A veces la Naturaleza nos sorprende cada día más. ¿Es posible que el comportamiento de las hormigas pueda servirnos para optimizar estructuras complejas, como por ejemplo un puente? Pues vamos a ver que sí. Este post es continuación de otros anteriores donde hablamos de la posibilidad de optimizar estructuras de hormigón. La optimización por colonia de hormigas (ant colony optimization) va a ser una metaheurística que nos va a permitir realizar este tipo de operaciones. A continuación vamos a contar los fundamentos básicos y en las referencias os dejo, incluso, algunos artículos donde hemos podido utilizar esta técnica de forma exitosa.
Colorni, Dorigo y Maniezzo (1991) sugirieron la idea de imitar el comportamiento de los insectos para encontrar soluciones a los problemas de optimización combinatoria. El principio de la metaheurística denominada como “Ant System Optimization, ACO” se basa en el comportamiento colectivo de las hormigas en la búsqueda de alimentos para su subsistencia, que son capaces de encontrar el camino más corto entre una fuente de comida y su hormiguero. Primero las hormigas exploran el entorno de su hormiguero de forma aleatoria. Tan pronto como un individuo encuentra una fuente de comida, evalúa su cantidad y calidad y transporta un poco al hormiguero. Durante el regreso, la hormiga deja por el camino una señal odorífera, depositando una sustancia denominada feromona, para que las demás puedan seguirla. Después de un tiempo, el camino hacia el alimento se indicará por un rastro oloroso que crece con el número de hormigas que pasen por él, y que va desapareciendo en caso contrario. El resultado final es la optimización del trabajo de todo el hormiguero en su búsqueda de comida.
En la Figura se muestra cómo las hormigas encuentran el camino más corto. En a) las hormigas deben decidir un camino; en b) se toma uno al azar; en c), dado que la velocidad de una hormiga se considera aproximadamente constante, las que llegan antes vuelven eligiendo el camino con más acumulación de feromona. En d), se circula por el camino más corto, desapareciendo por evaporación el rastro en el camino más largo.
Las hormigas y el camino más corto
La analogía a una metaheurística de optimización puede establecerse de la siguiente forma:
La búsqueda de alimento por las hormigas es equivalente a la exploración de soluciones factibles de un problema combinatorio.
La cantidad de alimento hallada en un lugar es similar al valor de la función objetivo.
El rastro de feromona es la memoria adaptativa del método.
Un esquema básico de la metaheurística sería el siguiente:
Iniciar un rastro de feromona.
Mientras no se encuentre un criterio de parada:
Para cada hormiga artificial, construir una nueva solución usando el rastro actual y evaluar la solución que está siendo construida.
Actualizar el rastro de feromona.
El componente más importante de un Sistema de Hormigas es la gestión de las huellas odoríferas. En su versión estándar, los rastros se usan en relación con la función objetivo para construir nuevas soluciones. Una vez se ha construido, éstos se actualizan de la siguiente forma: primero todos los rastros se debilitan para simular la evaporación del feronoma; después aquellos que corresponden a los elementos que se han empleado para la construcción, se refuerzan teniendo en cuenta la calidad de la solución.
El siguiente vídeo os puede ayudar a comprender el comportamiento de las hormigas. Espero que os guste.
Referencias:
COLORNI, A.; DORIGO, M.; MANIEZZO, V. (1991). Distributed optimization by ant colonies, in VARELA, F.J.; BOURGINE, P. (eds.) Proceedings of the First European Conference on Artificial Life (ECAL-91). The MIT Press: Cambrige, MA, 134-142.
MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; ALCALÁ, J. (2011). Design of tall bridge piers by ant colony optimization. Engineering Structures, 33:2320-2329.
MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2010). Heuristic Optimization of RC Bridge Piers with Rectangular Hollow Sections. Computers & Structures, 88: 375-386. ISSN: 0045-7949. (link)
YEPES, V. (2003). Apuntes de optimización heurística en ingeniería. Editorial de la Universidad Politécnica de Valencia. Ref. 2003.249. Valencia, 266 pp. Depósito Legal: V-2720-2003.
Abstract: This paper presents a multiobjective optimization of post-tensioned concrete road bridges in terms of cost, CO2 emissions, and overall safety factor. A computer tool links the optimization modulus with a set of modules for the finite-element analysis and limit states verification. This is applied for the case study of a three-span continuous post-tensioned box-girder road bridge, located in a coastal region. A multiobjective harmony search is used to automatically search a set of optimum structural solutions regarding the geometry, concrete strength, reinforcing and post-tensioned steel. Diversification strategies are combined with intensification strategies to improve solution quality. Results indicate that cost and CO2 emissions are close to each other for any safety range. A one-euro reduction, involves a 2.34 kg CO2 emissions reduction. Output identifies the best variables to improve safety and the critical limit states. This tool also provides bridge managers with a set of trade-off optimum solutions, which balance their preferences most closely, and meet the requirements previously defined.
Keywords
Multiobjective optimization;
CO2 emissions;
Safety;
Post-tensioned concrete;
Box-girder bridge;
Multiobjective harmony search
Highlights
A multiobjective optimization of post-tensioned concrete road bridges is presented.
A computer tool combines finite-element analysis and limit states verification.
Output provides a trade-off between cost, CO2 emissions, and overall safety factor.
Near the optima, a one-euro reduction represents a 2.34 kg CO2 emissions reduction.
Results show the cheapest and most eco-friendly variables for improving safety.
Reference:
GARCÍA-SEGURA, T.; YEPES, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety.Engineering Structures, 125:325-336. DOI: 10.1016/j.engstruct.2016.07.012.
Analogía entre la improvisación musical y la optimización en ingeniería. Fuente: http://www.hindawi.com/journals/jam/2012/147950/fig1/
El proceso de improvisación musical supone una organización coherente de los sonidos y los silencios que da los parámetros fundamentales de la música, que son la melodía, la armonía y el ritmo. La simulación del proceso de improvisación musical puede servir a los calculistas de estructuras como inspiración en el diseño de algoritmos que permitan optimizar, por ejemplo, un puente. En esta comparación, el conjunto de músicos se podría asimilar a las variables de decisión; el rango de afinación, al rango de valores; la armonía; la estética, a la función objetivo; la práctica, a la iteración y la experiencia, a la matriz de memoria. A este algoritmo heurístico se le denomina harmony search.
En este post os dejo el resumen, la referencia y el enlace a un artículo que acaban de publicarnos en la revista Engineering Structures donde aplicamos esta metodología en la optimización sostenible del diseño de una pasarela peatonal formada por una viga cajón postesada. Esta investigación está financiada dentro del Proyecto HORSOST (BIA2011-23602) financiado por el Ministerio de Ciencia e Innovación.
Resumen: Este artículo tiene como objetivo el diseño sostenible de puentes viga peatonales de hormigón postesado de sección en cajón. Para ello se utiliza un algoritmo heurístico híbrido de búsqueda armónica (hybrid harmony search) con la aceptación por umbrales para encontrar la geometría y los materiales necesarios para que la suma de los costos y la huella de carbono sea lo más baja posible, cumpliendo con todas las restricciones de seguridad estructural y durabilidad. Para ajustar los parámetros del algoritmo se utilizó la metodología del diseño de experimentos. Se realizó asimismo un estudio paramétrico en pasarelas de 90 a 130 m de luz. Los resultados encontrados indican que la optimización con ambas funciones objetivo conducen a resultados similares en coste, si bien con soluciones diferentes. Los resultados sugieren que la reducción en las emisiones de CO2 conllevan mayores cantos, más pretensado y menores resistencias características del hormigón empleado. La metodología presentada supone una propuesta detallada de las reglas de predimensionamiento de este tipo de estructuras teniendo en cuenta un enfoque medioambiental.
¿Cuándo empieza realmente la optimización de las estructuras? Difícil pregunta a resolver. Si bien los aspectos básicos relacionados con la optimización matemática se establecieron en los siglos XVIII y XIX con los trabajos de Lagrange o Euler, hay que esperar hasta los años 40 del siglo XX para que Kantorovich y Dantzing desarrollaran definitivamente los principios de la programación matemática. Es a partir de la revolución informática de los años 70 cuando estas herramientas empiezan a ser empleadas habitualmente en numerosas aplicaciones en las ciencias, las ingenierías y los negocios. Sin embargo, el progreso de técnicas de optimización que no requieran derivadas y que se generen a través de reglas heurísticas, ha supuesto una auténtica revolución en el campo de la optimización de los problemas reales. En efecto, los métodos aproximados pueden utilizarse allí donde el elevado número de variables en juego impiden la resolución en un tiempo de cálculo razonable de los problemas mediante la programación matemática. A estos algoritmos de optimización aproximada, cuando su uso no está restringido a un solo tipo de problemas, la comunidad científica en el ámbito de la inteligencia artificial y la investigación operativa les ha dado el nombre de metaheurísticas. Este grupo incluye una amplia variedad de procedimientos inspirados en algunos fenómenos naturales, tales como los algoritmos genéticos, el recocido simulado o la optimización por colonias de hormigas . Liao et al. [1] presentan una revisión de la aplicación de los métodos heurísticos en el campo de la gestión del proyecto y de la construcción.
En relación con la optimización de las estructuras, si bien la información más antigua se remonta al siglo XV con los trabajos de Leonardo da Vinci y de Galileo Galilei sobre la disminución del peso de estructuras de madera, hay que esperar al siglo XIX con Maxwell y Levy, y a comienzos del siglo XX con Mitchell, para ver las primeras aportaciones en el diseño de mínimo peso de estructuras de arcos y cerchas metálicas. En 1994, Cohn y Dinovitzer [2] realizaron una amplia revisión de los métodos empleados en la optimización de estructuras, comprobando que la inmensa mayoría de las investigaciones llevadas a cabo hasta entonces se basaban en la programación matemática y en problemas más bien teóricos, con una preponderancia abrumadora de las estructuras metálicas frente a las estructuras de hormigón. Así, la aplicación de métodos heurísticos a la ingeniería estructural se remonta a los años 70 y 80 [3-5], siendo la computación evolutiva, y en especial los algoritmos genéticos, los métodos que más se han utilizado. La revisión de Kicinger et al. [6] proporciona un completo estado del arte de los métodos evolutivos aplicados al diseño estructural. Por otro lado, nuestro grupo de investigación, a través de su proyecto de investigación HORSOST, y más recientemente con el proyecto BRIDLIFE, ha presentado trabajos recientes de diseño automático y optimización de estructuras de hormigón armado con algoritmos genéticos [7] y con otras técnicas heurísticas [8-13], así como trabajos de optimización con hormigón pretensado [14,15] o de la optimización de las infraestructuras lineales [16].
Os dejo a continuación un vídeo tutorial donde se realiza una pequeña introducción al diseño optimización estructural. Espero que os sea de interés. Por cierto, si alguien se anima a hacer su tesis doctoral con nuestro grupo de investigación, será bien recibido.
Referencias:
[1] T.W. Liao, P.J. Egbelu, B.R. Sarker, S.S. Leu, Metaheuristics for project and construction management – A state-of-the-art review, Automation in Construction 20 (2011) 491-505.
[2] M.Z. Cohn, A.S. Dinovitzer, Application of structural optimization, ASCE Journal of Structural Engineering 120 (1994) 617-649.
[3] A. Hoeffler, U. Leysner, J. Weidermann, Optimization of the layout of trusses combining strategies based on Mitchel’s theorem and on biological principles of evolution, Proceedings of the Second Symposium on Structural Optimization (1973).
[4] M. Lawo, G. Thierauf, Optimal design for dynamic stochastic loading: a solution by random search, en: Optimization in structural design, University of Siegen, 1982, pp. 346-352.
[5] D.E. Goldberg, M.P. Samtani, Engineering optimization via genetic algorithms, Proceedings of the Ninth Conference on Electronic Computation ASCE (1986) 471-482.
[6] R. Kicinger, T. Arciszewski, K. De Jong, Evolutionary computation and structural design: A survey of the state-of-the-art, Computers & Structures 83 (2005) 1943-1978.
[7] F.J. Martinez, F. González-Vidosa, A. Hospitaler, V. Yepes, Heuristic optimization of RC bridge piers with rectangular hollow sections, Computers & Structures 88 (2010) 375-386.
[8] I. Paya-Zaforteza, V. Yepes, F. González-Vidosa, A. Hospitaler, On the Weibull cost estimation of building frames designed by simulated annealing, Meccanica 45 (2010) 693-704.
[9] V. Yepes, F. González-Vidosa, J. Alcala, P. Villalba, CO2-Optimization design of reinforced concrete retaining walls based on a VNS-Threshold acceptance strategy, Journal of Computing in Civil Engineering ASCE 26 (2012) 378-386.
[10] C. Perea, V. Yepes, J. Alcala, A. Hospitaler, F. González-Vidosa, A parametric study of optimum road frame bridges by threshold acceptance, Indian Journal of Engineering & Materials Sciences 17 (2010) 427-437.
[11] A. Carbonell, V. Yepes, F. González-Vidosa, Búsqueda exhaustiva por entornos aplicada al diseño económico de bóvedas de hormigón armado, Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 27 (2011) 227-235.
[12] A. Carbonell, F. González-Vidosa, V. Yepes, Design of reinforced concrete road vaults by heuristic optimization, Advances in Engineering Software 42 (2011) 151-159.
[13] T. García-Segura, V. Yepes, J.V. Martí, J. Alcalá, Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures, 11(7) (2014) 1190 – 1205.
[14] J.V. Martí, F. González-Vidosa, Design of prestressed concrete precast pedestrian bridges by heuristic optimization, Advances in Engineering Software 41 (2010) 916-922.
[15] J.V. Martí, F. González-Vidosa, V. Yepes, J. Alcalá, Design of prestressed concrete precast road bridges with hybrid simulated annealing, Engineering Structures 48 (2013) 342-352.
[16] C. Torres-Machí, A. Chamorro, C. Videla, E. Pellicer, V. Yepes. An interative approach for the optimization of pavement maintenance mangement at the network level, The Scientific World Journal ID 524329 (2014).
[17] T. García-Segura, V. Yepes, J. Alcalá, E. Pérez-López. Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures 92 (2015) 112-122.
[18] J.V. Martí, V. Yepes, F. González-Vidosa. Memetic algorithm approach to designing of precast-prestressed concrete road bridges with steel fiber-reinforcement. Journal of Structural Engineering ASCE 141(2) (2015) 04014114.
[19] V. Yepes, J.V. Martí, T. García-Segura. Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction49 (2015) 123-134.
[20] V. Yepes, T. García-Segura, J.M. Moreno-Jiménez. A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4) (2015) 1024-1036.
[21] A. Luz, V. Yepes, F. González-Vidosa, J.V. Martí. Diseño de estribos abiertos en puentes de carretera obtenidos mediante optimización híbrida de escalada estocástica. Informes de la Construcción, 67(540) (2015), e114.
[22] T. García-Segura, V. Yepes, J. Alcalá, E. Pérez-López. Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92 (2015) 112-122.
[23] J.V. Martí, T. García-Segura, V. Yepes.Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120 (2016) 231-240.
La sostenibilidad constituye un enfoque que ha dado un giro radical a la forma de afrontar nuestra existencia. El calentamiento global debido a las emisiones de gases de efecto invernadero y las tensiones sociales derivadas de la presión demográfica y del reparto desequilibrado de la riqueza son, entre otros, los grandes retos que debe afrontar nuestra generación. La concentración de CO2, alcanzó un máximo sin precedentes en 2013, con el mayor incremento anual en 30 años (World Meteorological Organization, 2014), por lo que la economía baja en carbono se perfila como una línea estratégica de gran importancia. Las actividades humanas son las principales responsables de este problema, provocando un desarrollo alejado de satisfacer las necesidades de las generaciones presentes sin comprometer las necesidades de las generaciones futuras, que constituye el núcleo del paradigma de “desarrollo sostenible” (Brundtland, 1987).
La construcción juega un papel fundamental en el desarrollo de la sociedad. Influye fuertemente en la actividad económica, el crecimiento y en el empleo. Sin embargo, es una actividad que impacta significativamente en el medio ambiente (Marí, 2007), presenta efectos irreversibles y puede comprometer el presente y futuro de la sociedad. Este sector consume hasta un 60% de las materias primas extraídas (Vital Signs, 2005), generando su transformación sobre el 50% de todas las emisiones de CO2. En Europa, el 30% de los residuos proceden de la construcción y la demolición; consumiendo la industria y la construcción un 42% de la energía total de (Pacheco-Torgal y Jalali, 2011). Son datos que muestran la brecha de mejora posible en esta industria para acercarse a la sostenibilidad. No basta con construir de forma económica y eficiente, sino que debe ser socialmente aceptable, debe ahorrar recursos naturales no renovables y respetar el medio ambiente a largo plazo. Un paso en este sentido son herramientas como BREEAM, CASBEE, DGNB o LEED que certifican la sostenibilidad de las edificaciones usando parámetros objetivos.
Otro aspecto con grandes repercusiones sociales es la profunda crisis financiera que afecta de una forma extrema la economía de nuestro país y que ha provocado el hundimiento de la actividad constructora. Las infraestructuras que se crearon con una financiación a largo plazo presentan actualmente déficits de conservación y es posible que las generaciones futuras tengan que pagar unas infraestructuras mermadas en sus requisitos de seguridad y funcionales asociados a la fase de servicio. En este sentido, Nishijima et al. (2012) plantean una metodología, limitada a aspectos económicos, que balancea los beneficios conseguidos y los costes asociados al diseño y construcción, costes de reposición, mantenimiento y fallos de un puente, teniendo en cuenta la tasa de equidad intergeneracional y la optimización de la estructura.
Por otra parte, no es difícil encontrar noticias causantes de alarma social en relación a la interrupción de grandes vías de comunicación debido al deterioro de los puentes, incluso algunos de muy reciente construcción. Un informe de la Asociación Española de Carreteras (2012), centrado en los firmes y la señalización, estima que el deterioro del patrimonio viario en los últimos 6 años crece a un ritmo del 5% anual, con un déficit acumulado de inversión de 5500 millones de euros. Sin embargo, este problema es común en otros países desarrollados. Uno de cada nueve puentes de Estados Unidos son estructuralmente deficientes, presentando una edad media de 42 años. Para resolver esta situación en el horizonte de 2028, deberían gastarse 20,5 mil millones de dólares anuales, aunque sólo se invierte el 62,4% de lo necesario (ASCE, 2013). El escenario dibuja una verdadera crisis en las infraestructuras. Cualquier actuación que se quiera realizar deberá contar con unos presupuestos muy restrictivos. El reto social será cómo aplicar dichos presupuestos de forma que se minimicen los impactos ambientales, los riesgos a las personas (Sydam et al., 2013) y la gestión sea socialmente sostenible, dentro de una política de conservación del patrimonio. Se trata de un problema de optimización muy complejo, con muchas restricciones y sometido a grandes incertidumbres, lo cual representa un reto científico.
Aspectos contradictorios entre los indicadores sociales y medioambientales a corto y largo plazo complican enormemente la toma de decisiones en el ámbito de la construcción, pues, lejos de ser un problema meramente técnico, debe contemplar aspectos difusos y cualitativos, con un enfoque holístico. Ello se complica cuando el deterioro inevitable de estructuras como los puentes dependen de multitud de parámetros difíciles de estimar que requieren herramientas de identificación estructural que complementen las inspecciones (Structural System Identification, SSI) (ASCE, 2011). La extracción del conocimiento derivado de la resolución científica de los problemas planteados en el ámbito de las decisiones públicas y privadas constituye uno de los aspectos de vanguardia en el ámbito científico (Moreno-Jiménez et al., 2012). De hecho, el concepto de infraestructura sostenible debería apoyarse en los pilares social, biofísico, económico y técnico. Los requerimientos de sostenibilidad deberían considerar aspectos globales y deberían definir los objetivos y las necesidades a satisfacer por las infraestructuras: diseño, ejecución, uso y reutilización. Ello requiere una visión amplia de la sostenibilidad a todos los niveles: ambientales, económicos, sociales, de seguridad, de prevención de riesgos, funcionales e incluso estéticos (San José y Garrucho, 2010). El pilar social se debería basar en la equidad y justicia social, entendida como la oportunidad de redistribución sobre toda la población. Existe una gran labor de investigación pendiente en el estudio de la sostenibilidad social de las infraestructuras, que debería mejorar la calidad de vida, proteger y promover la salud, buscar una distribución equitativa de los costes sociales de la construcción y buscar la equidad intergeneracional (Alarcón, 2005). Rackwitz et al. (2005) plantean, en este sentido, una optimización socio-económica de las infraestructuras como un punto de arranque a la solución de este problema complejo.
Los puentes forman parte de las infraestructuras básicas en el desarrollo económico y en el equilibrio territorial, cuya construcción, diseño, conservación y desmantelamiento se ven afectados fuertemente cuando los presupuestos son restrictivos. El proyecto propuesto, BRIDLIFE, ha elegido esta infraestructura básica, en particular los puentes pretensados, para desarrollar una metodología que resuelva el reto social descrito. En efecto, ya se ha indicado que el deterioro de los puentes y su incidencia en la seguridad son objeto de gran alarma social. Además, un mantenimiento ineficiente provoca un mayor coste económico y social por las reparaciones severas que comportan. En este coste tiene una especial relevancia el mantenimiento y los costes derivados por los fallos. Desgraciadamente, los daños estructurales del puente dependen de una gran multitud de parámetros como su situación, los materiales o la historia de las acciones a las que ha estado sometida. Se hace necesario en estos casos un análisis de fiabilidad con modelos probabilísticos sobre las cargas y la capacidad portante de sus materiales (Wisniewski et al., 2006). Destacan en este sentido los trabajos de identificación estructural mediante técnicas de observabilidad (Lozano-Galant et al., 2013). Sin embargo, sería necesario un enfoque holístico que permitiera la toma de decisiones durante el ciclo de vida de una infraestructura considerando, entre otros, los riesgos en la planificación, adjudicación, gestión, procedimientos constructivos y negociación en la materialización de las infraestructuras. Un ejemplo actual es la ampliación del Canal de Panamá, caso estudiado por el profesor Molenaar, que forma parte de nuestro equipo de trabajo (Alarcón et al., 2011), o la especial relevancia es la influencia que tiene la contratación de los proyectos (Molenaar et al., 2010).
La toma de decisiones es una de las características esenciales del ser humano que da idea de su grado de autodesarrollo, conocimiento y libertad. En ella influye la experiencia o la intuición del individuo, su comportamiento racional o emocional. Pues bien, las técnicas de decisión multicriterio abordan la resolución de problemas complejos incorporando diferentes criterios y visiones de la realidad. Jato-Espino et al. (2014) ofrecen una revisión actualizada de estas técnicas aplicadas al sector de la construcción. El empleo de técnicas de análisis del valor y toma de decisiones ha supuesto un gran avance en la definición de un indicador de sostenibilidad. El trabajo de San José y Garrucho (2010) aplica un “Modelo integrado de valor para una evaluación sostenible (MIVES)” de forma determinista en el análisis ambiental de la construcción industrial. Esta metodología permite la formulación de objetivos multidimensionales, utiliza una estructura de requerimientos jerarquizada y es capaz de unificar indicadores cuantitativos y cualitativos para llegar a un índice de sostenibilidad ambiental. Sin embargo, la selección de los criterios es una labor compleja que influye mucho en el resultado final y los indicadores empleados distan de ser determinísticos, siendo conveniente aplicar técnicas de simulación Monte Carlo o aritmética difusa para mejorarlo. Una ventaja de MIVES es la asignación de una función de valor a cada indicador, cuantitativos o cualitativos. Sin embargo, esta labor es subjetiva y requiere de un gran conocimiento del problema. Ello, no obstante, permite el trabajo interdisciplinar de grupos de expertos para definir las funciones de valor de los indicadores. Sin embargo, MIVES presenta oportunidades de mejora, objeto de investigación científica.
El Anejo 13 de la norma EHE de hormigón estructural (Aguado et al., 2008; 2012; Gómez et al., 2012) define un “Índice de contribución de la estructura a la sostenibilidad”, utilizando el modelo MIVES. Existen trabajos (Pons y Aguado, 2013; Pons y de la Fuente, 2013) donde se aplica la metodología a piezas de hormigón estructural o edificios que no incluyen técnicas de optimización. Además, este enfoque queda limitado a aspectos ambientales que no consideran el ciclo completo de la vida de una estructura o el uso de hormigones de baja huella de carbono. Son técnicas jerárquicas que no contemplan las interacciones entre los distintos factores. La investigación propuesta trata de dar respuesta a los retos sociales planteados incorporando la toma de decisiones y la sostenibilidad social y aplicando las tecnologías de la información y comunicaciones, así como el uso de materiales avanzados, como tecnologías facilitadoras esenciales. El aspecto más relevante de BRIDLIFE consiste en incorporar un análisis del ciclo de vida definiendo un proceso de toma de decisiones que integre los aspectos sociales y medioambientales mediante técnicas analíticas de toma de decisiones multicriterio tanto de forma previa a los procesos de optimización multiobjetivo, como posteriormente en la priorización de las soluciones del frente de Pareto. Un análisis crítico de las tareas necesarias para conseguir este objetivo indica la necesidad de coordinar un grupo multidisciplinar amplio capaz de aglutinar no sólo distintas perspectivas técnicas, sino también distintos intereses, públicos y privados.
Existen dificultades al realizar un análisis de ciclo de vida de una infraestructura debido a las incertidumbres presentes en la definición de las entradas y salidas del sistema (Jato-Espino et al., 2014), que incluye la tecnología empleada en la elaboración de las materias primas, la procedencia de los materiales y su transporte, la definición de los procesos constructivos y de demolición y reutilización de los materiales (Knoeri et al., 2011). El reto implica un proceso de toma de decisiones que minimice los impactos sociales y medioambientales al coste más bajo posible. En este sentido, trabajos como los de Kim et al. (2013) proponen procesos de toma de decisión eco-amigables basados en AHP (Saaty, 1980) que aplican al caso de dos tipologías de puentes. Sin embargo, una de los inconvenientes más importantes que encuentran es la gran dependencia de los resultados en función de los pesos asignados a cada uno de los factores. Trabajos como los de Moreno-Jimenez et al. (2008), Lin et al. (2008) y Moreno-Jimenez et al. (2014) tratan de superar estas deficiencias.
La línea de investigación basada en la optimización multiobjetivo empleada por nuestro grupo constituye una técnica sin información a priori de las preferencias del decisor al analista que realiza la optimización y genera un conjunto de alternativas eficientes. El proyecto BRIDLIFE busca un salto cualitativo en nuestra línea de investigación en cuanto a que se pretenden técnicas de decisión con información a priori, donde el decisor proporciona al analista una estructura de preferencias y éste es quien construye el modelo incluyendo en él toda esta información. Sin embargo el conocimiento explícito de las preferencias del decisor no es sencillo (incorporación de criterios de sostenibilidad social y ambiental en la gestión del ciclo de vida del puente). Se necesita conocer la estructura de preferencias, no cometer errores en el proceso de extracción y, además, considerar que el decisor suele modificar sus preferencias a lo largo del proceso de resolución.
El diseño de los puentes se realiza de forma secuencial. Tras un predimensionamiento se comprueban todos los estados límites, en un proceso iterativo cuyo resultado en términos de eficiencia económica dependen fuertemente de la experiencia del proyectista. Una alternativa es el diseño totalmente automático utilizando técnicas de optimización, capaces de incorporar múltiples funciones objetivo y cuyo resultado es la generación de un conjunto de soluciones eficientes (frontera de Pareto). La disponibilidad de ordenadores de elevada potencia de cálculo y bajo coste, junto con el desarrollo de técnicas de análisis inteligente y minería de datos, ha permitido que en las últimas décadas haya crecido de forma importante el diseño de estructuras óptimas. Sarma y Adeli (1998) aportan una extensa revisión de artículos sobre la optimización económica de estructuras de hormigón. Estos autores insistieron en la necesidad de optimizar estructuras reales de interés, tal y como ya apuntaron Cohn y Dinovitzer (1994), constatando la escasez en la aplicación de la optimización al hormigón estructural frente a las estructuras metálicas. Además de los métodos basados en la programación matemática (Hernández y Fontán, 2002), el problema de la optimización se puede abordar mediante técnicas metaheurísticas y bioinspiradas. La presencia de grupos de investigación europeos en optimización de estructuras de hormigón gravitan en la República Checa (Leps y Sejnoha), Grecia (Kousmousis y Arsenis), y Reino Unido (Topping, Leite, Rafiq, Southcomb, Ashad, Baines). En América destaca el grupo de Coello, en México, y en Estados Unidos los grupos de Camp, Adeli y Frangopol. En la India destacan Ramasamy, Ramanjaneyulu y Krishnamoorthy. También se conocen trabajos puntuales en los Emiratos Árabes (Altoubat) y en Irán (Kaveh y Sahab). Han existido contactos con estos grupos a través de congresos, revistas y dirección de ejercicios final de carrera (el caso del profesor Leps, con el programa ERASMUS). En otros ámbitos, cabe destacar la Red HEUR en Optimización Heurística (http://www.redheur.org), cuyo coordinador es R. Martí, de la U. de Valencia, y la Red Española de Minería de Datos y Aprendizaje (http://www.lsi.us.es/redmidas/). La optimización heurística del hormigón estructural presenta pocos grupos de investigación en España; destaca el dirigido por Hernández en A Coruña, y el de Martí y Tomás, en la U.P. de Cartagena, con estudios sobre la optimización de forma y armado de estructuras laminares. Habría que añadir los trabajos encabezados por F. Navarrina y M. Casteleiro, también en A Coruña, en relación a aspectos topológicos, los de la U.P. de Madrid de Utrilla y Samartín sobre optimización de puentes y estructuras bidimensionales y la del grupo de la UPC (Aparicio, Casas, Ramos) con software de diseño automático para mejorar la elección en proyectos estructurales. En relación con los indicadores de contribución de las estructuras a la sostenibilidad, destacan los grupos de la UPC (Aguado), los de A Coruña (del Caño) los grupos de la UPM (Rodríguez y Fernández) o del IECA (Burón). También hay que resaltar el trabajo realizado por los profesores Castillo, Turmo Nogal, Lozano-Galant y colaboradores respecto a la identificación estructural mediante técnicas de observabilidad.
En relación con la optimización de puentes, la revisión mencionada de Cohn y Dinovitzer (1994) ya apuntaba la gran escasez de artículos publicados en esta materia. El diseño óptimo de vigas pre-tensadas, en especial la disposición de los tendones, es un problema clásico planteado desde hace años. Aparicio et al. (1996) presentaron un sistema de diseño asistido por ordenador de puentes de hormigón pretensado para carreteras, identificando cuáles eran las tipologías estructurales más eficaces. Hassanain y Loov (2003) presentan una revisión del estado de la cuestión de las técnicas de optimización de puentes de hormigón. Sin embargo, tal y como apuntan Hernández et al. (2010), existe cierto vacío en la investigación que se ocupe específica-mente de la optimización y el diseño completo de los puentes reales.
Con todo, la línea de investigación emprendida por nuestro grupo no puede quedarse en la mera optimización económica del hormigón estructural, que podría ser un objetivo a corto plazo de interés evidente para las empresas constructoras o de prefabricados. Además, tampoco es suficiente la optimización multiobjetivo considerando aspectos ambientales y económicos. Si bien en trabajos previos de nuestro grupo se han comprobado reducciones significativas, estimadas entre el 10 y 50% de las emisiones de CO2 y coste respecto a estructuras no optimizadas; también es cierto que son necesarios criterios sociales, la incorporación de las restricciones presupuestarias (pasa de ser función objetivo a restricción) y la evaluación completa del ciclo de vida. En este proyecto se consideran los puentes pretensados como objeto de estudio, aunque la metodología propuesta es aplicable a otras estructuras. Además, BRIDLIFE pretende profundizar en los puentes prefabricados, pues, tal y como indica Yee (2001), existen motivos adicionales basados en beneficios sociales y medioambientales que justifican la adopción del hormigón prefabricado. El ahorro en material y mano de obra, la calidad en el producto y el rápido montaje son razones que justifican, por sí solas, el uso de esta tecnología.
Nuestro equipo investigador ha llevado a cabo estudios de optimización heurística de estructuras de hormigón desde hace una década en una trayectoria de profundización de esta disciplina. Como resultado de lo anterior, los investigadores principales han dirigido 7 tesis doctorales, 15 tesinas de máster y se han publicado 28 artículos indexados JCR directamente relacionados con estos proyectos:
Proyecto 80016/A04: Optimización heurística económica de marcos de paso de carretera y ferrocarril. Este proyecto se centró en la optimización económica de estructuras empleadas en carreteras como marcos, bóvedas, pórticos y muros. Se aplicó a la optimización en fase de diseño. Se detectó la necesidad de incluir estados límite no habituales en el cálculo de estas estructuras (fatiga, deformación, vibraciones).
Proyecto BIA2006-01444: Diseño óptimo sostenible de tableros de puentes losa pretensados. En este proyecto se optimizó tanto la economía como las emisiones de CO2 y el consumo energético en la fase de diseño de puentes losa postesados. Se aplicaron técnicas estadísticas convencionales para extraer conclusiones de predimensionamiento.
Proyecto BIA2011-23602: Diseño eficiente de estructuras con hormigones no convencionales basados en criterios sostenibles multiobjetivo mediante el empleo de técnicas de minería de datos (HORSOST). Con este proyecto se aplicó la optimización multiobjetivo considerando aspectos económicos y ambientales en fase de proyecto y de construcción. Se estudió asimismo el uso de hormigones con fibras, de alta resistencia y autocompatables. Se aplicaron técnicas de minería de datos para extraer conclusiones no triviales en predimensionamiento.
En el ámbito autonómico el grupo ha desarrollado un proyecto de investigación financiados por la Generalitat Valenciana. GV/2010/086 Criterios económicos y medioambientales para el diseño óptimo de pasos superiores de hormigón “in situ” mediante técnicas de inteligencia artificial y minería de datos. También se desarrollaron dos proyectos financiados por la Universidad Politécnica de Valencia. Los trabajos se centraron en el diseño óptimo de puentes prefabricados pretensados y con fibras.
Los trabajos desarrollados hasta el momento por nuestro grupo de investigación ha permitido avances importantes en el diseño automatizado y óptimo de las estructuras de hormigón con múltiples criterios, sin embargo existen una serie de limitaciones que este proyecto tiene intención de superar:
La optimización no incluye funciones objetivo de difícil cuantificación como la sostenibilidad social, con aspectos tales como la estética o la equidad social intergeneracional. Se debe incluir además la seguridad de las personas (Fortunato III et al., 2012), o la influencia de la forma de contratación de los proyectos y las obras (Molenaar et al., 2010).
Los costes económicos se han considerado hasta ahora como una función objetivo en la optimización. Sin embargo, la crisis actual obliga a replantear la disposición anual de presupuestos, todos ellos muy restrictivos. Por tanto el presupuesto pasa de ser objetivo a ser una restricción en el problema de optimización.
Debe analizarse la sensibilidad que existe en las políticas presupuestarias poco sensibles a la realidad del sector en la gestión de las estructuras. Ello supone modelar distintos escenarios económicos y analizar las soluciones eficientes derivadas.
Elegida la tipología estructural, la optimización multiobjetivo permite la obtención de un conjunto de soluciones eficientes (frontera de Pareto). Sin embargo, la decisión previa debe ser priorizada en base a un proceso de toma de decisión multicriterio. Tras la obtención de la frontera de Pareto, deberá elegirse la mejor opción en base a una nueva toma de decisiones. Aquí, la determinación de los factores determinantes constituye un proceso altamente complejo que requiere de la participación de expertos multidisciplinares y un control sobre el sesgo y rigor académico del juicio de dichos expertos (Hallowell y Gambatase, 2010).
Los proyectos previos no han incluido la gestión de activos. La determinación de cómo y cuándo deber realizarse la conservación de forma que se mantengan las prestaciones constituye un problema de optimización multiobjetivo. Deben incluirse los costes de mantenimiento y los esperados en caso de fallo de la estructura. Además, las incertidumbres asociadas con el deterioro de las estructuras requieren el uso de métodos probabilísticos para evaluar el comportamiento a lo largo de su vida útil (Yang et al., 2006; Osaka y Frangopol, 2009; Orcesi y Frangopol, 2011).
La inclusión de la demolición y reutilización de los materiales de la estructura constituye un aspecto básico a incorporar en el análisis del ciclo de vida. Una variable de diseño debe ser la durabilidad y la incorporación de la recarbonatación del hormigón (García-Segura et al., 2014).
Es necesario incorporar los avances realizados con hormigones de baja huella ecológica (Mellado et al., 2014) para comprobar su eficacia en los procesos de toma de decisión y optimización multiobjetivo. Asimismo, se requiere la comparación con estructuras mixtas hormigón-acero.
Lo indicado hasta ahora, que resume los antecedentes y las realizaciones del grupo, se podría resumir en los siguientes aspectos:
La temática a investigar se ha ido profundizado en cada uno de los proyectos realizados, acorde a los objetivos previstos.
Todos los estudios realizados hasta ahora estaban basados en la optimización multiobjetivo en fase de diseño y construcción. El objetivo de esta propuesta de investigación es dar un salto científico al incorporar la visión social y el análisis completo del ciclo de vida en la toma de decisiones. Se eligen los puentes pretensados como elemento de estudio para determinar el alcance del proyecto.
El motivo de este planteamiento no solo es un desafío científico, sino también una necesidad social. En efecto, las incertidumbres relacionadas con la toma de decisiones en el diseño de nuevas infraestructuras que contemplen aspectos de sostenibilidad social y ambiental en situaciones extremas de restricciones presupuestarias, así como la decisión en las políticas de mantenimiento y gestión de activos, demolición y reutilización de las infraestructuras es un problema altamente complejo que afecta directamente a las estructuras de hormigón. Se hace necesario profundizar en la incorporación de la durabilidad y el uso de hormigones no convencionales con baja huella de carbono en la toma de decisiones. Asimismo, sería de gran interés completar y mejorar algunos criterios tomados en la norma EHE relacionados con el cálculo del índice de sostenibilidad, de forma que incorpore el análisis completo del ciclo de vida de las estructuras, incluyendo aspectos como el mantenimiento, la demolición y reutilización de las estructuras. Además, se considera necesario incorporar un índice de sostenibilidad social en la normativa actual. A continuación se relacionan los artículos científicos indexados en JCR relacionados con el proyecto. Se hace notar la productividad científica alcanzada por el Proyecto BIA2011-23602 (HORSOST) vigente de 2012 a 2014.
BIBLIOGRAFÍA DEL GRUPO RELACIONADA CON EL PROYECTO
CARBONELL, A.; GONZÁLEZ-VIDOSA, F.; YEPES, V. (2011). Heuristic optimization of reinforced concrete road vault underpasses. Adv Eng Softw, 42(4): 151-159.
CARBONELL, A.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2011). Búsqueda exhaustiva por entornos aplicada al diseño económico de bóvedas de hormigón armado. Rev Int Metod Numer, 27(3):227-235.
CARBONELL, A.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2012). Automatic design of concrete vaults using iterated local search and extreme value estimation. Lat Am J Solids Struct, 9:675-689.
GARCÍA-SEGURA, T.; YEPES, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures (accepted, in press).
GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J. (2014). Life-cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. Int J Life Cycle Assess, 19(1):3-12.
GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J.; PÉREZ-LÓPEZ, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Eng Struc, 92:112-122.
GARCÍA-SEGURA, T.; YEPES, V.; MARTÍ, J.V.; ALCALÁ, J. (2014). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Lat Am J Solids Struct, 11:1190 – 1205.
LUZ, A.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; MARTÍ, J.V. (2015). Diseño de estribos abiertos en puentes de carretera obtenidos mediante optimización híbrida de escalada estocástica. Informes de la Construcción, 67(540), e114.
MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120:231-24.
MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2010). Design of prestressed concrete precast pedestrian bridges by heuristic optimization. Adv Eng Softw, 41:916-922.
MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J. (2013). Design of prestressed concrete precast road bridges with hybrid simulated annealing. Eng Struct, 48:342-352.
MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2014). A memetic algorithm approach to designing of precast-prestressed concrete road bridges with steel fiber-reinforcement. J Struct Eng ASCE, 04014114.
MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2015). A memetic algorithm approach to designing of precast-prestressed concrete road bridges with steel fiber-reinforcement. J Struct Eng ASCE, 141(2): 04014114.
MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; LUZ, A. (2014). Diseño automático de tableros óptimos de puentes de carretera de vigas artesa prefabricadas mediante algoritmos meméticos híbridos. Rev Int Metod Numer, 30(3), 145-154.
MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2011). Estudio paramétrico de pilas para viaductos de carretera. Rev Int Metod Numer, 27(3):236-250.
MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2010). Heuristic Optimization of RC Bridge Piers with Rectangular Hollow Sections. Comput Struct, 88: 375-386.
MARTÍNEZ. F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; ALCALÁ, J. (2011). Design of tall bridge piers by ant colony optimization. Eng Struc, 33:2320-2329.
MARTÍNEZ-MARTÍN, F.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2013). A parametric study of optimum tall piers for railway bridge viaducts. Struct Eng Mech, 45: 723-740.
MARTINEZ-MARTIN, F.J.; GONZALEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2012). Multi-objective optimization design of bridge piers with hybrid heuristic algorithms. J Zhejiang Univ-SCI A, 13(6):420-432.
MARTÍ-VARGAS, J.R.; FERRI, F.J.; YEPES, V. (2013). Prediction of the transfer length of prestressing strands with neural networks. Comput Concr, 12(2):187-209.
PAYÁ, I.; YEPES, V.; CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F. (2006). Optimización heurística de pórticos de edificación de hormigón armado. Rev Int Metod Numer, 22(3): 241-259.
PAYÁ, I.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2008). Multiobjective Optimization of Reinforced Concrete Building Frames by Simulated Annealing. Comput Aided Civ Infrastruct Eng, 23(8): 596-610.
PAYÁ-ZAFORTEZA, I.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2010). On the Weibull cost estimation of building frames designed by simulated annealing. Meccanica, 45(5): 693-704.
PAYÁ-ZAFORTEZA, I.; YEPES, V.; HOSPITALER, A.; GONZÁLEZ-VIDOSA, F. (2009). CO2-Optimization of Reinforced Concrete Frames by Simulated Annealing. Eng Struct, 31(7): 1501-1508.
PELLICER, E.; SIERRA, L.A.; YEPES, V. (2016).Appraisal of infrastructure sustainability by graduate students using an active-learning method. Journal of Cleaner Production, 113:884-896.
PEREA, C.; ALCALÁ, J.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2008). Design of Reinforced Concrete Bridge Frames by Heuristic Optimization. Adv Eng Softw, 39(8): 676-688.
PEREA, C.; YEPES, V.; ALCALÁ, J.; HOSPITALER, A.; GONZÁLEZ-VIDOSA, F. (2010). A parametric study of optimum road frame bridges by threshold acceptance. Indian J Eng Mat Sci, 17(6):427-437.
PONZ-TIENDA, J.L.; PELLICER, E.; YEPES, V. (2012). Complete fuzzy scheduling and fuzzy earned value management in construction projects. J Zhejiang Univ-SCI A, 13(1):56-68
PONZ-TIENDA, J.L.; YEPES, V.; PELLICER, E.; MORENO-FLORES, J. (2013). The resource leveling problem with multiple resources using an adaptive genetic algorithm. Autom Constr, 29(1):161-172.
SIERRA, L.A.; PELLICER, E.; YEPES, V. (2016). Social sustainability in the life cycle of Chilean public infrastructure. Journal of Construction Engineering and Management ASCE, 142(5): 05015020.
TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E.; YEPES, V.; VIDELA, C. (2015). Sustainable pavement management: How to integrate economic, technical and environmental aspects in decision making. Transportation Research Record: Journal of the Transportation Research Board, 2523:56-63.
TORRES-MACHÍ, C.; CHAMORRO, A.; VIDELA, C.; PELLICER, E.; YEPES, V. (2014). An iterative approach for the optimization of pavement maintenance management at the network level. Sci World J, Volume 2014, Article ID 524329
TORRES-MACHÍ, C.; CHAMORRO, A.; YEPES, V.; PELLICER, E.; (2014). Models and actual practices in the economic and environmental evaluation for the sustainable management of pavements networks. Rev Constr 13(2): 51-58.
TORRES-MACHÍ, C.; YEPES, V.; ALCALA, J.; PELLICER, E. (2013). Optimization of high-performance concrete structures by variable neighborhood search. International Journal of Civil Engineering, 11(2):90-99.
YEPES, V.; ALCALÁ, J.; PEREA, C.; GONZÁLEZ-VIDOSA, F. (2008). A Parametric Study of Optimum Earth Retaining Walls by Simulated Annealing. Eng Struct, 30(3): 821-830.
YEPES, V.; DÍAZ, J.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J. (2009). Caracterización estadística de tableros pretensados para carreteras. Rev Constr, 8(2):95-109.
YEPES, V.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J.; VILLALBA, P. (2012). CO2-Optimization Design of Reinforced Concrete Retaining Walls based on a VNS-Threshold Acceptance Strategy. J Comput Civ Eng ASCE, 26 (3):378-386.
YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Autom Constr, 49:123-134.
YEPES, V.; MEDINA, J.R. (2006). Economic Heuristic Optimization for Heterogeneous Fleet VRPHESTW. J Transp Eng ASCE, 132(4): 303-311.
YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550.
REFERENCIAS:
AGUADO, A.; CAÑO, A.; DE LA CRUZ, M.; GÓMEZ, D.; JOSA, A. (2012). Sustainability Assessment of Concrete Structures within the Spanish Structural Concrete Code. J Constr Eng Manage ASCE, 138(2):268-276.
AGUADO, A. et al. (2008). “Índice de contribución de la estructura a la sostenibilidad”, Anejo 13 de la norma española EHE de hormigón estructural, pp. 487-504. M. de Fomento, España.
ALARCÓN, D.B. (2005). Modelo integrado de valor para estructuras sostenibles. Tesis doctoral, Universitat Politècnica de Catalunya.
ALARCÓN, L.F. et al. (2011). Risk Planning and Management for the Panama Canal Expansion Program. J Const Eng Manag ASCE, 137(10):762-771.
APARICIO, A.C.; CASAS, J.R.; RAMOS, G. (1996). Computer aided design of prestressed concrete highway bridges. Comput Struct, 60:957–969.
ASCE (2011). Structural identification (St-Id) of constructed facilities. Technical report, ASCE SEI Committee on Structural Identification of Constructed Systems.
ASCE (2013). Report card for America’s infrastructure, 2013 progress report, Washington DC.
ASOCIACIÓN ESPAÑOLA DE LA CARRETERA (2012). Informe sobre necesidades de inversión en conservación, Madrid.
BRUNTLAND, G. (1987). Our common future. Report of the World Commission on Environment and Development. Oxford University Press, Oxford.
COHN, M.Z.; DINOVITZER, A.S. (1994). Application of structural optimization. J Struct Eng ASCE, 120(2):617-649.
FORTUNATO III, B.R.; HALLOWELL, M.R.; BEHM, M.; DEWLANEY, K.S. (2012). Identification of safety risks for high performance sustainable construction projects. J Constr Eng Manage ASCE, 138(4): 499-508.
GÓMEZ, D.; DEL CAÑO, A.; DE LA CRUZ, M.P.; JOSA, A. (2012). “Evaluación de la sostenibilidad en estructuras de hormigón y metálicas. La EHE y la EAE”. En: Sostenibilidad y construcción. ACHE. Editor: A. Aguado. Cap. 19, pp. 413-439.
GÓMEZ, D.; DEL CAÑO, A.; DE LA CRUZ, M.P.; JOSA, A. (2012). “Metodología genérica para la evaluación de la sostenibilidad de sistemas constructivos. El método MIVES”. En: Sostenibilidad y construcción. Editor: A. Aguado. ACHE. Cap. 18, pp. 385-411.
HALLOWELL, M.R.; GAMBATASE, J.A. (2010). Qualitative research: application of the Delphi method to CEM research. J Constr Eng Manage ASCE, 136(1): 99-107.
HASSANAIN, M.A.; LOOV, R.E. (2003). Cost optimization of concrete bridge infrastructure. Canadian J Civ Eng, 30:841-849.
HERNÁNDEZ, S.; FONTAN, A. (2002). Practical Applications of Design Optimization, WIT Press, Southampton.
HERNÁNDEZ, S.; FONTAN, A.; DÍAZ, J.; MARCOS, D. (2010). An improved software for design optimization of prestressed concrete beams, Adv Eng Softw, 41:415–421.
JATO-ESPINO, D.; CASTILLO-LÓPEZ, E.; RODRÍGUEZ-HERNÁNDEZ, J.; CANTERAS-JORDANA, J.C. (2014). A review of application of multi-criteria decision making methods in construction. Autom Constr, 45:151-162.
JATO-ESPINO, D.; RODRÍGUEZ-HERNÁNDEZ, J.; ANDRÉS-VALERI, V.C.; BALLESTER-MUÑOZ, F. (2014). A fuzzy stochastic multi-criteria model for the selection of urban pervious pavements. Expert Syst Appl, 41:6807-6817.
KIM, S.H. et al. (2013). Environmental impact assessment and eco-friendly decision-making in civil structures. J Env Manag, 126:105-112.
KNOERI, C.; BINDER, C.B.; ALTHAUS, H.J. (2011). Decisions on recycling: Construction stakeholders’ decisions regarding recycled mineral construction materials. Resources, Conservation and Recycling, 55:1039-1050.
LIN, C.C.; WANG, W.C.; YU, W.D. (2008). Improving AHP for construction with an adaptive AHP approach (A3). Autom Constr, 17:180-187.
LOZANO-GALANT, J.A.; NOGAL, M.; CASTILLO, J.; TURMO, J. (2013). Application of observability techniques to structural system identification. Comput Aided Civ Infrastruct Eng, 28(6):434-450.
MARI, A. (2007). Educar para la sostenibilidad en el ámbito de la ingeniería. Conferencia de clausura. II Jornadas de enseñanza del hormigón estructural. ACHE, Madrid, pp. 33-49.
MELLADO, A. et al. (2014). Carbon footprint of geopolymeric mortar: Study of the contribution of the alkaline activating solution and assessment of an alternative route. RSC Advances, 4: 23846.
MOLEENAR, K.R.; SOBIN, N.; ANTILLON, E.I. (2010). A synthesis of best-value procurement practices for sustainable design-build projects in the public sector. J Green Build, 5(4):148-157.
MORENO-JIMÉNEZ, J.M.; AGUARÓN, J., ESCOBAR, M.T. (2008) The core of consistency in AHP-group decision making. Group Decis Negot 17:249–265.
MORENO-JIMÉNEZ, J.M. et al. (2012). A collaborative platform for cognitive decision making in the Knowledge Society. Computers in Human Behavior, 28:1921-1928.
MORENO-JIMÉNEZ, J.M. et al. (2014). Systemic decision making in AHP: a Bayesian approach. Annals of Operations Research. doi:10.1007/s10479-014-1637-z
NISHIJIMA, K. et al. (2007). Inter-generational distribution of the life-cycle cost of an engineering facility. J Reliab Struct Mat, 1(3):33-46.
ORCESI, A.D.; FRANGOPOL, D.M. (2011). Probability-based multiple-criteria optimization of bridge maintenance using monitoring and expected error in the decision process. Struct Multidisc Optim 44:137-148.
OSAKA, N.M.; FRANGOPOL, D.M. (2009). Lifetime-oriented multi-objective optimization of structural maintenance considering system reliability, redundancy and life-cycle cost using GA. Structural Safety, 31:460-474.
PACHECO-TORGAL, F.; JALALI, S. (2011). Eco-efficient Construction and Building Materials. Springer Verlag London Limited.
PONS, O.; AGUADO, A. (2012). Integrated value model for sustainable assessment applied to technologies used to build schools in Catalonia, Spain. Building and Environment, 53:49-58.
PONS, O.; DE LA FUENTE, A. (2013). Integrated sustainability assessment method applied to structural concrete columns. Construction and Building Materials, 49:882-893.
RACKWITZ, R. et al. (2005). Socio-economically sustainable civil engineering infrastructures by optimization. Structural Safety, 27(3):187-229.
SAATY, T.L. (1980). The analytic hierarchy process, McGraw-Hill, New York.
SAN-JOSÉ, J.T.; GARRUCHO, (2010). A system approach to the environmental analysis of industrial buildings. Building and Environment, 45:673-683.
SAYDAM, D.; FRANGOPOL, D.M.; DONG, Y. (2013). Assessment of risk using bridge element condition ratings. J Infrast Syst, 19:252-265.
SARMA, K.C.; ADELI, H. (1998). Cost optimization of concrete structures. J Struct Eng ASCE, 124(5): 570-578.
WISNIEWSKI, D.F.; CASAS, J.F.; GHOSN, M. (2006). Simplified probabilistic non-linear assessment of existing railway bridges. Struct Infrastr Eng, 5(6):439-453.
YANG, S.I.; FRANGOPOL, D.M.; KAWAKAMI, Y.; NEVES, L.C. (2006). The use of lifetime functions in the optimization of interventions on existing bridges considering maintenance and failure costs. Reliability Engineering & System Safety, 91:698-705.
YEE, A.A. (2001). Social and environmental benefits of precast concrete technology. PCI Journal, 43:14-20.
El Instituto ICITECH (Instituto de Ciencia y Tecnología del Hormigón) es un centro de investigación de la Universidad Politécnica de Valencia creado en 2005 que agrupa a profesores e investigadores cuya actividad investigadora se centra en el hormigón. Actualmente, el instituto está formado por 63 miembros, de los cuales 32 son profesores, 14 son investigadores contratados y el resto son personal técnico de apoyo a la investigación y de administración.
El Instituto se dedica a la investigación del hormigón desde las perspectivas de los materiales constituyentes y de las estructuras, abordando una amplia gama de aspectos como el proceso de fabricación, el comportamiento físico-químico, mecánico o medioambiental, la sostenibilidad y el comportamiento, el diseño, la construcción y el mantenimiento de las estructuras.
Los objetivos son fomentar y promover la investigación de calidad mediante la realización de proyectos de I+D, potenciar la investigación aplicada y la transferencia de tecnología y conocimiento a empresas afines, así como fomentar la participación de socios industriales.
Las instalaciones de ICITECH se ubican en un nuevo edificio que alberga una gran losa de carga de 500 m², junto con un muro de reacción horizontal en L de 14 x 6 m y 13 m de altura, con puntos de anclaje tanto en la losa como en el muro de 500 kN situados a un metro de distancia entre sus ejes. Además, dispone de una instalación oleohidráulica constituida por seis grupos motobomba que proporcionan 250 bares, un caudal de 1560 litros/min y dos puentes grúa de 10 t cada uno, lo que permite manejar elementos de hasta 20 t por toda la superficie de la nave. Este conjunto permite realizar ensayos a escala real de estructuras con diferentes tipologías de carga. Además de esta gran instalación, el edificio incluye laboratorios de química y materiales con un total de 175 m², tres cámaras húmedas de 117 m³, 57 m³ y 57 m³, y una central de aire comprimido, gas natural, dióxido de carbono y aire seco.
Os paso a continuación un pequeño dosier que hemos preparado para explicar lo que hace nuestro grupo de investigación sobre optimización heurística relacionado con temas de hormigón (proyecto HORSOST) y con el mantenimiento de activos e infraestructuras. Esta actividad se encuentra enmarcada dentro del ICITECH, del Máster Oficial en Ingeniería del Hormigón (acreditado con el sello EUR-ACE) y del Programa de Doctorado en Ingeniería de la Construcción de la Universidad Politécnica de Valencia (verificado por ANECA).
Acabamos de recibir la agradable noticia de que nuestra compañera Cristina Torres Machí ha sido elegida como ganadora de la categoría Tesis Doctoral del Premio Abertis Chile, patrocinada por la Cátedra Abertis de la Pontificia Universidad Católica de Chile. La tesis, denominada «Optimización heurística multiobjetivo para la gestión de activos de infraestructura de transporte terrestre» se defendió el 30 de marzo de 2015, optando brillantemente a la doble titulación de doctorado, tanto de la Universitat Politècnica de València (UPV) como de la Pontificia Universidad Católica de Chile (PUC). Los directores de tesis han sido la doctora Marcela Alondra Chamorro Gine (PUC), Eugenio Pellicer Armiñana (UPV) y Víctor Yepes Piqueras (UPV). La calificación fue la máxima posible, de sobresaliente “cum laude” por unanimidad.
TORRES-MACHÍ, C.; CHAMORRO, A.; YEPES, V.; PELLICER, E. (2014). Current models and practices of economic and environmental evaluation for sustainable network-level pavement management.Revista de la Construcción, 13(2): 49-56. http://dx.doi.org/10.4067/S0718-915X2014000200006
TORRES-MACHÍ, C.; CHAMORRO, A.; VIDELA, C.; PELLICER, E.; YEPES, V. (2014). An iterative approach for the optimization of pavement maintenance management at the network level.The Scientific World Journal, Volume 2014, Article ID 524329, 11 pages, http://dx.doi.org/10.1155/2014/524329 (link)
TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E.; YEPES, V.; VIDELA, C. (2015). Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making.Transportation Research Record, 2523:56-63. DOI:10.3141/2523-07
YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm.Journal of Civil Engineering and Management, 22(4):540-550. DOI: 10.3846/13923730.2015.1120770
Tenemos la gran suerte de contar con el profesor Dan M. Frangopol como profesor visitante en la Universitat Politècnica de València. Se trata de una estancia que solicitó nuestro grupo de investigación dentro del proyecto de investigación BRIDLIFE y que también ha sido apoyada por nuestra universidad. Es una magnífica oportunidad de poder colaborar en líneas de investigación que confluyen en la optimización multiobjetivo de estructuras a lo largo de su ciclo de vida. Ya estuvo nuestra investigadora Tatiana García Segura cuatro meses de estancia en la Universidad de Lehigh.
El curriculum y la trayectoria académica del profesor Frangopol es impresionante. Es el primer titular de la Cátedra Fazlur R. Khan de Ingeniería Estructural y Arquitectura de la Universidad de Lehigh, en Bethlehem, Pensilvania. Antes de incorporarse a esta universidad, fue profesor de ingeniería civil en la Universidad de Colorado en Boulder, donde ahora es profesor emérito. Sus líneas de investigación se centran en la aplicación de los conceptos probabilísticos y métodos de la ingeniería civil tales como la fiabilidad estructural, el diseño basado en la probabilidad y la optimización de edificios, puentes y barcos navales, vigilancia de la salud estructural, mantenimiento y gestión a lo largo de su ciclo de vida, gestión de infraestructuras en condiciones de incertidumbre, evaluación basada en el riesgo, sostenibilidad y resistencia a los desastres.
De acuerdo con el ASCE (Sociedad Estadounidense de Ingenieros Civiles) “Dan M. Frangopol is a preeminent authority in bridge safety and maintenance management, structural system reliability, and life-cycle civil engineering. His contributions have defined much of the practice around design specifications, management methods, and optimization approaches. From the maintenance of deteriorated structures and the development of system redundancy factors to assessing the performance of long-span structures, Dr. Frangopol’s research has not only saved time and money, but very likely also saved lives… Dr. Frangopol is a renowned teacher and mentor to future engineers.”
A parte de cuatro doctorados honoris causa, el profesor Frangopol presenta un índice h de 54 y más de 11900 citas (Google Scholar, 2015). Ha dirigido más de 40 tesis doctorales y ha sido profesor visitante en numerosas universidades de todo el mundo. Lo mejor es que veáis su currículum entero en su página web: http://www.lehigh.edu/~dmf206/
Os dejo a continuación los seminarios y conferencias que impartirá este mes en la Universitat Politècnica de València. Si tenéis alguna duda, me podéis enviar un correo electrónico. La entrada es libre. Os iré contando en sucesivos posts más sobre nuestra actividad este mes con el profesor Frangopol.
YEPES, V.; MEDINA, J.R. (2006). Big-Bang: Un nuevo algoritmo aplicado a la optimización de redes de transporte del tipo VRPTW.Actas del VII Congreso de Ingeniería del Transporte CIT-2006. Libro CD, 8 pp. Ciudad Real, 14-16 de junio. ISBN: 84-689-8341-1.
RESUMEN
La ponencia presenta un procedimiento de optimización económica de rutas de reparto con flotas de vehículos heterogéneas y horarios de servicio flexibles VRPHESTW. Para ello se presenta una nueva heurística, denominada “Big-Bang” basada en la modificación gradual de la variable espacial donde se ubican los nodos que representan a los clientes. La simulación de esta heurística de relajación consiste en reducir la velocidad de todos los vehículos, que al principio es muy alta para estabilizarse al final en su verdadera magnitud. El algoritmo emplea para explorar el espacio de soluciones una búsqueda probabilista en entornos variables con una aceptación de máximo gradiente. El algoritmo propuesto encuentra soluciones de elevada calidad, con la ventaja de poder utilizar otros procedimientos de búsqueda local que resulten más eficientes que el de máximo gradiente (algoritmo del solterón, aceptación por umbrales, búsqueda tabú, etc.).
INTRODUCCIÓN
La asignación de rutas de reparto a una flota de vehículos “Vehicle Routing Problem” (VRP) constituye un problema habitual en las empresas dedicadas a la distribución de bienes o personas que conlleva un impacto económico, social y medioambiental importante. Sin embargo, los problemas de optimización que representan numerosas situaciones reales sólo pueden resolverse mediante procedimientos aproximados debido a su elevada complejidad intrínseca (ver Ball et al., 1995).
En las últimas décadas se han aplicado una gran variedad de técnicas para optimizar el problema de las rutas con horarios de servicio “vehicle routing problem with time windows” (VRPTW), tanto con heurísticas de construcción de soluciones (ver Solomon, 1987) o de mejora (ver Potvin y Rousseau, 1995), como metaheurísticas (ver Homberger y Gehring, 2005; Russell y Chiang, 2006). Sin embargo, son escasas las publicaciones que abordan la optimización con modelos más cercanos a la realidad incorporando horarios de servicio flexibles “vehicle routing problem with soft time windows” (VRPSTW) (ver Taillard et al., 1997), flotas heterogéneas de vehículos “vehicle routing problem with a heterogeneous fleet of vehicles” (VRPHE) (ver Gendreau et al., 1999), o ambas “vehicle routing problem with a heterogeneous fleet of vehicles and soft time windows” (VRPHESTW) (ver Yepes y Medina, 2002, 2004, 2006).
Además, los problemas reales de rutas difieren significativamente de los problemas teóricos. En efecto, la optimización jerárquica empleada habitualmente en la literatura (donde las mejores soluciones son las que, en primer lugar, presentan un menor número de rutas; y posteriormente, una menor distancia recorrida por todos los vehículos), no representa adecuadamente los costes reales de las empresas ni sus políticas de tarifas. Yepes (2002) indicó la trascendencia de utilizar una función objetivo de tipo económico para resolver estos problemas ante cambios en los escenarios de tarifas y costes. Asimismo, las restricciones legales y sociales, así como la calidad del servicio también se deben incluir dentro de una función objetivo de tipo económico, que contemple los ingresos y los costes de las operaciones de transporte (Medina y Yepes, 2003).
En la ponencia se presenta una nueva heurística basada en la modificación gradual de la variable espacial donde se ubican los nodos que representan a los clientes, y que se ha denominado “Big-Bang”. Esta estrategia de relajación, a su vez, se anida en una variante de la búsqueda en entornos variables “Variable Neighborhood Search” (VNS) (ver Mladenovic y Hansen, 1997) apoyada en la elección probabilista de un operador distinto en cada movimiento, empleada con éxito en el trabajo de Yepes y Medina (2006). Todo ello se ensaya con un problema de rutas del tipo VRPHESTW donde, además, se emplea una función objetivo de tipo económico, unas jornadas laborables con distintos costes y con tiempos de viaje dependientes del tiempo de acceso y alejamiento a cada nodo (congestión, tráfico, etc.).
EL ALGORITMO BIG-BANG
El algoritmo Big-Bang que se propone parte de la siguiente idea: Si todos los vehículos tuviesen una velocidad mayor a la real, dicho fenómeno se podría interpretar como que los clientes se encuentran en un espacio donde, físicamente, las distancias fuesen menores. Un procedimiento de búsqueda encontraría un óptimo local en este escenario favorable a la reducción del número de vehículos. Si se desciende escalonadamente la velocidad, y en cada caso se encuentra su óptimo local, probablemente el nuevo óptimo sería similar al anterior, siempre que la disminución fuera suficientemente suave. Esta relajación de la velocidad se interrumpiría en el último escalón, donde el óptimo local encontrado satisfaría la velocidad real de los vehículos. El efecto sería un aumento gradual del espacio físico donde se ubican los clientes, efecto por el cual se ha querido llamar a la heurística algoritmo Big-Bang. En la situación inicial las restricciones fundamentales que condicionan el problema son la capacidad de los vehículos y los horarios de servicio. Al final, la lejanía entre los clientes y el almacén central, son condiciones que se han introducido progresivamente al final de la heurística.
En efecto, un vehículo con una velocidad v llega de 0 a 1 en el instante t01 (ver Figura 1). Se supone, sin perder generalidad, que el tiempo de servicio es nulo. Si la velocidad se incrementase a v’, entonces la llegada ocurriría en t01’. Esta situación equivale a suponer que el nodo, en vez de estar en 1 está más cerca de 0, es decir, en 1’ y la velocidad se mantiene en v. Así, la llegada ocurre en el instante t’01, que es igual al t01’. Por tanto, un aumento en la rapidez de los vehículos es equivalente a un acortamiento físico de las distancias. Sin embargo, las ventanas temporales interfieren en el razonamiento anterior. La existencia de esperas provoca que, aunque la velocidad v’ favorece el acortamiento a la distancia 1’, no es posible iniciar el servicio puesto que lo impide la ventana temporal. La situación equivalente es la representada en la Figura 1 cuando el vehículo circula a una velocidad v’’. En este caso, el acortamiento de distancias a 1’ se ve interrumpido por la limitación en el inicio del servicio a la situación 1’’, donde el inicio del servicio s1’ es coincidente con el s1’’. La conclusión es que el aumento de la rapidez de los vehículos permite relajar las restricciones en las distancias, acortando éstas mientras las limitaciones horarias no lo impidan.
Fig. 1 – Incidencia en la variación de la velocidad de un vehículo en el inicio del servicio
Una de las características más interesantes de esta heurística de relajación consiste en la posibilidad de emplear como procedimientos de búsqueda local en cada escalón de velocidad, metaheurísticas más agresivas de búsqueda que la simple aceptación por umbrales (búsqueda tabú, algoritmo del solterón, cristalización simulada, etc.). En la ponencia que se presenta se ha optado por utilizar una búsqueda de máximo gradiente para comprobar la eficacia intrínseca del algoritmo, para no empañarla con la de otras metaheurísticas que por sí solas resultan, muy eficaces para el problema VRPHESTW (ver Yepes y Medina, 2004).
DESCRIPCIÓN DE LA METAHEURÍSTICA PROPUESTA
El método presentado consta de dos fases. En la primera se genera una solución inicial mediante una heurística de construcción de rutas específica. Posteriormente se emplea el algoritmo “Big-Bang” basándose en una versión probabilista de la búsqueda por entornos variables “Variable Neighborhood Search” (VNS) (ver Mladenovic y Hansen, 1997) y un criterio de aceptación de máximo gradiente.
3.1 Fase 1: Heurística económica de construcción secuencial de rutas.
Se ha empleado el método de Yepes y Medina (2006) para generar una solución inicial de elevada calidad al problema VRPHESTW. El procedimiento inicia una ruta seleccionando adecuadamente al primer cliente para posteriormente agregar otros mientras se cumplan las restricciones impuestas. Además, se elige el vehículo de mayor capacidad para disminuir en lo posible el número necesario.
3.2 Fase 2: Algoritmo “Big-Bang” con búsqueda probabilista en entornos variables.
El algoritmo que se propone consta de un número M+1 de ciclos de búsqueda local por entornos. Cada ciclo de búsqueda termina con la obtención de un óptimo relativo correspondiente con unas velocidades de los vehículos fijadas para dicho ciclo. En el primer ciclo, la velocidad de los vehículos se amplifica por un factor de incremento D= D1>1. Este factor debe reducirse progresivamente hasta llegar al último ciclo de búsqueda local, en el cual D =DM+1 =1. Para este trabajo, la reducción de la velocidad ha sido lineal con el número de ciclos; sin embargo, se podría adoptar otro tipo de función reductora.
Como técnica de búsqueda local se ha empleado la metaheurística propuesta por Yepes y Medina (2006) para el problema VRPHESTW, de búsqueda por entornos variables basada en la elección probabilística de 9 operadores distintos y un criterio de aceptación por máximo gradiente. Los movimientos elegidos han sido los siguientes:
Movimientos dentro de una ruta: se emplea el operador relocate (un nodo salta a otro lugar dentro de la ruta) y el swap (dos nodos de la ruta se intercambian entre sí).
Movimientos entre dos rutas: se utiliza el operador CROSS-exchange (Taillard et al., 1997) y dos casos particulares, el movimiento 2-opt* (Potvin y Rousseau, 1995) y el 2-exchange (Osman, 1993).
Movimiento de vehículos: vehicle–swap cambia entre sí los vehículos de dos rutas, y replacement sustituye el vehículo de una ruta por otro de la flota que no está utilizándose.
Reconstrucción de soluciones: R&R0 desconecta un nodo al azar y lo introduce en la posición y ruta más favorable, mientras que R&Rseq rompe la ruta con menor número de nodos, y los reintroduce en la mejor posición y ruta (ver Schirmpf et al., 2000).
La Tabla 1 contiene las probabilidades que tiene cada operador de ser elegido. Dichos valores han ofrecido buenos resultados en experiencias anteriores (ver Yepes, 2002).
Tabla 1 – Probabilidad de elección de los operadores
EJEMPLO DE APLICACIÓN AL PROBLEMA VRPHESTW
Se analiza un problema del tipo VRPHESTW denominado HES-A descrito en Yepes y Medina (2004, 2006). Este caso deriva del ejemplo R103 de Solomon (1987), al cual se incorporan horarios flexibles de entrega, flotas heterogéneas y una función económica caracterizada por unos ingresos y unos costes fijos y variables. El lenguaje código utilizado ha sido Visual Basic 6.0 ejecutándose los ejemplos en un ordenador Pentium IV 3.00 GHz.
En las Figuras 2 y 3 se representa el beneficio obtenido y el tiempo empleado por la heurística descrita cuando se aplica al problema HES-A. El número de iteraciones empleadas para cada escalón de velocidad ha oscilado entre 1000 y 50000. Los escalones de velocidad ensayados varían entre 3 y 100. La mejor solución encontrada se corresponde con un beneficio de 164752, obtenida para un factor inicial de modificación de la velocidad D1=130, así como 30000 iteraciones en cada uno de los 30 escalones de velocidad considerados. Sin embargo, esta solución no atiende a todos los clientes (sólo el 96.70% de la demanda queda cubierta). La mejor solución que atiende toda la demanda se corresponde con un beneficio de 155184, obtenida para un D1=150, así como 50000 iteraciones en 100 escalones de velocidad. Destacamos cómo el algoritmo es capaz de aumentar el beneficio de las operaciones a costa de renunciar al servicio a determinados clientes. La mejor solución no factible sólo precisa 12 vehículos y recorre 1224.71 unidades de distancia total, frente a los 13 vehículos y las 1260.54 unidades de distancia de la mejor solución factible. Si se pretende servir toda la demanda, bastaría endurecer las penalizaciones en la función objetivo.
Fig. 2 – Beneficio obtenido para el problema HES-A con el algoritmo propuesto, analizado por el factor inicial de incremento de velocidadFig. 3 – Beneficio obtenido para el problema HES-A con el algoritmo propuesto, analizado por la factibilidad de la solución
En la Tabla 2 se han recogido los valores óptimos en el sentido de Pareto de las soluciones factibles (ver Voorneveld, 2003). Dichos óptimos se corresponden con los valores de mayor beneficio en el menor tiempo de cálculo posible. Se observa que es favorable el aumento del factor de modificación inicial de la velocidad, del número de escalones y del número de iteraciones. Sin embargo, ello comporta un mayor tiempo de cálculo.
Tabla 2 – Resultados óptimos de Pareto para el problema HES-A, para las soluciones factibles
El mejor resultado obtenido por esta metaheurística (ver Tabla 3) es inferior al encontrado por el algoritmo del solterón propuesto por Yepes y Medina (2004) para un tiempo de cálculo similar. En aquella ocasión se obtuvo un beneficio de 170335, con 13 vehículos que recorrieron un total de 1229.13 unidades de distancia. Esta circunstancia sugiere que la búsqueda local de máximo gradiente empleada podría sustituirse por un algoritmo de búsqueda más agresiva, como el algoritmo del solterón.
Tabla 3 – Resultados obtenidos para el problema HES-A
CONCLUSIONES
Se ha presentado una nueva heurística denominada “Big-Bang” basada en la modificación gradual de la variable espacial donde se ubican los nodos que representan los clientes. Esta estrategia de relajación consiste en reducir progresivamente, de forma escalonada, la velocidad de todos los vehículos, de forma que, al final del proceso, todos dicha velocidad sea la que corresponde con las restricciones del problema. Este procedimiento permite una fuerte tendencia hacia la reducción inicial del número de vehículos necesarios. En la ponencia se ha empleado este procedimiento para la resolución del problema VRPHESTW. Como estrategia de búsqueda local se ha empleado un esquema de búsqueda aleatoria en entornos variables, que emplea de forma probabilista un conjunto de 9 operadores y un criterio de aceptación de nuevas soluciones de máximo gradiente. En los ensayos se ha comprobado que un aumento en el factor de incremento inicial de la temperatura, del número de escalones, y de las iteraciones proporciona un incremento en la calidad de las soluciones, si bien con un mayor tiempo de cálculo. Los resultados obtenidos son de elevada calidad, si bien se sugiere el empleo de procedimientos de búsqueda local más agresivos, como por ejemplo el algoritmo del solterón, que ha dado muy buenos resultados para la resolución de este problema.
AGRADECIMIENTOS
Los autores agradecen el apoyo en este trabajo del Ministerio de Educación y Ciencia y de los fondos FEDER (Proyectos: BIA2005-03197 y REN2002-02951).
REFERENCIAS
BALL, M.O.; MAGNANTI, T.L.; MONNA, C.L.; NEMHAUSER, G.L. (Eds.) (1995). Network Routing, Handbooks in Operations Research and Management Science, vol. 8. North-Holland, Amsterdam.
GENDREAU, M.; LAPORTE, G.; MUSARAGNY, C.; TAILLARD, É.D. (1999). A tabu search heuristic for the heterogeneous fleet vehicle routing problem. Computers and Operations Research 26, pp. 1153-1173.
HOMBERGER, J.; GEHRING, H. (2005). A two-phase hybrid metaheuristic for the vehicle routing problem with time windows. European Journal of Operational Research 162, pp. 220-238.
MEDINA, J.R.; YEPES, V. (2003). Optimization of touristic distribution networks using genetic algorithms. Statistics and Operations Research Transactions 27(1), pp. 95-112.
MLADENOVIC, N.; HANSEN, P. (1997). Variable neighborhood search. Computer and Operations Research 24(11) pp. 1097-1100.
OSMAN, I.H. (1993). Metastrategy simulated annealing and tabu search algorithms for the vehicle routing problem. Annals of Operations Research 41, pp. 421-451.
POTVIN, J.Y.; ROUSSEAU, J.M. (1995). An exchange heuristic for routing problems with time windows. J. Operational Res. Soc. 46(12), pp. 1433-1446.
RUSSELL, R.A.; CHIANG, W.C. (2006). Scatter search for the vehicle routing problem with time windows. European Journal of Operations Research 169, pp.606-622.
SCHIRMPF, G.; SCHENIDER, J.; STAMM-WILBRANDT, H.; DUECK, G. (2000). Record breaking optimization results using the ruin and recreate principle. Journal of Computation Physics 159, pp. 139-171.
SOLOMON, M.M. (1987). Algorithms for the vehicle routing and scheduling problems with time window constraints. Operations Research 35(2), pp. 254-265.
TAILLARD, É.; BADEAU, P.; GENDREAU, M.; GUERTIN, F.; POTVIN, J.-Y. (1997). A tabu search heuristic for the vehicle routing problem with soft time windows. Transportation Science 31(2), pp. 170-186.
VOORNEVELD, M. (2003). Characterization of Pareto dominance. Operations Research Letters 31, pp. 7-11.
YEPES, V. (2002). Optimización heurística económica aplicada a las redes de transporte del tipo VRPTW. Tesis doctoral. Universidad Politécnica de Valencia. 352 pp.
YEPES, V.; MEDINA, J.R. (2002). Criterio económico para la optimización de rutas con flotas heterogéneas VRPHESTW, en Ibeas, A. y Díaz, J.M. (Eds.): Actas del V Congreso de Ingeniería del Transporte. Vol. 2, pp. 693-700. Santander, 11-13 junio.
YEPES, V.; MEDINA, J.R. (2004). Algoritmo del solterón aplicado a la optimización de rutas con flotas heterogéneas VPRHESTW, en Larrodé, E. y Castejón, L. (Eds.): Actas del VI Congreso de Ingeniería del Transporte. Vol. 2, pp. 759-766. Zaragoza, 23-25 de junio.
YEPES, V.; MEDINA, J.R. (2006). Economic heuristic optimization for heterogeneous fleet VRPHESTW. Journal of Transportation Engineering, ASCE 132(4), pp. 303-311.
La programación lineal es un procedimiento o algoritmo matemático mediante el cual se resuelve un problema indeterminado, formulado a través de un sistema de inecuacioneslineales, optimizando la función objetivo, también lineal. Consiste en optimizar (minimizar o maximizar) una función lineal, denominada función objetivo, de tal forma que las variables de dicha función estén sujetas a una serie de restricciones que expresamos mediante un sistema de inecuaciones lineales.
Os dejo un vídeo tutorial donde se explica la programación lineal y se avanzan las ideas básicas del método Simplex.
Existen páginas web, como PHPSimplex, donde puedes solucionar on-line problemas sencillos. También puede resolverse este tipo de problemas con las herramientas de MATLAB: Optimization Toolbox.
A continuación os dejo un vídeo donde se explica cómo resolver un problema de Programación Lineal mediante MS Excel 2007. Es importante que aprendáis a utilizar el Solver. Espero que os guste el vídeo.
¿Seríais capaces de resolver los siguientes problemas, donde el objetivo es maximizar el beneficio?:
Una empresa produce hormigón usando los ingredientes A y B. Cada kilo de ingrediente A cuesta 60 unidades monetarias y contiene 4 unidades de arena fina, 3 unidades de arena gruesa y 5 unidades de grava. Cada kilo de ingrediente B cuesta 100 unidades monetarias y contiene 3 unidades de arena fina, 6 unidades de arena gruesa y 2 unidades de grava. Cada amasada debe contener, por lo menos, 12 unidades de arena fina, 12 unidades de arena gruesa y 10 unidades de grava. Formule un modelo de programación lineal y resuélvalo gráficamente.
Una empresa especializada en la construcción de estructuras de edificios tiene patentes de tres tipos de forjados F1, F2 y F3. Los beneficios que consigue por metro cuadrado de forjado construido son 100, 90 y 120 unidades monetarias respectivamente. Por razones de almacenamiento y financiación, diariamente sólo se dispone de dos toneladas de acero, 200 m3 de hormigón y 8 m3 de madera para encofrados. Maximizar el beneficio a obtener. Las cantidades de acero, hormigón y madera que se necesitan por m2 en cada uno de los forjados son: