a intentar divulgar alguno de los conceptos básicos que tienen que ver con la producción de los equipos y que iremos ampliando en otros posts posteriores. Espero que os guste.

De los días que una máquina permanece en una obra, sólo una parte es reconocida por la legislación laboral y la organización de la obra para trabajar: es el tiempo de calendario laborable. El resto del tiempo la máquina permanece estacionada o puede ser utilizado para su mantenimiento o reparación. Las máquinas sólo pueden aprovechar un número de horas del calendario laborable denominado tiempo laborable real Hl debido a circunstancias fortuitas como los fenómenos atmosféricos, las huelgas, las catástrofes y otros motivos no previstos. La máquina se encuentra operativa, apta y dispuesta para el trabajo durante el tiempo de máquina en disposición Hd. Cuando la máquina se encuentra fuera de disposición, unas horas Hm se emplean en tareas previsibles como el mantenimiento, y otras horas Ha son imprevisibles como las reparaciones de averías. Un equipo en estado operativo puede estar parado Hp horas por causas ajenas a la propia máquina debido a una deficiente organización de la obra, a la falta de tajo, a la imprevisión de los suministros, al mal dimensionamiento de los equipos, a las averías de otras máquinas, etc. Por tanto una máquina sólo dispone de un tiempo de trabajo útil Hu, donde puede producir durante Ht horas, o bien realizando trabajos no productivos o complementarios como cambios o preparación de tajos durante Hc horas.

Os paso a continuación un Polimedia donde se repasan estos conceptos y se profundiza sobre el fondo horario de una máquina en una obra. También os dejo como referencia algunos títulos de los libros de apuntes que seguimos en las clases de Procedimientos de Construcción en la Escuela de Ingenieros de Caminos de Valencia.

Referencias:

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Cuándo hay que comprar o renovar la maquinaria empleada en la construcción?

La adquisición de maquinaria puede motivarse, bien por la implantación de un proceso novedoso, por la mejora de otro ya existente, por el incremento de la capacidad de producción, o simplemente por una sustitución periódica de otra máquina similar que llegó al término de su vida económica. El conocimiento de las causas que provocan la pérdida de valor de las máquinas proporciona las pautas para su renovación, que dependerán, en gran medida, de las disponibilidades y circunstancias de la empresa. El envejecimiento de los equipos, una producción baja o con unos costes elevados y el mercado de maquinaria nueva y usada son algunos de los criterios que deberían guiar a la empresa en la adquisición de una máquina. Además, deben considerarse otros factores como el estado general de la economía, el futuro de la empresa y sus necesidades inmediatas, los objetivos a largo plazo y la selección de los medios adecuados para sus logros. Sin embargo, la realidad es que la necesidad concreta que surge en una obra determinada es la que plantea la adquisición de una nueva máquina.

El problema de la renovación es independiente de la dimensión de las organizaciones. Las pequeñas empresas deben afrontar el reemplazamiento de los equipos con la misma amplitud que las grandes, so pena de soportar serios problemas de descapitalización y de incrementos en los costes de producción. Las opciones a la compra de un equipo nuevo son la gran reparación, el alquiler, el arrendamiento financiero y la compra de máquinas usadas. Siempre que la empresa pueda abordar la adquisición de un nuevo equipo, son los criterios de rentabilidad económica durante la vida útil los que decidirán la opción más adecuada en cada caso. Como variantes a la adquisición de equipos para grandes obras, en ocasiones se compran los equipos para una obra y se venden a terceros cuando se termina, o bien se adquieren con el compromiso de recompra por parte del vendedor. Con ello se evita que estos equipos graven al parque de maquinaria por su falta de empleo. La maquinaria propia representa para la empresa un mayor potencial y prestigio; sin embargo, supone un mayor inmovilizado, el riesgo de paralización si no existe suficiente obra, la necesidad de contar con un parque o servicio de maquinaria y el riesgo de personal excedente cuando se paran las máquinas. Una alternativa puede ser el alquiler.

Para profundizar un poco más en este tema, os paso un vídeo Polimedia sobre el tema. Espero que os guste.

Referencias:

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Problemas resueltos de movimiento de tierras y compactación

En el año 1997 se editó un libro de problemas que se llamó «Equipos de movimiento de tierras y compactación. Problemas resueltos«. Aunque ya han pasado años, me apetecía empezar la semana haciendo algunos comentarios sobre esta publicación.

Uno de los peores defectos que puede tener una escuela de ingeniería es desligarse de la realidad. Si bien es cierto que la investigación debe ocupar una parte de las tareas a las que se debe encomendar la universidad, también es cierto que una escuela de ingenieros debe formar profesionales capaces de abordar problemas reales cotidianos. El movimiento de tierras y las labores de compactación son, probablemente, una de las tareas más habituales de cualquier obra de ingeniería civil. Sin embargo, es habitual que en numerosas escuelas esta faceta se presente con una profundidad más bien teórica, siendo lo práctico secundario.

Este tipo de reflexión me hizo coleccionar datos, casos resueltos y problemas reales que tuve que afrontar en mis primeros años de práctica profesional. Al principio era una colección dispersa cuyo único objetivo era sistematizar mi trabajo habitual en obras lineales, casi todas ellas autovías y carreteras. Sin embargo, cuando empecé mi labor universitaria, me di cuenta que este material podía ser de extraordinaria importancia para nuestros alumnos.

En este libro, que seguro necesita alguna revisión, se abordan aspectos económicos, de producción, mantenimiento, reparación, etc. Además aparecen casos resueltos relacionados con el control de calidad, tramos de prueba, propiedades de los suelos y otros que creo son de interés. Además, aparecen en forma de cuestionario tipo test preguntas que aparecieron en los primeros años de docencia de la asignatura de Procedimientos de Construcción que pueden servir para aclarar algunas ideas y conceptos. Por último, se han incorporado aspectos de otras disciplinas que son de aplicación directa al problema de los equipos de producción de este tipo de unidad de obra: ensayos de fiabilidad, el problema del transporte, el problema de la asignación, caminos mínimos entre nodos, etc. Son un total de 100 problemas resueltos, 166 preguntas tipo test y un apéndice de tablas aplicables a este tipo de problemas. Creo que, en este momento, no existe una publicación similar en español.

Os dejo a continuación algunas direcciones desde donde se puede acceder a esta publicación. Espero que no se haya agotado.

http://books.google.es/books/about/Equipos_de_movimiento_de_tierras_y_compa.html?id=BCDpMloopMcC

http://www.amazon.es/Equipos-Movimiento-Compactaci%C3%B3n-Problemas-Resueltos/dp/8477215510

http://www.casadellibro.com/opiniones-libro/equipos-de-movimiento-de-tierras-y-compactacion-problemas-resuel-tos/9788477215516/946443

Referencia:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

¿Por qué es tan importante la productividad?

Cuando se habla de productividad en el sector de la construcción, siempre se dice que ésta es baja en relación con otro tipo de industrias. Incluso también es común opinar sobre la baja productividad que tienen los trabajadores en un país o en otro, lo cual influye fuertemente en la competitividad. Parece evidente que, cuanto más seamos de producir con unos recursos dados, más competitivos podremos ser. En este post vamos a divulgar, de forma sencilla, un par de ideas en relación con este concepto tan importante y de tanta transcendencia en nuestro sector.

La productividad es la relación entre los bienes y servicios producidos y los recursos empleados para ello. Existen otros ratios que se refieren sólo a uno o a varios de los recursos empleados: productividad de la mano de obra directa, de la indirecta, de la maquinaria, de los materiales, del dinero, etc. La productividad es vital para el desarrollo de cualquier actividad empresarial, pues aquellas que no la mejoran respecto a su competencia están condenadas a desaparecer.

El estudio y la medición del trabajo son técnicas que han demostrado en la industria su eficiencia para mejorar la productividad. La construcción es un sector caracterizado por su trashumancia, por series de fabricación o unidades de obras limitadas, con un bajo grado de especialización, con personal contratado temporal elevado, con la existencia de subcontratistas, etc. Sin embargo ello no es óbice para la mejora de la productividad y la reducción de los costes.

Un incremento en la producción no refleja necesariamente un incremento en la productividad. Por ejemplo, si las entradas crecen en forma proporcional a las salidas, entonces la productividad es la misma. Para conseguir aumentar la productividad se debe buscar la eficiencia en todos los procesos que constituyen la actividad de la empresa. Según la OIT (Oficina Internacional del Trabajo), los medios directos para aumentar la productividad pueden resumirse en los siguientes:

a)      Inversión de capital:

  1. Idear nuevos procedimientos básicos o mejorar fundamentalmente los existentes.
  2. Instalar maquinaria o equipo más moderno, de mayor capacidad o modernizar los existentes.

b)      Mejor dirección:

  1. Reducir el contenido de trabajo del producto.
  2. Reducir el contenido de trabajo del proceso.
  3. Reducir el tiempo improductivo, ya sea imputable a la dirección o a los trabajadores.

La productividad no debe confundirse con el rendimiento, que es la relación entre lo realizado y lo previsto, ya sea en relación con la producción o con el tiempo destinado a realizar una actividad. El rendimiento contribuye a aumentar o disminuir la productividad sin modificar los medios de producción, sino su eficiencia.

La pérdida de productividad se debe, en lo que al tiempo de ejecución de los trabajos se refiere, a que el tiempo total invertido en la operación presenta ineficiencias por diversas causas. Así, el tiempo de trabajo se puede descomponer en (ver Figura):

Tiempo total invertido en un trabajo
Tiempo total invertido en un trabajo

a)            Contenido base de trabajo: la cantidad de trabajo, expresada en horas-hombre y horas-máquina, que sería necesario emplear para fabricar el producto o para desarrollar la actividad si el proyecto fuese perfecto, si el procedimiento o método de fabricación o de ejecución estuviesen perfectamente puestos a punto, si no existiesen pérdidas de tiempo imputables a cualquier causa (a parte de las pausas concedidas al ejecutor para el oportuno descanso). Por tanto el contenido base de trabajo es el tiempo mínimo irreducible de ejecución.

b)            Trabajo innecesario: es un trabajo suplementario debido a un mal diseño o especificaciones del producto, o bien a métodos ineficaces de producción o de funcionamiento.

c)            Tiempo inefectivo o improductivo: debido a una deficiente dirección o imputable al trabajador.

Os paso a continuación como referencias algunos títulos de los libros de apuntes que seguimos en las clases de Procedimientos de Construcción en la Escuela de Ingenieros de Caminos de Valencia. En próximos posts seguiremos profundizando en estos aspectos tan importantes para los jefes de obra.

Referencias

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 157 pp. ISBN: 978-84-9048-301-5. Ref. 402.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

¿Qué es el Value Stream Mapping o mapa de flujo del valor?

Ejemplo de mapa de la cadena de valor. http://engineeringhelps.wordpress.com/

El mapa del flujo de valor es una herramienta utilizada en Lean manufacturing para analizar los flujos de materiales e información que se requieren para poner a disposición del cliente un producto o servicio, identificando las pérdidas de valor o desperdicios. Esta herramienta se desarrolló en Toyota donde se conocía con el nombre de Mapa del flujo de materiales e información.

Con este tipo de herramientas se pueden detectar para desarrollar una ventaja competitiva y evitar fallos en el proceso, además de crear un lenguaje normalizado dentro de la empresa para una mejor efectividad de los procesos y del personal. Se trata de intensificar los esfuerzos en aquellos procesos donde se produzcan más fallos o que aporten más valor a la producción. Aunque el mapa del flujo de valor se asocia tradicionalmente con el sector industrial, ha demostrado su efectividad para mejorar procesos en otros sectores, como el de servicios, logística, hospitalarios, desarrollo de software, etc.  El mapa de la cadena de valor  nos proporciona por si solo las respuestas pues es una herramienta muy útil en cualquier tipo de actividad de mejora.

Se pueden utilizar muchos tipos de símbolos para realizar estos mapas de flujo. Os dejo un ejemplo en la siguiente figura:

DIAGRAMA DE FLUJO

Fases para su implantación:

  1. Identificar el producto o servicio
  2. Dibujar el mapa de flujo de valor tal como está el proceso, mostrando cada una de las etapas, las esperas y las informaciones que se requieren para entregar el producto o servicio. Existen símbolos estandarizados que representan los distintos elementos de la cadena de valor.
  3. Identificar sobre el mapa los desperdicios que se encuentran (aquello que no aporta valor para el cliente). Para ello suelen buscarse los 7 desperdicios según el lean: sobreproducción, tiempo de espera, transportes innecesarios, exceso de procesado, inventario, movimientos innecesarios y defectos.
  4. Dibujar el mapa de estado futuro, es decir, el mapa como queda una vez eliminados los desperdicios.
  5. Implementar un plan de acciones de mejora (eventos kaizen) para llegar al mapa de estado futuro.

A continuación os dejo varios Polimedias de la Universitat Politècnica de València donde se explican bien esta herramienta. En el primero Juan Antonio Marín García nos explica la herramienta VSM, en qué consiste y qué puede aportar para la mejora de procesos.

En este otro vídeo se muestran los principales símbolos que representan el movimiento de información en un mapa de la cadena de valor. Su autor es Julio García Sabater. Espero que os guste.

 

 

Acoplamiento de máquinas de transporte y movimiento de tierras

Un caso habitual en la construcción consiste en la utilización de varias máquinas cuyos ciclos individuales de trabajo tienen un intervalo común. Por ejemplo, una cargadora con varios camiones, o bien un equipo de mototraíllas convencionales ayudadas en su carga por un tractor. En estos casos, los ciclos individuales de las máquinas se pueden agrupar formando un ciclo del equipo que se repite periódicamente.

Al recurso que limita la producción de un equipo se le denomina cuello de botella. Su identificación es esencial porque cualquier cambio introducido en el funcionamiento repercutirá en la capacidad de producción del equipo, y por ende, en su productividad.  El recurso que causa el estrangulamiento es el que determina la producción del equipo. Se define como factor de acoplamiento o “match factor” a la relación entre la máxima producción posible de los equipos auxiliares respecto a la máxima producción posible de los equipos principales. El coste más bajo de producción se obtiene para factores de acoplamiento próximos a la unidad, pero por debajo de ella.

Para aclarar estos conceptos tan importantes en el cálculo de producciones y costes en las máquinas de movimiento de tierras, os paso este Polimedia para divulgar los conceptos básicos. Espero que os guste.

Referencias:

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5.

Tendencia al gigantismo en la maquinaria de obras públicas y minería

La maquinaria ha cambiado rápidamente con las innovaciones tecnológicas. Se ha derivado hacia la especialización, evolucionando unas hacia el gigantismo para obtener grandes producciones, mientras otras se han convertido en diminutas y versátiles. En otros casos se ha buscado la polivalencia del trabajo en equipos pequeños y medianos. Los medios informáticos han auxiliado y mejorado los sistemas de los equipos. La maquinaria va siendo cada vez más fiable, segura y cómoda para el operador, facilitándole las labores de conservación. En general se observa una preocupación creciente por la seguridad, el medio ambiente y la calidad.

Como muestra de la tendencia al gigantismo en la maquinaria de ingeniería civil y minería, os paso un pequeño documental donde se muestran brevemente estas megamáquinas. Espero que os guste.

Os paso ejemplos de máquinas gigantes. La grúa torre Kroll K-10000 es la más grande del mundo. Fue fabricada por la marca danesa Kroll y es capaz de levantar pesos de 132 toneladas de carga máxima y 91 toneladas a una distancia máxima de 100 m.

El Bulldozer D575A-3SD tiene casi 5 metros de altura y fue diseñado y fabricado en Japón. Esta potente máquina rebasa los 12 m de ancho y puede mover más de 215 toneladas de una sola vez.

La Bagger 288, es una excavadora giratoria empleada fundamentalmente en trabajos de minería. Una vez entró en funcionamiento, se convirtió en el vehículo de carga sobre tierra firme más grande del mundo. Mide 220 metros de largo, 96 de alto y 46 de ancho.

El BelAZ 75710 pesa 810 toneladas, 210 toneladas más que el Caterpillar, y tiene una capacidad de carga de 450 toneladas. Cuenta con dos motores turbodiésel de 16 cilindros asociados que generan 4.600 caballos con un par máximo de 18.626 Nm.

La motoniveladora ACCO se considera la mayor motoniveladora del mundo. Esta máquina pesa unas 200 toneladas y contiene dos motores Caterpillar, uno de 1000 CV en la parte trasera y otro de 700 CV en la parte delantera, la cual pertenece a la cabeza tractora de una mototraílla Caterpillar 657. La hoja o cuchilla posee una longitud de 10 m.

 

Referencias:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5. Ref. 402.

¿Podemos cumplir con las tolerancias exigidas en obra?

No es raro verse en una situación comprometida cuando vemos que nuestra planta de fabricación de hormigón o de aglomerado asfáltico empieza a no cumplir con las exigencias de calidad del producto terminado. Empezamos a buscar culpables por todos los sitios y no nos damos cuenta que el problema está en el procedimiento, las máquinas empleadas o las propias personas. En definitiva, nuestro proceso es incapaz de cumplir con las tolerancias solicitadas para nuestro producto. Hay que tener esta idea muy clara pues existe cierta variabilidad debida a causas comunes que sólo se podrá solucionar si se cambia la máquina o el proceso, lo cual implica una decisión por parte de la alta dirección. Este aspecto lo hemos explicado en un artículo anterior.

Después de comprobar que el proceso está bajo control, el siguiente paso es saber si es un proceso capaz, es decir, si cumple con las especificaciones técnicas deseadas, o lo que es lo mismo, comprobar si el proceso cumple el objetivo funcional. Se espera que el resultado de un proceso cumpla con los requerimientos o las tolerancias que ha establecido el cliente. El departamento de ingeniería puede llevar a cabo un estudio sobre la capacidad del proceso para determinar en que medida el proceso cumple con las expectativas.

La habilidad de un proceso para cumplir con la especificación puede expresarse con un solo número, el índice de capacidad del proceso o puede calcularse a partir de los gráficos de control. En cualquier caso es necesario tomar las mediciones necesarias para que el departamento de ingeniera tenga la certeza de que el proceso es estable, y que la media y variabilidad de este se pueden calcular con seguridad. El control de proceso estadístico define técnicas para diferenciar de manera adecuada entre procesos estables, procesos cuyo promedio se desvía poco a poco y procesos con una variabilidad cada vez mayor. Los índices de capacidad del proceso son solo significativos en caso de que el proceso sea estable (sometidos a un control estadístico).

Para aclarar estas ideas, o paso un Polimedia explicativo que espero os guste.