Mejores prácticas para el control del nivel freático en proyectos de construcción.

Figura 1. Control del nivel freático. https://www.flickr.com/photos/wsdot/4997287082/

En este artículo se analiza un documento anexo al final: una guía formal de drenaje que detalla las lecciones aprendidas durante un proyecto de ingeniería civil excepcionalmente complejo en Christchurch (Nueva Zelanda), que se llevó a cabo de 2011 a 2016 tras un terremoto. Proporciona un marco para evaluar, diseñar e implementar el drenaje en programas de reconstrucción de infraestructuras o de recuperación tras desastres naturales, con énfasis en las prácticas de construcción y la geología local.

La guía examina diversos sistemas de control del nivel freático, como sumideros, sistemas de well-points y pozos, y ofrece criterios para seleccionar los métodos según la permeabilidad del suelo y la profundidad de la excavación. Además, establece un sistema para determinar la categoría de riesgo de un proyecto de drenaje y describe las medidas necesarias para mitigar los efectos ambientales y prevenir la subsidencia del terreno.

1.0 Introducción y principios fundamentales.

1.1 La importancia crítica del control del agua subterránea.

El control del nivel freático es un factor determinante para el éxito de cualquier proyecto de construcción que implique excavaciones. Una gestión inadecuada o la ausencia de un control efectivo puede comprometer gravemente la estabilidad de las excavaciones, la integridad de las estructuras permanentes y, en última instancia, la viabilidad económica y temporal del proyecto. El agua subterránea no controlada puede generar riesgos geotécnicos significativos, como la tubificación (piping), que es la erosión interna del suelo por el flujo de agua; el levantamiento del fondo (uplift), causado por presiones ascendentes que superan el peso del suelo en la base de la excavación, y una reducción general de la estabilidad del suelo, que puede provocar fallos en los taludes. Este manual recopila las lecciones aprendidas durante el programa de reconstrucción de la infraestructura de Christchurch (SCIRT), en el que la gestión del agua subterránea en condiciones geotécnicas complejas y tras el sismo fue un desafío diario y crítico para el éxito del proyecto. Estos fenómenos no solo suponen una amenaza para la seguridad de los trabajadores, sino que también pueden ocasionar daños en infraestructuras adyacentes y provocar retrasos y sobrecostes considerables.

Figura 2. Rotura de fondo o tapozano

1.2. Propósito y alcance del manual.

El manual proporciona una guía práctica y un proceso normalizado para evaluar, seleccionar, diseñar y monitorizar los sistemas de drenaje en obras de construcción. Con base en las enseñanzas extraídas de proyectos de infraestructura complejos, este documento pretende dotar a los ingenieros y gerentes de proyecto de las herramientas necesarias para prever y gestionar los desafíos relacionados con el nivel freático. El objetivo final es reducir los costes y los retrasos asociados a problemas imprevistos mediante una planificación proactiva y un diseño técnico riguroso de las obras temporales de drenaje.

Este manual aborda el ciclo completo de la gestión del agua subterránea en la construcción e incluye:

  • El contexto geológico y su influencia directa en las estrategias de desagüe.
  • Los sistemas de control del nivel freático disponibles, sus aplicaciones y limitaciones.
  • La mitigación de los efectos ambientales y el cumplimiento de las normativas vigentes.
  • Un marco para la evaluación sistemática de riesgos y la planificación de contingencias.

El documento se centra principalmente en los métodos de control del nivel freático, que consisten en interceptar y extraer el agua subterránea mediante bombeo. También se mencionan brevemente los procedimientos de contención, como las tablestacas o los muros pantalla, que buscan bloquear el flujo de agua hacia la excavación.

Figura 3. Combinación de pantallas con (a) bombeo convencional o (b) barreras horizontales. Adaptado de Cashman y Preene (2012)

1.3. Importancia del contexto geológico.

  • Análisis de acuíferos: una comprensión fundamental de la hidrogeología del emplazamiento es el pilar de cualquier diseño de un drenaje. Es crucial identificar la naturaleza de los acuíferos presentes, ya sean confinados, no confinados o artesianos. La fuente del agua (por ejemplo, la infiltración de lluvia o la recarga de un río) y la presión a la que se encuentra determinan directamente la selección y la eficacia del sistema de drenaje. Por ejemplo, un acuífero confinado o artesiano puede ejercer una presión ascendente significativa, lo que requiere métodos de control más robustos que los de un simple acuífero no confinado. Este conocimiento también es importante para planificar y evitar impactos no deseados en el entorno, como la afectación de pozos de agua cercanos o la inducción de asentamientos en estructuras adyacentes.
  • Análisis del perfil del suelo: el comportamiento del agua subterránea está intrínsecamente ligado a las propiedades del suelo. La permeabilidad del suelo, es decir, su capacidad para permitir el paso del agua, es el factor más crítico, ya que determina la facilidad con la que se puede extraer agua mediante bombeo.
    • Gravas y arenas limpias: son altamente permeables y ceden agua con facilidad, pero pueden generar grandes caudales de entrada.
    • Limos y arcillas: presentan baja permeabilidad, ceden agua muy lentamente y son susceptibles a la consolidación y al asentamiento cuando se reduce la presión del agua.
    • Suelos estratificados: la presencia de capas alternas de alta y baja permeabilidad puede crear condiciones complejas, como acuíferos colgados, que requieren un diseño cuidadoso para su drenaje eficaz.
  • Síntesis de los desafíos geotécnicos: la interacción entre la geología local y las actividades de construcción genera una serie de desafíos específicos que deben anticiparse.

Tabla 1: Desafíos geotécnicos comunes y sus implicaciones.

Desafío geotécnico Implicaciones para las operaciones de drenaje
Presencia de turba y suelos orgánicos Estos suelos tienen un alto contenido de agua y son muy compresibles. El drenaje puede provocar asentamientos significativos y dañar la infraestructura cercana. Por ello, es necesario realizar una evaluación de riesgos muy cuidadosa y un seguimiento de los asentamientos.
Gravas superficiales  Las capas de grava poco profundas pueden complicar la instalación de sistemas como los well-points y generar volúmenes de entrada de agua muy elevados que superen la capacidad de los sistemas de bombeo estándar.
Riesgo de encontrar condiciones artesianas La intercepción de un acuífero artesiano puede provocar un flujo de agua incontrolado hacia la excavación, lo que conlleva un riesgo de inundación, levantamiento del fondo y fallo catastrófico. Por ello, es necesario realizar una investigación geotécnica exhaustiva y elaborar un plan de contingencia robusto.
Niveles freáticos variables Los niveles freáticos pueden fluctuar estacionalmente o en respuesta a eventos de lluvia. El diseño debe ser capaz de manejar el nivel freático más alto esperado, considerando que las variaciones estacionales en Christchurch pueden alcanzar hasta 3 metros.

Por lo tanto, la comprensión profunda del contexto geológico es el primer paso indispensable para realizar una evaluación sistemática de los riesgos y diseñar un sistema de control del nivel freático adecuado.

2.0 Evaluación previa a la construcción y al análisis de riesgos.

2.1 La fase crítica de planificación.

La fase previa a la construcción ofrece la oportunidad más rentable para identificar, analizar y mitigar los riesgos asociados al drenaje de aguas subterráneas. Una evaluación rigurosa en esta etapa permite diseñar adecuadamente las obras temporales, evitar fallos durante la ejecución y realizar una asignación presupuestaria precisa, lo que evita sobrecostos y retrasos imprevistos. Aunque un diseño proactivo suponga una inversión inicial, casi siempre resulta un ahorro global para el proyecto.

2.2 Pasos clave para el diseño del drenaje.

  • Desarrollo del modelo geotécnico: para diseñar un control del nivel freático eficaz, es esencial construir un modelo conceptual del subsuelo. Este proceso debe ser dirigido por un técnico competente y consta de los siguientes pasos:
    1. Revisión de estudios previos: consultar fuentes de información existentes como mapas geológicos, bases de datos geotécnicas, investigaciones previas en la zona y fotografías aéreas.
    2. Evaluación de la permeabilidad: utilizar la información disponible para estimar preliminarmente la permeabilidad de las diferentes capas del suelo.
    3. Evaluación de riesgos inicial: realizar una evaluación de alto nivel sobre la posible presencia de suelos o aguas subterráneas contaminadas, la probabilidad de encontrar grava a poca profundidad y el riesgo de que haya condiciones artesianas.
    4. Decisión sobre investigaciones adicionales: en función de la complejidad y el perfil de riesgo del proyecto, se debe determinar si la información existente es suficiente o si se requieren investigaciones de campo específicas (por ejemplo, sondeos o ensayos de permeabilidad) para definir adecuadamente el modelo del terreno.
  • Técnicas para determinar la permeabilidad: la permeabilidad es el parámetro clave que guía el diseño del control del nivel freático. La siguiente tabla resume los métodos disponibles para su determinación, ordenados aproximadamente por coste y fiabilidad.

 

Método Descripción Aplicabilidad Coste y fiabilidad relativa
1. Empírico (registros de sondeo) Se asignan valores de permeabilidad basados en las descripciones de los suelos obtenidas de los registros de perforación, que se comparan con valores típicos de referencia. Útil para evaluaciones preliminares y proyectos de bajo riesgo. Coste: el más bajo (solo horas de diseño).

Fiabilidad: baja; solo proporciona un orden de magnitud.

2. Empírico (método de Hazen) Estimación de la permeabilidad a partir de las curvas de distribución granulométrica del suelo. Aplicable solo si se cuenta con ensayos de granulometría en suelos arenosos. Coste: bajo si los datos ya existen; de lo contrario, requiere muestreo y ensayos de laboratorio.

Fiabilidad: baja a moderada.

3. Ensayo de laboratorio (carga constante) Mide el flujo de agua a través de una muestra de suelo bajo un gradiente hidráulico constante. Adecuado para suelos con permeabilidades relativamente altas (10⁻² a 10⁻⁵ m/s), como arenas y gravas. Coste: relativamente bajo, pero requiere la obtención de muestras inalteradas.

Fiabilidad: moderada, pero puede no ser representativa de la masa de suelo a gran escala.

4. Ensayo de laboratorio (consolidación/triaxial) Mide la permeabilidad como parte de ensayos de consolidación o de ensayos triaxiales. Adecuado para suelos de baja permeabilidad (≤ 10⁻⁶ m/s), como los limos y las arcillas. Coste: relativamente bajo, pero requiere muestras inalteradas.

Fiabilidad: moderada, sujeta a las mismas limitaciones que el ensayo de carga constante.

5. Ensayo de carga instantánea (slug test) Se induce un cambio rápido en el nivel del agua en un pozo o piezómetro y se mide la velocidad de recuperación del nivel. Realizado in situ en la zona saturada. Puede ser demasiado rápido para suelos muy permeables. Coste: menor que el de un ensayo de bombeo.

Fiabilidad: Proporciona una indicación de la permeabilidad local alrededor del pozo, pero no a escala de sitio.

6. Ensayo de bombeo Se bombea agua desde un pozo a un caudal constante y se mide el abatimiento del nivel freático en el pozo de bombeo y en pozos de observación cercanos. Proporciona datos a gran escala y es adecuado para proyectos de desagüe profundos o de larga duración. Coste: el más alto y el que consume más tiempo (dura de 24 horas a 7 días).

Fiabilidad: la más alta, ya que mide la respuesta del acuífero a una escala representativa de las condiciones reales del proyecto.

2.3 Metodología de evaluación de riesgos

  • Puntuación de riesgos: Para estandarizar el nivel de análisis y supervisión requerido, se propone un sistema de puntuación de riesgos, desarrollado y probado durante el programa SCIRT, que categoriza cada proyecto de control del nivel freático. Este enfoque permite asignar los recursos de diseño de manera proporcional al riesgo identificado, de modo que los proyectos de alta complejidad reciben la atención de especialistas y los de bajo riesgo pueden gestionarse mediante prácticas normalizadas.
  • Matriz de categorización de riesgos: el número de categoría de riesgo (RCN) se calcula multiplicando las puntuaciones asignadas a seis áreas de riesgo clave (RCN = A x B x C x D x E x F), tal y como se muestra en la siguiente tabla:

 

A: Profundidad de excavación Puntuación B: Agua subterránea Puntuación C: Condiciones del terreno Puntuación
< 2 m 1 No se requiere abatimiento 0 Suelos competentes sin necesidad de soporte temporal 1
2 – 3 m 2 Abatimiento < 1 m requerido 1 Limos y arcillas de baja permeabilidad 2
3 – 6 m 6 Abatimiento 1 – 3 m requerido 2 Arenas limosas 3
6 – 15 m 10 Abatimiento 3 – 6 m requerido 5 Turba y suelos orgánicos 3
> 15 m 12 Influencia en cuerpos de agua superficial 7 Intercepta gravas de moderada a alta permeabilidad 6
Abatimiento > 6 – 9 m requerido 10 Arenas fluidas 10
Intercepta acuífero artesiano 10 Suelos contaminados 10
Agua subterránea contaminada 10
D: Duración del drenaje Puntuación E: Coste de componentes del proyecto influenciados por el drenaje Puntuación F: Efectos en servicios, infraestructuras y propiedades adyacentes Puntuación
Excavación abierta por 1 – 2 días 1 < $0.1M 1 Sitio sin construcciones 1
Excavación abierta < 1 semana 2 $0.1M a $0.5M 2 Vía local 2
Excavación abierta por 1 – 4 semanas 3 $0.5M a $1M 3 Vía arterial principal o secundaria 3
Excavación abierta por 1 – 6 meses 4 $1M a $5M 4 Propiedad privada a una distancia menor que la altura de la excavación o estructuras adyacentes sobre pilotes 3
Excavación abierta > 6 meses 5 > $5M 5 Autopista 4
Vías férreas 4
Estructuras históricas con cimentaciones superficiales 4
Infraestructura crítica vulnerable a asentamientos 5

Nota: El Número de Categoría de Riesgo (RCN) se calcula como el producto de las puntuaciones de las 6 áreas (A x B x C x D x E x F).

  • Niveles de acción de diseño recomendados: una vez calculado el RCN, la siguiente tabla define las acciones mínimas de diseño que deben llevarse a cabo.

 

Número de categoría de riesgo (RCN) Consecuencia del riesgo Acciones mínimas de diseño recomendadas
0 – 10 Bajo • No se requiere un estudio de drenaje específico para el proyecto.

• Implementar el sistema de control del nivel freático basado en la experiencia local previa.

11 – 75 Medio • Realizar un estudio de escritorio de alto nivel para evaluar las condiciones del terreno y los riesgos de drenaje.

• Seleccionar métodos de control de nivel freático apropiados considerando restricciones y riesgos.

• Realizar cálculos manuales simples para verificar la idoneidad del diseño de las obras temporales.

76 – 2,500 Alto • Realizar un estudio de escritorio detallado.

• Confirmar las condiciones del terreno y la granulometría mediante al menos un sondeo.

• Realizar cálculos de diseño de drenaje (de simples a complejos según corresponda).

• Desarrollar e implementar un plan de control de asentamientos simple si es necesario.

• Controlar de cerca los sólidos en suspensión durante la descarga.

2,500 – 187,500 Muy Alto • Revisar un informe geotécnico detallado.

• Contratar a un técnico cualificado y experimentado para brindar asesoramiento profesional.

• Realizar investigaciones de campo adicionales (p. ej., ensayos de permeabilidad, ensayos de bombeo).

• Desarrollar e implementar un plan de control de asentamientos.

• Realizar inspecciones de la condición de las propiedades adyacentes antes de comenzar los trabajos.

Una vez evaluado el riesgo y definido el nivel de diseño requerido, el siguiente paso es comprender en detalle las prácticas y metodologías de drenaje disponibles para su ejecución en campo.

3.0 Métodos y prácticas de control del nivel freático

3.1 Introducción a las metodologías

Los métodos de control del nivel freático más comunes en la construcción se basan en la extracción de agua del subsuelo para reducir dicho nivel. La elección del método más adecuado es una decisión técnica que depende fundamentalmente de las condiciones del suelo, la profundidad de la excavación, el caudal de agua previsto y los objetivos específicos del proyecto. Cada método tiene sus propias ventajas y limitaciones, que deben evaluarse cuidadosamente.

3.2 Bombeo desde sumideros 

Descripción y aplicación: el bombeo desde sumideros es el método más simple y, a menudo, el más económico. Consiste en excavar zanjas o pozos (sumideros) en el punto más bajo de la excavación para que el agua subterránea fluya por gravedad hacia ellos y, desde allí, sea bombeada y evacuada. Este método es efectivo en suelos con permeabilidad alta o moderada, como las gravas y las arenas gruesas. Su principal limitación es que el agua fluye hacia la excavación antes de ser controlada, lo que puede causar inestabilidad en los taludes y en el fondo. Existe un alto riesgo de tubificación (piping) y de arrastre de finos, lo que puede provocar asentamientos y generar una descarga de agua cargada de sedimentos que requiere un tratamiento exhaustivo.

Requisitos de diseño e instalación: para que un sumidero sea eficaz, debe cumplir los siguientes requisitos:

  • Profundidad: Suficiente para drenar la excavación y permitir la acumulación de sedimentos sin afectar la toma de la bomba.
  • Tamaño: Mucho mayor que el de la bomba para facilitar la limpieza y el mantenimiento.
  • Filtro: El sumidero debe estar protegido con una tubería ranurada o perforada, rodeada de grava gruesa (20-40 mm) para evitar la succión de partículas finas del suelo.
  • Acceso: Debe permitir la retirada de las bombas para el mantenimiento y la limpieza periódica de los sedimentos acumulados.

Como mejor práctica, se recomienda sobreexcavar el fondo del sumidero y rellenarlo con material grueso para elevar la entrada de la bomba y minimizar la movilización de partículas finas.

Figura 4. Esquema de sumidero y bomba de achique para pequeñas excavaciones, basado en Powers (1992).

Análisis comparativo

Ventajas Inconvenientes
• Coste relativamente bajo. • Moviliza sedimentos del terreno, lo que requiere tratamiento de la descarga.
• Equipos móviles y fáciles de instalar y operar. • No puede utilizarse en «arenas fluidas».
• Solo opera durante los trabajos de construcción. • Tiene un alto potencial de liberar sedimentos en el medio ambiente y es el método más común para incumplir las condiciones de los permisos ambientales.

3.3 Sistemas de well-points

Descripción y aplicación: un sistema de well-points consiste en una serie de tubos de pequeño diámetro (aproximadamente 50 mm) con una sección ranurada en el extremo inferior. Estos tubos se instalan en el terreno a intervalos regulares. Estos tubos, también denominados «puntas de lanza», se conectan a un colector principal, que, a su vez, está conectado a una bomba de vacío. La bomba crea un vacío en el sistema que extrae el agua del subsuelo.

Este método es particularmente efectivo en arenas o suelos con capas de arena. Su principal limitación es la altura de succión, que en condiciones cercanas al nivel del mar es de hasta 8 metros. Para excavaciones más profundas, sería necesario utilizar sistemas escalonados en las bermas.

Consideraciones de diseño

  • Espaciamiento: el espaciamiento entre los pozos de extracción (que suele oscilar entre 0,6 y 3 m) depende de la permeabilidad del suelo, de la geometría de la excavación y del abatimiento requerido. Cuanto más permeable es el suelo, menor debe ser el espaciamiento.
  • Paquetes de filtro: en suelos finos o estratificados, es crucial instalar un paquete de filtro (generalmente, arena de textura media a gruesa) alrededor de cada pozo de extracción. Así se evita el bombeo de finos y se crea una ruta de drenaje vertical más eficiente.
Figura 5. Componentes del sistema. Cortesía de ISCHEBECK. http://www.ischebeck.es/assets/wp-content/uploads/agotamiento_agua/Cat%C3%A1logo%20Wellpoint%2016022012.pdf

Análisis comparativo

Ventajas Inconvenientes
• Descarga limpia: Una vez establecido, el sistema extrae agua limpia que requiere poco o ningún tratamiento. • El desagüe debe realizarse muy cerca del área de trabajo.
• Abatimiento localizado del nivel freático, lo que resulta en menores volúmenes de descarga. • Funciona mejor en suelos uniformes.
• La instalación puede ocupar un espacio considerable en el entorno vial.
• Requiere experiencia para una instalación y colocación efectivas.
• Potencial de rendimiento (caudal) y de abatimiento limitados por la altura de succión.

3.4 Pozos de bombeo profundo (dewatering wells)

Descripción y aplicación: los pozos de bombeo profundo son pozos perforados de mayor diámetro y profundidad que los well-points y están equipados con una bomba sumergible. Se trata de un sistema de ingeniería que debe ser diseñado por un especialista. Cada pozo incluye componentes clave, como una rejilla dimensionada para el terreno, un paquete de filtro diseñado específicamente y un sello anular en la superficie para evitar la recarga superficial.

Este método es adecuado para excavaciones grandes, profundas o de larga duración y puede manejar grandes caudales de agua.

Consideraciones de diseño: el diseño de un sistema de pozos profundos requiere un análisis detallado de los siguientes parámetros:

  • Profundidad y diámetro del pozo: el diámetro debe ser suficiente para alojar la bomba necesaria y la profundidad debe ser significativamente mayor que el abatimiento deseado.
  • Tamaño de la ranura de la rejilla: se diseña en función del tamaño de grano del suelo o del material filtrante para maximizar la entrada de agua y minimizar la entrada de partículas finas.
  • Diseño del filtro: el filtro granular que rodea la rejilla es fundamental para evitar que los materiales finos del acuífero migren hacia el pozo.
  • Distancia entre pozos: Los pozos se espacian típicamente entre 10 y 50 metros. Su diseño es complejo, ya que se basa en la interacción entre los conos de abatimiento de cada pozo.
Figura 6. Agotamiento profundo del nivel freático mediante un pozo filtrante. Elaboración propia basado en Pérez Valcárcel (2004).

Análisis comparativo

Ventajas Inconvenientes
• Ideal para excavaciones de gran envergadura y proyectos de larga duración. • Si se extrae más agua de la necesaria, puede afectar a un área mayor de la prevista, lo que puede causar problemas de asentamiento en suelos compresibles (por ejemplo, turba).
• Descarga limpia una vez que el pozo está desarrollado correctamente. • Puede requerir un tiempo de preparación más largo para lograr el abatimiento del nivel freático.
• Alta capacidad de bombeo, superando problemas de variabilidad del suelo. • Se requiere un mayor nivel de diseño, planificación y ensayos de campo, como los ensayos de bombeo.
• Puede instalarse fuera del área de trabajo directa, liberando espacio en las zonas congestionadas.
• Las bombas sumergibles son mucho más silenciosas, ideales para áreas sensibles al ruido.

Tras describir los métodos individuales, el siguiente paso lógico es proporcionar una guía clara para seleccionar el sistema más apropiado para cada situación en el campo.

4.0 Selección del método apropiado

4.1 Una decisión estratégica

La elección del sistema de control del nivel freático adecuado es una decisión estratégica que debe equilibrar la eficacia técnica, el coste de implementación y de operación y el impacto ambiental potencial. Una elección informada no se basa en la intuición, sino en la recopilación y el análisis de datos específicos del emplazamiento. Una elección incorrecta puede provocar un rendimiento deficiente, sobrecostes y retrasos significativos en el proyecto.

4.2 Datos clave para la decisión

Para tomar una decisión fundamentada sobre el método de drenaje, es imprescindible recopilar la siguiente información:

  • Perfil y tipo de suelo, incluyendo la permeabilidad de cada estrato.
  • Dimensiones de la excavación: ancho, largo y profundidad.
  • Nivel freático existente, así como el nivel al que se necesita bajar (abatimiento requerido).
  • Método de excavación y soporte propuesto: por ejemplo, taludes abiertos o tablestacas.
  • Proximidad a estructuras existentes, cursos de agua y otras infraestructuras sensibles.

4.3 Matriz de decisión

La siguiente tabla sirve de guía para seleccionar una metodología de drenaje según el tipo de suelo predominante.

Guía para la selección de métodos de drenaje según el tipo de suelo.

Tipo de suelo Tasa de flujo de agua subterránea Posibles problemas Metodología de drenaje recomendada
Gravas / cantos Alta Se requieren grandes flujos de agua que pueden provenir de pozos profundos para excavaciones profundas o de sumideros para excavaciones superficiales. Pozos de bombeo profundo y de bombeo desde sumideros.
Arena Baja a media Baja estabilidad de la zanja si se permite que la arena fluya hacia la excavación (arena fluida). Sistemas well-point.
Limo Baja Estabilidad variable y bajo rendimiento de agua, lo que puede requerir un espaciado muy reducido de las puntas de lanza y provocar perching localizado. Sistemas de puntas de lanza (well-pointing) y de bombeo desde sumideros.
Arcilla Muy baja Se han detectado problemas mínimos de estabilidad de la zanja y una posible formación de un nivel freático colgado localizado. Sistemas de puntas de lanza (well-pointing) y de bombeo desde sumideros.
Turba Variable (baja a alta) El drenaje puede provocar la compresión de las capas, lo que provoca asentamientos y daños en los terrenos y en la infraestructura circundantes. Se requiere asesoramiento especializado.
Suelos mixtos Variable (baja a alta) La metodología se basa generalmente en el tipo de suelo predominante y en la unidad geológica que presenta el mayor rendimiento hídrico. Depende de la hidrogeología y de la unidad geológica de mayor rendimiento hídrico.

4.4 Criterios de aplicación específicos

  • Condiciones que favorecen el bombeo desde sumideros (sump pumping):
    • Suelos como grava arenosa bien graduada, grava limpia o arcilla firme o rígida.
    • Acuífero no confinado.
    • Se requiere un abatimiento moderado y no hay fuentes de recarga cercanas (por ejemplo, un arroyo).
    • La excavación tiene taludes poco pronunciados o está protegida por tablestacas hincadas a gran profundidad.
    • Cargas de cimentación ligeras.
  • Condiciones que favorecen los sistemas well-point:
    • Suelos arenosos o interestratificados que incluyan arenas (permeabilidad k = 10⁻³ a 10⁻⁵ m/s).
    • Acuífero no confinado.
    • Se requiere un abatimiento de 5 metros o menos (o de hasta 10 metros si el área de excavación es grande y permite sistemas escalonados).
  • Condiciones que favorecen la instalación de pozos de bombeo profundo (wells):
    • Las condiciones del terreno son demasiado permeables como para que los well-points sean viables.
    • Suelos limosos que requieren un diseño de filtro preciso.
    • Se requiere un abatimiento de más de 8 metros o un abatimiento en un área extensa durante un período prolongado.
    • El acceso a la excavación está restringido o el lugar está congestionado (los pozos pueden ubicarse fuera de las zonas de trabajo).

Independientemente del método elegido, es imperativo gestionar los impactos ambientales asociados, un aspecto crucial que se detallará en la siguiente sección.

Figura 7. Selección del método de drenaje adecuado.

5.0 Mitigación de efectos ambientales y gestión de impactos

5.1 Responsabilidad ambiental y cumplimiento normativo

La gestión del agua subterránea no termina con su extracción, sino que conlleva la responsabilidad de cumplir con la normativa medioambiental y minimizar cualquier impacto negativo en el entorno. Una planificación cuidadosa debe abordar dos aspectos principales: la gestión de la calidad del agua de descarga para proteger los cuerpos de agua receptores y la prevención del asentamiento del terreno, que podría dañar la infraestructura y las propiedades adyacentes.

5.2 Gestión de la calidad del agua extraída

  • Sólidos en suspensión totales (TSS): el agua bombeada desde una excavación, especialmente desde sumideros, a menudo presenta una alta concentración de sedimentos. La normativa medioambiental exige que esta agua sea tratada para eliminar los sólidos antes de su vertido. Por ejemplo, muchos permisos establecen un límite de 150 g/m³ de TSS. Para el control in situ, una herramienta práctica es la evaluación visual comparativa. En un laboratorio, se pueden preparar muestras estándar con concentraciones conocidas de TSS (por ejemplo, 150 g/m³), que sirven como referencia visual para compararlas rápidamente con las muestras de descarga tomadas en el lugar, lo que permite tomar medidas correctivas inmediatas en caso de observar una turbidez excesiva.
  • Agua subterránea contaminada: existe el riesgo de encontrar contaminantes en el agua subterránea, especialmente en áreas urbanas o industriales con un historial de actividades potencialmente contaminantes. Durante la fase de planificación, es crucial identificar las zonas de riesgo. Si el proyecto se ubica en una de estas zonas o si se sospecha de contaminación, deberán realizarse muestreos específicos del agua subterránea para analizar la presencia y concentración de contaminantes. Así se puede planificar un sistema de tratamiento adecuado si fuera necesario.

5.3 Métodos de tratamiento de la descarga

Los tanques de sedimentación son el método principal y más común para tratar la descarga. Su principio de funcionamiento es sencillo: reducir la velocidad del flujo de agua para que las partículas de sedimento se asienten por gravedad. Un diseño eficaz incluye cuatro zonas funcionales:

  1. Zona de entrada: Distribuye el flujo de manera uniforme para evitar turbulencias.
  2. Zona de asentamiento: El área principal donde ocurre la sedimentación.
  3. Zona de recolección: El fondo del tanque donde se acumulan los sedimentos.
  4. Zona de salida: Recolecta el agua clarificada para su descarga.

El dimensionamiento adecuado del tanque es fundamental y debe basarse en el caudal de bombeo y el tamaño de las partículas a eliminar.

Otros métodos

  • Filtrado a través de la vegetación: El agua se descarga sobre una superficie cubierta de vegetación densa (por ejemplo, césped), que actúa como un filtro natural. Este método solo es adecuado como tratamiento secundario tras un tanque de sedimentación.
  • Bolsas de control de sedimentos: Se trata de bolsas de geotextil que se conectan a la salida de la bomba y filtran los sedimentos. Son útiles para caudales bajos y áreas pequeñas, pero pueden obstruirse rápidamente ante altas concentraciones de sedimentos.

5.4 Control del asentamiento del terreno

Causas y riesgos: El abatimiento del nivel freático puede provocar asentamientos del terreno por tres mecanismos principales:

  1. Aumento de la tensión efectiva: al descender el nivel freático, disminuye la presión del agua en los poros del suelo, lo que incrementa la carga que puede soportar el esqueleto sólido del suelo. Esto provoca su compresión y el consiguiente hundimiento de la superficie.
  2. Pérdida de finos: Un diseño de filtro inadecuado o velocidades de flujo excesivas pueden arrastrar partículas finas del suelo y generar vacíos, lo que provoca asentamientos localizados.
  3. Inestabilidad de los taludes: una reducción insuficiente de las presiones de poro o un control inadecuado de las filtraciones puede comprometer la estabilidad de los taludes de la excavación, lo que provoca fallos localizados y desprendimientos de material.

Los suelos blandos y de baja permeabilidad, como los limos, las arcillas y los suelos orgánicos (turba), son los más susceptibles a sufrir asentamientos significativos por consolidación.

Estrategias de mitigación: Para minimizar el riesgo de asentamientos perjudiciales, deben implementarse las siguientes estrategias:

  1. Diseño adecuado de los filtros: hay que asegurarse de que los filtros de pozos o well-points estén correctamente dimensionados para retener las partículas del suelo.
  2. Control de finos: controlar la cantidad de sólidos disueltos en el agua de descarga. Un aumento sostenido puede indicar una posible pérdida de material del subsuelo.
  3. Control del radio de influencia: diseñar el sistema para limitar la bajada del nivel freático más allá de los límites de la zona, utilizando, si es necesario, barreras de corte o pozos de reinyección.
  4. Control de los asentamientos en el terreno: implementar un plan de supervisión para detectar cualquier movimiento del terreno.

Control de asentamientos: Se debe establecer un plan de supervisión que incluya la instalación de marcadores topográficos en edificios y estructuras cercanos. Es fundamental contar con un punto de referencia estable ubicado fuera de la zona de influencia del drenaje. Se deben establecer umbrales de alerta y de actuación para los asentamientos medidos. Si se alcanzan estos umbrales, se deben adoptar medidas correctivas que pueden ir desde la modificación del funcionamiento de la estación de bombeo hasta la interrupción total del drenaje.

La gestión proactiva de estos riesgos operativos y medioambientales debe complementarse con la preparación ante eventos inesperados, lo que nos lleva a la planificación de contingencias.

6.0 Planificación de contingencias: intercepción accidental de acuíferos artesianos

6.1 Preparación para lo imprevisto.

A pesar de una planificación y ejecución cuidadosas, siempre existe la posibilidad de toparse con condiciones geológicas imprevistas, como la intercepción de un acuífero artesiano o la aparición de caudales de entrada mucho mayores de lo esperado. Estas situaciones pueden escalar rápidamente y provocar un colapso catastrófico de la excavación. Por lo tanto, una preparación adecuada y un plan de respuesta rápida no son opcionales, sino parte esencial de la gestión de riesgos en cualquier proyecto de drenaje.

6.2 Medidas preparatorias

Procedimientos operativos: Antes de iniciar cualquier trabajo de excavación o perforación en zonas de riesgo, se deben establecer los siguientes procedimientos:

  • Realizar investigaciones geotécnicas adecuadas para identificar la posible presencia de acuíferos artesianos.
  • Disponer de medios para cerrar rápidamente los pozos de bombeo o las puntas de lanza si se detecta un flujo incontrolado.
  • Localizar de antemano proveedores de emergencia de materiales como cemento Portland, bentonita y geotextil.
  • Comprender el procedimiento de cálculo del diseño de la mezcla de lechada para detener el flujo. Se debe medir la carga artesiana y añadir la mezcla de lechada para lograr un equilibrio de presión.
  • Establecer y distribuir una lista de contactos de emergencia que incluya al ingeniero del proyecto, al contratista de desagüe y a las autoridades ambientales pertinentes.

Equipamiento de emergencia Se debe tener disponible en el sitio el siguiente equipamiento y suministros de emergencia, según el sistema en uso:

  • Para sistemas well-point:
    • Chips de bentonita no recubiertos para el sellado del collar.
    • Válvulas para instalar en todas las tuberías de well-points en áreas con sospecha de presión artesiana.
    • Equipo de inyección de lechada de cemento y suministros.
    • Geotextil y sacos de arena.
  • Para pozos de bombeo profundo:
    • Chips de bentonita no recubiertos para el sellado del collar.
    • Obturadores, tubería ascendente, manómetros y accesorios apropiados para cortar el flujo y medir la presión.
    • Equipo de inyección de lechada de cemento y suministros.
    • Geotextil y sacos de arena.
    • Lodo de perforación polimérico para compensar y suprimir flujos artesianos bajos durante la perforación del pozo.

Además, es necesario contar con un teléfono móvil con cámara, secciones de tubería extensibles para medir la altura de la presión artesiana y el diseño de la mezcla de lechada de contingencia.

6.3 Protocolo de implantación y respuesta

Pasos inmediatos: En caso de detectar un flujo de agua incontrolado, se debe seguir el siguiente protocolo de manera inmediata y secuencial:

  1. Evaluar la situación: Determinar si el caudal y la turbidez del agua son constantes o están aumentando. Verificar si el flujo está confinado al pozo o se está extendiendo por la excavación.
  2. Notificar al ingeniero y al gerente del proyecto: Proporcionar una descripción detallada de las condiciones, el caudal estimado y los eventos que llevaron al incidente. Enviar fotografías o videos en tiempo real si es posible.
  3. Notificar a las autoridades pertinentes: Informar a las autoridades ambientales y a otras partes interesadas sobre la situación y las medidas de contención planificadas.

Acciones de emergencia: Una vez notificado el incidente, se pueden tomar una o más de las siguientes acciones de emergencia para controlar la situación:

  • Rellenar la excavación: Comenzar a rellenarla con material hasta que el peso del relleno sea suficiente para controlar el flujo y el transporte de sedimentos.
  • Medir la presión artesiana: Utilizar secciones de tubería para medir la altura a la que llega el agua y así determinar la presión del acuífero.
  • Controlar la descarga: Dirigir cualquier descarga de agua a través de las medidas de control de erosión y sedimentos establecidas en el sitio.
  • Inundar la excavación: Como medida drástica, rellenar la excavación con agua hasta el nivel freático original para equilibrar las presiones y estabilizar la situación mientras se reconsidera el diseño.

La combinación de una planificación rigurosa, una ejecución cuidadosa y una preparación exhaustiva ante contingencias es la clave para una gestión exitosa y segura del agua subterránea en cualquier proyecto de construcción.

En este audio podéis escuchar una conversación sobre este tema.

Este es un vídeo que resume bien las ideas principales.

Os dejo el documento completo; espero que os sea de interés.

Pincha aquí para descargar

REFERENCIAS:

  • CASHMAN, P.M.; and PREENE, M. (2012). Groundwater Lowering in Construction: A Practical Guide to Dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
  • HERTZ, W.; ARNDTS, E. (1973). Theorie und praxis der grundwasserabsenkung. Ernst & Sohn, Berlin.
  • JUSTO ALPAÑES, J.L.; BAUZÁ, J.D. (2010). Tema 10: Excavaciones y drenajes. Curso de doctorado: El requisito básico de seguridad estructural en la ley orgánica de la edificación. Código Técnico de la Edificación. ETS. de Arquitectura, Universidad de Sevilla.
  • MUZAS, F. (2007). Mecánica del suelo y cimentaciones, Vol. II. Universidad Nacional de Educación a Distancia, Madrid.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • SCHULZE, W.E.; SIMMER, K. (1978). Cimentaciones. Editorial Blume, Madrid, 365 pp.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Curso:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Cálculo de la máxima profundidad de excavación frente al taponazo

Figura 1. Rotura de fondo o taponazo.

En una entrada anterior, donde se describían los problemas del agua en las excavaciones, ya se habló del levantamiento de fondo o taponazo: El fondo de la excavación se puede volver inestable cuando el peso del terreno no es capaz de equilibrar al empuje del agua (Figura 1). Es típico de un estrato de baja permeabilidad (como una arcilla o roca de baja permeabilidad sin fisuras) situado sobre un acuífero confinado de mayor conductividad hidráulica (como una grava, muy permeable). Suele resolverse el problema con pozos de alivio.

En esta ocasión os paso un problema resuelto donde se calcula la máxima profundidad de excavación frente al taponazo. Este es uno de los casos estudiados en el “Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación”. Espero que os sea de interés.

Pincha aquí para descargar

REFERENCIAS:

  • PÉREZ VALCÁRCEL, J.B. (2004). Excavaciones urbanas y estructuras de contención. Ediciones Cat, Colegio Oficial de Arquitectos de Galicia, 419 pp.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W., DYER, M.R. (2004). Groundwater control: design and practice. CIRIA C515, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Procedimientos para la contención del agua

Figura 1. Ejecución de muro pantalla. https://spezialtiefbau.implenia.com/

En muchas obras realizadas bajo el terreno puede ser necesario el empleo de procedimientos constructivos para impedir que el agua llegue al tajo (exclusion methods).

Estos procedimientos se pueden utilizar por sí solos o bien combinados con técnicas de agotamiento o rebajamiento del nivel freático.

Se trata de métodos basados en barreras o pantallas (ground water cutoff structures) tales como ataguías, tablestacas, muros pantalla (Figura 1), pantallas de pilotes secantes, pantallas de lodo, jet-grouting, barreras de inyección, pantallas pláticas, pantallas de suelo estabilizado in situ, o congelación del terreno.

Lo habitual es que estas barreras lleguen, en la medida de lo posible, tal y como se observa en la Figura 2, a las capas de muy baja permeabilidad (arcillas o rocas no fracturadas).

Figura 2. Pantalla impermeable en presa de materiales sueltos.

Estos métodos se pueden agrupar en tres categorías (Cashman y Preene, 2012):

  • Barreras o muros de muy baja permeabilidad que se hincan o construyen en el terreno, tales como tablestacas o muros pantalla.
  • Procedimientos que reducen la permeabilidad del terreno in situ (como la inyección y la congelación artificial del suelo)
  • Procedimientos que utilizan la presión de un fluido en cámaras confinadas para contrarrestar las presiones intersticiales (como las cámaras de presión de tierras en tuneladoras)

Las barreras hincadas, como las tablestacas, desplazan el terreno y, por tanto, afectan menos al terreno adyacente. En cambio, las barreras excavadas, como los muros pantalla, implican un vaciado que se debe sustituir por la propia barrera. Las barreras formadas por inyección bloquean el flujo del agua subterránea. Por otra parte, la congelación del suelo forma una barrera con el agua intersticial helada. De todas formas, la selección del método más adecuado dependerá de las condiciones de la obra, sin descartar la combinación de varios procedimientos. Además, algunas estructuras de contención pueden formar parte de la estructura definitiva, como es el caso de los sótanos de edificación.

La forma más habitual de utilizar estos procedimientos de contención del agua es la construcción de un muro impermeable alrededor del perímetro de excavación que penetre hasta la capa de baja permeabilidad, tal y como se observa en la Figura 3.

Figura 3. Contención de agua con muros pantalla que llegan a capa de baja permeabilidad. Adaptado de Cashman y Preene (2012)

Los costes y la aplicabilidad de una pantalla impermeable depende en gran medida de la profundidad y de la naturaleza de los estratos subyacentes. Si no existe una capa de baja permeabilidad o bien se encuentra a gran profundidad, las filtraciones pueden desestabilizar el fondo de la excavación. En estos casos se deben combinar las barreras con el bombeo (Figura 4a) o bien construir un tapón o barrera horizontal (jet-grouting, por ejemplo) para evitar las filtraciones (Figura 4b).

Figura 4. Combinación de pantallas con (a) bombeo convencional o (b) con barreras horizontales. Adaptado de Cashman y Preene (2012)

Uno de los aspectos más interesantes de las barreras de contención es que modifican en menor medida el nivel freático alrededor de la excavación frente a los bombeos convencionales. Ello implica menores incidencias en estructuras próximas, fundamentalmente por subsidencias.

No obstante, uno de los problemas a evitar son las fugas a través de las barreras. Estas filtraciones pueden interferir en los trabajos del tajo y, por tanto, son necesarios sumideros y drenajes; pero otra posibilidad más grave son los sifonamientos localizados (Figura 5) o asentamientos por encima de los previstos.

Figura 5. Sifonamiento localizado por defectos puntuales en un muro pantalla. Elaboración propia basado en Pérez Valcárcel (2004).

Las aplicaciones que hemos visto anteriormente (Figuras 1 a 5) son las más habituales, con barreras o muros verticales alrededor de una excavación. Sin embargo, algunos procedimientos como las inyecciones o la congelación del suelo, pueden utilizarse en geometrías no verticales (Figuras 6a y 6b), e incluso para sellar la base de las excavaciones (Figura 4b).

Figura 6. Barreras inclinadas y barreras horizontales en túnel. Adaptado de Cashman y Preene (2012)

A continuación os dejo un folleto de la empresa Implentia sobre barreras de contención que puede complementar la información sobre las barreras de contención al agua.

Pincha aquí para descargar

REFERENCIAS:

  • CASHMAN, P.M.; PREENE, M. (2012). Groundwater lowering in construction. A practical guide to dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
  • PÉREZ VALCÁRCEL, J.B. (2004). Excavaciones urbanas y estructuras de contención. Ediciones Cat, Colegio Oficial de Arquitectos de Galicia, 419 pp.
  • POWERS, J.P.; CORWIN, A.B.; SCHMALL, P.C.; KAECK, W.E. (2007). Construction dewatering and groundwater control: New methods and aplications. Third Edition, John Wiley & Sons.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater control: design and practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Drenaje de excavaciones mediante bombeo desde pozos eyectores

Figura 1. Bombeo desde pozos eyectores. https://wjgroup.org/our-services/ejector-dewatering/

El sistema de pozos eyectores combina las ventajas de los pozos profundos y de las lanzas de drenaje (wellpoints), pero con algunas desventajas. Los pozos profundos precisan un diámetro suficiente para alojar en su interior una bomba sumergible, con el coste correspondiente, además, presentan una relativa fragilidad que puede solucionarse con el sistema de pozos profundos con eyectores. En este caso, la elevación del agua se realiza inyectando agua a alta presión hasta el fondo del sondeo, donde el efecto venturi succiona el agua y la eleva al exterior. Trabaja por succión, pero a diferencia de los wellpoints, esta se produce en el fondo del pozo. La ventaja respecto a los pozos profundos es que los eyectores presentan un diámetro pequeño. Las bombas de presión se sitúan en superficie y son del tipo normal, lo cual resulta de interés por su fácil vigilancia y facilidad de mantenimiento y sustitución. Además, a diferencia de las electrobombas sumergibles, que pueden quemarse rápidamente si funcionan en seco, los eyectores pueden bombear mezclas de aire y agua sin problemas. Por tanto, el coste unitario de los eyectores es significativamente menor que el de los pozos profundos, por lo que pueden utilizarse en espaciamientos más pequeños cuando las condiciones son adecuadas.

Su desventaja es su bajo rendimiento energético y su aplicabilidad se centra en caudales bajos. De hecho, en suelos con más del 5 % de partículas finas, los métodos de drenaje gravitacionales son muy lentos y los conos de depresión tardan en formarse. Por tanto, este sistema es adecuado cuando se quiere rebajar el nivel freático en terrenos de baja permeabilidad (limo o arena fina) a más de 5 m, que sería el límite de un wellpoint de una sola etapa. En estos terrenos con tan baja conductividad, el uso de vacío garantiza un mejor drenaje del suelo. Además, si la columna del filtro del pozo se sella con bentonita, el vacío se transmite por completo al terreno, lo que acelera el drenaje de los suelos finos que atraviesan capas más permeables y aumenta la resistencia al corte del terreno.

Sin embargo, a profundidades superiores a 45 o 50 metros, este sistema deja de ser eficiente, por lo que se opta por un pozo profundo con una bomba en el fondo. Además, los sistemas eyectores son sensibles a distintos componentes del agua subterránea, como el hierro o el manganeso, cuya precipitación puede obstruir el sistema y hacer que pierda rendimiento, al igual que las bioincrustaciones o el desgaste de la boquilla, por lo que es necesario realizar un mantenimiento regular del equipo.

La instalación consta de una serie de pozos, con una sola instalación de bombeo, cuya disposición depende de las condiciones del suelo. Los pozos están equipados por conductos o tuberías de alimentación, un expulsor (venturi), y un conducto de retorno. En la cabeza del pozo, la tubería de alimentación es conectada a una línea de alimentación de alta presión, y la tubería de retorno es conectada a una tubería de evacuación de baja presión. Las líneas de retorno están conectadas a una planta especial de bombeo, la cual abastece a la línea de alimentación con agua a gran presión, y recoge el agua de la línea de evacuación. La elevada presión de agua que pasa a través del venturi, succionará el agua del suelo y la enviará a la superficie a través de la tubería de retorno. Pueden ser de dos tipos: de tubería única (dos concéntricas) o de dos tuberías. Este sistema se usa en suelos con baja permeabilidad (Figura 2).

Figura 2. Esquemas de eyector de dos tuberías o de tubería única (Powers, 1992)

A pesar del alto costo de la instalación de estos pozos, pueden resultar en algunos casos más económicos y fáciles de operar que los wellpoints. Los pozos pueden ser instalados en la superficie de la tierra fuera del área de construcción, bajando el nivel de agua en una sola etapa. La distancia entre eyectores es similar a la utilizada en el sistema de wellpoints. En un principio, las profundidades de operación no están limitadas por la altura de succión, habiendo eyectores capaces de trabajar hasta 150 m de profundidad, aunque lo normal es estar entre los 30 y los 50 m en una sola etapa. Cuando se utilizan eyectores de una sola conducción, el diámetro interno de la perforación puede llegar a ser tan pequeño como 50 mm, lo que hace que este sistema sea muy factible económicamente.

Una estación de bombeo suele constar de un tanque y una o más bombas, con válvulas y tuberías de conexión. La bomba toma agua del tanque y la impulsa a presión a la línea de abastecimiento, a las que están conectadas las tuberías de inyección de cada eyector. El agua inyectada y extraída del terreno vuelve al tanque a través de la línea general de retorno, a la que se conectan las tuberías de descarga de los eyectores. Una sola estación puede abastecer hasta 75 pozos eyectores.

Os paso una animación para que veáis cómo funciona un eyector. Espero que os sea útil.

REFERENCIAS:

  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W., DYER, M.R. (2004). Groundwater control: design and practice. CIRIA C515, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Curso:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Drenaje en excavaciones sobre acuíferos confinados: pozos de alivio

Figura 1. https://www.groundwatereng.com/dewatering-techniques/relief-wells

Los pozos de alivio, también conocidos como pozos de descarga de presión o pozos de purga, (pressure relief wells) se utilizan para reducir la presión intersticial en acuíferos confinados o en condiciones de suelo estratificado. Es típico de un estrato de baja permeabilidad (como una arcilla o roca de baja permeabilidad sin fisuras) situado sobre un acuífero confinado, lo cual puede provocar que el fondo de la excavación se vuelva inestable. Se trata del fenómeno conocido como «levantamiento de fondo» o «taponazo», donde el peso del terreno no es capaz de equilibrar al empuje del agua.

Estos pozos se perforan normalmente antes de que la excavación hay alcanzado nivel piezométrico del acuífero. A medida que la excavación continúa, los pozos comenzarán a desbordarse, aliviando las presiones intersticiales asegurando su estabilidad. El agua que fluye de los pozos de descarga se bombea desde un sumidero. Se puede utilizar una capa granular de drenaje y una red de desagües para dirigir el agua a los sumideros y evitar que se estanque en la excavación y ablande el fondo. Es habitual que los pozos de descarga se perforen en cuadrícula dentro del recinto excavado, con una separación que dependerá del caudal previsto, pero que normalmente no es mayor a 5-10 m.

Figura 2. Pozo de alivio

Los pozos de alivio también se clasifican como «pozos pasivos«, pues no necesitan un bombeo directo, más allá de las bombas de achique en los sumideros. Suelen presentar diámetros relativamente grandes (100 a 450 mm), que suelen rellenarse con material granular e incluso con tubo perforado. El material granular, normalmente una grava gruesa uniforme redondeada de tamaño nominal entre 10-20 mm, se introduce mediante una tubería tremie o incluso desde el propio nivel del suelo si esta grava tiene una clasificación muy uniforme, para evitar la segregación por tamaños. Son, por tanto, pozos simples de coste relativamente bajo de perforación, instalación y mantenimiento.

Los pozos de alivio son muy adecuados en recintos tablestacados o limitados por muros pantalla. Otras veces son drenajes permanentes en estructuras situadas sobre acuíferos confinados, como pudiera ser una estación subterránea de metro. En el caso de instalaciones permanentes, los pozos de descarga se instalan con rejillas y tuberías para permitir su limpieza.

Por último, cabe destacar que los pozos de alivio no pueden utilizarse donde la altura artesiana del agua en las capas permeables inferiores sea tal que el flujo en el interior de los pozos erosione el suelo inmediatamente debajo de ellos y a su alrededor.

Figura 3. Sistema de pozos de alivio (Cashman y Preene, 2012)

Os dejo un vídeo explicativo que os he grabado explicando este tipo de pozos.

REFERENCIAS:

  • CASHMAN, P.M.; PREENE, M. (2012). Groundwater Lowering in Construction: A Practical Guide to Dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2004). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Galerías de drenaje en el control del nivel freático

Figura 1. Galería de drenaje, con barrenos en abanico (IGME, 1987)

Las galerías de drenaje constituyen un sistema muy utilizado en obras subterráneas y minería para disminuir las presiones intersticiales y controlar las corrientes profundas de agua. En ocasiones se utiliza un procedimiento similar en la captación de aguas para abastecimiento de la población y también se disponen en el interior de las presas para interceptar las pérdidas de agua.

Se trata de un sistema de control del nivel freático efectivo, pero poco frecuente por su elevado coste, útil en taludes de gran altura o situaciones problemáticas donde son inviables otros sistemas de drenaje. Se trata de abrir una galería, generalmente subhorizontal, en el macizo que se desea drenar, normalmente con una dirección paralela al talud, y a distancia del mismo. Es habitual perforar una serie de barrenos en abanico en la bóveda de la galería para cortar los posibles niveles impermeables o acceder a zonas de mayor permeabilidad (Figura 1).

En función del tipo de terreno a atravesar, las paredes de las galerías pueden precisar diferentes tipos de sostenimiento y revestimiento, típico de la construcción de túneles. En rocas competentes se puede ejecutar la galería sin sostenimiento, pero en suelos y rocas muy fracturados puede ser necesario un revestimiento continuo, normalmente de hormigón armado, lo cual obliga a instalar un haz de drenes en distintas direcciones. Si es posible, estas galerías deben ser accesibles, tanto para equipos como personas encargadas de su construcción y posterior mantenimiento. Las excavaciones suelen iniciarse con una boca de entrada (pozo de visita) y tener varios pozos de ventilación a lo largo de la extensión del conducto (galería). La parte superior de la galería se localiza en la zona húmeda, mientras que la parte inferior se ubica en la zona saturada.

Las galerías de drenaje presentan, a pesar de su coste, ventajas de interés. Son de gran capacidad drenante por su amplia sección, pudiendo conectar pozos drenantes y otros sistemas; son apropiadas en actuaciones a largo plazo, con un drenaje por gravedad; no interfiere en trabajos en superficie, al estar construidas en profundidad; son muy eficaces en terrenos con mayor permeabilidad en sentido vertical que horizontal, como es el caso de macizos rocosos diaclasados; además, son muy efectivas si se construyen en superficies inestables y se complementan con taladros hacia la dirección de la superficie de deslizamiento.

Por contra, son menos eficaces en formaciones con mayor permeabilidad horizontal que vertical, precisando en este caso perforaciones verticales que aumenten el drenaje; además, son menos eficaces en formaciones heterogéneas y en macizos rocosos con gran separación entre discontinuidades.

En la Figura 2 se representa, de forma aproximada, la mejor posición de la galería de drenaje, aunque tanto la situación como su tamaño se ajusta a las características del terreno. Si bien es económicamente costoso, a veces se suele rellenar la galería con material granular de distintos tamaños, lo cual disminuye las deformaciones posteriores de la galería. Se recomienda disponer una solera hormigonada con ligera pendiente transversal y un canal de evacuación de las aguas con pendiente longitudinal suficiente.

Figura 2. Disposición de galería de drenaje (IGME, 1987)

Os dejo a continuación un vídeo que os he grabado explicando las galerías de drenaje. Espero que os guste.

REFERENCIAS:

  • CASHMAN, P.M.; PREENE, M. (2012). Groundwater Lowering in Construction: A Practical Guide to Dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
  • INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA (1987). Manual de ingeniería de taludes. Serie: Guías y Manuales nº 3, Ministerio de Educación y Ciencia, Madrid, 456 pp.
  • POWERS, J.P.; CORWIN, A.B.; SCHMALL, P.C.; KAECK, W.E. (2007). Construction dewatering and groundwater control: New methods and aplications. Third Edition, John Wiley & Sons.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Selección del sistema de control del nivel freático

Figura 1. Control del nivel freático. https://www.flickr.com/photos/wsdot/4997287082/

Los trabajos a cielo abierto, donde la cota de excavación se encuentra por debajo del nivel freático requieren emplear procedimientos constructivos diferentes para evitar que dicha excavación se inunde. El agua modifica el estado del terreno, pudiendo provocar desprendimientos, socavaciones, etc., complicando el trabajo de la maquinaria y del personal. Construir en estas condiciones requiere acertar con el procedimiento adecuado.

La elección del sistema de control del nivel freático depende fundamentalmente de la estabilidad y permeabilidad del terreno, del caudal a evacuar y de la geometría (profundidad y extensión del control).

La empresa constructora seleccionará aquel método más rentable que minimice el impacto ambiental y los riesgos asociados, especialmente aquellos relacionados con la seguridad del personal y de terceros. Sin embargo, hay que tener presente que las técnicas no son directamente intercambiables y solo son eficaces bajo determinadas condiciones.

La Figura 2 proporciona una orientación inicial que recoge el rango de aplicación de los sistemas de control del nivel freático en función de la permeabilidad del terreno y de la reducción requerida del nivel de agua. En dicha figura, las áreas sombreadas indican zonas donde los métodos pueden solaparse.

Figura 2.  Rango de aplicación de los sistemas de control del nivel freático (Cashman y Preene, 2012)

En la Figura 3 se muestra cómo el porcentaje de finos frente al tamaño de partícula puede utilizarse como una primera aproximación para decidir el tipo de drenaje a utilizar. La figura también muestra que el flujo por gravedad del agua se reduce cuando el tamaño de las partículas es inferior al de arena muy fina.

Figura 3. Sistemas de drenaje aplicables a diferentes tipos de terrenos (Powers et al., 2007)

En la Tabla 1 se recoge, de forma simplificada respecto a la Figura 2, los rangos de permeabilidad para los cuales es aplicable un sistema de control del nivel freático u otro.

Tabla 1. Aplicabilidad del sistema de control del nivel freático en función de la permeabilidad del terreno (Justo Alpañes y Bauzá, 2010). http://contactoetsa.us.es/descarga/Postgrado—-Doctorado/Curso-Codigo-T%C3%A9cnico/TEMA-10-DB-SE-C—Excavaciones-y-drenajes-[Modo-de-compatibilidad].pdf/
En la Figura 4 tenemos otro procedimiento para seleccionar el sistema de control teniendo en cuenta el diámetro eficaz y la profundidad. El diámetro eficaz, que es el correspondiente al 10% en la curva granulométrica, permite caracterizar la permeabilidad del suelo. En este caso, incorporamos el criterio de profundidad, a diferencia de la Figura 3.

Figura 4. Gráfico de Herth y Arnodits (1973) para seleccionar el sistema de control del nivel freático en función del diámetro eficaz (permeabilidad) y de la profundidad del rebajamiento.

La Tabla 2 resulta de gran interés para valorar qué métodos sería el más adecuado en función de la granulometría del suelo, la hidrogeología, los requerimientos técnicos y la capacidad (Powers, 1992). Según esta tabla, resulta ilustrativo comprobar cómo los drenes horizontales suele ser el método más eficaz ante cualquier naturaleza y condición.

Tabla 2. Aptitud del sistema de control del nivel freático (Powers, 1992). https://www.interempresas.net/Rehabilitacion/Articulos/133892-Innovacion-sistemas-drenaje-elevada-siniestralidad-incidencia-agua-subterranea.html

Se pueden agrupar los suelos en cuatro grupos a efectos del posible rebajamiento del nivel freático (Schulze y Simmer, 1978; Muzas, 2007):

  • Bolos y gravas gruesas: k > 1 cm/s y tamaño del árido mayor de 5 mm. Con grandes caudales es muy costoso el bombeo, por lo que se hace el trabajo sumergido o con aire comprimido. También se puede impermeabilizar el recinto antes de los trabajos con inyecciones o con una pantalla plástica realizada con una mezcla de bentonita-cemento.
  • Arenas gruesas y finas: 1 > k > 10-2 cm/s y tamaño del árido entre 0,1 a 5 mm. Se usan pozos filtrantes y bombeo, al circular el agua por gravedad, con una velocidad de 1 a 0,01 cm/s.
  • Arenas finas y limos: 10-3 > k > 10-5 cm/s y tamaño entre 0,2 y 0,008 mm. El agua no puede circular libremente entre los poros, por lo que se pueden producir sifonamiento si aumenta la presión intersticial que se pueden evitar si se recurre al método de vacío (wellpoints).
  • Limos y arcillas:  10-4 > k > 10-6 cm/s y tamaño entre 0,02 y 0,002 mm. El agua no se puede desplazar por descenso del nivel freático. Con terrenos estables se puede usar el agotamiento ordinario, permitiendo construir taludes sin entibación, excepto en el caso de suelos muy susceptibles, en cuyo caso solo se pueden drenar por electroósmosis.
Figura 5. Agotamiento de nivel freático. Imagen: Alejandro Brun

En el caso de bombeos, para seleccionar el diseño adecuado, siempre es recomendable realizar una prueba de bombeo que determine, entre otras, las siguientes características:

  • Permeabilidad media o transmisividad y radio de influencia
  • Gradiente horizontal probable, cuyo efecto es importante en estructuras vecinas o pozos cercanos
  • Dificultades de instalación de los pozos, para el diseño y selección del procedimiento constructivo
  • El caudal que se puede extraer del pozo
  • Cualquier condición imprevista que pueda afectar al bombeo

Os dejo a continuación un Polimedia explicativo. Espero que os sea de interés.

REFERENCIAS:

  • CASHMAN, P.M.; and PREENE, M. (2012). Groundwater Lowering in Construction: A Practical Guide to Dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
  • HERTZ, W.; ARNDTS, E. (1973). Theorie und praxis der grundwasserabsenkung. Ernst & Sohn, Berlin.
  • JUSTO ALPAÑES, J.L.; BAUZÁ, J.D. (2010). Tema 10: Excavaciones y drenajes. Curso de doctorado: El requisito básico de seguridad estructural en la ley orgánica de la edificación. Código Técnico de la Edificación. ETS. de Arquitectura, Universidad de Sevilla.
  • MUZAS, F. (2007). Mecánica del suelo y cimentaciones, Vol. II. Universidad Nacional de Educación a Distancia, Madrid.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • SCHULZE, W.E.; SIMMER, K. (1978). Cimentaciones. Editorial Blume, Madrid, 365 pp.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Curso:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El problema del agua en las excavaciones

Figura 1. https://www.obrasurbanas.es/pantallas-tablestacas-excavaciones/

El flujo superficial y subterráneo del agua, así como los cambios en el nivel freático de un terreno, por causas naturales o artificiales, provocan consecuencias tanto en el terreno propio como en los colindantes. En el caso de una excavación que intercepte la capa freática va a suponer problemas tanto para la propia excavación, y posterior ejecución de las obras en el recinto, como en los terrenos y estructuras colindantes.

Los problemas del agua como factor desestabilizante se pueden resolver si se mantiene el agua lejos de las zonas donde puede causar daño o bien se controla el agua que entra mediante drenajes. Si no se controla la infiltración, entonces el agua puede hacer migrar las partículas finas del suelo hacia una salida, ocasionando sifonamientos o roturas por erosión, o bien se incrementa la saturación, la corriente interna, o se dan excesivas subpresiones o fuerzas de infiltración.

Un caso muy habitual de lo anterior ocurre cuando se realizan perforaciones bajo nivel freático para ejecutar anclajes (por ejemplo en muros pantalla) o bien en inyecciones (impermeabilización de presas y túneles, inyecciones de compensación, etc.). En estos casos, la salida de agua por la perforación puede provocar arrastre de finos o salidas abruptas de agua, fenómeno conocido como “taponazo”.

En el caso de realizar excavaciones, los principales problemas geotécnicos asociados al agua que pueden aparecer son la subsidencia, la erosión superficial, la erosión interna o tubificación, la inestabilidad de taludes, la inestabilidad del fondo o sifonamiento y el levantamiento del fondo. Sin embargo, un buen conocimiento del suelo, de las condiciones del agua del terreno y de las leyes del flujo hidráulico permite adoptar sistemas de control del agua que garanticen una construcción económica y segura. A continuación se describen brevemente estos problemas.

  • Subsidencia: En el caso de un descenso del nivel freático, el postulado de Terzaghi nos indica que el aumento de las tensiones efectivas provocará asientos. Esta disminución puede ser debida a un bombeo, previo o no, a una excavación (Figura 2). Análogamente, un aumento en el freático puede provocar asientos en un suelo arcilloso si éste disminuye su consistencia, o bien en arenas al reducir su capacidad portante. El aumento, por ejemplo, puede deberse a una fuga de la red de agua potable, a un aumento repentino de aguas superficiales por lluvias o, como se ve en la Figura 3, a la ejecución de un muro pantalla. En este caso, las grietas pueden aparecer tanto por el debilitamiento del terreno durante la excavación como cuando el muro pantalla hace de barrera al agua. Asientos del orden de 1 mm/año no exigen tratamiento de urgencia, pero si son del orden de 1 mm/mes, implican un riesgo notable. Asientos de 1 mm/año pueden provocar daños ligeros en la tabiquería, que son notables, dependiendo si el proceso se estabiliza o no, cuando son de 1 mm/mes y que llegan a graves si el asiento es de 2 mm/mes.
Figura 2. Grietas en edificios colindantes por subsidencia provocada por bombeo. Elaboración propia basado en Pérez Valcárcel (2004)
Figura 3. Grietas en edificios colindantes por modificación del nivel piezométrico debido a ejecución de muro pantalla. Elaboración propia basado en Pérez Valcárcel (2004)
  • Deslizamiento de taludes: El flujo de agua en el talud de una excavación provocan su inestabilidad, especialmente por el aumento de cargas que supone (el terreno con mayor saturación pesa más) y por la disminución de la resistencia a corte (fácilmente se reduce el ángulo de rozamiento interno del terreno a la mitad). En efecto, el criterio de rotura de Mohr-Coulomb, indica que la resistencia al corte del terreno τen un determinado plano depende del sumatorio de la cohesión efectiva c‘  y del producto de la tensión efectiva normal σ’ (diferencia entre presión total e intersticial) por la tangente del ángulo de rozamiento interno efectivo Φ‘ . Dicho de otra forma, conseguir una excavación más estable en presencia de agua supone taludes más tendidos.

Este fenómeno se combina con la erosión, especialmente cuando la excavación corta dos estratos, siendo el inferior impermeable en comparación con el superior, lo que provoca un flujo de agua entre capas que puede provocar fenómenos de erosión tanto superficial como interna (Figura 4). Se podría solucionar el problema con taludes de excavación más tendidos o bien con una barrera (tablestacado, muro pantalla, entre otros).

 

Figura 4. Peligro de deslizamiento y erosión regresiva en estrato impermeable
  • Erosión superficial: Cuando el agua aflora en los taludes de una excavación provoca cárcavas por arrastre del terreno que comprometen su estabilidad y por otra parte debilita las bermas construidas en taludes altos (Figura 5). La solución consiste en proteger la coronación y las bermas de los taludes con cunetas impermeables o drenes que reciban el agua y la conduzcan a puntos de recogida y bombeo, especialmente cuando el talud va a ser permanente. Este fenómeno erosivo también ocurre cuando la superficie freática no baja lo suficiente e intersecta la cara del talud.
Figura 5.  Erosión superficial del talud, con cunetas sin revestir o protegidas y revestidas
  • Erosión interna o tubificación (piping): El agua arrastra una partícula entre los huecos de un suelo dependiendo de la relación entre los tamaños de las partículas y los huecos y del gradiente hidráulico (Figura 6). El flujo arrastra las partículas por las líneas de corriente por el interior de la masa del terreno formándose un hueco tubular. Como el terreno es heterogéneo, si en un punto el flujo alcanza mayor velocidad, se produce un primer arrastre de partículas. Ello provoca un aumento del gradiente hidráulico y una progresión en la erosión al formarse un tubo donde el régimen es turbulento. Este fenómeno es propicio en suelos dispersables. Para evitarlo se emplean filtros graduados o bien geotextiles para evitar arrastres y medidas que reduzcan el gradiente hidráulico. Este efecto puede darse en el caso de presas de materiales sueltos, pero también podría aparecer, por ejemplo, en el flujo de agua provocado por un pozo de drenaje en una edificación contigua o en una ejecución inadecuada de los anclajes de un muro pantalla.
Figura 6. Tubificación en el interior de una presa de materiales sueltos
  • Inestabilidad del fondo o sifonamiento: Cuando existe un flujo ascendente, un terreno granular no consolidado puede perder completamente su resistencia a corte y comportarse como un fluido (arenas movedizas, partículas sueltas, como en ebullición), por lo que al fenómeno también se le conoce como fluidificación. Ello ocurre cuando un incremento de la presión intersticial anula la presión efectiva, o dicho de otra forma, cuando las fuerzas producidas por la filtración superan el peso sumergido del suelo. Este fenómeno podría aparecer en pantallas con un empotramiento reducido (Figura 7). A veces podrían provocarse sifonamientos localizados, como en el caso de un defecto puntual en un muro pantalla, pues se acorta el recorrido del flujo y aumenta el gradiente (Figura 8).
Figura 7. Sifonamiento en la base de un recinto protegido con muros pantalla
Figura 8. Sifonamiento localizado por defecto puntual en muro pantalla. Elaboración propia basado en Pérez Valcárcel (2004)
  • Levantamiento de fondo o taponazo (uplift): El fondo de la excavación se puede volver inestable cuando el peso del terreno no es capaz de equilibrar al empuje del agua (Figura 9). Es típico de un estrato de baja permeabilidad (como una arcilla o roca de baja permeabilidad sin fisuras) situado sobre un acuífero confinado de mayor conductividad hidráulica (como una grava, muy permeable). Suele resolverse el problema con pozos de alivio.
Figura 9. Rotura de fondo o tapozano

Además de los riesgos anteriores, no se debería olvidar que existen otros posibles riesgos difíciles de prever que pueden aparecer durante la ejecución de una excavación. Dentro de este capítulo se podrían citar incidencias derivadas de surgencias de una excavación ya drenada, filtraciones laterales en muros pantalla o tablestacas. En estos casos debe analizarse de inmediato las posibles consecuencias del fallo y aplicar, en su caso, las medidas correctoras oportunas. Aquí cobra especial importancia la experiencia adquirida en casos anteriores con el fin de garantizar la estabilidad de la propia obra y de las propiedades colindantes. Por último, y no menos importante, conviene recordar que el agua es el enemigo de los rendimientos de todos los tajos en una obra.

Os dejo algunos vídeos explicativos sobre aspectos que hemos comentado en el artículo. Espero que os sean de interés.

Otro vídeo de interés es éste que os dejo. En él vemos qué pasa cuando se ejecutan anclajes bajo el nivel freático.

REFERENCIAS:

  • PÉREZ VALCÁRCEL, J.B. (2004). Excavaciones urbanas y estructuras de contención. Ediciones Cat, Colegio Oficial de Arquitectos de Galicia, 419 pp.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W., DYER, M.R. (2004). Groundwater control: design and practice. CIRIA C515, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Drenaje de excavaciones mediante bombeos superficiales y sumideros

Figura 1. Sumidero para bombeo superficial. https://www.ferrersl.com/noticias/proyectos-servicios/sistema-de-bombeo-tipo-sumidero/

Un sumidero o pozo abierto (sump pit) es un foso en el que el agua se acumula antes de ser evacuada mediante un bombeo superficial (sump pumping). El sumidero se encuentra a un nivel más bajo que el terreno circundante para que el agua fluya a él por gravedad. Con estos bombeos no se provoca un descenso de la capa freática tal que permita la excavación en seco, sino que provoca la escorrentía del agua hasta alcanzar los sumideros. El agua bombeada se evacua hacia un canal de desagüe o a una conducción de drenaje. Debe eliminarse en la medida de lo posible la arena en suspensión, pues no solo ensucia las conducciones, sino que dificulta la circulación del agua.

El bombeo superficial recibe también el nombre de agotamiento ordinario. Se trata del sistema más sencillo de drenaje, económico y muy efectivo para abatimientos pequeños del nivel freático. El diseño y montaje de los bombeos superficiales se limita a preparar puntos o zanjas drenantes que concentren y faciliten el flujo del agua. Sin embargo, es su menor impacto económico el que hace que se extrapole su uso a situaciones inapropiadas, con resultados desfavorables, demoras de plazo, accidentes y posibles daños.

En efecto, la ejecución del sumidero no es aplicable en suelos granulares, puesto que su estabilidad es prácticamente nula y de riesgo alto una vez se atraviesa la capa freática, por lo que con los medios básicos y usuales a pie de obra, no es posible su implantación. Por eso solo se plantea el sistema con descensos muy pequeños del nivel freático, en el entorno de 2 m en suelos de moderada estabilidad.

Con excavaciones de alturas algo mayores, se requiere cierta cohesión del terreno para ejecutar taludes estables dentro de la parcela a vaciar. Por tanto, el bombeo abierto desde el fondo de la excavación no podrá ser utilizado en arenas, limos, arcillas limosas, o en cualquier situación en la que el agua pueda producir sifonamiento, levantamiento del fondo o inestabilidad de los taludes de la excavación.

Además, también pueden provocar problemas de desestabilización debido a la pérdida de finos del terreno circundante, así como a la elevación de las presiones efectivas y los consiguientes movimientos y asientos del terreno contiguo. Asimismo, el agua evacuada puede presentar una elevada carga de sedimentos que pueden provocar problemas medioambientales en el punto de vertido. Se pueden reducir los arrastres de finos minimizando la velocidad del flujo y colocando filtros y depósitos de decantación (areneros) a lo largo de la red de drenaje, en su caso. El arrastre de finos provocado por los agotamientos, puede también reducirse por medio de drenes de material filtrante colocados al pie de los taludes de la excavación.

Figura 2. Esquema de sumidero y bomba de achique para pequeñas excavaciones, basado en Powers (1992).

Los sumideros se plantean distribuidos a lo largo del perímetro de la excavación. Son excavaciones puntuales, de profundidades inferiores a unos 4 m, donde se dispone un árido que actúe de filtro y de una tubería metálica ranurada, de unos 450 mm, que permite alojar equipos de bombeo sumergibles de achique, de potencias de hasta 15 CV, capaces de elevar en torno a 40 l/s. Los áridos del prefiltro tienen un tamaño próximo a 15 mm y el ranurado del tubo, en el entorno de paso de 8 mm. El sumidero se debe profundizar a medida que progresa la excavación. Una vez alcanzada la profundidad definitiva debe recubrirse la solera con grava si el terreno es de grano fino y se prevé una larga utilización para evitar la posible succión de arenas.

Las bombas más utilizadas son las de membrana y las centrífugas. Estas bombas, que trabajan con rendimientos del 60-80 %, deben tener potencia suficiente para aspirar e impulsar con cierto margen, el caudal de agua mezclada de arenas y limos. Si la profundidad de la excavación supera la altura práctica de aspiración de la bomba (unos 5 m), la bomba debe quedar por debajo de la superficie del terreno y lo más próxima al nivel freático. En este caso es mejor utilizar bombas sumergibles, con lo cual ya no tiene importancia la altura de aspiración, mientras que la impulsión solo depende de la potencia del motor.

Figura 3. Aspecto del sumidero una vez colocado el material filtrante alrededor del tubo ranurado. https://www.ferrersl.com/noticias/proyectos-servicios/sistema-de-bombeo-tipo-sumidero/

La limpieza y el mantenimiento de los sumideros son tareas continuas. El sedimento se acumula en la parte superior de la grava y debe ser removido periódicamente, especialmente después de las lluvias. Si el sedimento se introduce en la grava que sirve de filtro, obstruyéndola, se debe reemplazar con grava limpia.

Os dejo un Polimedia explicativo sobre este tema. Espero que os sea de interés.

En este vídeo, cortesía de FERRER, S.L., se puede observar este sistema de bombeo superficial.

REFERENCIAS:

  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W., DYER, M.R. (2004). Groundwater control: design and practice. CIRIA C515, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Bombas empleadas en el control del nivel freático de una excavación

Figura 1. Bomba de achique. https://www.sulzer.com/es-es/spain/shared/applications/dewatering-in-construction

Las bombas hidráulicas empleadas para controlar el nivel freático se diseñan para agotar aguas que están en contacto con el suelo, lo cual implica el arrastre de partículas. Este tipo de bombas se emplean con aguas sucias, que pueden presentar material granular de 10 mm de tamaño máximo, siendo muy importante conocer su proporción de arenas. La calidad del agua determina si la bomba puede ser estándar EN 1.4301/AISI 304 o si tiene que ser de acero inoxidable de un grado superior.

El bombeo debe reservarse a los casos imprescindibles, donde el drenaje por gravedad sea insuficiente o bien donde la disposición de medidas de contención (ataguías, muros pantalla, tablestacas, inyecciones de impermeabilización, etc.) no sean rentables. Se deben mantener los equipos e instalaciones de agotamiento con la capacidad y características necesarias desde el principio de la obra, con sus correspondientes bombas de reserva y piezas de repuesto. Además, la alimentación de energía eléctrica debe garantizarse, incluso con la previsión de grupos electrógenos de emergencia.

Pérez Valcárcel (2004) clasifica las bombas utilizadas en la excavación en las siguientes:

  • Bombas de achique: Útiles para evacuar pequeños caudales en excavaciones con entrada esporádica de agua o sótanos inundados.
  • Bombas de drenaje: De mayor tamaño, evacuan mayor caudal y son idóneas para drenar excavaciones con fuerte entrada de agua.
  • Bombas sumergibles: Se emplean cuando el descenso de agua es muy alto, trabajando sumergidas.

En todos los casos, el problema será averiguar el caudal a bombear para reducir el agua por debajo del nivel de la excavación. Para ello se suele utilizar, para el régimen permanente en un acuífero libre, la fórmula de Dupuit-Thiem, la cual ya fue descrita en un artículo anterior.

En excavaciones verticales son habituales las bombas de diafragma, las bombas centrífugas, tanto de aspiración como autoaspirantes, y las bombas sumergibles. Aunque no se trata propiamente de una bomba, también describimos brevemente el eyector hidráulico.

  • Bombas de diafragma o membrana: Es una bomba de desplazamiento positivo cuyo funcionamiento alternativo se produce por medio de una membrana elástica accionada por medios mecánicos o hidráulicos y válvulas esféricas que permiten el paso del agua (Figura 2). El cambio de presión genera que la válvula de succión se abra y permita el paso del fluido, la diferencia de presión abre la válvula de impulsión y la membrana se contrae, con lo cual el agua sale de la bomba. Algunos modelos presentan diafragmas de diversas formas (diafragma tubular, de doble disco, etc.). Habitualmente son bombas de poca potencia y pequeños caudales que se emplean en aguas cenagosas o cargadas de limo y arenas. Se eliminan las fugas posibles de líquido por su sistema de funcionamiento y sellado, por lo que son adecuadas para bombear materiales corrosivos y otros donde no se admitan fugas, en aplicaciones industriales. Presentan una succión muy elevada y un rendimiento muy bajo, una altura de impulsión máxima de 15 m. Aunque existen bombas de mando manual o hidráulico, en construcción se usan las de mando manual, y dentro de éstas, las electromagnéticas (caudal de 0,1 a 100 l/h) y las accionadas por motor (caudal de 100 a 1000 l/h). Algunos modelos pueden manejar partículas sólidas de hasta 40 mm.
Figura 2. Bomba de diafragma. https://es.wikipedia.org/wiki/Bomba_de_membrana
  • Bombas centrífugas de aspiración: Son bombas dinámicas aptas para todo tipo de líquidos, incluso con sólidos en suspensión, excepto si la carga a vencer es demasiado elevada. En excavaciones puede entrar arena o barro que obligan al diseño de paletas sujetas al desgaste. El líquido, al entrar en la cámara por la parte central y en la dirección del eje del rotor, es impulsada por éste y al girar lanzada hacia el exterior por la fuerza centrífuga. El líquido adquiere energía cinética que en el difusor se convierte en un aumento de presión. Transforman, por tanto, un trabajo mecánico en otro de tipo hidráulico, siendo su funcionamiento análogo, pero inverso, a las turbinas hidráulicas. Las bombas centrífugas pueden tener varias etapas (normalmente hasta ocho), de modo que el difusor de cada cámara envía el agua a la siguiente, aumentando la presión. Así, las bombas de varias etapas se adaptan a las condiciones de caudal y presión del sistema, siempre que no se planteen problemas de uso con aguas muy sucias. Las ventajas principales de las bombas centrífugas son el suministro de un caudal constante, presión uniforme, sencillez de construcción, tamaño reducido, bajo mantenimiento y flexibilidad de regulación. Uno de los escasos inconvenientes de la bomba centrífuga convencional es la necesidad de cebado previo al funcionamiento pues, al contrario que las de desplazamiento positivo, no son autoaspirantes. En teoría, sería posible aspirar agua desde una profundidad de 10,33 m, sin embargo, esto exigiría un vacío absoluto; por tanto, a partir de los 5-7 m de excavación (altura de aspiración práctica), la bomba debería quedar por debajo de la superficie del terreno y lo más próxima al nivel freático original, facilitando así la impulsión hacia la superficie (Figura 3). En este caso son mejores las bombas sumergibles, donde ya no tiene importancia la altura de aspiración, mientras que la de impulsión solo depende de la potencia del motor.
Figura 3. Esquema de altura de impulsión. http://www.benoit.cl/LIBRO-HIDRAULICA-BOMBAS%20IDEAL.pdf
  • Bombas centrífugas autoaspirantes: Actualmente existen bombas centrífugas autocebantes, que permiten trabajar sin el peligro de deterioro por trabajar en vacío (Figura 4). En el principio de autocebado, el aire se introducen en la bomba por la presión negativa generada por el impulsor y se emulsiona con el líquido contenido en el cuerpo de la bomba. Esta emulsión entra forzada en la cámara de cebado, donde el aire más ligero escapa por la tubería de impulsión y el líquido recircula en el interior de dicha cámara. Una vez se expulsa todo el aire de la tubería, la bomba se ceba automáticamente hasta una altura de 5-7 m y trabaja como una bomba centrífuga convencional. Estas bombas también pueden trabajar con una mezcla líquido-aire. Algunos modelos pueden manejar sólidos de hasta 50 mm de tamaño.
Figura 4. Bomba centrífuga autoaspirante. https://www.tecnicafluidos.es/bombas-centrifugas-autoaspirantes-t-8-es
  • Bombas sumergibles de agua sucia: Estas bombas se utilizan en procedimientos de bombeo de achique cuando existen pequeñas infiltraciones o agua de lluvia en la excavación. Son relativamente pequeñas, normalmente portátiles, con una agarradera para moverlas fácilmente (Figuras 5 y 6). Tales bombas son de baja eficiencia (usualmente 50 a 60 %); las unidades son robustas y por lo tanto, requieren pozos de gran diámetro. Existen en el mercado unidades con potencias mayores que 100 HP para corriente directa o trifásica. Constan de un rodete multicanal, con una configuración y álabes preparados para estos fluidos. No poseen tubo de aspiración, por lo que el motor eléctrico se sitúa en el interior de la bomba. Las bombas empleadas en la construcción cuentan con una protección especial contra la abrasión para bombear aguas sucias con contenidos de lodos, arenas o cementos. Las bombas para agotamientos utilizadas en los sumideros se diseñan especialmente para trabajos duros en elevación de aguas sucias y fangosas. Funcionan en seco o sumergidas, ya que bomba y motor forman una unidad compacta y estanca; no dependen de la presión del aire que la rodea, así pueden impulsar los líquidos a alturas considerables; necesitan únicamente dos conexiones, una al tubo de descarga y otra al motor; no requieren tuberías, pues basta una manguera; no tienen válvulas, y por tanto, no se obstruye; no necesita cebarse; puede trabajar en seco en cortos periodos; trabajan en cualquier posición, aunque el mayor rendimiento se da en vertical y presentan un bajo coste de instalación, funcionamiento y mantenimiento.
Figura 5. Esquema de bomba sumergible de achique
Figura 6. Bomba de achique sumergible. https://www.bombasideal.com/producto/serie-d/
Figura 7. Principio de bomba sumergible. https://www.ingenieros.es/wp-content/uploads/catalogos/Grundfos_-_Manual_de_Ingenieria_SP_ES.pdf

 

  • Electrobombas sumergibles para pozos profundos: Son bombas con rodetes radiales o semiaxiales de múltiples etapas superpuestas diseñadas para pozos profundos (hasta 350 m) y de pequeña sección (4” a 14”). Existen dos tipos, la bomba con motor sumergible y la de motor seco conectado a la bomba por medio de un eje largo.

Se pueden impulsar caudales desde 3 l/s (dentro de tubos de 152 mm de diámetro interno) a 40-80 l/s (en tubos de 250 a 300 mm de diámetro interno). Constan de un motor eléctrico del tipo “jaula de ardilla” de 2 a 250 kW, provisto de estator con bobinado de conducciones especialmente aislado con PVC y compensador de dilataciones y contracciones por cambios de temperatura. Son bombas con un alto rendimiento, entre el 70 y el 80%.

El factor más desfavorable es la presencia de arena (daños a partir de más de 25 g de arena por m3). También hay que determinar la composición del agua, su pH o el contenido de CO2, pues influyen en la elección de la bomba adecuada, por la presencia de estos componentes corrosivos o abrasivos. No son imprescindibles los cuidados de mantenimiento, no se producen averías por heladas, ni ocurren problemas de aspiración ni de ruido; estas circunstancias justifican la economía de su uso, siempre que los grupos utilizados estén bien proyectados y sean resistentes y equilibrados. Sin embargo, en caso de avería del motor se debe extraer toda la columna.

Según se observa en la Figura 7, la bomba consta de una entrada (1), un número de etapas de bomba (2) y una salida de la bomba (3). Según la presión requerida, se incluye un mayor número de etapas. Cada etapa incluye un impulsor (4), los álabes del impulsor transfieren energía al agua. Cada impulsor está fijo al eje de la bomba (5) mediante una conexión acanalada o una conexión de cono dividido.

 

 

 

 

  • Bombas de turbina de eje vertical: Son adecuadas para grandes caudales con pequeñas alturas en posición vertical y sumergida. La bomba se coloca en el fondo del pozo, sin embargo, a diferencia de la electrobomba sumergible, la unidad motriz se ubica encima o junto al grupo de bombas, en la cabeza del pozo (Figura 8). Existen dos tipos de bombas de turbina de eje vertical, las lubricadas por aceite y las lubricadas por agua (autolubricadas). La construcción de estas bombas permite montar el número de etapas necesario, que puede llegar a 20 o más. Se pueden alcanzar unos 200 m.c.a., pero los problemas que ocasiona cualquier imperfección en la rectitud del eje influyen en la vida de los cojinetes y en la vibración de funcionamiento. Frente a las electrobombas sumergidas, su mayor ventaja es la facilidad de desmontar el eje y el impulsor desde arriba, sin necesidad de retirar la columna, lo que facilita la accesibilidad y el mantenimiento.
Figura 8. Esquema de bomba de turbina de eje vertical (Cashman y Preene, 2012)
  • Bombas de vacío para lanzas de drenaje (wellpoints): Constan de una unidad centrífuga para bombear el agua, de una unidad de vacío para impulsar el aire y de una cámara de aire flotante para separar el aire del agua. Su potencia disponible comercial varía entre 20 a 250 CV. Debido a que operan continuamente con vacíos importantes, se pueden dañar por cavitación. El equipo, montado sobre un chasis con un eje con neumáticos y barra de tiro para facilitar su colocación en la obra (Figura 9), consta de los siguientes elementos principales:
    • Cámara o tanque de separación de aire: recipiente cilíndrico con gran capacidad (de 1,5 m³), para reducir al mínimo los paros y arrancadas.
    • En su interior se alojan dos bombas sumergibles eléctricas o bombas para la impulsión del agua, así como los electrodos de barra para el control del nivel eléctrico.
    • Consta además de dos bombas de vacío eléctrico adosadas en el exterior del tanque. Se trata de dos depresores del tipo multicelular enfriados por aire y lubricados por aceite.
    • Cuadro de control eléctrico. Todos los equipos están provistos de control de marcha automática, con lo que se reducen al mínimo los costos de funcionamiento. Los elementos de mando eléctrico se hallan en una caja hermética al agua.
Figura 9. Equipo de bombeo para wellpoints. http://www.ischebeck.es/assets/wp-content/uploads/agotamiento_agua/Cat%C3%A1logo%20Wellpoint%2016022012.pdf
  • Eyector hidráulico: Son bombas fluido-dinámicas que utilizan la energía de un fluido primario) para mantener un caudal de otro fluido (secundario) mediante un salto de presión. Son dispositivos que tienen la ventaja de no tener elementos móviles, no precisan mantenimiento, trabajan con todo tipo de fluidos, son confiables en su funcionamiento y pueden instalarse en cualquier posición. El eyector hidráulico, tal y como se aprecia en la Figura 10, está formado por un tubo vertical sumergido, paralelo al de aspiración, y al que se impulsa agua desde la parte superior. Ello forma una subpresión en la tobera inferior, cuando la altura de aspiración sobrepasa los 7 m, que es capaz de aspirar en condiciones económicas hasta los 20 m. Los sistemas eyectores son efectivos en suelos finos donde se requiere un bombeo de pequeños volúmenes de agua y para los cuales la baja eficiencia de los eyectores no es una desventaja. Este dispositivo, con algunas modificaciones, se emplea para el transporte de aguas sucias, lodos y arcillas en suspensión, en una proporción que llega a la cuarta parte del volumen total del fluido. Son las llamadas “bombas mamut”, que pueden elevar hasta 10 m mezclas fangosas, incluso con arenas, aunque sus rendimientos son pequeños (inferiores al 25%). En ocasiones se emplean lanzas hidráulicas de alta presión para romper la cohesión del material a bombear.
Figura 10. Eyector hidráulico. http://puyga.es/como-elegir-una-bomba-de-agua-para-pozos-componentes-tipos-y-recomendaciones-practicas/

Os dejo un vídeo de una bomba vertical tipo turbina.

Referencias:

  • CASHMAN, P.M.; PREENE, M. (2012). Groundwater Lowering in Construction: A Practical Guide to Dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
  • GARCÍA VALCARCE, A. et al. (1995). Manual de Edificación. Derribos y demoliciones. Actuaciones sobre el terreno. Ediciones Universidad de Navarra, Pamplona, 472 pp.
  • PÉREZ VALCÁRCEL, J.B. (2004). Excavaciones urbanas y estructuras de contención. Ediciones Cat, Colegio Oficial de Arquitectos de Galicia, 419 pp.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.
  • YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3
  • YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.