DANA 2024. Causas, consecuencias y soluciones

En el marco del Observatorio de la Inversión en Obra Pública, el Colegio de Ingenieros de Caminos, Canales y Puertos celebró el 2 de diciembre de 2024, la jornada «DANA 2024: causas, consecuencias y soluciones».

Durante la sesión, se analizó el desastre natural que asoló la Comunidad Valenciana, Castilla-La Mancha y Andalucía desde un punto de vista técnico. Miguel Ángel Carrillo, presidente del Colegio, también realizó una declaración institucional sobre la DANA.

A continuación os dejo el vídeo del acto celebrado, un resumen y un mapa conceptual del mismo. Espero que os sea de interés.

Resumen detallado del vídeo: DANA 2024. Causas, consecuencias y soluciones

El vídeo analiza la jornada dedicada al desastre natural DANA 2024, un fenómeno extremo que afectó gravemente a Valencia, y explora las causas, consecuencias y posibles soluciones desde diversas perspectivas técnicas y sociales. Organizada por el Colegio de Ingenieros de Caminos, esta jornada tiene como objetivo generar conocimientos prácticos y estratégicos para prevenir y mitigar futuros desastres similares. A lo largo de la jornada, expertos en ingeniería, planificación urbana y gestión ambiental reflexionan sobre la importancia de la planificación hidrológica, la resiliencia urbana y la reconstrucción sostenible.


Introducción y contexto inicial

[00:21]
El evento comienza con una introducción realizada por el Presidente del Colegio, Miguel Ángel Carrillo, donde detallada el desastre de la DANA de 2024, consideradolo uno de los más devastadores de Valencia en el último siglo. La jornada se organizó para analizar en profundidad las causas y consecuencias de este fenómeno y proponer soluciones basadas en la experiencia y el conocimiento técnico. El Colegio de Ingenieros de Caminos resaltó la necesidad de desarrollar respuestas integrales a las tragedias y pérdidas humanas, materiales y económicas derivadas de la catástrofe. Además, se hizo hincapié en que este tipo de análisis es crucial para fortalecer la capacidad de prevención y respuesta ante fenómenos climáticos extremos, especialmente en una región como Valencia, que es particularmente vulnerable al cambio climático.


Importancia de la evaluación in situ

[41:22]
El vídeo destaca la importancia de evaluar directamente las zonas afectadas por desastres naturales. Según los expertos, estar presente en el lugar del desastre permite observar de primera mano los daños, lo que es crucial para comprender la magnitud del problema y priorizar soluciones efectivas. Javier Machí, decano de la Demarcación de Valencia, comparte su experiencia personal al inspeccionar los daños sufridos en su comunidad y describe cómo estas visitas le permitieron identificar puntos críticos que requerían intervenciones inmediatas. Asimismo, se expresa una preocupación generalizada por el riesgo de que, con el tiempo, las huellas del desastre desaparezcan sin que se hayan documentado y aprendido las lecciones esenciales. Según los expertos, este olvido limitaría la capacidad de prevenir futuros eventos similares.


Impacto de las intensas lluvias y los desbordamientos

[01:22:46]
El análisis técnico de las lluvias torrenciales que caracterizaron el evento la DANA 2024 revela cifras impactantes. Para ilustrar la magnitud de las precipitaciones, que superaron ampliamente los promedios anuales en un corto periodo de tiempo, se utilizaron mapas de isoyetas. Uno de los ejemplos más notables fue la crecida del río Ojos de Moya, que provocó graves inundaciones en localidades como Utiel y afectó al río Magro. Estos desbordamientos pusieron de manifiesto las limitaciones de las infraestructuras existentes para manejar lluvias de esta intensidad. Además, se resaltó la relación directa entre este tipo de fenómenos meteorológicos extremos y el cambio climático, lo que obliga a reconsiderar la planificación y gestión de los recursos hídricos en la región.


Renaturalización y soluciones medioambientales

[02:04:11]
Una de las soluciones propuestas durante la jornada fue la renaturalización de los cauces fluviales para mitigar el impacto de las inundaciones. Este enfoque busca restaurar el equilibrio natural de los ecosistemas fluviales, lo que no solo reduce el impacto ambiental, sino que también mejora la capacidad de desagüe en zonas críticas. Sin embargo, en áreas urbanas densamente pobladas, las limitaciones espaciales obligan a adoptar medidas más drásticas, como la reforestación estratégica y la construcción de micropresas. También se mencionó un plan implementado en 2006 que incluyó el desvío de ciertos cauces para proteger ecosistemas vulnerables. Algunos expertos señalaron que estas medidas podrían requerir sacrificar áreas agrícolas para crear corredores verdes que reduzcan el riesgo de inundaciones, lo que ha abierto un debate sobre las prioridades entre la sostenibilidad ambiental y la producción agrícola.


Organización de la jornada y reconstrucción

[02:46:17]
La jornada contó con una notable participación presencial y virtual, lo que refleja el interés público y técnico en abordar las consecuencias de la DANA de 2024. En la tercera sesión, los ponentes debatieron sobre las inversiones necesarias para la reconstrucción de las zonas afectadas, haciendo hincapié en la solidaridad con las víctimas. En esta sesión se reunieron representantes de sectores clave, como la ingeniería, la construcción y la banca, que ofrecieron perspectivas complementarias sobre cómo financiar y ejecutar proyectos de reconstrucción. También se hizo hincapié en la importancia de coordinar esfuerzos entre diferentes actores para garantizar una recuperación eficiente y sostenible que no solo repare los daños, sino que también fortalezca la resiliencia de las comunidades.


Infraestructura hidráulica y cambio climático

[03:26:58]
Se hizo hincapié en la necesidad de realizar inversiones significativas en infraestructura hidráulica para hacer frente a los desafíos que plantea el cambio climático. Según los datos presentados, solo se ejecuta actualmente el 30 % de los planes hidrológicos en España, lo que deja un amplio margen para la mejora. Los expertos hicieron hincapié en la necesidad de desarrollar un proyecto nacional que destine suficientes recursos a la protección contra inundaciones. La colaboración público-privada también se identificó como un componente clave para financiar y ejecutar proyectos complejos, como encauzamientos y presas de laminación, que son esenciales para proteger a las comunidades en riesgo.


Planificación hidrológica y ordenación territorial

[04:08:21]
En este segmento, se destacó que una de las lecciones más importantes de la DANA 2024 es la necesidad de una planificación hidrológica y una ordenación territorial más efectivas. En una mesa redonda, expertos analizaron las causas y consecuencias del desastre, así como las acciones necesarias para la reconstrucción. Los ponentes hicieron hincapié en que, además de reparar las infraestructuras dañadas, es fundamental planificar a largo plazo para prevenir desastres futuros. Se debatió sobre cómo la ingeniería, en combinación con una ordenación territorial adecuada, puede reducir significativamente los riesgos asociados a fenómenos extremos.


Resiliencia urbana y gestión estratégica

[04:49:46]
La jornada concluyó con un análisis sobre la importancia de la resiliencia urbana en la gestión del territorio. Este concepto, que implica la capacidad de las ciudades para adaptarse y recuperarse de los desastres, se ha convertido en una prioridad global. Se mencionó el caso de Barcelona, que forma parte de una red internacional de ciudades resilientes y constituye un ejemplo de buenas prácticas. También se reflexionó sobre el Plan Sur, una ley que inicialmente buscaba coordinar estrategias urbanas en España, pero que ha perdido impulso en los últimos años. Los expertos hicieron un llamamiento para adoptar una visión integral y a largo plazo que permita a las ciudades hacer frente a los desafíos del cambio climático, al tiempo que se fomenta la responsabilidad ciudadana en la gestión del territorio.


Conclusión general

El vídeo destaca que la DANA 2024 no solo es una tragedia climática, sino también una oportunidad para reflexionar y actuar. Las propuestas abarcan desde soluciones técnicas, como la renaturalización y mejora de infraestructuras, hasta enfoques estratégicos, como la planificación hidrológica y el fortalecimiento de la resiliencia urbana. Los expertos coinciden en que hacer frente al cambio climático requerirá un esfuerzo conjunto, inversiones significativas y un compromiso político y social continuado.

A continuación os dejo un mapa conceptual del contenido del vídeo.

 

El programa completo del acto fue el siguiente:

Descargar (PDF, 5.24MB)

Evaluación de la vulnerabilidad urbana desde la perspectiva de la planificación estratégica

Destrucción causada por la DANA del 29 de octubre de 2024 en Valencia. https://www.iagua.es/blogs/jose-maria-bodoque/como-mejorar-gestion-riesgo-zonas-afectadas-dana-evitar-catastrofe

La evaluación de la vulnerabilidad urbana (EVA) se ha convertido en una herramienta esencial para la gestión de riesgos y la planificación estratégica de ciudades sostenibles. Un artículo publicado en el Journal of Cleaner Production describe los avances en este campo, abordando las metodologías más avanzadas, las líneas de investigación prioritarias y sus implicaciones para la práctica y la formulación de políticas. Este informe desglosa los hallazgos principales y resalta su impacto práctico y las aportaciones metodológicas. Destacamos la importancia de este trabajo, relacionado directamente con el desastre provocado por la DANA en Valencia, el 29 de octubre de 2024.

El trabajo se enmarca dentro de los proyectos de investigación HYDELIFE y RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València.

¿Qué es la vulnerabilidad urbana y por qué evaluarla?

La vulnerabilidad urbana mide la susceptibilidad de las ciudades a impactos negativos como desastres naturales, cambios climáticos, fallos en la infraestructura y crisis sociales. Según el artículo, la vulnerabilidad de un sistema urbano depende de:

  • Exposición: Grado en que el sistema está sujeto a una amenaza.
  • Sensibilidad: Capacidad del sistema para ser afectado negativamente.
  • Capacidad adaptativa: Habilidad para responder y recuperarse de las amenazas.

La Evaluación de Vulnerabilidad Urbana (EVA) tiene como objetivo identificar estos factores para informar sobre la toma de decisiones en el ámbito de la planificación estratégica, orientando las acciones hacia la resiliencia y la sostenibilidad urbana.

Relación con la Planificación Estratégica Urbana (USP)

La planificación estratégica urbana, basada en enfoques que evolucionan desde la predicción y el control hacia la adaptabilidad y la inclusión, proporciona un marco idóneo para integrar la EVA. Ambas disciplinas comparten desafíos como la incertidumbre, la necesidad de enfoques multidimensionales y la participación de actores clave.

Evolución y marco conceptual

Tres etapas en la evolución de la EVA

El artículo traza la evolución de la EVA a través de tres etapas fundamentales:

  1. Etapa predictiva: Los métodos iniciales se enfocaban en evaluar impactos utilizando modelos simples y lineales. Estos se limitaban a prever riesgos y sugerir respuestas reactivas.
  2. Etapa de vulnerabilidad: Incorporó conceptos de capacidad adaptativa y sensibilidad. Comenzó a incluir enfoques más integrales que consideraban aspectos socioeconómicos y biológicos.
  3. Etapa adaptativa: Introduce una visión dinámica, aceptando la incertidumbre y adoptando estrategias que respondan a cambios continuos. Esta etapa se centra en la planificación adaptativa y el manejo de riesgos en múltiples escenarios.

Marco conceptual para la EVA

El análisis del artículo se estructura en torno a atributos genéricos y de investigación, que permiten categorizar y evaluar los métodos de EVA:

  • Atributos genéricos:
    1. Abordaje: Clasificado en biológico, social e integral. Este último combina ambos factores, proporcionando una evaluación más holística.
    2. Estímulos: Incluyen amenazas como terremotos, inundaciones y fallas de infraestructura, clasificadas como de primer o segundo orden según su origen.
    3. Etapa de desarrollo: Impacto (diagnóstico inicial), vulnerabilidad (caracterización de capacidades) o adaptación (formulación de estrategias adaptativas).
  • Atributos de investigación:
    1. Robustez: Habilidad del modelo para manejar incertidumbre.
    2. Procesos participativos: Incorporación de opiniones y experiencias de múltiples actores.
    3. Multiescala: Integración de diferentes niveles de análisis.
    4. Naturaleza dinámica: Consideración del cambio en el tiempo y el contexto.
    5. Capacidad multiobjetivo: Evaluación de múltiples intereses y conflictos.
    6. Enfoques cognitivos: Identificación de relaciones causa-efecto y apoyo al aprendizaje en la toma de decisiones.

Metodología aplicada en el análisis

El artículo utiliza una metodología sistemática en cuatro pasos para identificar y analizar métodos EVA:

  1. Búsqueda exhaustiva: En bases de datos como Scopus y Web of Science, enfocándose en estudios recientes (a partir de 2010).
  2. Revisión por contenido: Identificación de trabajos relevantes que incluyan métodos novedosos de EVA.
  3. Categorización: Clasificación según atributos genéricos y de investigación.
  4. Análisis cuantitativo: Uso de herramientas estadísticas para evaluar tendencias, correlaciones y vacíos en la investigación.

De los 65 estudios seleccionados, la mayoría se encuentra en la etapa de vulnerabilidad, lo que refleja una transición hacia enfoques más integrales y adaptativos.

Hallazgos principales

Los estudios actuales muestran un predominio de métodos integrales que combinan factores biológicos y sociales (35 %), superando a los enfoques exclusivamente biológicos (34 %) y sociales (31 %), lo que permite evaluaciones más precisas para la toma de decisiones. El atributo más investigado es la robustez (33 %), lo que refleja la prioridad de gestionar la incertidumbre y mejorar la fiabilidad de los resultados. Sin embargo, la participación ciudadana, que es fundamental para integrar las perspectivas sociales, está poco desarrollada (22 %), mientras que las dimensiones multiescalares y dinámicas, que son esenciales para entender la complejidad urbana, reciben poca atención (6 %).

Relación entre atributos y estímulos

Los métodos EVA se centran principalmente en amenazas naturales como terremotos (34 %) e inundaciones (24 %). Estas categorías tienen mayor presencia en enfoques biológicos e integrales, mientras que los estímulos sociales y relacionados con infraestructuras están menos representados.

Impacto de los enfoques integrales

Los enfoques integrales son eficaces para avanzar hacia etapas adaptativas. En el caso de los fallos de infraestructura, combinar simulaciones con análisis socioeconómicos permite identificar vulnerabilidades críticas y proponer soluciones integradas. En casos de inundaciones, los modelos de robustez y el análisis de participación comunitaria refuerzan la legitimidad de las estrategias adaptativas.

Implicaciones prácticas

Política y planificación

  1. Desarrollo de infraestructuras resilientes: Incorporar resultados de EVA en la planificación de sistemas urbanos adaptativos y flexibles.
  2. Participación comunitaria: Diseñar procesos inclusivos que canalicen las perspectivas ciudadanas hacia decisiones legítimas y eficaces.
  3. Integración de escalas: Conectar análisis locales con dinámicas regionales y globales, fomentando la coherencia entre niveles de planificación.

Investigación y tecnología

  1. Mejora de modelos de robustez: Implementar técnicas avanzadas como redes complejas y análisis de Monte Carlo.
  2. Promoción de métodos multiobjetivo: Usar enfoques heurísticos y de optimización para equilibrar múltiples intereses.
  3. Fomento de enfoques dinámicos: Incluir simulaciones basadas en el tiempo para anticipar cambios en la vulnerabilidad.

Conclusión

La evaluación de la vulnerabilidad urbana ha progresado significativamente hacia enfoques integrales y adaptativos, pero persisten desafíos, especialmente en lo que respecta a la participación ciudadana, la multiescala y la naturaleza dinámica. Los métodos EVA son fundamentales para abordar la complejidad de la planificación urbana en un mundo cada vez más incierto. El artículo destaca que la inversión en investigación interdisciplinaria y tecnología puede acelerar la transición hacia ciudades más resilientes y sostenibles.

Referencia:

SALAS, J.; YEPES, V. (2018). Urban vulnerability assessment: Advances from the strategic planning outlook. Journal of Cleaner Production, 179:544-558. DOI:10.1016/j.jclepro.2018.01.088

Os paso la versión autor del artículo completo, por si os interesa leerlo.

Descargar (PDF, 608KB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Valencia frente a la amenaza de una nueva inundación: análisis, antecedentes y estrategias para mitigar el riesgo

https://www.rtve.es/noticias/20241030/catastrofico-temporal-valencia-lluvia-dana/16310046.shtml

Ante los acontecimientos catastróficos que estamos viviendo en Valencia como consecuencia de la DANA, he querido publicar un resumen de un informe del año 2014 denominado “Actualización del Plan Sur de Valencia. Estudio informativo acerca de los riesgos de que Valencia experimente una nueva inundación catastrófica“. Este resumen resalta los riesgos de que Valencia experimente una nueva inundación catastrófica basándose en el análisis del «Plan Sur de Valencia» y en las características geográficas, climáticas e históricas de la ciudad y su entorno. Aunque es de 2014, creo que no ha perdido vigencia, aunque estoy convencido de que en estos últimos 10 años se ha mejorado la información al respecto. El conocimiento se tiene y está claro lo que hay que hacer. Falta la voluntad de priorizar las actuaciones públicas.

Introducción y antecedentes

Valencia ha sido históricamente vulnerable a las inundaciones debido a su ubicación geográfica y la morfología de su entorno. Desde su fundación en el año 138 a. C., en una terraza del río Turia cercana a su desembocadura en el Mediterráneo, la ciudad ha soportado las crecidas de su principal cauce fluvial. Este asentamiento, que proporcionaba ventajas en términos de acceso al agua y a tierras cultivables, también expuso a la ciudad al riesgo de avenidas debido al régimen torrencial del Turia. Las crecidas y la sedimentación del río han modelado la región, elevando el suelo de Valencia en más de cinco metros y configurando un entorno altamente vulnerable.

Las primeras crónicas detalladas de inundaciones en Valencia datan del siglo XIV, cuando los registros empezaron a documentar las crecidas del Turia y sus efectos devastadores en la ciudad y las áreas circundantes. En estos registros se identifican 24 episodios de inundaciones graves entre 1321 y 1957, con un periodo de recurrencia aproximado de 27 años. Este historial de avenidas sugiere que, en ausencia de intervenciones significativas, la probabilidad de nuevas inundaciones se mantiene elevada.

Tras la gran riada de 1957, que causó cientos de muertes y pérdidas materiales significativas, las autoridades emprendieron la construcción de un nuevo cauce del río Turia con el fin de desviar el flujo de agua y reducir los riesgos de inundación en la ciudad. Sin embargo, estudios recientes del grupo «Impulso a Valencia» indican que las medidas adoptadas, aunque efectivas en parte, podrían ser insuficientes ante una avenida similar o superior a la de 1957.

Climatología y fenómeno de la gota fría

La Comunidad Valenciana posee un clima mediterráneo con marcada variabilidad en las precipitaciones, influido tanto por la orografía de la región como por las condiciones atmosféricas del Mediterráneo. La disposición de las montañas en la franja litoral y prelitoral intensifica el efecto de convección y precipitación en ciertos episodios. Así, Valencia se ve expuesta a lluvias torrenciales, que se concentran principalmente en los meses de otoño.

Una característica fundamental del clima valenciano son los episodios de «gota fría» o DANA (Depresión Aislada en Niveles Altos). Este fenómeno se produce cuando masas de aire frío en altura interactúan con aire cálido y húmedo del Mediterráneo, lo que genera precipitaciones intensas en cortos intervalos de tiempo. La situación se agrava cuando las lluvias coinciden con fuertes temporales marinos, que elevan el nivel del mar y dificultan la evacuación del caudal fluvial en la desembocadura del Turia.

Durante el periodo 1971-2000, la región registró más de 300 días con lluvias superiores a 100 mm y 16 episodios con precipitaciones que superaron los 300 mm en 24 horas. Estas intensas precipitaciones son capaces de desbordar el cauce del Turia, cuya capacidad máxima actual se estima en 3700 m³/segundo. Estos episodios de lluvias extremas, junto con el cambio climático, que eleva las temperaturas del mar, aumentan la frecuencia y la gravedad potencial de estos eventos.

Además, Valencia ocupa el tercer puesto a nivel mundial en exposición a lluvias torrenciales, después de dos áreas tropicales. Esta situación climatológica particular exige una infraestructura adecuada para mitigar los riesgos de inundación y proteger a la población ante el impacto de una avenida extrema.

Hechos históricos de inundación en Valencia

Desde tiempos romanos, las crecidas del Turia han sido un elemento constante en la vida de la ciudad. Ya en la época medieval, la distribución espacial del agua desbordada afectaba a zonas como Campanar, Marxalenes y el centro urbano. A lo largo de la historia, las murallas y defensas de la ciudad se construyeron tanto para proteger Valencia de los ataques como para contener las aguas del Turia. Durante la época de Pedro el Ceremonioso, se levantó una muralla septentrional con el propósito de evitar la entrada de las aguas en la ciudad, pero las grandes crecidas, como la de 1589, mostraron que incluso estas defensas eran insuficientes.

Entre 1321 y 1957 se documentaron 24 grandes avenidas, que devastaron el entorno urbano y las poblaciones cercanas. La riada de 1957 se recuerda como la peor, cuyo caudal inundó extensamente el área urbana y dejó Valencia sin un abastecimiento adecuado durante días. Este suceso marcó un punto de inflexión en la gestión del riesgo de inundación, lo que dio lugar a la construcción del «Nuevo Cauce» en 1969.

Sin embargo, el Plan Sur y el nuevo trazado del cauce, aunque eficaces en parte, no garantizan la protección completa. El informe estima que el actual cauce del Turia podría no soportar una riada de la magnitud de la de 1957, lo que vuelve crítica la necesidad de fortalecer las defensas fluviales y estudiar a fondo la capacidad de avenamiento actual.

Análisis de la Riada de 1957

La riada de 1957 es un evento de referencia para comprender la magnitud del riesgo al que Valencia está expuesta. En un día de octubre, las intensas lluvias descargaron precipitaciones sin precedentes sobre la cuenca del Turia, y el caudal del río alcanzó los 3700 m³/segundo, según cálculos de la época, aunque se estima que pudo haber sido incluso mayor. Las inundaciones resultantes cubrieron grandes extensiones de la ciudad, causando la pérdida de vidas, el desplazamiento de miles de personas y la destrucción de infraestructuras básicas.

El «Nuevo Cauce» se diseñó para un caudal de 5000 m³/segundo; sin embargo, su capacidad actual se ha recalculado en 3700 m³/segundo, lo que iguala el caudal de la riada del 57, según los registros de la Confederación Hidrográfica del Júcar. Así, si una avenida semejante o mayor ocurriera, el cauce del Turia se desbordaría, lo cual podría provocar una inundación a gran escala en la zona urbana y poner en riesgo nuevamente a miles de personas y una vasta área de la ciudad.

Propuestas de actuación para la mitigación de riesgos

El informe sugiere una serie de propuestas para mitigar los riesgos de inundación y aumentar la resiliencia de Valencia ante avenidas extremas:

  1. Reevaluación del cauce y mejoras estructurales: el primer paso consiste en analizar la capacidad real de drenaje del Turia desde Loriguilla hasta su desembocadura. Esto requiere actualizar las infraestructuras, con un énfasis especial en el tramo de Quart de Poblet, donde comienza el nuevo cauce. Además, sería necesario reforzar la mota que separa el viejo cauce del nuevo, pues si esta barrera fuera sobrepasada o se rompiera, Valencia quedaría gravemente expuesta a una nueva riada.
  2. Laminación de avenidas y protección ambiental: en la cuenca baja del Turia, se propone un plan de reforestación y mantenimiento de barrancos que ayude a regular las avenidas y reducir la velocidad de escorrentía. Una infraestructura de laminación, como un lago fluvial o un embalse en Vilamarxant, permitiría controlar el caudal y reducir los picos de crecida que llegan a Valencia. Este enfoque, que combina obras de infraestructura con medidas de protección ambiental, busca no solo proteger la ciudad, sino también minimizar el impacto en los ecosistemas y la zona agrícola de la cuenca baja.
  3. Mejoras en la desembocadura y mitigación del efecto dique: es necesario rediseñar la desembocadura del Turia para reducir el «efecto dique» que ocurre cuando el temporal marino obstruye la evacuación del agua hacia el mar. Este fenómeno, en el que las olas del Mediterráneo superan los cinco metros de altura, impide que el cauce fluya libremente y aumenta el riesgo de inundación en las zonas bajas de la ciudad. Un rediseño adecuado de la desembocadura permitiría una evacuación más eficiente del caudal fluvial incluso en condiciones de temporal.
  4. Red de monitorización y sistema de alerta temprana: dada la velocidad y fuerza de las avenidas en Valencia, es crucial establecer una red de estaciones pluviohidrológicas en toda la cuenca del Turia que permita un monitoreo constante y en tiempo real. Este sistema debería estar integrado con un mecanismo de alerta temprana, de modo que las autoridades y la población puedan tomar medidas de protección antes de que ocurra un evento catastrófico. La experiencia de la riada del 57 mostró que muchas víctimas fueron sorprendidas sin tiempo de reacción, de ahí la importancia de la preparación y la comunicación.
  5. Actualización de los planes de protección civil y simulacros de emergencia: los planes de emergencia y protección civil deben ser revisados y adaptados a la realidad climática actual y a las capacidades de infraestructura del río. Estos planes incluyen rutas de evacuación, centros de acogida y protocolos de comunicación, que son fundamentales para reducir el riesgo de pérdidas humanas y materiales en caso de una avenida.
  6. Evaluación y recurrencia admisible de crecidas: finalmente, el informe recomienda que se determinen los intervalos de recurrencia aceptables para futuras crecidas, considerando distintos escenarios de magnitud. Esta evaluación permitirá a las autoridades decidir sobre el diseño y las inversiones necesarias en infraestructura según el nivel de riesgo que la ciudadanía de Valencia está dispuesta a asumir.

Conclusión

La ciudad de Valencia se enfrenta a un riesgo significativo de sufrir otra inundación catastrófica, debido a sus condiciones climáticas, al cambio climático y a la infraestructura fluvial actual. Los sucesos catastróficos se evidencian con el actual desastre de finales de octubre de 2024. Las propuestas del informe «Impulso a Valencia» subrayan la importancia de tomar medidas preventivas y estructurales, y adaptar las capacidades de la ciudad para responder a episodios extremos. Sin embargo, es fundamental que la ciudadanía sea consciente de este riesgo y participe activamente en los sistemas de alerta y en los planes de emergencia para reducir las posibles pérdidas en el futuro.

Referencia:

VV.AA. (2014). Actualización del Plan Sur de Valencia. Estudio informativo acerca de los riesgos de que Valencia experimente una nueva inundación catastrófica. Ateneo Mercantil de Valencia, Grupo de Análisis “Impulso a Valencia”, 52 pp.

Descargar (PDF, 1.95MB)

 

El puente de Astilleros de Valencia

Figura 1. Puente de Astilleros, Valencia. https://puentesvalencia.com/2023/09/15/puente-de-astilleros/

El enorme tráfico que presentaba el puerto de Valencia a finales del siglo XIX hizo pensar en la conveniencia de ensanchar la carretera existente en la margen derecha del Turia y en la construcción de un nuevo puente en el poblado de Nazaret. La primera alternativa la presentó D. Antonio Guijarro Montó en el año 1891, a la que siguió otra de D. Fernando Prósper y González, siendo ambas rechazadas por el Ayuntamiento.

El 2 de septiembre de 1901, los ingenieros municipales Casimiro Meseguer y J. Blanco firman un nuevo proyecto, cuyas obras dieron comienzo el 14 de mayo de 1904. Surgieron problemas con los terraplenes laterales y se añadieron unos tramos metálicos en los extremos, con lo que quedó un puente de cinco vanos metálicos de 12 m de luz. Sin embargo, la estructura duró poco y en 1921 la Dirección de Caminos la declara en ruina, y se cierra durante dos años. Después se rehabilitó y se añadió un tramo más, quedando su longitud en 72 m con una anchura de calzada de 3,5 m y dos aceras de 0,5 m.

El actual puente de Nazaret o de Astilleros (1928-1931), que se hubiera llamado “Príncipe de Asturias” si no hubiese sido por los avatares políticos de entonces, se adjudicó a “Cubiertas y Tejados, que empezaron las obras un 16 de julio de 1928 y las terminaron el 22 de septiembre de 1931, siendo inaugurado el puente el 14 de noviembre de ese mismo año. Su ubicación fue unos 165 m aguas abajo del antiguo puente de Hierro que, para peatones y carros, existía frente a la calle Mayor del poblado de Nazaret. Se trata de un puente que se proyectó en 1926 y cuya forma, materiales y procedimientos constructivos son los propios de aquella época.

Figura 2. Plano de sección en proyecto original del puente de Astilleros. https://valenciaactua.es/puente-de-astilleros/

Su longitud es de 175 m y su anchura de 25. Formado por cinco vanos de hormigón armado de 23 m y cuatro vanos de 9,45 m, todos rectos. Se tuvieron que resolver las dificultades propias de una cimentación sobre un terreno fangoso mediante pilotes de hormigón armado clavados algunos a más de 12 m. Sus barandas son de hierro forjado, con adornos de hierro fundido, ornamentadas entre pilastras de hormigón que forman la base de las farolas. El coste de la obra se situó en torno a los 2 millones de pesetas de entonces, siendo sus autores los ingenieros Federico Gómez de Membrillera y Piazza y Luis Dicenta Vera.

Su estilo modernista tiene gran influencia del art-decó, destacando la belleza de las farolas y las barandillas. Las aceras vuelan sobre los paramentos y se apoyan en sus extremos en las pilas y en el centro de una gran ménsula de piedra artificial. Además, cuenta en sus pilas con relieves alusivos a la marina, las obras públicas, etc. En su origen tuvo una zona central adoquinada y raíles para los tranvías, pero posteriormente se eliminó transformándose en calzada para el tráfico. La riada de 1949 provocó daños que debió reparar, dándole solidez y capacidad viaria, la Junta del Puerto. Fue ampliado hasta adquirir su fisonomía actual con dos aceras y seis carriles para circulación rodada.

Figura 3. Detalle de la barandilla del puente de Astilleros.

Si bien este puente no fue el primero que se realizó en la Comunidad Valenciana en hormigón armado, sí que lo fue sobre el cauce del Turia, en Valencia, pues se trató de un puente que debía soportar el tráfico de vehículos, ferrocarriles y tranvías. Eso lo diferenciaba de la pasarela de la Exposición de 1909, cuya función solo fue peatonal.

Referencia:

YEPES, V. (2010). Puentes históricos sobre el viejo cauce del Turia. Una aproximación histórica, estética y constructiva a la Valencia foral. Universitat Politècnica de València, 372 pp. Registro de la Propiedad Intelectual 09/2011/643.

 

El Pont de Fusta de Valencia, una historia sucesiva de pasarelas sobre el cauce del Turia

Figura 1. Pont de Fusta, en los primeros años de 1900. https://www.adriver.org/Puentes_del_rio_Turia/puente-de-madera.html

Esta pasarela peatonal surgió para conectar la estación de “trenets” de la Sociedad Valenciana de Tranvías. Las obras de los ferrocarriles económicos valencianos se ejecutaron con gran celeridad, pues empezaron el 3 de agosto de 1887 y diez meses después ya estaba terminado el trayecto entre Valencia y Paterna. Al principio se partía de la estación de Marxalenes, hasta que se terminó la actual estación, llamada de santa Mónica o “Estacioneta”, inaugurada el 7 de julio de 1892, y que hoy es la actual sede de la Policía Autonómica Valenciana. A este singular edificio, proyectada por el arquitecto Joaquín Belda, llegaban los trenets desde Lliria, Bétera, Rafelbunyol y el Grau.

Esta pasarela estaba situada entre los puentes de Serranos y Trinidad, siendo necesaria su construcción para evitar el rodeo que tenían que realizar los transeúntes para acceder a la citada estación. La obra se realizó en virtud de la concesión hecha por el Ayuntamiento a Francisco Motes, en sesión de 18 de julio de 1892. Se inauguró el día 19 de agosto del mismo año una estructura provisional, realizada con tablones de Flandes, razón por la cual el pueblo le bautizó con el nombre de “Pont de Fusta”. Esta primera estructura fue sustituida por otra donde la madera solo se utilizaba en el tablero. La nueva pasarela, abierta al público el 3 de junio de 1893, tuvo un costo de 19.708 pesetas. Tenía una longitud de 175 m, 2 m de anchura de tablero y 5 m de altura sobre el lecho del río. Sin embargo, tuvo una vida muy corta, pues la riada de noviembre de 1897 arrasó 17 de los 20 vanos, dejando solo un pequeño tramo adosado a las Alameditas de los Serranos (Figura 3).

Figura 2. Pont de Fusta de Valencia. https://railsiferradures.blogspot.com/2012/05/los-puentes-tranviarios-de-valencia.html
Figura 3. Pont de Fusta tras la riada de noviembre de 1897. https://valenciablancoynegro.blogspot.com/2023/12/el-primer-pont-de-fusta.html

El 24 de septiembre de 1898 se inauguró otro puente, obra de Enrique Finks, por un importe de 33.500 pesetas. El Ayuntamiento impuso a la Sociedad algunas condiciones para su apertura: impedir el paso en caso de avenidas, no permitir la mendicidad y no tolerar la venta ambulante. El puente tenía una longitud cercana a los 160 m, divididos en 18 vanos: los centrales, de 9 m de luz, y los extremos, de 8,55 m. Los apoyos eran cilindros de acero de entre 5 y 8 m y 0,10 m de diámetro, arriostrados por una cruz de san Andrés y un tirante horizontal de un perfil angular. Además, existía un jabalcón oblicuo que se unía a otro soporte que, aguas arriba, servía de tajamar. El ancho de la pasarela era de 3 m y su calzada de madera. La avenida de septiembre de 1949 rompió los dos tramos centrales debido a los árboles que arrastraba la corriente (Figura 3). Se reconstruyó, otra vez de madera, sin embargo, la ruina definitiva ocurrió con la extraordinaria avenida del 14 de octubre de 1957.

Figura 4. Pont de fusta, tras la riada de 1949.
Figura 5. Vista del mercado semanal con el Pont de Fusta, ca. 1957. https://valenciablancoynegro.blogspot.com/2019/06/la-feria-del-ganado-semanal.html

La estructura se sustituyó por otra de hormigón armado, siendo la madera solo un recuerdo que da nombre a la actual pasarela (Figuras 6 y 7). Comunica la calle de Navellos y las Alameditas de Serranos con la antigua estación. Sus dimensiones eran de una altura y anchura de 7 m y 5,20 m, respectivamente. Su longitud, entre los muros de contención del cauce, era de 145 m. Presentaba una barandilla metálica del mismo estilo y forma que la de la anterior pasarela. Dispone de 11 farolas metálicas apoyadas en el canto de sus vigas rectas. Esta estructura no presentaba gran interés estético o singularidad alguna.

Figura 6. Vista inferior de la pasarela entre 1957 y 2010. Imagen: V. Yepes

 

Figura 7. Vista superior de la pasarela entre 1957 y 2010. Imagen: V. Yepes

Los trenets dejaron de funcionar el 4 de mayo de 1995, al ser reemplazados por el metro y los tranvías, aunque se conservó la estación que, en su día, fue la segunda en Europa en número de viajeros, tras la Victoria Station de Londres.

Después de varios años de debates sobre el destino de los puentes del Serrano y de la Trinitat, donde se abogaba por su transformación de vías de tráfico rodado a espacios exclusivos para peatones debido a su antigüedad y valor histórico, el Ayuntamiento de Valencia ha propuesto una solución alternativa: la construcción de un Nuevo Puente de Madera para el tránsito vehicular y el mantenimiento de la pasarela histórica para los peatones (Figura 8). Esta decisión ha conllevado la sustitución de la pasarela del Nuevo Puente de Madera, erigido entre 2010 y 2012, que constaba de dos partes distintas: una sección oriental conformada por un puente asfaltado de tres carriles para vehículos (inaugurado el 19 de febrero de 2012), y una sección occidental consistente en una pasarela adornada con elementos de madera destinada a los peatones, la cual continuará cumpliendo la misma función que el tradicional Puente de Madera. La construcción estuvo a cargo de la empresa Incofusta. El cambio en la dirección del tráfico norte-sur por el nuevo puente reemplaza la función del puente de los Serranos del siglo XVI, permitiendo así liberar este último del flujo vehicular y transformarlo en un espacio dedicado a los peatones. El nuevo puente presenta 110 m de largo y 4,5 m de ancho, para lo que el Ayuntamiento destinó 11 millones de euros, dando servicio a 18.000 vehículos, 10 líneas de autobús y hasta 40.000 personas al día.

Figura 8. El puente desde 2012. https://es.wikipedia.org/wiki/Pont_de_fusta

Referencia:

YEPES, V. (2010). Puentes históricos sobre el viejo cauce del Turia. Una aproximación histórica, estética y constructiva a la Valencia foral. Universitat Politècnica de València, 372 pp. Registro de la Propiedad Intelectual 09/2011/643.

La desaparecida Pasarela de la Exposición de Valencia

Figura 1. Puente de la Exposición Regional Valenciana de 1909. https://es.m.wikipedia.org/wiki/Archivo:Puente_de_la_Exposicion_Regional_Valenciana.jpg

Los antecedentes de la Pasarela de la Exposición hay que buscarlos en el puente de madera desmontable que, cada año, se colocaba cerca de la feria, comunicando el llano del Remedio con la Alameda, por la mitad del paseo. Esta estructura no reuniría las condiciones de seguridad necesarias para la muchedumbre que por ella transitaba.

La Exposición Regional de 1909 hizo necesario un paso formal entre el Gobierno Militar y los alrededores del paso de la Alameda. Se construyó, en solo tres meses, la primera obra de hormigón armado en Valencia, obra del ingeniero José Aubán Amat. La empresa que se encargó de su construcción fue Miró, Trepat y Compañía, siendo el inspector de las obras el ingeniero Luis Dicenta. La obra, con un coste de 143.000 pesetas, se inauguró por Alfonso XIII, el 22 de mayo de 1909, con motivo de la solemne apertura de la Exposición. Sin embargo, faltaban las pruebas de carga, por lo que la circulación no puedo abrirse hasta el 5 de julio.

Figura 2. Pasarela de la Exposición. https://paseandoporvalencia.com/09-puente-de-la-exposicion/

Fue una pasarela adusta y funcional, con una sencilla ornamentación modernista, arcos rebajados que conferían ligereza y una buena composición, destacando sus hermosas farolas sobre los pretiles. Esta obra supuso un gran impulso en la urbanización de la fachada septentrional del paseo de la Alameda, que se materializó en la siguiente década. Su longitud total fue de 166,30 m, con un ancho de tablero de 8,47 m y ocho vanos de 19,25 m de luz. Sin embargo, la estructura no pudo con la embestida de la catastrófica riada de 1957 (Figura 3).

Figura 3. Rotura de la Pasarela de la Exposición por la riada de 1957. https://youvalencia.com/index.html/2015/10/13/hasta-aqui-llego-riada-1957/

La pasarela modernista fue sustituida por una estructura funcional, primero peatonal y luego reformada en los años sesenta para el tráfico rodado, conservando el nombre de “pasarela”. El nuevo puente entró en servicio el 23 de septiembre de 1967, con un presupuesto que ascendió a más de 9 millones de pesetas de la época (Figura 4). El tablero permitía una calzada central de 6,10 m de anchura, con aceras laterales de 2,50 m, dando una anchura total de 11,10 m para una longitud total de 120 m. Tenía siete arcos muy escarzanos, siendo el primero y el último más bajo para formar las rampas de acceso y descenso, siendo los tres centrales de mayor luz, 26 m. Las pilas estaban formadas por un chapado de sillería.

Figura 4. Nueva Pasarela de la Exposición. http://www.jdiezarnal.com/valenciapuentedecalatrava.html

Esta estructura ha sido sustituida por el Puente de la Alameda, de Santiago Calatrava. Pero de este puente ya hablaremos en otro momento.

Referencia:

YEPES, V. (2010). Puentes históricos sobre el viejo cauce del Turia. Una aproximación histórica, estética y constructiva a la Valencia foral. Universitat Politècnica de València, 372 pp. Registro de la Propiedad Intelectual 09/2011/643.

Pont de les Arts de Valencia

Figura 1. Vista inferior del Pont de les Arts (Valencia).

El Pont de les Arts, construido en los últimos años del siglo XX, coincide con la transformación del antiguo cauce del Turia en el parque más extenso de Valencia. Les Arts destaca por su singularidad al unir dos zonas históricas e incorporar entre ambas el Institut Valencià d’Art Modern (IVAM). Este puente, que simboliza la modernidad en contraste con los antiguos y próximos puentes de piedra, está formado por dos tableros separados por 20 m, apoyados transversalmente en una única pila que no interfiere con el cercano e histórico Puente de San José. El puente, con una longitud total de 145 m, se compone de cinco vanos distribuidos en segmentos de 20-36-36-36-20 m respectivamente. Su diseño fue cuidadosamente concebido para destacarse como un elemento visual en armonía con el entorno del Jardín del Turia. Presenta un diseño moderno, construido con hormigón, de gran amplitud y longitud, situado a baja altura con respecto al lecho del río. Debajo, a diario, el río cobra vida con numerosos campos deportivos, pistas de atletismo y su carril bici.

Este puente (1993-1998) fue proyectado por Norman Foster en colaboración con la oficina Carlos Fernández Casado, S.L. (Leonardo Fernández, Javier Manterola, Miguel A. Ástiz, José Cuervo y Agustín Sevilla). Su construcción la realizó FCC Fomento de Construcciones y Contratas, con un presupuesto de 2.094 millones de pesetas, con un plazo de ejecución de 18 meses que terminó en junio de 1998. La estructura cruza el Jardín del Turia, conectando los barrios de Tendetes con los de El Carmen y El Botánico. Además, enlaza las calles Pare Ferrís y Mauro Guillén, así como la avenida Menéndez Pidal con el Paseo de la Petxina y las calles Guillem de Castro, Na Jordana y Blanqueria. En el extremo sur del puente se encuentra el IVAM, que da nombre al conjunto de las Arts, y el Centro Cultural la Beneficència, que alberga el Museo Etnológico de Valencia.

Figura 2. Detalle de las pilas del Pont de les Arts (Valencia)

El puente se construyó sobre cimbra, avanzando del cuarto de la luz de un vano al cuarto de la luz del siguiente, conectando las unidades de pretensado en las juntas. La singularidad del proceso residió en ejecutar ambos tableros simultáneamente para equilibrar las cargas en las pilas, y tesar los tableros y la pila al mismo tiempo para que los tres elementos entren en carga a vez. Para lograr este objetivo, el proceso de tensado comienza con una primera fase de tesado de la pila, seguida por el tesado del tablero y, finalmente, se completa el tesado de la pila una vez completado el vano siguiente.

Se compone de dos tableros de hormigón de 20 m de ancho, separados entre sí otros 20 m, unidos por cuatro pilas de doble ménsula sujetas por un único fuste, a modo de candelabro. De esta pila central sobresalen farolas blancas de 15 m de altura. La unión entre el tablero y la pila se caracteriza por su rigidez, pues la intersección forma parte tanto del tablero longitudinal como de la ménsula transversal.

Figura 3. Vista de la calzada del Pont de les Arts (Valencia)

Para evitar que el puente adopte la configuración de un pórtico múltiple, lo que generaría momentos transversales importantes en las pilas que se convertirían en torsión en las ménsulas, se han incorporado apoyos de neopreno entre la pila y la cimentación. Este diseño garantiza que el tablero funcione como una viga continua, eliminando la presencia de momentos transversales en la pila. Además, se ha prestado especial atención a la protección de estos neoprenos para prevenir su deterioro.

Los vanos laterales también se apoyan sobre neoprenos en los cabezales, actuando como estribos tras el muro de piedra. El tablero es una losa continua de canto variable, definida por cuatro superficies. En primer lugar, el trasdós del tablero es una superficie plana definida por la plataforma de la vía. El intradós, en cambio, se compone de tres cilindros de directriz circular. Dos de estos cilindros presentan generatrices paralelas al eje del tablero, intersectándose en una línea paralela a dicho eje, situada en su proyección vertical. Esta disposición genera un prisma de sección triangular con dos superficies cilíndricas y una tercera superficie plana que corresponde al trasdós del tablero. A su vez, este prisma se corta con un tercer cilindro con generatrices horizontales, pero normales a las anteriores. Este tercer cilindro corta al prisma en los vértices inferiores de los extremos del vano, generando la sección triangular del prisma como la sección del tablero en los arranques. En el centro del vano, la sección adquiere la forma de un trapecio con lados no paralelos curvos. Esta geometría genera un tablero con canto variable en el vano principal, presentando canto máximo de 1,50 m en el arranque que tiene forma triangular y canto mínimo de 0,70 m en el centro del vano. Los vanos de compensación, que son ligeramente mayores que la mitad del central, se forman al dividir el vano principal por la mitad y prolongar la sección en clave.

Las pilas, que se proyectan en forma de ménsula, requieren que el tablero sea lo más ligero posible para reducir al mínimo la flexión en estas zonas. Por esta razón, la sección presenta la forma de cajón multicelular en las zonas con mayor canto del tablero. En la parte superior de las pilas, el tablero se ensancha como un balcón, destacando así el efecto de ménsula de las pilas. La base de la pila tiene un ancho de 23,30 m, y se prolonga en ménsulas hacia ambos lados hasta alcanzar un ancho de 60 m; como resultado, los voladizos laterales tienen una longitud de 18,34 m.

Las ménsulas presentan un espesor constante de 1 m y un canto variable, siendo mínimo en el extremo con 0,65 m, y alcanzando su máximo a 7,50 m del eje del puente, donde llega a los 5,50 m. En este punto la ménsula se bifurca en dos elementos: un tirante superior de hormigón que se extiende hasta la pila central, y el diafragma inferior que va reduciendo su canto hasta llegar al pie del mismo pilar central. La configuración resultante de este aligeramiento adopta una forma elíptica, cortada en su eje vertical por el pilar donde se empotran los tirantes.

Los pilares verticales, responsables de sostener los tirantes de hormigón, culminan de manera elegante con farolas de 15 m de altura. Estas estructuras no solo cumplen la función de iluminar ambas plataformas del puente, sino que están resueltas con tubos y chapas metálicas, sirviendo como un remate estilizado para los pilares y contribuyendo a la estética global del puente.

Figura 4. Detalle de las farolas del Pont de les Arts (Valencia)

 

El Puente de San José sobre el viejo cauce del Turia en Valencia. Una aproximación histórica, estética y constructiva

Puente de San José, en el antiguo cauce del Turia (Valencia). Imagen: V. Yepes

El Puente de San José, conocido también como Pont Nou, de la Santa Cruz o de la Saïdia, tuvo sus antecesores en palancas de madera, sucesivamente arrasadas por la impetuosidad del río Turia a lo largo de los años. El nombre de San José se debe a que en 1628 se estableció el convento carmelita homónimo de las monjas descalzas junto al Portal Nou (Melió, 1997:64). De los cinco puentes construidos en la época foral, es el que está situado más aguas arriba, además de ser el último edificado. Comunica esta estructura el barrio de Roters, por el desaparecido Portal Nou, con el Llano de la Saïdia, Marxalenes, Tendetes y Campanar. En este tramo fluvial se situaba la zona del Cremador inquisitorial, paraje donde eran quemados literalmente los reos. Por cierto, el último ajusticiado por la intolerancia fue el maestro de escuela Cayetano Ripoll, que murió ahorcado junto al puente, el 31 de julio de 1826, quemando sus restos en un barril.

Es muy probable que en época musulmana existiese alguna pasarela que conectase la ciudad con el palacio de la reina Saïdia. Sin embargo, las primeras referencias a esta estructura, del año 1383, se refieren a una pequeña pasarela conocida como “Palanca del Cremador”, rudimentaria y de escaso valor estratégico para las comunicaciones viarias de la ciudad. Apenas salvaría la anchura del cauce del río y sufrió, a lo largo del tiempo, episodios de crecidas que arrasaron, total o parcialmente, su estructura. Rosselló y Esteban (2000:23) indican que la estructura, entonces de madera, se hundiría en 1406. Serra (1994:116) refiere la participación de Joan del Poyo en los trabajos que desarrolló, entre los años 1435 y 1439, en la palanca o puente de madera del Portal Nou. Se documenta que la riada del 28 de octubre de 1487 derribó la palanca del Portal Nou y lo mismo ocurriría el 20 de agosto de 1500. Decididos a terminar con estas vicisitudes, se decidió construir un puente de cantería, pero fue derribado en apenas una hora con ocasión de la furiosa avenida del 27 de septiembre de 1517, día de los santos Cosme y Damián. (Carmona).

Os dejo a continuación el artículo completo.

Referencia:

YEPES, V. (2010). El Puente de San José sobre el viejo cauce del Río Turia en Valencia. Una aproximación histórica, estética y constructiva. Universitat Politècnica de València, 13 pp. DOI:10.13140/RG.2.2.29846.73287

Descargar (PDF, 1.79MB)

Trabajo Fin de Máster sobre movilidad y aparcamientos disuasorios en el área metropolitana de Valencia

Figura 1. Defensa del TFM “Estudio para la ubicación y diseño estructural de un aparcamiento disuasorio en altura en el área metropolitana de Valencia”, cuyo autor es Víctor José Yepes Bellver.

El miércoles 27 de septiembre de 2023 tuvo lugar la defensa del trabajo fin de máster sobre un estudio para la ubicación y diseño estructural de un aparcamiento disuasorio en altura en el área metropolitana de Valencia. Su autor fue Víctor José Yepes Bellver y los directores, Julián Alcalá González y Mª Rosa Arroyo López. Este trabajo obtuvo la máxima calificación de Sobresaliente 10, Matrícula de Honor. Esta es la culminación de su trayectoria académica de graduado en ingeniería civil y máster en ingeniería de caminos, canales y puertos cursados en la Universitat Politècnica de València.

Este proyecto se enfoca en la sostenibilidad y la movilidad urbana, con el objetivo de reducir las emisiones contaminantes, disminuir la congestión vehicular y minimizar el ruido en la ciudad. Se trata del diseño de un aparcamiento innovador que promoverá el uso del transporte público al proporcionar una solución eficiente para dejar los vehículos privados en las afueras de la ciudad y facilitar el acceso al centro. Un paso importante hacia un entorno urbano más limpio, tranquilo y sostenible en Valencia.

¡Enhorabuena a todos, especialmente a Víctor José!

 

Figura 2. Directores del TFM: Julián Alcalá González (izquierda) y Mª Rosa Arroyo López (derecha)

 

Figura 3. Miembros del tribunal de defensa: José Bernardo Serón Gáñez (izquierda) y José Vicente Martí Albiñana (derecha)

 

El Puente del Mar sobre el viejo cauce del Turia en Valencia. Una aproximación histórica, estética y constructiva

Puente del Mar. Fotografía V. Yepes.

El Puente del Mar, único de los históricos que quedó fuera del frente amurallado, ha sido clave en la estructura viaria de la ciudad de Valencia, pues salvaguardó la comunicación comercial con el puerto del Grao y con el Cabañal durante mucho tiempo. Por este paso urbano circulaban cotidianamente las mercancías y vituallas que llegaban al puerto y aquellas otras destinadas a la exportación. Hasta la construcción de los puentes de Aragón y del Ángel Custodio, este fue el único paso hacia el mar. Como describe Carreres (referido por Garín, 1983:90-91), “La Ciutat sempre mirá amb especial predilecció aquest pont per esser el mes necesari per a la seua comunicación amb la mar, així es que quan alguna avinguda del riu l’enderrocava, tot seguit se’l va reparar, fins que a la fí es decidí a bastir-lo de pedra, proposantse fera prop de l’hort del convent del Remei i decidint-se posteriorment a que fóra emplaçat al costat dels fonaments de l’anterior”. Esta importancia estratégica implicó un esfuerzo constante de la ciudad por conservar y reconstruir el puente a lo largo de los años, expuesto a las sucesivas avenidas del Turia. Esta preocupación por garantizar la seguridad y rapidez de la comunicación al mar quedó patente en 1400, cuando el Consell dispuso la reparación del camino de la Mar y dos años más tarde, el arreglo de este acceso junto con los “pequeños puentes” (Cárcel, 1992). La riada de octubre de 1589 fue la que llevó a la Fàbrica Nova a promover la actual obra de fábrica, cuya construcción finalizó el año 1596.

Os dejo a continuación el artículo completo.

Referencia:

YEPES, V. (2010). El Puente del Mar sobre el viejo cauce del Río Turia en Valencia. Una aproximación histórica, estética y constructiva. Universitat Politècnica de València, 22 pp. DOI:10.13140/RG.2.2.20353.53609

Descargar (PDF, 2.14MB)