La Ingeniería más antigua contada a los ingenieros más modernos

Isaac Moreno Gallo.

El pasado 9 de mayo del 2022, con motivo de la XXVIII semana de la Ingeniería Civil y el Medio Ambiente de la Universitat Politècnica de València, tuvimos la ocasión de escuchar la conferencia inaugural impartida por Isaac Moreno Gallo sobre las principales técnicas y logros de la Ingeniería Civil practicada desde la más remota antigüedad.

Para mí fue muy agradable conocer personalmente a Isaac, pues como nos conocemos por redes sociales, tuve la osadía de invitarlo a esta Conferencia y le puse en contacto con la Dirección de nuestra Escuela para que pudiese impartirla. Como siempre, la persona es infinitamente más interesante que el perfil en redes sociales o su imagen en documentales. Es lo que tiene la desvirtualización, tan necesaria para la verdadera comunicación entre las personas.

Isaac es de esos personajes especiales, ingeniero técnico de obras públicas e historiador, que es uno de los grandes especialistas en ingeniería romana de nuestro país. Burgalés, pero afincado en Zaragoza, sin duda, es una voz autorizada que pone el grito en el cielo cuando nos habla del grave deterioro que está sufriendo nuestro patrimonio. Sobre todo por la gran ignorancia que tenemos en este país. Como siempre, la necesidad de las humanidades en nuestras carreras técnicas.

Aunque ya he hecho personalmente, doy de nuevo las gracias a Isaac, ahora de forma pública, por habernos deleitado con su saber. Os recomiendo que lo sigáis en redes sociales o a través de los fabulosos documentales sobre ingeniería romana de La 2 de RTVE. Por cierto, su blog lo podéis encontrar en la siguiente dirección: https://terraeantiqvae.com/profile/IsaacMorenoGallo

Para los que aún no hayáis visto la serie documental, la podéis ver https://www.rtve.es/play/videos/ingenieria-romana/. En la primera temporada, el acueducto de Nimes, el teatro de Cartagena o los magníficos monumentos de Roma fueron algunas de las infraestructuras que permitieron comprender los desafíos a los que se enfrentaron los ingenieros romanos. En la segunda temporada, nuevos ocho capítulos: ‘Ciudades I’, ‘Acueductos I’, ‘Ciudades II’, ‘Acueductos II’, ‘Carreteras’, ‘Minería’, ‘Estructuras’ y ‘Levantando un imperio’.

Pero creo que será mejor que escuchemos directamente la charla. En esta conferencia se trató de la ingeniería que abarca desde el Calcolítico hasta justo antes de la ingeniería romana. Espero que os guste.

¿Fueron los romanos más ingenieros que arquitectos?

Reconstrución de un Polyspastos romano en Bonn, Alemania.

En una entrada anterior tuvimos la ocasión de repasar brevemente algunos aspectos de la ingeniería romana, como fue la construcción de calzadas o puentes. Como podréis comprobar, el tema da para varias enciclopedias y el objetivo aquí es simplemente dar un par de pinceladas para despertar la curiosidad sobre aspectos históricos de la ingeniería. Además, en internet existen multitud de enlaces que permiten ampliar el tema considerablemente.

Podríamos empezar por la ingeniería municipal. Las ciudades del imperio romano disponían de sistemas de drenaje y suministro de agua, calefacción, baños públicos, calles pavimentadas, mercados de carne y pescado y otras infraestructuras municipales comparables a las actuales. La aplicación de la ingeniería en las artes militares y en los problemas de navegación, adecuación de puertos y bahías implicó, como en los otros casos, el uso de máquinas, materiales y procesos, que hablan del grado de desarrollo de la ingeniería romana, de la cual quedó constancia escrita en muchos tratados escritos en aquel tiempo y entre los cuales descuellan los trabajos de Marco Vitruvio. Su libro De Archítectura, lo escribió durante primer siglo d.C., donde incluyó el concocimiento del momento sobre materiales y métodos de construcción, hidráulica, mediciones, diseño y planificación urbana. Otra innovación en el ámbito urbano fue la invención del alumbrado público en la ciudad de Antioquía, aproximadamente hacia el año 3~0 d.C. Una innovación interesante de esa época fue la reinvención de la calefacción doméstica central indirecta, que se había usado cerca de 1200 a.C., en Beycesultan, Turquía. Lo extraño es que, tras la caída del Imperio Romano, este tipo de calefacción no se volviera a utilizar.

Restos de los acueductos Aqua Claudia y Anio Novus, integrados como portones de la Muralla Aureliana en el año 271.

Los romanos también fueron buenos ingenieros hidráulicos. En comparación con los anteriores, sus acueductos eran mayores y más numerosos. Casi todo lo que se sabe actualmente del sistema romano de distribución de aguas proviene del libro “De Aquis Urb’is Romae” de Sexto Julio Frontino, quien fue autor del Aquarum de Roma, de 97 a 104 a.C. Frontino llevaba registros de la utilización del agua, que indican que el emperador usaba el 17%, el 39% se usaba en forma privada, y el 44% en forma pública. Se calcula que en Roma diariamente se consumían entre 380 y 1 100 millones de litros de agua. La fracción del 44% para uso público estaba subdividida adicionalmente en un 3% para los cuarteles, el 24% para los edificios públicos, incluidos once baños públicos, un 4% para los teatros, y un 13% para las fuentes. Había 856 baños privados a la fecha del informe. En todo caso, la administración del agua en Roma era una tarea considerable e importante. Gran parte del agua que supuestamente debería entrar a la ciudad jamás lo hizo, debido a las derivaciones que tenían escondidas los usuarios privados.

Para resolver el problema de la toma de agua para las ciudades, los romanos construyeron acueductos  siguiendo en esencia el mismo diseño, que usaba arcos semicirculares de piedra montados sobre una hilera de pilares. Cuando un acueducto cruzaba una cañada, con frecuencia requería niveles múltiples de arcos. Uno de los mejor conservados de la actualidad es el Pont du Gard en Nimes, Francia, que tiene tres niveles. El nivel inferior también tenía una carretera. Los romanos usaron tubería de plomo y luego comenzaron a sospechar que no eran salubres. Sin embargo, el envenenamiento por plomo no se diagnosticó específicamente, sino hasta que Benjamín Franklin escribió una carta en 1768 relativa a su uso.

Las técnicas utilizadas en la edificación por los romanos eran muy depuradas empleando, ya en aquellos tiempos, en sus edificios públicos el hormigón y el ladrillo, construyendo grandes bóvedas, como la del Panteón de Roma de 44 m de luz, realizada en el siglo II a.C. e impresionantes acueductos. Estas técnicas no fueron superadas en Europa hasta cerca del 1800. Uno de los grandes triunfos de la construcción pública durante este periodo fue el Coliseo, que fue el mayor lugar de reunión pública hasta la construcción del Yale Bowl en 1914.

El Coliseo de Roma

En el campo de las cimentaciones de los edificios, una de las innovaciones reseñables son sus plataformas de hormigón en masa, donde la capacidad hidráulica del cemento puzolánico permitió la colocación de las plataformas de cimentación incluso bajo el agua. En algunos casos, la utilización de estas cimentaciones continuas de gran espesor (losa de cimentación), supuso una solución eficaz en suelos pobres, con riesgo de asientos diferenciales. Así, por ejemplo, El Coliseo se alza sobre el antiguo lago del palacio de Nerón, sobre un anillo macizo de 12 m de profundidad y 170 m de diámetro, compuesto de hormigón y de grandes bloques de piedra. De forma similar, el Panteón descansa sobre un anillo sólido de 4,5 m de profundidad y más de 7 m de anchura.

El Panteón de Agripa o Panteón de Roma.

La ingeniería civil romana, y sobre todo la rama que se dedicó a las obras marítimas, experimentó un gran avance cuando descubrió la forma de fabricar morteros y hormigones hidráulicos. Vitruvio comentaba las condiciones para la construcción de distintas obras marítimas. Por ejemplo, en el caso de un dique vertical de hormigón en masa establecía que era necesaria la existencia de una playa apropiada, calidad de los fondos aceptable, posibilidad de utilizar en obra el cemento puzolánico y solicitaciones de oleaje de pequeña entidad. El procedimiento constructivo comenzaba construyendo un recinto tablestacado mediante la hinca de maderas de roble. Posteriormente, se procedía a sanear sus capas superficiales dragando, al mismo tiempo que se realizaba el perfilado de la cimentación. Las dragas eran manuales, iguales a las que se han utilizado hasta principios del siglo XIX. Posteriormente, se hormigonaba bajo el agua, llenando el recinto de conglomerado hidráulico. Se desencofraba retirando las tablestacas y se procedía a un nuevo avance repitiendo los pasos descritos. Se finalizaba la obra coronando el dique con un cabecero realizado mediante muros perimetrales de ladrillo o sillería. El hueco entre ellos se rellenaba de “todo uno” y sobre este material disgregado, se construía la calzada. Se desarrollaron grúas y barcazas que se utilizaron intensivamente en la construcción. Otro de los procedimientos constructivos a destacar es la de los cajones flotantes celulares herméticos, precursor de los diques monolíticos actuales. También hicieron uso de diques con baja cota de coronación (como en Cesarea Marítima, Israel en el 20 a.C.) para reducir la energía del oleaje antes de alcanzar el dique principal. El mayor complejo portuario artificial fue el Puerto Imperial de Roma, diseñado por Trajano, con una dársena hexagonal y un tráfico de trigo con Egipto y Francia de 300,000 t anuales.

Por supuesto, nos dejamos para otros posts, otros aspectos que irán surgiendo sobre la ingeniería y la arquitectura romanas.

Os dejo un vídeo explicativo de la construcción de los muros en este periodo.

 

Referencias:

ADAM, J.P. (2002).  La construcción romana. Materiales y técnicas. Editorial de los Oficios, 2ª edición, León.

FERNÁNDEZ, M. (2001). Ingeniería militar e ingeniería civil, dos ingenierías íntimamente vinculadas. Revista de Obras Públicas, 3.413: 47-57.

FERNÁNDEZ CASADO, C. (1983). Ingeniería hidráulica romana. Colegio de Ingenieros de Caminos, Canales y Puertos. Madrid.

YEPES, V. (2009). Breve historia de la ingeniería civil y sus procedimientos. Universidad Politécnica de Valencia.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Ponte Fabricio (Roma)

Puente Fabricio. Imagen: V. Yepes (2016)

El puente Fabricio, o ponte dei Quattro Capi, es un puente que se construyó en el año 62 d.C. sobre el río Tíber. Se trata de un puente de piedra que comunica el Campo de Marte con el lado este de la isla Tiberina. Su nombre se debe a Lucio Fabricio, curator viarum al que se encargó su construcción. Sirvió para reemplazar un puente de madera anterior que se destruyó en un incendio.

El puente tiene una longitud de 62 m y 5,5 m de ancho. Dispone de dos arcos de 24 m de longitud, apoyado en un pilar central en medio del cauce. El pilar central se encuentra aligerado con una gran ventana que permite aumentar el desagüe hidráulico. Los tímpanos están revestidos con ladrillo  los arcos son de piedra caliza blanca, lo cual supone un contraste visual de interés estético. Los arcos son muy esbeltos, lo que unido a sus arranques verticales que quedan debajo de la lámina de agua, dan una imagen ciertamente moderna. Debajo del ladrillo se ve la sillería romana y el interior de las bóvedas también es original. El puente se restauró en el año 1679 por el Papa Inocencio XI.

Uno de los aspectos más interesantes de este puente, desde el punto de vista estructural, es que los arcos no son los típicos de medio punto, sino que se encuentran cerrados sobre sí mismos, formando unas bóvedas circulares que distribuyen las cargas al fondo del cauce y no a la pila, como es habitual. Esta disposición proporciona una fortaleza estructural excepcional reforzada por una doble rosca y arcos que quedan sumergidos por debajo del cauce.

Sección vertical del Puente Fabricio

 

Puente Fabricio. Imagen. V. Yepes (2016)

El Ponte Rotto (Roma)

El Puente Emilio (Pons Aemilius) o Ponte Rotto. Imagen: V. Yepes
El Puente Emilio (Pons Aemilius) o Ponte Rotto. Imagen: V. Yepes

El Puente Emilio, llamado también Lapideo, o como se le conoce de forma más popular, el Ponte Rotto (en ruinas), fue probablemente el primer arco de piedra sobre de Roma sobre el Tíber. Este puente se construyó para apoyar al Puente Sublicio, dado que éste no era adecuado para soportar el paso de carros y material pesado. El puente se construyó por encargo de los censores Marco Emilio Lepido y Marco Fulvio Nobiliore, en el 179 a.C. El puente se ha destruido y reconstruido en numerosas ocasiones durante los primeros días de la República Romana, y sufrió daños a lo largo de su historia debido a las crecidas del río, siendo reconstruido muchas veces. Sin embargo, la gran inundación de 1598 hizo desaparecer tres de los seis arcos y el puente nunca más se reconstruyó. Aunque en el siglo XIX los restos del puente se unieron con pasarelas metálicas, al final se eliminaron las pasarelas y los dos arcos más cercanos a la orilla para construir los diques modernos del río. Hoy quedan sólo uno de los tres arcos del siglo XVI, de 24 m de luz, con bóveda de ladrillo de tardía restauración renacentista, que se apoya posiblemente en los pilones originales del siglo II a.C.

Os dejo algunos vídeos de las ruinas del puente.

Conjetura sobre la existencia de puentes romanos sobre el Turia a su paso por Valencia

valenciahistoriadelaciudadvalenciarepublicana01
© SIAM Ajuntament de Valencia

Quería dejar constancia en esta entrada de la gran labor que el profesor Modest Batlle, de la Escuela de Ingenieros de Caminos de Barcelona, está llevando como coordinador de la revista “Cuadernos de diseño en la obra pública” (ISSN: 2013-2603) . Se trata, probablemente, de una de las pocas revistas  cuyo objetivo es la toma de conciencia de la importancia que tiene el diseño en las obras de ingeniería. Acaban de editar el número 5 de la revista con colaboradores tales como Javier Manterola, José Luís Manzanares, Francisco Bueno, Jorge Bernabeu o Teresa Navas. En dicho número también he tenido la oportunidad de participar con un artículo denominado “Conjetura sobre la existencia de puentes romanos sobre el Turia a su paso por Valencia”. Os lo paso por si os resulta de interés y os animo a leer el resto de la revista.

Referencia:

YEPES, V. (2013). Conjetura sobre la existencia de puentes romanos sobre el Turia a su paso por Valencia. Cuadernos de diseño en la obra pública, 5:14-19.

¿Por qué los romanos fueron grandes ingenieros?

El puente de Alcántara sobre el Río Tajo.

A lo largo de estos meses hemos repasado aspectos históricos y constructivos de la ingeniería de todos los tiempos (Egipto, Mesopotamia, Grecia, por ejemplo), sin embargo aún no hemos dicho nada de Roma. Ello merece no sólo un post, sino varios (el puente de Alcántara debería contar, por méritos propios, con un post de oro). Es más, yo diría que es un atrevimiento por mi parte intentar contar en tan breve espacio  lo más relevante de la ingeniería romana, puesto que, con total seguridad nos dejaremos cosas por el camino. Grandes ingenieros españoles como Fernández Casado abordaron con gran interés estos temas, y hoy día hay verdaderos especialistas en el tema, publicaciones, congresos, páginas web, etc. El propio arquitecto e ingeniero de Julio César, Marco Vitruvio nos ha legado el tratado sobre construcción más antiguo que se conserva De Architectura, en 10 libros (probablemente escrito entre los años 23 y 27 a. C.).  Para resolver cómo abordar el problema de divulgar aspectos de interés sobre la ingeniería romana, lo mejor será hacer varias entregas, dejar cuestiones abiertas, dar enlaces a otras páginas web y recibir todas las sugerencias habidas y por haber de los amables lectores. Vamos allá.

La ingeniería tiene un gran desarrollo y perfección en Roma como lo demuestra la construcción de abastecimientos de agua o poblaciones con toda la infraestructura de canales y acueductos que ello conlleva, el saneamiento de las ciudades, las defensas y las vías de comunicación (calzadas y puentes) que tanta importancia tuvieron en el Imperio. Puede decirse que mientras Grecia fue Arquitectura, Roma fue Ingeniería (Fernández, 2001).

Sin embargo, los ingenieros romanos tuvieron más que ver con sus antiguos colegas de Egipto y Mesopotamia que con sus predecesores griegos.  Los romanos tomaron ideas de los países conquistados para usarlas en la guerra y las obras públicas. Fueron pragmáticos, empleando esclavos y tiempo para sus obras. Las innovaciones romanas en ciencia fueron, comparativamente, más limitadas que las de los griegos; sin embargo, contaron con abundantes soldados, administradores, dirigentes y juristas de gran nivel. Los romanos fueron capaces de poner en práctica muchas de las ideas que les habían precedido y se convirtieron, con toda probabilidad, en los mejores ingenieros de la antigüedad. Quizá no fueron originales, pero aplicaron su técnica ampliamente a lo largo de todo un imperio.  Los ingenieros romanos fueron superiores en la aplicación de las técnicas, entre las cuales son notables los puentes que usaron en vías y acueductos. Para juzgar la extensión de los conocimientos técnicos entre las legiones romanas basta leer en los Comentarios de César la descripción de la construcción de puentes de pilotes que tendían sus ejércitos sobre los ríos helados y los terrenos pantanosos.

Existen datos históricos que prueban el conocimiento y empleo de diversos tipos de hormigones en civilizaciones tan antiguas como la egipcia (3000 a.C.), la griega o la cartaginesa. Sin embargo, como en tantas otras ocasiones, es con los romanos cuando la utilización del hormigón en sus más variadas aplicaciones ha dado lugar a innumerables obras, muchas de las cuales -o sus vestigios- han alcanzado nuestro siglo dando fe de ello. Este material les permitía levantar estructuras laminares monolíticas de gran luz, para cúpulas y bóvedas. El hormigón romano se hacía a base de cal mezclada con arena volcánica, llamada puzolana. Se aplicaba en capas, con un material de relleno o árido, como tejas rotas, entre dos superficies de ladrillo que formaban la cara exterior e interior. Al contrario que el hormigón moderno, no iba armado y requería contrafuertes exteriores, al no poder resistir esfuerzos de tracción. Además, no era tan fluido como el actual, lo cual limitaba la complejidad de los encofrados. El hormigón romano constituía un sistema constructivo económico, rápido y eficaz. El encofrado lo construían grupos reducidos de carpinteros expertos; el hormigón se fabricaba y ponía en obra mediante grandes grupos de trabajadores no especializados.

El Puente del Diablo, en Martorell.

Pasemos ahora, brevemente, a los puentes. Una palabra tan familiar hoy día como “Pontífice” tiene su origen en la designación de los ingenieros constructores de puentes, carácter semántico que insiste en el contenido sagrado del trabajo de estos técnicos. Los romanos construyeron muchos puentes de caballete con madera, uno de los cuales se describe con detalle en la obra citada anteriormente de Julio César. Sin embargo, los puentes romanos que se mantienen en pie suelen sustentarse en uno o más arcos de piedra, como el puente de Martorell cerca de Barcelona, en España y el Ponte di Augusto en Rímini, Italia. El Pont du Gard en Nimes, Francia, tiene tres niveles de arquerías que elevan el puente a 48 m sobre el río Gard, con una longitud de 261 m; es el ejemplo mejor conservado de gran puente romano y fue construido en el siglo I a.C. La utilización de arcos de medio punto derivó más tarde en la de arcos apuntados.

Puente de Tiberio de Rímini

Ningún ingeniero hispanorromano excede en renombre al autor del puente de Alcántara. Por la importancia de su obra, de filiación incontrovertible, y por el monumento que honra su memoria, Cayo Julio Lacer ha quedado como representante arquetípico de los antiguos ingenieros españoles. La inscripción que dejó en el arco conmemorativo situado sobre la calzada es explícita acerca de sus intenciones: Pontem Perpetui Mansurum in Saecula: Dejo un puente que permanecerá por los siglos.

Pont du Gard, Francia.

Además de los notables puentes de los acueductos, visibles en Europa y Asia y de los cuales son ejemplos famosos el acueducto de Segovia, y el Pont du Gard, cerca de Nimes, con 50 m de altura y 300 de largo, son altamente notables las famosas vías imperiales como la Via Appia y la Via Flaminia, que atraviesan Italia longitudinalmente. La Vía Appia, que se inicio en 312 a.C., y fue la primera carretera importante recubierta de Europa. Al principio, la carretera medía 260 km e iba desde Roma hasta Capua, pero en 244 a.C., se alargó hasta Brindisi, siendo entonces una obra de prestigio tal, que la aristocracia flanqueó con monumentos funerarios ambos lados del camino a la salida de Capua. Además, tal era la densidad de tráfico pesado en aquella época que el propio Julio César prohibió que ningún vehículo de cuatro ruedas circulara por las calles de Roma, medida moderna a la vista de nuestros problemas actuales. En la cumbre del poder romano la red de carreteras cubría 290,000 km. desde Escocia hasta Persia.

Los ingenieros romanos mejoraron significativamente la construcción de las carreteras, tanto como herramienta al servicio del mantenimiento del poder imperial como por el hecho de que una carretera bien construida implicaba menores costes de mantenimiento a largo plazo. Esta idea de coste del ciclo de vida, tan vigente hoy día, ya era sobradamente conocida por los ingenieros romanos, pues sus carreteras podían durar cien años sin necesitar grandes reparaciones. Es apenas hasta fechas recientes que la construcción de carreteras ha vuelto a la base de “alto costo inicial – poco mantenimiento”.

Las calzadas romanas podía estar enlosadas (stratus lapidibus), afirmadas (iniecta glarea) o simplemente explanadas y sin firme (terrenae). Las sucesivas capas de firme: el statumen o cimiento de piedra gruesa, el rudus, de piedra machacada y el nucleus, de tierra. En ocasiones se disponía de la suma cresta, de grava cementada con cal, o incluso con enlosado. En este tipo de secciones se constata muchas veces una capa inicial compuesta de canto grueso, con grandes bolos en los flancos, a modo de caja y asiento de las capas superiores. Las calzadas romanas eran construidas con zahorras naturales como material básico. Cada capa tiene en torno a 15 cm, entre otras razones porque la energía de compactación que podía aplicarse en aquella época era casi nula y se reduciría al uso del agua sumado a un simple planchado con un rodillo más o menos pesado. El empleo de cal en la estabilización de suelos, terraplenes y capas de firme es también frecuente, y se debería sobre todo a la imposibilidad de dotar al material de la densidad adecuada con aporte exterior de energía de compactación. Era el factor tiempo y el agua los que realizaban la compactación. Las vías romanas estaban dotadas sistemáticamente de firme, y además adecuado tanto al tráfico rodado como al de caballerías. Incluso cuando se asentaban directamente sobre el sustrato rocoso debían de disponer de una capa mínima de rodadura compuesta por material pétreo de grano fino. Según Moreno (2001), muchos de los caminos empedrados que se imputan a los romanos no poseen las características técnicas que las vías romanas poseían, infravalorándose en numerosas ocasiones la capacidad técnica de los ingenieros romanos. Para aquellos que queráis profundizar más en la ingeniería y técnica constructiva de las vías romanas, os recomiendo la referencia de Moreno (2004)  y la página: http://www.viasromanas.net/

Nos dejamos para otros artículos aspectos de la ingeniería romana relacionados con la hidráulica, las obras marítimas, las cimentaciones o los grandes edificios.

Referencias:

ADAM, J.P. (2002).  La construcción romana. Materiales y técnicas. Editorial de los Oficios, 2ª edición, León.

FERNÁNDEZ, M. (2001). Ingeniería militar e ingeniería civil, dos ingeniería íntimamente vinculadas. Revista de Obras Públicas, 3.413: 47-57.

FERNÁNDEZ CASADO, C. (1983). Ingeniería hidráulica romana. Colegio de Ingenieros de Caminos, Canales y Puertos. Madrid.

MORENO, I. (2001). Características de la infraestructura viaria romana. OP ingeniería y territorio, 56: 4-13.

MORENO, I. (2004). Vías romanas. Ingeniería y técnica constructiva. Ed. Ministerio de Fomento CEDEX-CEHOPU.

YEPES, V. (2009). Breve historia de la ingeniería civil y sus procedimientos. Universidad Politécnica de Valencia.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.