Perforación a rotación por circulación inversa

Figura 1. Perforación inversa.

Existen dos posibilidades a la hora de realizar una perforación a rotación: la rotación con circulación directa y la rotación con circulación inversa. La diferencia entre ambas estriba en el sentido de circulación del fluido de perforación. En la circulación inversa, objeto de este post, el fluido de perforación y el detritus se eleva a la superficie por el interior del varillaje hasta una balsa de lodos. En este depósito, el lodo se recupera para volver a introducirlo en la perforación por el espacio anular comprendido entre el varillaje y la perforación. La principal diferencia entre los equipos de rotación directa o los de rotación inversa es que, mientras los primeros utilizan una bomba de lodos, los segundos utilizan un compresor, que generalmente suele llevar su propio motor. En ambos casos, estos elementos suelen ir montados sobre el propio chasis de la máquina, aunque a veces, debido al tamaño de los compresores, suelen ir en remolques independientes.

Este sentido inverso de circulación es adecuado cuando el diámetro de la perforación es elevado (un diámetro habitual de trabajo es de 600 mm, pudiendo ser mayor). El método de perforación por Circulación Inversa depende del potencial del agua para contener las paredes de la perforación, precisando un mínimo de 3 metros de columna desde el fondo de la perforación. Ante suelos de alta transmisividad, igualmente puede ser requerido un elevado ratio de bombeo de fluido de perforación, dadas las perdidas, o bien se puede necesitar algún aditivo para impermeabilizar las paredes de la perforación, que posteriormente deberá ser eliminado mediante el debido desarrollo.

Figura 2. Perforación inversa. Imagen: Sondeos Martínez (Villena, Alicante)

Para entender mejor este sistema, os dejo a continuación unos vídeos explicativos que espero os gusten.

 [politube2]65114:450:358[/politube2]

Referencias:

YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia, 89 pp.

¿Qué es la sustitución dinámica?

La sustitución dinámica o «puits ballastés» constituye una variante diferenciada de la compactación dinámica en la cual la energía de compactación sirve para constituir inclusiones granulares de gran diámetro, como refuerzo de los terrenos compresibles, de los que se necesitan varios metros de espesor sobre un estrato de terreno con capacidad portante suficiente.

Se punzona en este caso el terreno con una maza pequeña y pesada que se deja caer desde cierta altura. Este procedimiento crea un cráter que se rellena con material granular, que se golpea nuevamente con el objeto de desplazar el terreno y hacer penetrar dicho material granular. Con este procedimiento se consigue rigidizar el terreno creando puntos de apoyo que presentan una mayor carga admisible. Además, la ventaja adicional es que constituyen drenes verticales, aunque no muy profundos, por lo que podrían combinarse con tratamientos de mejora de precarga, de forma que se reducirían los tiempos de consolidación del suelo.

Esta técnica combina, por tanto, las ventajas de la compactación dinámica y de las columnas de grava.

Aplicaciones:

– Terrenos cohesivos (arcillas y limos blandos o muy blandos), apoyados sobre un sustrato rocoso
– Necesidad de estabilización y reducción de los asientos de terraplenes viarios y ferroviarios
– Estructuras con distribución heterogénea de grandes cargas repartidas y puntuales

Principales características:
– Tasa de incorporación de material claramente superior a la obtenida por medio de columnas de grava (hasta 20 a 25%)
– Muy alta compacidad de las inclusiones constituidas
– Cada «columna» granular puede soportar cargas importantes de hasta 150 t
– Mejora de las características mecánicas de las capas superficiales del terreno entre las columnas en un 25% y entorno al 50% en los estratos más profundos
– Funcionamiento de las inclusiones como drenes verticales reduciendo así el tiempo de consolidación y acelerando los asientos antes de la construcción

Ventajas:

– Fuerte incremento del módulo de deformación, de la capacidad portante y de la capacidad drenante del terreno
– Técnica bien adaptada a grandes cargas
– Muy alta resistencia interna al corte del material granular que constituye la inclusión
– A diferencia de las columnas de grava, aplicación adaptada a suelos evolutivos (turbas, orgánicos…) debido a su reducida esbeltez.

La profundidad del terreno mejorado con esta técnica depende tanto de las características del terreno como de la energía de los impactos. A este respecto, Menard nos facilita la siguiente fórmula para calcular dicha profundidad (García Valcarce et al., 2003):

D2 ≤ 10·M·h

donde:

D: Espesor a compactar (m)

M: Peso de la maza (kN)

h: Altura de caída de la maza (m)

Aunque la máxima profundidad afectada quedaría limitada por la siguiente expresión:

D = 0,44·√10Mh

Os paso a continuación un Polimedia explicativo de esta técnica que espero que os guste:

Os dejo a continuación el folleto explicativo de Menard.

Pincha aquí para descargar

Referencias:

GARCÍA VALCARCE, A. (dir.) (2003). Manual de edificación: mecánica de los terrenos y cimientos. CIE Inversiones Editoriales Dossat-2000 S.L. Madrid, 716 pp.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844. Valencia.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Qué es la curva de compactación de un suelo?

Seguimos con este post la divulgación de conceptos básicos relacionados con una de las unidades de obra que más patologías suponen a largo plazo: la compactación. En otros posts anteriores ya hablamos de los tramos de prueba y de la compactación dinámica. La compactación constituye una unidad de obra donde la interacción entre la naturaleza del suelo, sus condiciones, la maquinaria y el buen hacer de las personas que intervienen en ella es crucial. Desgraciadamente, en numerosas ocasiones se trata la compactación como una unidad de obra complementaria o auxiliar. Las variables que más influyen en la compactación son la naturaleza del terreno, su grado de humedad y la energía aplicada. Estas variables se estudian a continuación.

Figura 1. Curva de compactación

La densidad, humedad y huecos están relacionados entre sí. Se trata de comprobar empíricamente lo que ocurre al someter a un suelo a un proceso de compactación. Dicho experimento consiste en golpear capas dentro de un cilindro, mediante un procedimiento normalizado, y medir la densidad seca y la humedad en cada caso. Se realizará el estudio sometiéndolo a diversas energías de compactación y humedades.

Este experimento permite la obtención de las curvas de compactación, que relacionan el peso específico seco y la humedad de las muestras de suelo compactadas con una energía determinada, y que presentan un máximo, más o menos acusado, según su naturaleza. Los valores típicos de los pesos unitarios máximos secos oscilan entre 16 y 20 kN/m³, con los valores máximos en el intervalo de 13 a 24 kN/m³. Cifras superiores a 23 kN/m³ son raras, ya que este valor es cercano al hormigón húmedo. Los contenidos típicos de humedad óptima oscilan entre el 10% y el 20% con un intervalo máximo del 5% al 30%. Generalmente, se requieren cinco puntos con el objeto de obtener una curva fiable, con una humedad entre puntos que no se diferencien en más del 3%.

Se puede definir como índice de compactación (IC) la relación entre el peso específico seco del terreno compactado y el peso específico seco óptimo.

Antes de llegar a la humedad óptima, el agua favorece la densificación al actuar con cierto efecto lubricante, pero al pasar de la óptima, la densidad seca decrece, ya que el aire no sale tan fácil por los huecos, y el agua desplaza aparte de las partículas sólidas. La rama descendente de la curva tiende a aproximarse asintóticamente a la de saturación del suelo. Hogentogler (1936) considera que la forma de la curva de compactación se debe a dichos procesos de hidratación, lubricación, hinchamiento y saturación reflejados en la Figura 2.

Figura 2. Efectos del contenido de humedad en la compactación

Si se aplican diferentes energías de compactación, ocurre lo que se indica en la Figura 3: el peso específico seco máximo aumenta, pero con una humedad menor y las ramas descendentes se acercan de forma progresiva con humedades altas, ya que el aumento de energía lo absorbe el exceso de agua. Los máximos suelen situarse sobre la misma línea de huecos de aire, en general, alrededor de na = 5 %.

Figura 3. Variación de la energía de compactación

La composición granulométrica del suelo y su sensibilidad al agua de su fracción fina son muy significativas al compactar. Los terrenos granulares sin finos presentan curvas de compactación aplanadas, sin un máximo muy definido, teniendo escasa influencia su humedad. Los suelos finos (más del 35% en peso) presentan pesos específicos secos más bajos que si no tuviesen tantos finos, y por consiguiente precisan de mayor humedad. Lo idóneo es una mezcla de tamaños más o menos continua, con un máximo del 10 al 12% de finos.

Figura 4. Curvas de compactación para diversos materiales (Johnson y Sallberg, 1960)

En obra suele ser difícil mantener contenidos de agua próximos al óptimo, lo cual implica que si las curvas de compactación tienen ramas con fuertes pendientes, estos materiales van a ser más difíciles de compactar, ya que pequeños cambios de humedad causan fuertes bajas en la densidad. Son preferibles curvas con cuyas ramas tengan pendientes más suaves.

Veamos, en 8 minutos, a dar dos pinceladas sobre el concepto de curva de compactación. Espero que os guste.

Pincha aquí para descargar

Referencias:

HOGENTOGLER, C.A. (1936). Essentials of soil compaction. Proceedings Highway Research Board, National Research Council, Washington D. C., 309-316.

JOHNSON, A.W.; SALLBERG, J.R. (1960). Factors that Influence Field Compaction of Soils. Bulletin 272. HRB, National Research Council, Washington, D. C., 206 pp.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Los ventiladores en las instalaciones de ventilación

El ventilador es una turbomáquina que sirve para transportar gases, absorbiendo energía mecánica en el eje y devolviéndola al gas. En obra civil o en minería se emplean en la renovación del aire, funcionando en el medio de trabajo por impulsión o por extracción.

La ventilación cobra especial importancia en los trabajos subterráneos, tales como galerías, pozos y túneles. Esta consigue la disminución notable de enfermedades pulmonares profesionales, así como un aumento sustancial de la productividad de los equipos. Además, también se emplea la ventilación durante la gestión de los grandes túneles carreteros, de forma que se consiga una atmósfera saludable para el automovilista y un aire puro que permita a los motores térmicos una marcha eficiente.

Los ventiladores son máquinas destinadas a producir un incremento de presión total del aire pequeño, con una relación de compresión de 1,1. En este caso la variación del volumen específico del gas a través de la máquina se puede despreciar, por lo que el ventilador se comporta como una turbomáquina hidráulica. Se distingue del turbocompresor en que las variaciones de presión en el interior del ventilador son tan pequeñas, que el gas se puede considerar prácticamente incompresible. Esto significa que las leyes que relacionan el caudal, la presión y la potencia de un ventilador con su velocidad de rotación son las mismas que en las bombas axiales o centrífugas.

A continuación os paso un Polimedia presentado por la profesora Petra Amparo López Jiménez, de la Universitat Politècnica de València. Allí se presenta los tipos de ventiladores y se describe importancia de las curvas de selección de los mismos, así como la determinación de su punto de funcionamiento e idoneidad para una instalación.  Espero que os guste.

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

Rozadora o minador de eje transversal (ripping)

Las rozadoras o minadores son máquinas autoportantes en las que la excavación se efectúa por la incidencia del útil de corte con el terreno. Tienen además los elementos necesarios para recoger el material excavado y descargarlo sobre el medio auxiliar previsto para su evacuación.

La excavación con rozadora es eficaz en rocas blandas o muy alteradas, terrenos de tránsito o suelos de cierta cohesión y estabilidad. En suelos heterogéneos tienen la ventaja de poder adecuar y dirigir el esfuerzo de la máquina a la resistencia del terreno en cada punto.

Las rozadoras de ataque frontal (“ripping”, en inglés) hacen girar el cabezal alrededor de un eje horizontal, perpendicular al brazo de la máquina. Este tipo de máquinas son las más usuales en las obras civiles. Intervienen tres fuerzas en el arranque por parte de las picas. El par de corte es proporcionado por el motor que acciona la cabeza de corte. La fuerza horizontal se ejerce con el giro del brazo y la fuerza vertical con el peso de la rozadora. Aprovecha bien el empuje en la dirección perpendicular al frente del túnel. El tipo de pica más común es la pica cónica.

En un artículo de Laureano Cornejo podréis ampliar más sobre este tipo de máquinas: http://ropdigital.ciccp.es/pdf/publico/1985/1985_marzo_3234_05.pdf

En el siguiente vídeo podremos ver la construcción del segundo túnel de Tabaza (Avilés, Asturias) con el minador Westfalia.

En este otro vídeo se puede ver la construcción de un túnel mediante un minador de ataque frontal Sandvik MT 720 (Lurpelan):

Otro vídeo donde se ve perfectamente el trabajo de la máquina:

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Ventilación en minas y túneles en fase de construcción

http://geologiavenezolana.blogspot.com.es

La ventilación en minas y túneles constituye una operación fundamental cuya función es la de renovar el aire, diluir los gases contaminantes y polvo y controlar los humos en caso de incendio. Esta operación asegura unas condiciones ambientales no peligrosas para la circulación (respiración y visibilidad) y en caso de incendio garantiza las condiciones de evacuación y de intervención de los equipos de emergencia. En base al volumen de los gases nocivos emitidos, se adecua el volumen de aire limpio y fresco necesarios.

Existen diferencias entre la ventilación en fase de construcción y de explotación, pues en la primera se emiten más contaminantes, principalmente en la zona del frente de avance, estando además allí los operarios durante toda la jornada de trabajo. Otra diferencia importante en la ventilación durante la construcción de un túnel es que sólo tiene una entrada, por lo que la ventilación debe conseguirse asegurando la circulación desde la entrada hasta el frente de avance.

Básicamente, se pueden adoptar tres tipos de ventilación en construcción:

  • Ventilación aspirante: en ella se emplea la conducción del aire como aspirante (tubería rígida) extrayendo el polvo y los gases a su través. El aire entra por la boca del túnel y atraviesa toda su sección hasta llegar al frente de avance, mezclándose así con los distintos contaminantes que puedan existir. Un ventilador acoplado a la tubería hace que el aire del frente entre en ésta y sea expulsado por su otro extremo al exterior del túnel.

Ventilación aspirante. Fuente: construmatica.com

 

  • Ventilación soplante: se alimenta el frente de ataque con aire a través de la tubería de impulsión, saliendo el aire sucio a través de la galería que se está perforando. El tapón de humos, gases y polvo que ocupa el fondo del túnel es removido por el aire fresco soplado por la tubería, siendo así diluido y empujado a lo largo del túnel hasta su emboquille, por donde es expulsado hacia el exterior.

Ventilación soplante. Fuente: construmatica.com

 

  • Ventilación mixta: es una combinación de las anteriores; cuando se produce la pega (voladura) se adopta la disposición aspirante y una vez estraída la mayor parte de los gases sucios, se cambia a soplante.

Ventilación mixta. Fuente: construmatica.com

 

La ventaja de la ventilación aspirante es que los gases y el polvo retornan por la tubería evitando que los respire el personal. Además, tras el disparo de las voladuras los gases y humos se eliminan rápidamente. Por contra, se requiere una tubería rígida o si es de lona deben estar armadas con una espiral de acero, el aire entra por el túnel lentamente, la ventilación aspirante deja algunas zonas del frente mal ventiladas, precisa una mayor potencia instalada y genera mayores pérdidas de carga.

Cuando la obra subterránea presenta una gran longitud, es práctica frecuente la utilización de dos o más ventiladores instalados en serie. Con esta disposición de racionaliza la utilización, añadiendo ventiladores a medida que avanza el frente hasta la instalación final para el último tramo de obra.

Os dejo un vídeo donde se explica la ventilación de un túnel en construcción. Espero que os guste.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.

 

¿Qué errores se comenten con los buldóceres?

En la entrada de hoy vamos a dar recomendaciones para el trabajo con los tractores sobre cadenas, también llamados buldóceres (bulldozers, en inglés). En español también se conocen como explanadoras o topadoras. La operación de las máquinas es un tema de gran trascendencia tanto económica como de seguridad. Una mala operación acarrea no sólo pérdidas de producción y encarecimiento de las unidades de obra, sino que en muchas ocasiones representa un maltrato de las máquinas y un problema grave de seguridad para las personas.

Siguiendo el carácter divulgativo de estas entradas, os paso un Polimedia referido a las recomendaciones que deberían seguirse para operar con los buldóceres.  Espero que os guste.

 [politube2]2471:450:358[/politube2]

También podéis calcular, a continuación, cuál sería la capacidad de  producción de un bulldozer excavando:  https://laboratoriosvirtuales.upv.es/eslabon/CapacidadBulldozer/ 

Bulldozer

Referencias:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Construcción de falso túnel entre pantallas

falso-tunel-entre-pantallasUn falso túnel es una infraestructura que se construye cuando un obstáculo natural de escasa altura debe ser atravesado por una línea ferroviaria o por una carretera, de forma que no resulta conveniente perforar un túnel debido al escaso recubrimiento y al riesgo de que la construcción de una trinchera convencional pueda provocar desprendimientos. En otras ocasiones, la construcción de falsos túneles se justifica simplemente en la necesidad minimizar el impacto ambiental de la vía de comunicación, especialmente cuando el trazado pasa cerca de zonas urbanas.

Una forma de construir un falso túnel consiste en ejecutar unas pantallas, bien con pilotes o con una hidrofresa. Tras esas pantallas laterales, se ejecuta la losa de cubrición para formar el techo del túnel. Una vez fraguado el hormigón de la losa, se puede proceder a trabajar bajo tierra, vaciando la caverna generada entre las pantallas y la losa, hasta el nivel del suelo del túnel. La ejecución de pantallas con pilotes consiste en hacer “taladros” consecutivos, que luego son rellenados con acero y hormigón. Si utilizamos una hidrofresa el principio es el mismo, solo que la perforación es rectangular.

Si el falso túnel se realiza a una profundidad mayor de 5-10 m es necesario ejecutar losas intermedias, para garantizar la integridad de las pantallas laterales. Este método es muy seguro, habiéndose realizado bastantes kilómetros de todo tipo de túneles, por ejemplo en Madrid, tanto de metro (línea 11 en la avenida de Abrantes, línea 1 en la Calle Congosto…) como de cercanías (Pasillo verde, Getafe…) sin incidentes a reseñar. Incluso en terrenos particularmente complicados como es la vega del manzanares este método ha dado un gran rendimiento en la ejecución del soterramiento de la M30.

A continuación os paso una animación realizada por la empresa Proin 3D para Adif del túnel ferroviario de alta velocidad Barcelona Sants-La Sagrera, conocido también como túnel del Eixample. El túnel, que une la estación de Barcelona Sants con la futura estación de La Sagrera, forma parte de la línea de alta velocidad Madrid-Zaragoza-Barcelona-Frontera francesa.Fue inaugurado el 8 de enero de 2013 juntamente con el tramo entre Barcelona Sants y Figueras-Vilafant de la LAV Madrid-Barcelona-Franciay el 9 de enero de 2013 empezó su explotación comercial por trenes de Renfe Operadora.

En la animación podemos ver la ejecución del falso túnel, tanto con pilotadoras como con hidrofresas. Espero que os guste.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Quién inventó los motores?

Hoy os paso una entrada sugerente, pues es difícil dar nombres y apellidos al inventor del primer motor conocido. El tema de los motores es muy importante en la ingeniería civil en tanto que las obras actuales no se pueden concebir sin el uso de máquinas. Veamos pues, una pequeña definición de lo que es un motor y luego un vídeo explicativo, bueno para verlo si tenéis un rato en estas vacaciones.

Un motor es la parte de una máquina capaz de hacer funcionar el sistema transformando algún tipo de energía (eléctrica, de combustibles fósiles, etc.), en energía mecánica capaz de realizar un trabajo. En los automóviles este efecto es una fuerza que produce el movimiento.

Figura. Máquina de vapor en funcionamiento

Los orígenes de los motores son muy remotos. Especialmente si se consideran los inicios o precedentes de algunos elementos constitutivos de los motores, imprescindibles para su funcionamiento como tales. Considerados como máquinas completas y funcionales, y productoras de energía mecánica, hay algunos ejemplos de motores antes del siglo XIX. A partir de la producción comercial de petróleo a mediados del siglo XIX (1850) las mejoras e innovaciones fueron muy importantes. A finales de ese siglo había una multitud de variedades de motores usados en todo tipo de aplicaciones.

En el siguiente enlace de Wikipedia tenéis las fechas más interesantes relacionadas con la historia de los motores: http://es.wikipedia.org/wiki/Historia_del_motor_de_combusti%C3%B3n_interna.

Relación de compresión de un motor de combustión interna

La relación de compresión en un motor de combustión interna es el número que permite medir la proporción en que se ha comprimido la mezcla de aire-combustible (Motor Otto) o el aire (Motor Diésel) dentro de la cámara de combustión de un cilindro. Para calcular su valor teórico se utiliza la fórmula siguiente:

 

{RC} = \frac { \frac { \pi }{ 4 }* d^2*s +V_c } {V_c}

 

donde

Independientemente al número de cilindros, la fórmula se aplica a uno solo. Ejemplo: un motor de cuatro cilindros en línea (4L) con 1.4 litros de desplazamiento, se divide el desplazamiento entre el número de cilindros (1 400 cc / 4 = 350 cc). A este valor se le suma el volumen de la cámara ( 350 cc + 40 cc = 390 cc y se divide por el volumen de la cámara (390 cc / 40 cc = 9.75). La relación de compresión de este motor es de 9.75:1. O sea, la mezcla se comprime en la cámara 9.75 veces.

La relación de compresión es uno de los factores que infieren en el funcionamiento de un motor de combustión interna, que a su vez actúa sobre el rendimiento térmico de este motor. El rendimiento térmico, para decirlo de forma sencilla, es la forma en que ese motor aprovecha de la mejor manera posible la energía proveniente de la combustión de la mezcla aire-combustible.

Os dejo un vídeo explicativo que espero que os guste.

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.