A través del blog de Carlos Fernández Tadeo se puede acceder a la descarga gratuita de la monografía del Cedex denominada “Recomendaciones para la ejecución e interpretación de ensayos no destructivos para el control de la integridad de pilotes y pantallas in situ”. Esta monografía también se puede descargar gratuitamente de la página de publicaciones de la web de Aetess. No obstante, la monografía se publicó en 2006, y si bien los conceptos básicos permanecen vigentes, la instrumentación y los equipos ha avanzado considerablemente. Os remito a Carlos Fernández Tadeo, gran especialista en este tema, para más información al respecto.
Este es un curso básico de procedimientos constructivos necesarios para la mejora de terrenos en obras civiles y de edificación. Es un curso que no requiere conocimientos especiales y está diseñado para que sea útil a un amplio abanico de profesionales con o sin experiencia, estudiantes de cualquier rama de la construcción, ya sea universitaria o de formación profesional. Además, el aprendizaje se ha escalonado de modo que el estudiante puede profundizar en aquellos aspectos que más les sea de interés mediante documentación complementaria y enlaces de internet a vídeos, catálogos, etc.
En este curso aprenderás las distintas técnicas de mejora del terreno utilizadas habitualmente en obras de ingeniería civil y de edificación. Se índice especialmente en la maquinaria necesaria, en los procedimientos constructivos, en la aplicabilidad a los distintos tipos de suelos, en aspectos económicos, medioambientales y de seguridad en los trabajos. A lo largo del curso se abordarán aspectos como la precarga, las columnas de grava, las inclusiones en el terreno, los pilotes de desplazamiento, la compactación dinámica, la compactación mecánica de suelos, las inyecciones del terreno, la estabilización de suelos, la mezcla profunda, los anclajes, el control del nivel freático, entre otros temas.
El contenido del curso está organizado en 8 módulos, cada uno con 4 secuencias de aprendizaje que permiten, con una dedicación menor a una hora diaria, aprender los aspectos básicos de las técnicas de mejora del terreno. Cada semana se trabaja un módulo, teniendo el curso una duración estimada de dos meses (8 semanas).
Al finalizar el curso, los objetivos de aprendizaje básicos son los siguientes:
Comprender la utilidad y las limitaciones de las distintas técnicas de mejora del terreno empleadas en la construcción de obras civiles y de edificación.
Evaluar y seleccionar el mejor procedimiento constructivo y maquinaria necesaria para la mejora del terreno en unas condiciones determinadas, considerando la economía y la seguridad.
Programa del curso
Clasificaciones de las técnicas de mejora y refuerzo del terreno
Sustitución del terreno como técnica de mejora
La precarga como técnica para la mejora de terrenos.
Drenes verticales como técnica de mejora de terrenos
Consolidación por vacío de suelos
Columnas de grava
Columna de grava ejecutada por medios convencionales
Columna de grava mediante vibrodesplazamiento
Columna de grava mediante vibrosustitución
Columnas de grava compactada
Pilotes de arena compactada
Columnas encapsuladas con geotextil
Refuerzo del terreno mediante inclusiones rígidas
Concepto de pilotes y clasificaciones
Pilotes de compactación
Columnas de hormigón vibrado
Columnas de módulo controlado
Columnas de cal y de cal-cemento
Columna de grava inyectada
Pilotes de desplazamiento
Pilotes de madera
Pilotes metálicos
Pilotes metálicos hincados
Pilotes de hormigón armado hincados
Pilotes prefabricados de hormigón pretensado
Pilote de desplazamiento con azuche
Sistema “Franki” de ejecución de pilotes de desplazamiento
Hinca de pilotes con mazas de caída libre
Hinca por vibración de pilotes
Hinca silenciosa de pilotes
Pilotes de extracción
Pilotes perforados con barrena continua
STARSOL: Pilotes con hélice continua mejorada
Micropilotes
Mejora del terreno mediante vibrocompactación
Mejora de terreno mediante Terra-Probe
Método vibroalas para mejora de suelos no cohesivos
Compactación por resonancia de suelos
Compactación dinámica
Compactación dinámica rápida
Sustitución dinámica
Compactación con explosivos
Compactación por impulso eléctrico
Compactación por hidrovoladura
Compactación mecánica de suelos
Curva de compactación de un suelo
Selección de un equipo de compactación
Los tramos de prueba en la compactación de suelos
Recomendaciones de trabajo en la compactación
Técnicas de inyección del terreno
Procedimientos empleados en la inyección de terrenos
Materiales empleados en la inyección de terrenos
Tipos de lechadas y aplicabilidad de los materiales de inyección de terrenos
Inyección de lechadas inestables
Inyección de lechadas estables
Inyección de lechadas químicas
Inyecciones de alta presión: Jet grouting
Inyecciones de compactación
Inyecciones de hidrofracturación
Mezcla profunda de suelos
Springsol: mejora de terrenos mediante columnas de suelo-cemento
Pantallas realizadas por mezcla profunda de suelos (Deep Soil Mixing Walls)
Pantallas de suelo-cemento con hidrofresa (Cutter Soil Mixing)
Pantallas plásticas de bentonita-cemento
Pantallas de suelo-bentonita
Pantalla de lodo autoendurecible armado
Pantallas delgadas de lodo ejecutadas mediante vibración de perfiles
Pantallas de geomembranas
Muros de tierra mecánicamente estabilizada: Tierra Armada
Suelo reforzado con geosintéticos
Soil nailing o suelo claveteado
La técnica del bulonaje
Concepto y clasificación de los anclajes
Zonas de un anclaje
Ejecución de un anclaje
Seguridad en la ejecución de los anclajes
La estabilización de suelos
Estabilización de suelos con cal
Estabilización de suelos con cemento
Estabilización de suelos con ligantes bituminosos
Estabilización de suelos con cloruros
Grava-cemento
Grava-emulsión
Grava-escoria
Mejora de terrenos por calentamiento
Congelación de suelos
Métodos biológicos como técnica de mejora de terrenos
El problema del agua en las excavaciones
Clasificación de las técnicas de control del agua en excavaciones
Selección del sistema de control del nivel freático
Drenaje de excavaciones mediante bombeos superficiales y sumideros
Drenaje de excavaciones mediante zanjas perimetrales
Drenaje horizontal con pozos radiales
Drenaje de excavaciones mediante pozos filtrantes profundos
Control del nivel freático mediante lanzas de drenaje (wellpoints)
Electroósmosis como técnica de drenaje del terreno
Catedrático de Universidad. Doctor Ingeniero de Caminos, Canales y Puertos. Universitat Politècnica de València
Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente “cum laude”. Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València. Consejero del Colegio de Ingenieros de Caminos, Canales y Puertos. Su experiencia profesional se ha desarrollado fundamentalmente en Dragados y Construcciones S.A. (1989-1992) como jefe de obra y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 6 proyectos de investigación competitivos. Ha publicado más de un centenar artículos en revistas indexadas en el JCR. Autor de 10 libros, 22 apuntes docentes y más de 250 comunicaciones a congresos. Ha dirigido 14 tesis doctorales, con 6 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos.
La inyección de compactación (“compaction grouting“) constituye un método que mejora el terreno por desplazamiento, sin impregnarlo o fracturarlo. Se inyecta material con un elevado ángulo de rozamiento interno que impide que el material inyectado se mezcle con el propio suelo. Normalmente es mortero seco de alta viscosidad, morteros de baja movilidad o resinas expansivas. También se conoce como inyección de desplazamiento o de baja movilidad. Se forma un bulbo más o menos esférico que compacta el terreno y lo desplaza hacia el exterior.
Es una técnica adecuada en suelos no cohesivos de baja compacidad. También se utiliza en los cohesivos para crear inclusiones de mayor resistencia y capacidad portante. La técnica corrige asientos diferenciales, eleva la capacidad portante bajo estructuras o en pilotes, es una alternativa a la cimentación, sirve como pretratamiento antes del jet-grouting, disminuye el riesgo de licuación del terreno, permite inyecciones de compensación en la excavaciones de túneles y sirve de relleno en cavidades en terrenos kársticos, entre otras aplicaciones.
El mortero utilizado como mezcla es muy viscoso, espeso y grueso que, en primer lugar, comprime el terreno suelto, desplazándolo a continuación. Son necesarias presiones elevadas, de 4 a 6 MPa. La movilidad se limita de uno a dos metros. El mortero, una vez fragua, alcanza una resistencia a compresión simple de unos 3 MPa.
El procedimiento consiste en la perforación de un taladro que alcance la profundidad especificada para, seguidamente, inyectar a presión desde el fondo un mortero seco, pero que sea bombeable. La tubería se levanta en tramos de 30 a 60 cm de forma que se superponen los bulbos de mortero seco hasta alcanzar el nivel necesario. Si se trata de arcillas saturadas, la compactación aumenta las presiones intersticiales que se disipan con lentitud. Ello implica muchas fases de inyección con tiempos de espera importantes, salvo que exista un drenaje eficaz entre taladros.
La inyección de compactación es efectiva en suelos granulares sueltos, saturados y no saturados, y también en suelos de granos finos blandos no saturados, tal y como se observa en la Figura 2.
La inyección finaliza cuando se producen movimientos en la estructuras (mayores de unos 2 mm), se superan los 4 MPa a profundidades menores a 15 m o a 6 MPa en otros casos, o bien se supera un volumen máximo, generalmente 2,5 m3 cada 0,5 m en el caso de terrenos con cavidades (Armijo, 2004). También se termina cuando hay reflujo de mortero por la boca del taladro.
En esta animación de Keller podemos ver cómo se realiza una inyección de compactación
Aquí podéis ver una explicación de la inyección de compactación.
Este otro vídeo, de Geotecnia-ONLINE, tienes una explicación en detalle de la técnica.
Referencias:
ARMIJO, G. (2004). Inyecciones de baja movilidad en terrenos kársticos. Jornadas Técnicas SEMSIG-AETESS 4ª Sesión: Mejora del terreno mediante inyecciones y jet grouting, Madrid.
BELL, F.G. (1993). Engineering treatment of soils. E & F Spon, Londres.
BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Carlos López Jimeno, Madrid, 432 pp.
CAMBEFORT, H. (1968). Inyección de suelos. Omega, Barcelona.
KUTZNER, C. (1996). Grouting of rock and soil. A.A. Balkema, Rotterdam.
En ocasiones se hincan pilotes en suelos granulares para compactar el terreno en superficie y permitir el uso de cimentos poco profundos. Suelen ser pilotes de desplazamiento cortos, aunque son las pruebas de campo las que pueden determinar cuál es la longitud razonable. Esta longitud depende de la densidad relativa del terreno antes y después de compactar y de la profundidad de compactación requerida (Das, 1999).
Los pilotes podrían ser de cualquier material, como los de madera o los prefabricados. La hinca de pilotes de madera se ha utilizado en la construcción de terrapalenes para carreteras. No obstante, también se podría emplear un pilote de arena compactada o de grava por sustitución. Estos elementos se disponen en mallas regulares. Estos elementos se hincan desde la periferia hacia el centro del área que se quiere mejorar.
El objetivo de estos pilotes es compactar el terreno entre elementos, formando un conjunto relativamente rígido de columnas donde se concentran las cargas. En consecuencia, se aumenta la capacidad de carga por fricción. El volumen desplazado, añadido a la vibración de la hinca, son los responsables de la densificación del terreno circundante. Con este efecto se mejora la resistencia del terreno y se reducen los asientos totales y diferenciales. Además, limitan el riesgo de licuación. La profundidad no suele pasar de 20 m.
El cimiento no se apoya directamente sobre el pilote de compactación, sino sobre el conjunto del terreno densificado. También se puede hincar, mediante vibración o golpeo, un tubo con un tapón en su parte inferior. Una vez llega a la profundidad requerida, se rellena el orificio con material granular que se compacta por tongadas a la vez que se extrae la tubería, quedando el tapón en el terreno, formando un pilote de arena compactada.
Los pilotes de compactación se suelen utilizar bajo las mismas condiciones estructurales y subterráneas de la vibroflotación y Terra-Probe. No obstante, los resultados son mejores para un terreno de arenas flojas que la vibroflotación para un mismo espaciamiento entre puntos de tratamiento.
A continuación os dejo un vídeo donde se puede observar el proceso de hincado de un pilote prefabricado.
Referencias:
DAS, B. M. (2001). Principios de ingeniería de Cimentaciones.4ª edición, International Thomson Editores, México, pág 575.
DELGADO, M. (1999). Ingeniería de cimentaciones: Fundamentos e introducción al análisis geotécnico. 2ª Edición, Alfaomega Grupo Editor, México.
Una columna de grava no solo se puede construir con técnicas como la vibrosustitución o el vibrodesplazamiento, sino que también es posible ejecutarlas con medios convencionales propios de los pilotes. En las Figuras 1 y 2 se observan tres procedimientos para ejecutar pilotes de grava mediante la sustitución del terreno.
Si el terreno es estable, la ejecución es similar a la de los pilotes de extracción con barrera sin entubación (pilotes CPI-7, según la nomenclatura de NTE). En este caso, tras la excavación con una barrena, se rellena la perforación con gravas, apisonando cada una de las tongadas.
Si el terreno no es estable, es necesario utilizar una camisa recuperable que sostenga la excavación (similar a la ejecución del pilote CPI-4). En este caso, se va excavando el material a la vez que se introduce la camisa. Tras llegar a la profundidad requerida, se va retirando la entubación conforme se va rellenando y apisonando las gravas por tongadas.
En la Figura 2 se muestra un tercer procedimiento similar al anterior. Se trata de introducir la camisa mediante un vibrohincador. Una vez se llega a la profundidad prevista, se rellena la entubación de grava y, una vez llena, se extrae la tubería mediante vibración, que a su vez, compacta las gravas. No obstante, también es posible introducir la entubación mediante empuje, apoyándose en el par de la perforadora.
En la Figura 3 se describen dos sistemas constructivos de la columna de gravas en el caso de desplazar el terreno. En el primer caso se hinca la entubación con un tapón perdido en el fondo, al igual que los pilotes de desplazamiento con azuche y tubería recuperable (CPI-2). Tras alcanzar la profundidad necesaria, se rellena la entubación por tongadas y se apisona simultáneamente a la extracción de la tubería. Una variante es hincar el tubo con un vibrohincador. Este tubo presenta una válvula en la punta para permitir la hinca y el desplazamiento del terreno. Posteriormente se rellena con grava y se extrae la tubería mediante vibración, que también compacta las gravas.
En Japón se ha desarrollado y utilizado enormemente la técnica de ejecución de columnas de gravas mediante un vibrohincador pesado en cabeza. Pero en este caso, el relleno suele ser de arena en vez de grava, que se compacta e imbrica con el terreno natural mediante sucesivos descensos y elevaciones de la camisa en vibración (Ortuño, 2003).
Recientemente se han desarrollado pilotes de hormigón ejecutados “in situ” con secciones en X o en Y para mejorar la fricción con el terreno. Esta idea no es del todo nueva, puesto que los pilotes metálicos de sección en I o en H, las barretes, etc., disponen de secciones que mejoran el rozamiento.
Los pilotes de hormigón ejecutados “in situ” con sección en X (“X-section cast-in-place concrete pile“, XCC) fue patentado en China por el Geotechnical Institute of Hohai University. En este caso, utilizando secciones circulares inversas, se pueden ejecutar pilotes ahorrando hormigón y con la misma área de superficie que un pilote circular del mismo diámetro. Su ejecución se basa en una tubería metálica con un tope en punta que se introduce en el terreno antes de hormigonar. El diámetro de la camisa metálica oscila entre 0,25 y 1,00 m, llegando a 25 m profundidad. Además, diversos estudios han comprobado que la capacidad vertical del pilote con sección en X es un 20% mayor que el de sección circular con la misma cantidad de hormigón debido a su mayor superficie de fricción (Lv et al., 2011).
A continuación os dejo un vídeo explicativo de la instalación de este tipo de pilotes.
Los pilotes de hormigón “in situ” huecos y de gran diámetro (“cast-in-place concrete large-diameter pipe“, PCC) constituyen una técnica de mejora de suelos basados en inclusiones rígidas desarrollados recientemente en China debido a su bajo coste y a su alta capacidad de carga. La función de este sistema es minimizar los asentamientos totales y diferenciales tras la construcción de un terraplén en un suelo blando.
Se trata de un pilote tubular de hormigón vertido “in situ” que se construye con una carcasa formada por dos tubos de acero de distinto diámetro colocados uno dentro del otro, auxiliados por una pilotadora dotada de un vibrador (Figura 1).
El espacio entre los dos tubos se cierra en la parte inferior y el pilote se hace vibrar en el suelo. Una vez se alcanza la profundidad requerida, se vierte hormigón en la zona hueca creada entre los dos tubos del pilote, se comprime mediante vibración y se retrae este armazón. Este proceso abre el cierre entre las dos carcasas permitiendo que el tubo de hormigón permanezca en el suelo mientras se retraen las tuberías concéntricas.
El pilote final tiene un diámetro de 1,0 a 1,5 m, un grosor de pared de 100 a 150 mm, una longitud de hasta 25 m y una distancia entre centros de unos 2,5 a 4,0 m (Figura 2).
Sobre el campo de pilotes se coloca un colchón formado por tres capas de geotextil con grava entre ellas para redistribuir la carga del relleno a los pilotes. Se comprueba que la velocidad de instalación es bastante lenta, pero que racionalizando el hormigonado se puede ganar tiempo. Se realizan pruebas posteriores para verificar la calidad del pilote individual y de toda la mejora del suelo.
El pilote PCC ofrece mejor rendimiento económico que otros métodos convencionales. Presenta un mejor control de calidad, pues tanto la integridad como el grosor de la pared se puede verificar más fácilmente. Combina las ventajas del pilote de hormigón pretensado, del pilote perforado y del pilote de acero. Así, el PPC puede alcanzar profundidades de 25 m con diámetros de hasta 1,50 m, mientras que las columnas de grava y las columnas de suelo-cemento presentan diámetros que rondan los 0,50 m y profundidades normalmente limitadas a 15 m. Por otra parte, pilotes de estas dimensiones no se podrían prefabricar y colocar sin que estuvieran fuertemente armados, cosa que no ocurre con un PPC.
La capacidad portante del PCC es elevada, pues el rozamiento es alto por su diámetro y porque se desarrolla tanto por el interior como por el exterior del pilote tubular. Ello permite separar los pilotes entre sí, disminuyendo el número total necesario. Además, la forma anular del elemento rebaja la cantidad de hormigón empleado.
En la Figura 3 se muestra la secuencia de la instalación del PCC. Primero se monta la carcasa anular en la pilotadora (a), se empuja al principio y luego se vibra para introducirla en el terreno (b). Una vez se alcanza la profundidad, se vierte hormigón en el espacio anular (c). Después se extrae la doble tubería de acero mediante vibración (d) hasta terminar el pilote (e).
Os dejo a continuación un vídeo explicativo que creo os puede servir para entender el procedimiento constructivo de este tipo de pilotes.
Referencias:
LIU, H.L.; FEI, K.; MA, X.H.; GAO, Y.F. (2003). Cast-in-situ concrete thin-wall pipe pile with vibrated and steel tube mould technology and its application (I): Development and design. Rock Soil Mechanics, 24:164–168.
LIU, H.L.; CHU, J.; DENG, A. (2009). Use of large-diameter, cast-in situ concrete pipe piles for embankment over soft clay. Canadian Geotechnical Journal, 46(8): 915–927.
Se puede mejorar la resistencia y rigidez de una columna de gravas inyectando una lechada (“grouted gravel pile“). Se trata de preinstalar un tubo de inyección en la perforación antes de que se vierta la grava. La columna de grava se ejecuta mediante vibración, dependiendo la profundidad de la columna de la altura de la máquina. La lechada se inyecta conforme se extrae el tubo. Este tratamiento, además, permite impermeabilizar la columna.
Esta técnica se ha aplicado con éxito en el refuerzo de terrenos blandos en plataformas ferroviarias, carreteras, puertos, etc. Las columnas de grava inyectada es una técnica inventada por el profesor Hanlog Liu.
La columna de grava inyectada presenta ventajas respecto a la columna de gravas convencional (Liu et al., 2015):
a) Mientras la columna de grava se considera flexible, con una longitud efectiva entre 6 y 10 veces su diámetro, o de 6 a 8 m de longitud, la inyectada es rígida y su longitud efectiva puede llegar a 35 m.
b) Las inyectadas son más eficaces para controlar los asientos por su mayor rigidez.
c) Las columnas de grava no pueden utilizarse cuando la resistencia al corte no drenada del suelo es inferior a 15 kPa, cosa que no ocurre con las inyectadas.
d) Las columnas de grava requieren una máquina con un mástil tan alto como la longitud de la columna, cosa que no ocurre con la grava inyectada.
El procedimiento constructivo se realizaría de la siguiente forma (Liu et al., 2015):
Se perfora un pozo con un diámetro de entre 40 y 80 cm con lodos de perforación. La velocidad de perforación, la densidad del lodo y la consistencia del lodo se controlan en el rango de 50 a 100 revoluciones/min, 1150 a 1300 kg/m3, y 18 a 25 s, respectivamente. Una vez alcanzada la profundidad requerida, el tubo de perforación se eleva unos 30 cm y luego y se gira durante 25-30 minutos. La tierra que queda en el fondo de la perforación tiene que ser inferior a 30 cm.
Se añade agua a través del tubo de perforación para limpiar el pozo y reducir la densidad del lodo a aproximadamente1100 kg/m3.
Se coloca un tubo de inyección en el centro de la perforación. Se vierte grava en la perforación. Se añade agua continuamente para limpiar la perforación y reducir la densidad de la lechada a 1050 kg/m3.
La lechada de cemento hecha de una mezcla de cemento de 32,5 MPa con una proporción de agua-cemento de 0,5-0,6 se bombea en el pozo a través de la tubería de inyección utilizando un método de abajo hacia arriba. La salida del tubo de inyección se coloca inicialmente a 15-30 cm por encima del fondo del pozo. Una presión de inyección de 0,3 a 0,7 MPa. A continuación, el tubo de inyección se retira a una velocidad de 0,3-0,5 m/min. Sin embargo, se puede utilizar una velocidad más lenta de 0,2-0,3 m/min cuando se encuentre una capa de arena suelta o medianamente suelta. capa de arena suelta o medianamente suelta.
Se retira el tubo de lechada. Después de 7 a 10 días, se coloca una zapata de hormigón armado en la parte superior de la columna.
Os dejo un vídeo explicativo de la técnica.
Referencias:
LIU, H.; KONG, G.Q.; CHU, J. (2015). Grouted gravel column-supported highway embankment over sfot clay: Case study. Canadian Geotechnical Journal, 52(11):150414143659002.
Se denominan pilotes excavados, perforados o de extracción, los que en su ejecución la perforación se efectúa por extracción del terreno. Debido a esta forma de instalación, se suelen denominar también pilotes de sustitución. Los pilotes perforados se hormigonan en obra. Son pilotes muy utilizados, aunque en edificación se reduce su uso a pilotes de un diámetro menor al metro. Sus diámetros habituales varían entre 350 y 3000 mm. Actualmente se encuentra vigente la norma europea UNE-EN 1536:2011+A1:2016 que establece los principios generales para la ejecución de pilotes perforados.
La excavación del terreno para ejecutar estos pilotes suele ser a percusión con cucharas de distintos tipos o trépanos. Sin embargo, también se perfora a rotación con distintos tipos de corona o cuchara (Figura 1), a rotopercusión si los terrenos son duros, compactos o rocosos o mediante útiles helicoidales que se hincan con giro y se extraen sin él (Figura 2). Cada método de excavación influye de forma diferente en el terreno, lo cual modifica el comportamiento pilote-terreno.
Respecto a los pilotes hincados, los excavados presentan las siguientes ventajas:
Pueden obtenerse muestras del terreno mientras se realiza la excavación.
Pueden atravesarse con más facilidad estratos duros.
Los sistemas de perforación producen mucho menos ruido y vibraciones, con maquinaria generalmente más ligera y más barata. En su caso, solo hay vibraciones cuando se hincas las camisas. Es por ello que se emplean más en zonas urbanas que los hincados.
Pueden alcanzarse mayores profundidades.
Sin embargo, respecto a los hincados, los pilotes de perforación no se pueden construir con una inclinación significativa (existen casos como en la cimentación de un estribo de un puente, donde algunos de los pilotes se pueden construir con cierta inclinación, en torno a 12:1), el hormigón puede presentar mala calidad por su difícil puesta en obra y problemas de curado en contacto con el terreno, una colocación deficiente de las armaduras, la excavación afloja los terrenos arenosos y pueden estrangularse al extraer la camisa o la hélice. Además, para tener una idea de la sección real de la excavación y del pilote frente a la sección teórica, se utiliza la “curva de hormigonado”, que nos indica el consumo real de hormigón en función de la profundidad.
El hormigón que se vierte para conformar este tipo de pilotes debe presentar algunas características especiales, como utilizar un cemento resistente en terrenos agresivos. Según indica el CTE, el hormigón de los pilotes perforados debe presentar las siguientes características:
Alta capacidad de resistencia contra la segregación
Alta plasticidad y buena cohesión
Buena fluidez
Capacidad de autocompactación
Suficiente trabajabilidad durante el proceso de vertido, incluida la retirada, en su caso, de los entubados provisionales
Por tanto, no se aconseja el uso de cementos de gran finura de molido y alto calor de hidratación, debido al empleo de altas dosificaciones. No se recomiendan los cementos de aluminato de calcio, aconsejándose los cementos con adiciones (tipo CEM II), porque las adiciones mejoran la durabilidad y la trabajabilidad, reduciendo la generación de calor durante el curado. Si la agresividad del terreno es muy elevada, se deben emplear cementos con la característica especial de resistencia a sulfatos o agua de mar (SR/MR).
En cuanto a los áridos, se utilizará una granulometría continua para evitar la segregación. También se preferirá el empleo de áridos redondeados cuando la colocación del hormigón se realice mediante tubo tremie. El tamaño máximo se limita a 32 mm o a ¼ de la separación entre armaduras longitudinales, eligiéndose el valor menor de ambos. En condiciones normales, se utilizarán tamaños máximos de árido de 25 mm si es rodado y 20 mm si es de machaqueo.
Como en los hincados, existen diversos procedimientos de ejecución, con o sin entubación según la consistencia y estabilidad del terreno y con diferentes sistemas de compactación del hormigón: mecánicamente o con aire comprimido.
Si se emplea entubación, su recuperación o integración definitiva se debe decidir con los mismos criterios que en los pilotes hincados; en terrenos de cierta consistencia, puede no ser necesaria la entubación, en cuyo caso la excavación puede realizarse con lodos o en seco. Los métodos de entibación o sostenimiento de la perforación son más complejos y caros cuanto menos consistente es el terreno. Así, rocas, arcillas, limos y arenas son, por este orden, cada una más difícil de sostener. Además, la presencia del nivel freático acrecienta el problema, más si el agua está en movimiento o está cargada de sales.
Por otra parte, hay que tener presente que, en una zona de relativamente poco espesor alrededor del terreno excavado, se produce una alteración que depende del método de perforación y que normalmente producirá una disminución de la tensión lateral previa a la instalación del pilote. Ello se traduce en un descenso de la densidad y del ángulo de rozamiento, sobre todo en las arcillas (en arenas la perforación no puede realizarse sin entibación, que incluso puede densificar el terreno si la perforación se realiza dentro de un tubo hincado previamente).
Así, el uso de hélices discontinuas para realizar la excavación deja peor el fondo de la excavación por falta de limpieza adecuada y caída de detritus de las paredes al introducir las armaduras. Ello influye en la resistencia por punta del pilote, que podría mejorarse con una inyección de “jet-grouting” en el fondo de la excavación.
Los pilotes perforados, si llegan a un sustrato rocoso, deberían poder empotrarse en él de alguna forma. Para ello se excava la roca con trépano o con otro medio. En el caso de que el empotramiento no supere un diámetro de profundidad, entonces se considera que el pilote está simplemente apoyado. En estos casos, hay que asegurar que el fondo de la perforación se encuentre limpio para evitar depósitos de material compresible que originen asientos y pérdida de capacidad portante por la base.
No se debe permitir la hinca con desplazamiento de pilotes o entibaciones a distancias menores a 3 m de un pilote hormigonado hasta que este hormigón presente una resistencia mínima de 3 MPa. Este plazo también se debe respetar cuando se realice la perforación con extracción, a una distancia mínima de 3,5 diámetros medidos desde el centro del pilote.
Solo se pueden ejecutar pilotes aislados hormigonados “in situ” si su diámetro supera los 1000 mm y se arman para las excentricidades y momentos resultantes. No se deben ejecutar pilotes aislados de este tipo si su diámetro es inferior a los 450 mm. En diámetros intermedios, solo se permiten pilotes aislados si se arriostran en dos direcciones perpendiculares.
La norma NTE-CPI “Cimentaciones. Pilotes in situ”, indica que el hormigonado del pilote quedará a una altura superior a la definitiva, debiéndose demoler el exceso una vez endurecido el hormigón. La altura a sanear será como mínimo la mitad del diámetro cuando la cabeza quede sobre el nivel freático, o de vez y media el diámetro cuando la cabeza quede por debajo. De todos modos, la recomendación es que la Dirección Facultativa indique la profundidad a descabezar teniendo en cuenta estos factores y el grado de contaminación del hormigón de la parte superior del pilote.
En cuanto a los ensayos de control de los pilotes terminados, se distinguen los ensayos de integridad a lo largo del pilote y los ensayos de carga (estáticos o dinámicos). Los primeros comprueban la continuidad del fuste del pilote y la resistencia del hormigón; para ello pueden ser ensayos de transparencia sónica, de impedancia mecánica o sondeos mecánicos a lo largo del pilote. El Código Técnico de Edificación CTE DB-SE C establece que el número de ensayos de integridad no debe ser inferior a 1 por cada 20 pilotes, salvo en el caso de pilotes aislados de diámetros entre 450 y 1000 mm, que no debe ser inferior a 2 por cada 20 pilotes. En pilotes aislados de diámetro superior a 1000 mm, no debe ser inferior a 5 por cada 20 pilotes. Sin embargo, son frecuencias de muestreo muy bajas, pues no son las habituales aceptadas internacionalmente, donde se especifica un mínimo del 30% como muestra. Con todo, se recomienda ensayar al 100% todos los pilotes, al menos con el ensayo sónico mediante martillo de mano.
En la Tabla 1 se recoge el uso de los pilotes perforados en función de los condicionantes geotécnicos, diámetro, profundidad y rendimientos que puede tener, todo ello para tener un orden de magnitud de sus características principales.
A mediados de los años 80 del siglo pasado se desarrollaron en Estados Unidos una serie de tecnologías, que bajo el nombre de Geopier®, mejoraban suelos blandos, compresibles y de muy baja capacidad portante. Se trata de reemplazar o desplazar el terreno en columnas formadas por capas sucesivas de agregados de grava compactados. En este sentido, podría clasificarse como una técnica de mejora de terrenos de columna de gravas, aunque otras técnicas de compactación profunda, como la sustitución dinámica, tendría un planteamiento similar. No obstante, existen diferencias importantes en cuanto a funcionamiento y ejecución.
El procedimiento constructivo aplica una energía de compactación vertical, de alta frecuencia y baja amplitud de impacto que densifica la grava y desplaza lateralmente el terreno. Este efecto reduce la deformabilidad de la columna, pues el módulo de deformación de la grava se incrementa con la presión de confinamiento. Este módulo es mayor que las columnas de grava tradicionales ejecutadas por vibración, con un ángulo de rozamiento entre 48 y 52º, un 40% superior. El resultado es que con la compactación se consiguen módulos de deformación que varían entre 65 MPa en suelos muy pobres y compresibles, hasta valores de 300 MPa en suelos firmes o a mayor profundidad (Moreno, 2019). El resultado es que las columnas compactadas ofrecen elementos hasta 2 a 9 veces más resistentes que las columnas de grava tradicionales, con una mayor capacidad portante y un mejor control del asiento.
Por otra parte, la presión lateral provocada por la compactación supone una sobre-consolidación del suelo adyacente. Este efecto incrementa su rigidez y resistencia al esfuerzo cortante que permite una mayor capacidad portante y una reducción de asientos. También destaca su aptitud para mitigar el potencial de licuación de suelos en zonas sísmicas. Con estas técnicas se consiguen suelos reforzados que soportan esfuerzos de 200 a 450 kPa.
Esta técnica es aplicable a terrenos flojos, cohesivos blandos o compresibles. Las gravas que se utilizan suelen ser bien graduadas, aunque se pueden emplear gravas más uniformes y abiertas si existe nivel freático y se quiere utilizar la columna como elemento drenante. No obstante, si el suelo es de muy baja rigidez y muy compresible, se puede aumentar la rigidez de la columna agregando una lechada de cemento durante la compactación de la grava, llegando, incluso, a construir una columna de hormigón compactado, agrandado en punta.
Se diferencian distintas tecnologías Geopier® de columnas de agregados de grava compactados:
Geopier System (GP3): se realiza una perforación previa, de hasta 5-7 m de profundidad, posteriormente se rellena y compacta la grava. Se barrena con un diámetro de 600 a 900 mm en suelos de cierta capacidad portante y sin nivel freático.
X1 System (X1): en terrenos con compacidad suficiente, se perfora hasta 15-17 m, se rellena y compacta la grava.
Geopier Impact (Impact): se ejecuta la columna mediante desplazamiento del terreno y compactación de la grava, hasta profundidades de 25 m. Adecuado para terrenos arenosos saturados o cohesivos, potencialmente colapsables. Se introduce la grava a través una tubería, tipo tremie o mandril, que tiene en la punta un pisón. Se compacta en capas de unos 30 cm de espesor, conformando columnas de diámetro entre 500 y 600 mm.
En el caso de terrenos muy compresibles y deformables, se contemplan dos soluciones de inclusiones rígidas:
Grouted Impact Pier (GIC): es la misma solución de Impact, pero con una lechada de cemento que se mezcla con la grava. Se usa en suelos blandos o granulares sin cohesión, o bajo en nivel freático.
Geo-Concrete Columns (GCC): se construye una columna de hormigón hasta 25-27 m de profundidad desplazando el terreno, colocando una base o punta de mayor diámetro que el fuste y compactando el hormigón. Se emplea en suelos muy blandos y compresibles, incluso con materia orgánica. La ejecución es similar al sistema Impact. La carga soportada por la columna oscila entre 400 y 1500 kN, aunque depende de su diámetro, que varía entre 350 y 500 mm y de la resistencia característica del hormigón, de 15 a 35 MPa.
A continuación os dejo una animación de la técnica Geopier GP3.
En este otro vídeo se observa la ejecución de la técnica Geopier X1.
Aquí, la forma de ejecutar el Geopier Impact.
El sistema Geopier GeoConcrete, su forma de ejecución:
Y por último, la ejecución de Geopier Grouted Impact.
A continuación os dejo una explicación de Terratest donde se explican las diferencias entre los elementos Geopier frente a las columnas de grava.