Tratamiento de los residuos según el Código Estructural

https://www.rdsanjuan.com/servicios/demolicion/

Como ya es conocido, el Real Decreto 470/2021, de 29 de junio, fue el que aprobó el vigente Código Estructural. Independientemente de la pertinencia de aprobar esta norma nacional en un momento donde deberíamos converger rápidamente hacia los Eurocódigos, lo cierto es que permite integrar en un solo documento los aspectos relacionados con el hormigón estructural, el acero y las estructuras mixtas. Además, posibilita conocer hacia dónde van las tendencias en este ámbito. No obstante, son necesarias más de 300 normas UNE para complementar el contenido del nuevo código en lo referente a la conformidad de los productos y procesos regulados en el mismo.

En un artículo anterior hablé del término “deconstrucción” y su empleo dentro del Código Estructural. Dejando al margen el acierto en el uso de determinadas palabras, lo cierto es que algo nuevo se respira en el ambiente en relación con el ciclo de vida de las estructuras, en especial cuando tratamos del final de la vida útil. En este caso, uno de los aspectos que se resalta en el nuevo código es el tratamiento de los residuos, tanto al final de la vida de la estructura como en su utilización como material reciclado. Repasemos, pues, el tratamiento que da el Código Estructural a los residuos. Por cierto, que un residuo de construcción y demolición es cualquier sustancia u objeto que, cumpliendo la definición de “residuo” de la Ley 10/1998, de 21 de abril, se genere en una obra de construcción o demolición.

En el artículo 5, referido a los requisitos de las estructura, y en particular en lo referente a la exigencia de calidad medioambiental de la ejecución, se exige tanto en proyecto, en ejecución y en las tareas de intervención sobre las estructuras existentes, la reducción en la generación de residuos.

En cuanto al uso de materiales en el hormigón, el artículo 30.8 referido a los áridos reciclados establece los requisitos para la utilización del árido reciclado procedente de los residuos del hormigón. Además, el artículo 32, sobre las adiciones, se refiere a las cenizas volantes como residuos sólidos.

Pero quizás lo más interesante a este respecto viene con los artículos referidos a la demolición y deconstrucción de las estructuras. Así, el Capítulo 16 se refiere a las estructuras de hormigón, y establece que en el proyecto de demolición de estas estructuras se deben definir los procedimientos de gestión de los residuos, las medidas previstas para la separación de los residuos generados y la retirada de posibles residuos peligrosos. Se añade la obligatoriedad de gestionar los residuos de forma eficiente durante el proceso de demolición. Lo novedoso es que el artículo 78 contempla medidas adicionales para lo que se viene en llamar “deconstrucción de estructuras de hormigón”. No se establece en el código cuándo es obligatorio proceder a la deconstrucción frente a la demolición, pues solo habla de esas medidas adicionales que diferencian ambos procesos, y que pasan por la reutilización y reciclado de la estructura existente. Para ello las medidas adicionales se basan en identificar los elementos reutilizables, los residuos generados y elaborar dos documentos: el Estudio de Gestión de Residuos, que contenga los destinos previstos para los residuos generados, y el Plan de Gestión de Residuos, orientado al reciclado. Además, esta deconstrucción solo la puede realizar una empresa con certificación medioambiental de conformidad con la norma UNE-EN ISO 14001.

El Capítulo 26 trata la demolición y deconstrucción de las estructuras de acero de forma similar a las de hormigón. Y del mismo modo, el Capítulo 36 lo hace con las estructuras mixtas hormigón-acero. Hubiera bastado un solo capítulo referido a la demolición y deconstrucción de las estructuras para no repetir tres veces prácticamente lo mismo.

En este contexto, por tanto, se podrían hacer los siguientes comentarios respecto al tratamiento de los residuos por parte del Código Estructural. Otra cosa es que la legislación o las normas de carácter voluntario definan con mayor claridad alguno de estos aspectos.

  1. El proyecto constructivo de una estructura debe de justificar la reducción en la generación de residuos, no se define cómo ni dónde. La exigencia se amplía a la ejecución a la intervención de las estructuras, pero la indefinición es la misma.
  2. El Código Estructural no aclara cuándo es obligatoria la deconstrucción frente a la demolición de una estructura. Pero, con los requisitos medioambientales actuales, ¿cabe hablar de una demolición que no contemple el reciclado y la gestión de los residuos? No es razonable, por tanto, distinguir el proceso de la demolición del de la deconstrucción. Hubiera bastado en el Código Estructural exigir a la demolición los requisitos adicionales citados.
  3. Se hace necesario un proyecto de demolición, aunque no se habla de un proyecto de deconstrucción.
  4. La reutilización de residuos procedentes de estructuras queda circunscrito en este código al árido reciclado. La reutilización, por tanto, queda indefinida fuera de este ámbito.
  5. Se exigen dos documentos diferentes, el Estudio de Gestión de Residuos y el Plan de Gestión de Residuos, cuyo contenido y estructura no se definen en el código (hay que acudir a otra legislación vigente).
  6. La deconstrucción la puede realizar solo una empresa con certificado ISO 14001. ¿Cualquier empresa, independientemente de su experiencia o capacidad para realizar demoliciones estructurales? No olvidemos que la deconstrucción es una demolición con unos requisitos adicionales.

La conclusión sobre el documento es bastante clara. Aunque se apuntan direcciones estratégicas respecto al ciclo de vida de las estructuras, la parte final queda algo desdibujada. No hay más remedio que acudir a otra normativa o legislación para aplicar con cierto rigor lo que establece el Código Estructural. Véase el Real Decreto 105/2008, de 1 de febrero, por el que se regula la producción y gestión de los residuos de construcción y demolición.

Aquí tenéis un vídeo sobre la demolición de estructuras en el Código Estructural. Organizado por el CITOP de Aragón.

Os dejo aquí un webminar que se desarrolló hace poco sobre el nuevo Código Estructural, organizado por el Colegio Oficial de Aparejadores y Arquitectos Técnicos de Madrid.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Crítica de la catedrática M.ª Carmen Rubio Gámez a mi libro en la Revista de Obras Públicas

Resulta un privilegio haber recibido una crítica de mi libro “Procedimientos de construcción de cimentaciones y estructuras de contención” por parte de la catedrática de universidad M.ª Carmen Rubio Gámez, de la Universidad de Granada.

El honor es doble cuando se publica dicha reseña en la Revista de Obras Públicas, que es el órgano profesional de los ingenieros de Caminos, Canales y Puertos, revista fundada en 1853, que es la publicación periódica no diaria más antigua en España.

Podéis leer la reseña completa en el siguiente enlace: https://www.revistadeobraspublicas.com/resenas/procedimientos-de-construccion-de-cimentaciones-y-estructuras-de-contencion/.

Asimismo, Este libro lo podéis conseguir en la propia Universitat Politècnica de València o bien directamente por internet en esta dirección: https://www.lalibreria.upv.es/portalEd/UpvGEStore/products/p_328-9-2

También os paso la crítica a continuación. Agradezco a Mª Carmen Rubio, Mayca para sus amigos, sus comentarios positivos de este libro, que ya está en su segunda edición.

“Una de las dificultades más importantes que nos encontramos los que nos dedicamos a la docencia de una asignatura como “Procedimientos de construcción” es explicar en clase las técnicas constructivas, los equipos, las instalaciones auxiliares y la maquinaria con los que se ejecutan en obra las soluciones de proyecto; es decir, llevar al aula la experiencia práctica. Para acercar al futuro ingeniero civil al apasionante mundo de la construcción se hace necesario agudizar el ingenio para facilitar al alumno fotografías, vídeos y documentación que permitan este acercamiento. Es por ello que resulta difícil encontrar libros donde se reúna este tipo de información práctica sobre métodos, maquinaria y medios auxiliares aplicados al caso particular de la construcción de cimentaciones y estructuras de contención.

En efecto, son abundantes los libros de texto sobre geotecnia, mecánica de suelos, resistencia de materiales o cálculo de estructuras, pues los fundamentos básicos de estas materias suelen permanecer en el tiempo y forman la base de las enseñanzas técnicas.

Sin embargo, las técnicas constructivas, y en especial la maquinaria, avanzan más rápidamente, por lo que es difícil mantener actualizado un manual como el que nos presenta Víctor Yepes en este volumen.

El texto, fácil de entender incluso por lectores sin una profunda formación técnica, permite abordar los aspectos constructivos de las cimentaciones y las estructuras de contención. Se agradece la gran cantidad de material gráfico y las referencias aportadas, lo cual permite ampliar la información en caso necesario. También resultan de interés las más de 400 cuestiones planteadas al final del texto, con sus respuestas, que permiten al lector realizar un ejercicio de autoevaluación.

Por tanto, nos encontramos ante un texto universitario que no solo permite apoyar la docencia en las aulas de los futuros titulados en Ingeniería y Arquitectura, sino que también sirve para dar una visión conjunta y bien documentada de los procedimientos constructivos a cualquier profesional que se dedique al proyecto y ejecución de obras.

Por último, me gustaría resaltar la intensa labor divulgadora realizada por el autor en esta última década a través de las redes sociales. Es difícil no tropezarse con el blog de Víctor Yepes cuando se realiza alguna consulta técnica en los buscadores disponibles en internet y, dado el perfil de los jóvenes ingenieros y arquitectos, Víctor ha desarrollado una gran labor en la formación práctica de este colectivo, facilitando un acercamiento de los procedimientos de construcción y equipos. Todo este trabajo desinteresado, de mucha calidad y gran rigor técnico, no hubiese sido posible sin los años de experiencia del autor tanto en la empresa pública como privada, así como de los años dedicados a la docencia y a la investigación universitaria en el ámbito de la ingeniería de la construcción”.

Os dejo también un vídeo que he grabado presentando este mismo libro. Espero que os sea de interés.

Efecto del hielo y las sales fundentes sobre el hormigón

Figura 1. Ejemplo de acción hielo-deshielo junto con sales fundentes. https://www.interempresas.net/ObrasPublicas/Articulos/300170-Requisitos-revestimientos-protectores-larga-durabilidad-empleo-estructuras-hormigon.html

Cuando entramos en invierno, la bajada de temperaturas trae no solo ciclos de hielo y deshielo, sino que también es muy común el uso de sales fundentes para rebajar el punto de congelación del agua o de fundir el hielo si éste se ha formado. Echar sal sobre pavimentos, aceras o calles es habitual con frío y nevadas, pero tiene ciertos efectos perversos que deberíamos analizar.

En un país como España, donde el 18% de la superficie se encuentra a una altitud superior a 1000 m, y donde la altura media geográfica es de unos 660 m, hace que la posibilidad de fenómenos como las nevadas y heladas sean frecuentes. Estos efectos, por ejemplo, se dejan sentir fuertemente en la red de carreteras, pero también en las estructuras y los paramentos de hormigón. En este artículo nos vamos a centrar en los efectos del hielo y de las sales fundentes sobre el hormigón. En otros países, como es el caso del Reino Unido, en un estudio realizado en 1997, indicó que el 10% de todas las estructuras de hormigón armado se han visto afectadas por el ataque hielo-deshielo.

Por cierto, no vamos a hablar aquí sobre el efecto de las temperaturas en invierno en el hormigonado. No olvidemos que se suspenderá el vertido de hormigón siempre que se prevea que dentro de las 48 horas siguientes puede descender la temperatura ambiente por debajo de los 0ºC. Este tema, de gran trascendencia, se tratará en otro artículo.

El agua aumenta su volumen aproximadamente en un 9% cuando pasa de estado líquido a sólido. Como podemos ver en algunos artículos, se trata de una rareza más del líquido elemento, pues lo normal es que las sustancias se contraigan al enfriarse y se dilaten al calentarse. Esta peculiaridad ha facilitado la evolución de la vida en nuestro planeta, tal y como la conocemos. Sin embargo, cuando de lo que hablamos es de hormigón, estos ciclos de hielo y deshielo son perjudiciales. En efecto, los poros saturados, al congelarse, se rompen de forma explosiva, pudiendo provocar desconchados en el hormigón. Sin embargo, con la red capilar del hormigón o si existen fisuras, los daños pueden ser internos, pues estas fisuras crecen con el aumento de volumen provocado por el hielo.

La resistencia del hormigón a la acción del hielo depende de varios factores como son la edad del hormigón, su composición, el tipo de árido, el tamaño y distribución de los poros o la relación de enfriamiento y secado entre ciclos de hielo-deshielo. La resistencia del hormigón frente a este ataque se evalúa con la norma UNE-CENT/TS 12390-9.

El hielo se puede formar de varias formas: por congelación de la humedad existente en la superficie, por la condensación y enfriamiento del vapor de agua atmosférica (niebla y escarcha), por congelación del agua que cae sobre la superficie, por precipitación de agua en sobrefusión o por la nieve caída y no transformada.

Por otra parte, el uso de sales fundentes sobre la superficie helada del hormigón es un proceso endotérmico que provoca una caída de la temperatura superficial mientras se derrite el hielo. Es el conocido fenómeno de descenso crioscópico o depresión del punto de fusión. La velocidad de enfriamiento puede ser de hasta 14ºC por minuto, lo que provoca un choque térmico en la superficie del hormigón. Por este efecto, se forma un gradiente de temperaturas entre el exterior y el interior del hormigón que provoca un estado de tensiones internas que es capaz de producir fisuras en las capas exteriores del hormigón.

A este efecto físico hay que sumar, en el caso del hormigón armado, la presencia de cantidades suficientes de iones de cloruro disueltos que produce la corrosión del acero, incluso en condiciones altamente alcalinas. Esto genera, tal y como vemos en la Figura 2, picaduras de corrosión en puntos localizados de las armaduras donde la capa pasiva original es más débil, debido principalmente a la formación de sales de ácido clorhídico. Este efecto químico de determinadas sales fundentes es similar a las condiciones de durabilidad de las estructuras en ambientes marinos, de la que ya hemos hablado varias veces en este blog. Afortunadamente, existen alternativas a la sal que deberían tenerse muy en cuenta para evitar los impactos negativos, especialmente en estructuras como puentes.

Figura 2. Picaduras típicas provocadas por la presencia de cloruros en el hormigón. https://www.obrasurbanas.es/requisitos-de-los-revestimientos-protectores-de-larga-durabilidad-y-su-empleo-en-estructuras-de-hormigon/

Os dejo a continuación un documento técnico sobre el hormigón sometido a ciclos hielo-deshielo que espero sea de vuestro interés.

Descargar (PDF, 235KB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Resinas de poliuretano en la construcción

Inyección de resina base poliuretano expandible en contacto con agua. https://www.restic.cl/servicio/reparacion-de-filtraciones/

Las resinas de poliuretano constituyen un material de base orgánica empleadas en la reparación del hormigón. Son resinas que se obtienen por policondensación (poliadición) entre el grupo hidrófilo de un polialcohol y un disocianato. La policondensación puede hacerse por la reacción de los isocianatos con la propia humedad contenida en el aire, por lo que se pueden utilizar productos de un solo componente. Cuando se utilizan dos componentes, la reticulación es más lenta. En la construcción se utilizan estas resinas para ejecutar juntas, para realizar revestimientos de pequeño espesor y en suelos.

Una vez endurecidas la resinas, éstas pueden formar productos rígidos o flexibles. Además de tener una excelente resistencia a la abrasión y tracción, estas resinas pueden unir estructuras, formando uniones adhesivas resistentes a los impactos, que solidifican rápidamente y se pueden adherir a distintas superficies, incluyendo el hormigón. Además, son resistentes a productos químicos como los disolventes, aceites o grasas. Son además productos de alta durabilidad, resistentes al rayado y que forma una buena barrera que evita la carbonatación del hormigón. No obstante, presenta una elevada sensibilidad al fuego y es tóxico cuando se quema, por los gases generados por los cianatos.

Frente a las resinas epoxi, una de sus ventajas es que puede endurecer a temperaturas cercanas a 0º C, aunque es cierto que aumentan su viscosidad cuando desciende la temperatura, lo cual puede entorpecer su puesta en obra. Si se utilizan hormigones basados en resinas de poliuretano, su rápido endurecimiento (de 10 a 20 minutos), permiten una puesta en servicio muy rápida. Por su parte la resina de poliuretano, frente a la epoxi, es más expansiva (puede expandirse hasta 20 veces su tamaño) y por lo tanto más resistente a las quebraduras y más recomendada para aplicarse en el exterior, además se seca rápidamente una vez aplicada. Con carácter general, se utilizará una resina en base epoxi cuando se quiera reparar una fisura muerta y de carácter estructural, es decir, que transmita esfuerzos. Sin embargo, para fisuras vivas o con penetración de agua o humedad, se recomienda el uso de resinas acuoreactivas en base poliuretano. Sin duda, ante filtraciones de agua, la expansividad e impermeabilidad de las resinas acua-reactivas de poliuretano, junto su rapidez, permiten barreras impermeabilizantes y eliminan humedades por filtración en todo tipo de construcciones como obras subterráneas, canales, consolidación de terrenos, fisuras en el hormigón, juntas de dilatación, entre otras.

Os dejo a continuación la ejecución de un suelo de resina con poliuretano antideslizante para un pavimento industrial.

En este otro vídeo se observa cómo se pueden reparar grietas en paredes con resinas expansivas.

Referencias:

Fernández Cánovas; M. (1994). Patología y terapéutica del hormigón armado. 3ª edición, Servicio de Publicaciones del Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

Pelufo, M.J. (2003). Caracterización del comportamiento mecánico y frente a la corrosión de morteros de reparación del hormigón estructural. Tesis doctoral. Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil, Universidad Politécnica de Valencia.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Las resinas epoxi en la reparación del hormigón estructural

Solución de anclajes con resina epoxi. https://teoriadeconstruccion.net/blog/resinas-epoxy-solucion-de-anclajes/

Las resinas epoxi constituyen uno de los materiales de base orgánica más utilizados en la construcción. Se han empleado en pavimentos industriales desde los años 60, sobre todo en Europa. Con este nombre se hace referencia tanto a los componentes como al producto final, ya curado. Se trata de un fuerte adhesivo termoplástico resultante de la mezcla de un polímero termoestable y un agente catalizador. Pero también puede llevar otros componentes que modifiquen su comportamiento antes o después del endurecimiento como diluyentes, agentes de curado y otros aditivos. Sin embargo, la composición más simple es la resina epoxi y un endurecedor. El curado de las resinas epoxi tiene lugar a temperatura ambiente, durante el cual se forman enlaces cruzados lo que da como resultado que su peso molecular sea elevado.

Las resinas epoxi pueden usarse puras o en forma de morteros y hormigones si presentan árido fino o fino y grueso. Normalmente se utilizan en trabajos de reparación, refuerzo, sellado de juntas y protección de estructuras de hormigón que se vean atacadas por agentes químicos, físicos o biológicos. La resistencia de la resina epoxi puede ser tan alta como la del hormigón, o incluso duplicarla, con la ventaja de que no presenta fisuras y es impermeable. No obstante, la resistencia aumenta si se añaden compuestos químicos específicos.

En el ámbito de la reparación estructural, las principales aplicaciones de las resinas epoxi serían las siguientes (Pelufo, 2003): reparación de grietas en el hormigón por inyección; unión de hormigón nuevo con el existente para reparar estructuras dañadas; unión de bandas metálicas de acero en refuerzos en hormigón estructural; mortero para relleno de grietas y coqueras, parcheos; hormigón para rellenos de grandes oquedades. Sin embargo, también se pueden utilizar como protección de revestimientos de superficies

En cuanto a sus propiedades, las que destacan por su aplicabilidad a la construcción son las siguientes: retracción despreciable; adherencia a piedra, fábrica de ladrillo, hormigón y acero; resistencia a tracción de hasta 90 MPa, y a compresión entre 120 y 210 MPa; resistencia a productos químicos (excepto al ácido nítrico); comportamiento regular frente a algunos disolventes orgánicos; buen comportamiento frente a cloruros. Como problema podemos destacar su alta sensibilidad a temperaturas superiores a 80ºC, y por tanto, nula resistencia al fuego.

En el caso del uso de las resinas epoxi como material de reparación en hormigón, no hay que olvidar que su coeficiente de dilatación térmica (de 2 a 6 x 10-6 m/mºC), que puede ser muy diferente al del hormigón. Además, si la temperatura varía mucho, se puede producir un fallo de la reparación en la superficie de adherencia del hormigón base.

Tampoco se recomienda la reparación de un hormigón dañado por la corrosión de sus armaduras con un mortero u hormigón de epoxi, pues se pueden crear diferentes zonas de potencial eléctrico, formar pilas galvánicas y acelerar la corrosión en los perímetros de la reparación.

Os dejo algunos vídeos sobre la utilización de la resina epoxi en la construcción.

Os dejo a continuación, por su interés, un artículo de Fernández Cánovas donde se realiza una breve exposición de lo que son estas resinas, nada menos que del año 1964.

Descargar (PDF, 5.31MB)

Referencias:

Fernández Cánovas, M. (1964). Las resinas epoxi en la construcción. Informes De La Construcción16(159), 101–104. https://doi.org/10.3989/ic.1964.v16.i159.4570

Fernández Cánovas; M. (1994). Patología y terapéutica del hormigón armado. 3ª edición, Servicio de Publicaciones del Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

Pelufo, M.J. (2003). Caracterización del comportamiento mecánico y frente a la corrosión de morteros de reparación del hormigón estructural. Tesis doctoral. Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil, Universidad Politécnica de Valencia.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Qué factores afectan en mayor medida a la resistencia a la fatiga en los aceros?

Figura 1. Curva S-N representativa. https://es.wikipedia.org/wiki/Fatiga_de_materiales

Los esfuerzos cíclicos o repetitivos sobre componentes metálicos, y en especial en el acero, provocan roturas a tensiones mucho menores que aquellas que se podían esperar al aplicar un único esfuerzo estático. Este tipo de fallos se conocen como fallos por fatiga. La historia de la fatiga en los materiales viene ligada al desarrollo de la máquina de vapor de Watt, inicio de la Revolución Industrial.

Para conocer el comportamiento de los metales a la fatiga, se somete una probeta a esfuerzos cíclicos hasta rotura y se representa dicho ensayo en una curva SN, también llamada curva de Wöhler. En dicha curva S es la tensión y N el logaritmo del número de ciclos hasta la rotura. En estas curvas (Figura 1), en determinados metales como el acero, la curva S-N se estabiliza a partir de un valor de tensión determinado. A este límite se denomina límite de fatiga o resistencia a la fatiga y se alcanza para valores de N entre 106 y 1010 ciclos.

Muchas aleaciones férreas presentan un límite de fatiga de, aproximadamente, la mitad de su resistencia a tracción, mientras que aleaciones no férreas como las de aluminio, suele decirse que no presentan límite de fatiga y su resistencia a la fatiga es del orden de un tercio de la resistencia a tracción.

Sin embargo, lo que ahora nos interesa es conocer qué factores son los que más afectan a la resistencia a la fatiga de los metales, y en particular, de los aceros. Es evidente que la composición química del metal influye, pero hay otros factores que hay que tener muy en cuenta:

  • Concentración de tensiones: Las entallas, orificios, hendiduras o cambios bruscos en la sección transversal disminuyen fuertemente la resistencia a la fatiga. Se deben realizar diseños que eviten esta concentración de tensiones.
  • Rugosidad superficial: Un acabado liso del acabado superficial de la probeta incrementa la resistencia a la fatiga. Contrariamente, las superficies rugosas provocan concentración de tensiones.
  • Estado superficial: La mayor parte de los fallos por fatiga se originan en la superficie del metal, por lo que tratamientos de endurecimiento superficial, que endurecen la superficie, mejoran la resistencia a fatiga. En cambio, la descarbonatación, que ablanda la superficie de un acero tratado térmicamente, disminuye dicha resistencia.
  • Medio ambiente: Un ambiente corrosivo acelera la velocidad en la que se propaga la fisura por fatiga. A este fenómeno se le denomina corrosión por fatiga.

Os dejo a continuación un vídeo donde se muestra un ensayo a fatiga del acero.

En este otro vídeo se explica el ensayo a fatiga.

Os dejo a continuación una publicación de ITEA (Instituto Técnico de la Estructura en Acero) que trata del diseño para la fatiga.

Descargar (PDF, 6.17MB)

Referencias:

SMITH, W.F. (2004). Ciencia e Ingeniería de Materiales. 3ª edición, McGraw Hill, 570 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Los residuos de construcción y demolición (RCD)

Figura 1. Demolición de edificios. https://commons.wikimedia.org/wiki/File:Seneca_County_Courthouse_01_26.JPG

La construcción de infraestructuras y edificios, la reforma de pequeñas obras en viviendas y locales, así como la demolición de infraestructuras o edificios que ya han cubierto su ciclo de vida útil generan residuos. En España estamos hablando de unos 800 m3 por persona y año (Bustillo, 2010), volumen que, en su mayor parte, pasan a vertederos controlados o incontrolados. Estos residuos de construcción y demolición (RCD) son en su mayoría inertes, pero pueden estar mezclados con otros residuos que son peligrosos, como el amianto, los cuales deben separarse y gestionarse de acuerdo con su peligrosidad. Estos residuos constituyen un importante problema ambiental, pues no solo crecen en volumen, sino que su tratamiento y gestión presentan importantes áreas de mejora. En efecto, la contaminación de suelos y acuíferos en vertederos incontrolados, el deterioro paisajístico o su eliminación sin aprovechar su posible valorización, son impactos que deberían corregirse.

La gestión de estos residuos RCD debería realizarse atendiendo a los principios de prevención, reutilización, reciclaje y eliminación. Existe, no obstante, cierta jerarquía en estos principios, siendo preferible siempre la prevención, y si no fuera posible la reutilización o el reciclaje, se procedería a su eliminación. La prevención siempre tratará de evitar la generación de residuos o reducirlos; la reutilización trata de emplear el producto usado para el mismo fin para el que se diseñó originariamente; el reciclado transforma los residuos, dentro de un proceso de producción, para su fin inicial o para otros fines; la valorización permite el aprovechamiento de los recursos contenidos en los residuos sin comprometer la salud y sin utilizar métodos que perjudiquen al medio ambiente; por último, la eliminación se dirige al vertido de los residuos o a su destrucción total o parcial (Ferrando y Granero, 2007).

En todo caso, se trataría de separar los inertes de los productos peligrosos para aprovecharlos. Sin embargo, el problema no es tanto la peligrosidad de los RCD, sino la necesidad de infraestructuras y espacio para su gestión. Según el Plan Nacional de Residuos de Construcción y Demolición 2001-2006 (ver Figura 2), el 75% de los RCD se catalogarían de escombros, donde los ladrillos, azulejos y otros productos cerámicos suponen el 54% del total de los RCD. Si a los materiales cerámicos sumamos el hormigón, con un 12% del total del RCD, tendremos 2/3 del total. Si añadimos la piedra (5%) y la arena, grava y otros áridos (4%), tenemos la totalidad de los escombros. El 25% restante ya estaría formado por otros materiales como la madera, el vidrio, el plástico, los metales, etc. Por tanto, si se es capaz de realizar una gestión completa de los escombros, especialmente de los productos cerámicos y del hormigón, podemos tendremos la mayor parte del volumen de los RCD bajo control.

Figura 2. Composición de los RCE según el Plan Nacional de Residuos de Construcción y Demolición 2001-2006. http://www.cedexmateriales.es/catalogo-de-residuos/35/residuos-de-construccion-y-demolicion/

Lo dicho nos lleva a la necesidad de comercializar los productos reciclados, especialmente los áridos. Pero aquí tropezamos con problemas cuando, a pesar de existir especificaciones técnicas voluntarias y certificados que acreditan la calidad de los áridos reciclados, se mantiene una desconfianza de profesionales y administraciones al uso de estos productos en la construcción. Resulta evidente la necesidad de promocionar el reciclaje y uso de los RCD. Sin embargo, mientras el canon de vertido en una planta de valorización sea elevado frente al de un vertedero, por ejemplo, pueden suponer barreras para la gestión de estos residuos procedentes de la demolición y la construcción.

Os dejo algún vídeo al respecto de este tema. Espero que os sea de interés.

A continuación os dejo, por su interés, el protocolo de gestión de residuos de construcción y demolición en la UE.

Descargar (PDF, 2.11MB)

Referencias:

BUSTILLO, M. (2010). Manual de RCD y áridos reciclados. Fueyo Editores. Madrid, 797 pp.

FERRANDO, M.; GRANERO, J. (2007). Gestión y minimización de residuos. FC Editorial. Madrid, 265 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Es exacto el ensayo del equivalente de arena?

Figura 1. Altura de la arena, de la arcilla y del líquido en el ensayo de Equivalente de Arena

Recuerdo los quebraderos de cabeza que teníamos en mis primeras obras de carreteras cuando teníamos que aceptar determinadas zahorras por culpa del equivalente de arena. Se trata de un ensayo, muy sencillo en cuanto a su realización, que permite estimar la cantidad de finos presentes en un suelo poco plástico o en un árido fino. Este ensayo lo propuso F.N. Hveem para evaluar cualitativamente, de forma rápida, la cantidad y la actividad de los finos de un suelo. En apretada síntesis, se trata de evaluar la limpieza de un material que llega a una obra para utilizarlo como base granular, relleno drenante o incluso, en el caso de arenas, para su uso en hormigones o en aglomerados. Lo que se busca es un equivalente de arena alto, pues cuanto mayor es este valor, más alta sería la calidad del material.

Para realizar este ensayo debemos acudir a la norma UNE-EN 933-8: “Ensayos para determinar las propiedades de los áridos. Parte 8: Evaluación de los finos. Ensayo del equivalente de arena”. También se puede recurrir a otras normas como la ASTM D2429. Este ensayo se aplica a la fracción arenosa de un suelo. Tras mezclar el suelo seco con un líquido floculante de la arcilla, se agita la mezcla y se deja reposar durante un tiempo para medir la altura que alcanza la parte arcillosa y la que tiene la parte arenosa. Para eso se utiliza una varilla especial. El Equivalente de Arena (EA) sería la relación entre la altura de la arena respecto a la altura de la arcilla multiplicada por 100, tal y como podemos ver en la Figura 1.

En este enlace la Escuela de Ingenieros de Caminos de Madrid tenéis una descripción del ensayo y unos vídeos explicativos que creo os pueden interesar: http://www2.caminos.upm.es/departamentos/ict/lcweb/ensayos_aridos/equivalente_arena.html

El Equivalente de Arena es un ensayo que puede poner en entredicho la calidad de un material usado en carreteras, tal y como os comenté en el caso de mis primeras obras en el entorno de Valencia. Así, por ejemplo, para una zahorra artificial el PG-3 exige un valor superior a 40 cuando se trata de un tráfico T00 a T1, mismo valor que el usado para el material usado para un gravacemento tipo GC20 o un riego de imprimación o curado. Para las mezclas bituminosas en caliente ya se exige un valor de 55 y en el caso de pavimentos de hormigón en zonas sometidas a heladas, el EA debe superar 80.

En el caso del hormigón estructural, el reciente “Código estructural” de 2021 indica que el EA no será inferior a 70 en el caso de hormigones usados en obras sometidas a la clase de exposición X0 o XC, mientras que será de 75 en el resto de los casos. No obstante, si las arenas proceden del machaqueo de rocas calizas o dolomías (rocas sedimentarias carbonáticas que contienen al menos un 70% de calcita, dolomita o de ambas) que no cumplan con el equivalente de arena, pueden aceptarse como válidas bajo determinadas condiciones usando el ensayo azul de metileno, según la norma UNE-EN 933-9.

Las decisiones que se toman con este ensayo son de gran calado. Podemos rechazar un material que sea el que tengamos a nuestra disposición, siendo inviable económicamente traer otro material alternativo. Por tanto, es procedente revisar la exactitud que tiene el ensayo.

En efecto, este ensayo debe tomarse como un control rápido que sustituya a un ensayo granulométrico, pues los resultados se encuentran muy influenciados por las características del fino presente (por ejemplo, si son limos o arcillas). Incluso si se trata de una arcilla, la composición mineralógica y su reacción al líquido floculante pueden influir en los resultados. No es lo mismo un fino calizo que otro silíceo, o una arcilla muy plástica o expansiva.

Por otra parte, si se realiza la agitación por parte de una persona que no siga escrupulosamente las instrucciones del ensayo, se pueden incrementar los errores. Por lo que se prefiere siempre una agitación mecánica normalizada.

Dicho esto, la recomendación es evidente. Cuando un material va sobrado en cuanto a su Equivalente de Arena, este ensayo rápido supone un control para evitar contaminación o problemas puntuales de calidad. Pero si estamos en una situación límite, lo que hay que hacer es buscar la correlación entre el Equivalente de Arena y el Ensayo Granulométrico para corregir las desviaciones que pudiesen haber. Siempre mandará el Ensayo Granulométrico en caso de duda.

En la Figura 2 se observa que, si bien hay cierta tendencia a que el menor contenido de finos tiende a presentar más altos de equivalente de arena, el coeficiente de determinación de dicha relación es bajo (el modelo explica algo menos del 25% de la variabilidad). No obstante, si el material tiene la misma procedencia, la variabilidad es mucho menor que en el caso de materiales diferentes. Sea como sea, no podemos rechazar directamente un material con un EA bajo sin tomar las precauciones debidas.

Figura 2. Valores de EA en función de la presencia de finos (ANEFA, 2018)

Os dejo a continuación un vídeo donde se explica el ensayo del Equivalente de Arena.

Referencias:

ANEFA (2018). Guía española de áridos reciclados procedentes de residuos de construcción y demolición (RCD), 292 pp.

Morilla, I. (2012). Interpretación de los ensayos geotécnicos en suelos. 627 pp., Madrid.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Las cremas solares y los hormigones autolimpiables

Hormigón auto limpiable con nano partículas de TiO2. Iglesia Jubilar en Roma. https://nuevastecnologiasymateriales.com/otros-importantes-materiales-de-construccion-nano-estructurados/hormigon-autolimpiable/

¿Qué tendrá que ver una crema de protección solar y un hormigón que es capaz de limpiarse por sí solo? Pues el nexo común es el dióxido de titanio (TiO2). El titanio es el noveno elemento más común en la corteza terrestre, siendo un metal común en las plantas y los animales. Su combinación con el oxígeno es muy habitual en los minerales. Pues bien, es el dióxido de titanio un ingrediente activo del protector solar. Actúa como ingrediente de filtración de los rayos ultravioleta y protege la piel bloqueando la luz UV del sol.

Sin embargo, lo curioso es que si se fabrica un hormigón con cementos que incorporen como fotocatalizador el dióxido de titanio, éste degrada los componentes orgánicos que se adhieren a su superficie por efecto de los rayos UV de la luz solar. A estos hormigones se les llama autolimpiables o autolavables. Una inclusión de un 2% de dióxido de titanio es razonablemente económica para su comercialización.

La fotocatálisis descontamina de forma similar a la propia naturaleza. Al igual que la fotosíntesis, debido a la luz solar, puede eliminar el dióxido de carbono para producir materia orgánica; asimismo, la fotocatálisis elimina otros contaminantes comunes en la atmósfera, como óxidos de nitrógeno, óxidos de azufre y compuestos orgánicos volátiles, mediante un proceso de oxidación activado por energía solar. Se trata de “hormigones antipolución“, siendo el TiO2 el fotocatalizador más comúnmente utilizado.

Un ejemplo del empleo de hormigón descontaminante, en este caso reforzado con fibras, lo encontramos en la Torre Diagonal Zero en Barcelona. Se trata de una torre de 26 plantas con más de 100 m de altura construida por ACCIONA. A los paneles prefabricados empleados en este edificio, se les ha aplicado una veladura superficial transpirable e hidrófuga a base de silicatos cuya formulación incorpora dióxido de titanio.

Empleo de hormigón descontaminante en la Torre Diagonal Zero en Barcelona://www.hormigonespecial.com/blog/

Os dejo a continuación algunos vídeos explicativos.

 

Las dificultades asociadas a las vigas Vierendeel y su rotura frágil

Jules Arthur Vierendeel (1852-1940). https://es.wikipedia.org/wiki/Jules_Arthur_Vierendeel

Los entramados en bastidor, también llamados Vierendeel, surgieron de la patente de 1897 de una viga reticulada que lleva el nombre de su creador, el ingeniero belga Jules Arthur Vierendeel (1852-1940). La viga Vierendeel tiene una forma de celosía ortogonal que presenta la ventaja de prescindir de las tradicionales diagonales. Esta característica obliga a rigidizar fuertemente los nudos, estando sometidas sus barras a esfuerzos flectores y cortantes, además de los esfuerzos axiles. La tipología de la estructura presenta ventajas como la de permitir el paso a su través, ya sea de personas o de conducciones, facilitando también la colocación de carpinterías en edificación.

En el caso de los puentes, los de este tipo se hicieron muy populares en el primer tercio del siglo XX, existiendo un buen número de ejemplos en Bélgica y en el antiguo Congo Belga. El primer puente de estas características se construyó en Avelgem, Bélgica, en 1902. En España, por ejemplo, tenemos un ejemplo en Riera de Caldas, terminado en 1933.

 

Vigas Vierendeel en el teatro Alla Scala de Milán. https://www.e-zigurat.com/blog/es/ejemplos-estructurales-aplicacion-vigas-vierendeel/
Puente Hafe vu Léck. https://es.wikipedia.org/wiki/Puente_Vierendeel

Sin embargo, esta tipología no está exenta de dificultades relacionada con la tenacidad del acero y la mecánica de fractura. Un ejemplo es el colapso del puente Vierendeel de Hasselt, sobre el canal Alberto, en Bélgica, en 1938. Este desastre ocurrió con una temperatura de -20ºC. Se trataba de un puente metálico soldado donde, al desaparecer las diagonales de la celosía, se debía reforzar los cordones y montantes. Pero lo más importante, la ejecución de los nudos soldados requiere de una delicadeza y cuidado máximos. En efecto, estos nudos soldados fueron el origen de sonados desastres como el descrito debido a que con las bajas temperaturas del invierno y con cierta sobrecarga, se produce con cierta facilidad la rotura frágil del acero si no se concibe y ejecuta los innumerables detalles asociados a la soldadura.

Otra dificultad añadida es su deformabilidad frente a otras tipologías de celosías trianguladas. Por ejemplo, para una pasarela de 60 m, la flecha de una viga Vierendeel es unas 10 veces mayor que el resto. Aproximadamente del orden de Luz/100, mientras que en las celosías son menores que Luz/1000.

Sin embargo, hoy día existe cierta tendencia en arquitectura en utilizar este tipo de estructura sin informar claramente sobre las dificultades de esta tipología, muy tentadora, como nos comenta Javier Rui-Wamba en su libro “Teoría unificada de estructuras y cimientos. Una mirada transversal“.

Os dejo a continuación un vídeo sobre la construcción con vigas Vierendeel en el Centro Cultural Nestor Kirchner, en Buenos Aires (Argentina).

En este otro vídeo, donde unos estudiantes rompen un modelo reducido de viga Vierendeel, vemos la gran deformabilidad de esta estructura.

Un ejemplo arquitectónico singular fue la construcción de las Torres Gemelas, donde se recurrió a la viga Vierendeel y a un sistema invertido de estructura.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.