Construction Management. Wiley Blackwell

Construction Management

Eugenio Pellicer, Víctor Yepes, José C. Teixeira, Helder P. Moura, Joaquín Catalá
ISBN: 978-1-118-53957-6
336 pages
November 2013, Wiley-Blackwell

Human beings build houses, roads, bridges, tunnels, ports, airports, factories, shopping centres, offices, warehouses, etc. Public and private organisations participate in the execution of these projects with the collaboration of architects, engineers, companies, financial entities, etc. The scope of the “construction” term includes the primary sector (quarries), secondary sector (equipment and construction materials) and tertiary sector (engineering and architecture consulting companies), that is, industrial, commercial and service activities. Therefore, it includes private initiatives and the activities of the public administrations.

Construction is set within a sensitive socio-political environment, affected by the need to protect the fundamental rights of persons, such as public health, homes, road safety, environmental integration, etc. It is easy to understand the problems in establishing a set of economic activities in an ordered and coherent framework, taking place in an environment with many players from various sectors , with conflicting interests and branches towards many other economic sectors. In a broader sense, construction is an important motor and, at times, an obstacle to economic growth.

In view of this scenario, this book is focused exclusively in the construction phase of that process. The contractor’s point of view is chosen, even though the links with the owner are always taken into account. An envisioned outline of the management at the construction site is looked for, from the signing of the contract to the beginning of the operational phase.

Aiming to develop a useful and applied text for students in post-graduate construction programmes, five authors work together. They all have a wide experience in the construction industry; in fact, this book is based on their previous experience in several Leonardo da Vinci projects financed by the European Union. Four of the authors develop their main task as professors in two different universities: Eugenio Pellicer, Víctor Yepes and Joaquín Catalá at the Universitat Politècnica de València, and José Teixeira at the Universidade do Minho; Helder Moura works for the Portuguese Highway Agency. Each author has led those chapters in which they can add more value to the work due to their professional and academic practice. Nevertheless, all of us have contributed to the whole. Continue reading “Construction Management. Wiley Blackwell”

¿Qué son las machacadoras de mandíbulas?

Machacadora tipo DaltonLas trituradoras de mandíbulas están diseñadas para superar las necesidades de trituración primaria de los clientes de los sectores de canteras, minería y reciclaje. Se aplica principalmente en la trituración gruesa y media de las materias de resistencia a compresión no mayor a 320MPa, caracterizada por alta relación de reducción, alta producción, granulosidad homogénea, estructura sencilla, funcionamiento fiable, mantenimiento fácil, coste de operación económico, etc.

Constan de una cámara, llamada “de machaqueo” de forma prismática. Sus caras superior (por donde entra el material) en inferior (por donde sale triturado) son abiertas. De las otras caras, dos forman mandíbulas dispuestas en “V”: una fija y otra oscilante por biela excéntrica y placas de articulación. El retroceso de la mandíbula móvil se debe a un vástago con muelle. Las mandíbulas se protegen piezas de acero al manganeso para evitar un desgaste prematuro.

La rotura fundamental es por compresión. El retroceso de la mandíbula permite a los fragmentos descender hasta la parte más estrecha. Se obtiene un material lajoso y con tendencia a ser un material uniforme con pocos finos (mal graduadas). Normalmente no se admiten bloque que sean superiores a 0,75 veces el tamaño de la boca.

No se aconsejable la trituración de material pegajoso, pues atascaría el aparato y disminuiría la producción. El número de compresiones por minuto habitualmente oscila entre 150 y 300, aunque pueden ampliarse este rango de 50 a 750. La razón de reducción alcanzada está entre 4 y 8.

Si disminuimos la salida, conseguimos un tamaño menor del producto resultante, aumentamos los finos y la energía necesaria, mejoramos la forma del producto, pero reducimos la producción. Ésta producción depende, entre otros factores, del tipo de alimentación (la clase de material, la distribución del tamaño, sus características de fractura o su contenido de humedad), del tipo de operación (disposición de la alimentación) y del reglaje de descarga.

Se pueden clasificar las machacadoras de mandíbulas en doble efecto (también llamadas tipo “Blake” o de doble articulación) y las de simple efecto (tipo “Dalton” o de articulación única).

Machacadora de mandíbulas de doble efecto

Se trata de una mandíbula móvil accionada por un balancín articulado en su parte superior. Son un 20-30% más pesadas que las de simple efecto, más caras y de menor producción. No presenta movimientos de deslizamiento entre mandíbulas (como en simple efecto). Por ello sólo son usadas con material extraduro o muy abrasivo, nunca con materiales plásticos.

Machacadora Blake
Machacadora de mandíbulas de doble efecto, o tipo “Blake”

 

Machacadora de simple efecto

Trituradora de mandibula de simple efecto o tipo “Dalton” difiere de la anterior en que la mandíbula móvil va montada directamente sobre un balancín que está suspendido en la parte superior por el eje, excéntricamente y el movimiento está dado por el motor. La mandíbula simple hace de “biela” en un movimiento elíptico.

Tritura por compresión (parte superior) y por fricción (parte inferior). Son más utilizadas por su mayor producción, menor precio y menor apelmazamiento en la cámara. No es adecuada para materiales abrasivos. Da un producto triturado más fino.

Machacadora de mandíbulas de simple efecto, o tipo “Dalton”

 

Os paso a continuación varios vídeos explicativos que espero que os sean de interés.

 

Referencias:

FUEYO, L. (1999). Equipos de trituración, molienda y clasificación: tecnología, diseño y aplicación. Editorial Rocas y Minerales. 1ª edición. Fueyo Editores. Madrid, 371 pp. ISBN: 84-923128-2-3.

LÓPEZ JIMENO, C. (1998). Manual de áridos. 3ª edición. Ed. Carlos López Jimeno. Madrid, 607 pp. ISBN: 84-605-1266-5.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2005). Temas de procedimientos de construcción. Extracción y tratamiento de áridos. Editorial de la Universidad Politécnica de Valencia. Ref. 2005.165. Valencia.

TIKTIN, J. (1994). Procesamiento de áridos: instalaciones y puesta en obra de hormigón. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Madrid, 360 pp. ISBN: 84-7493-205-X.

¿Qué ingeniería podemos destacar en el periodo bizantino?

Santa Sofía, en Estambul

La ingeniería romana declinó después de 100 d.C., siendo a partir de ese momento sus avances modestos. De hecho, hay quien opina que uno de los factores clave que contribuyeron a la caída del Imperio Romano, fue, precisamente, el estancamiento producido en la ciencia y la ingeniería. Aunque el año 476 d.C. indica dicha caída, es probable que las leyes impuestas cerca de 301 d.C. por Diocleciano, por las que pretendía reformar el control de precios y salarios, fuesen el inicio del declive. Dichas leyes, orientadas a proporcionar estabilidad económica, obligaban a todo hombre del imperio a seguir el oficio de su padre. No deja de sorprender cómo las crisis económicas no son algo nuevo. Pero sigamos con lo que estamos. Continue reading “¿Qué ingeniería podemos destacar en el periodo bizantino?”

Draga de pala frontal

Figura 1. Draga de pala frontal.

La draga de pala frontal (front shovel dredger, en inglés) es una draga mecánica con una pala excavadora frontal accionada mediante cables, montada sobre un pedestal situado en un extremo de un pontón. Está constituida por un fuerte brazo que puede realizar una excavación frontal, elevar la carga, girar el brazo y depositar el material sobre gánguil. Esta draga se fija al fondo con tres spuds, dos en proa y uno en popa. La capacidad del cazo oscila entre 3 y 5 m³, aunque en Estados Unidos se fabrican hasta de 20 m³. Las ventajas es que excava muy bien rocas blandas y arcillas duras y además según excava se va abriendo a sí misma un canal.

Es una variante de la draga con retroexcavadora hidráulica y en la actualidad ha sido prácticamente sustituida por esta. Frente a la draga de retroexcavadora hidráulica, puede alcanzar profundidades mayores, pero su ciclo de producción es menor y su construcción más rústica. Sus usos y forma de operar son similares a las dragas de retroexcavadora hidráulica. La descarga se efectúa en barcazas situadas en los laterales del pontón.

Figura 2. Ciclo de trabajo de la draga de cuchara frontal (Bray et al., 1997)

Referencias:

BRAY, R.N.; BATES, A.D.; LAND, J.M. (1997). Dredging: A handbook for engineers. 2nd edition, Willey, 434 pp.

CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J.; MARTÍ, J.V. (2010). Temas de procedimientos de construcción. Equipos de dragado. Editorial de la Universitat Politècnica de València. Ref. 2010.4038.

SANZ, C. (2001). Manual de equipos de dragado. Ed. Carlos López Jimeno. Madrid, 323 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El Plan de Estudios de Ingeniero de Caminos, Canales y Puertos de 6 cursos.

En estos momentos de transición, o por qué no llamarlo crisis, en los estudios universitarios con la convergencia propugnada por Bolonia, no me resisto a difundir el Plan de Estudios de Ingeniero de Caminos, Canales y Puertos que tuve la oportunidad de estudiar en la Universidad Politécnica de Valencia.  Vaya por delante que no pretendo hacer distinciones entre los distintos planes de estudios ni entre universidades ni nada por el estilo. Nada de polémicas estériles entre carreras de 3, 4, 5 ó 6 años. Sólo es un punto de nostalgia hacia una carrera que, por ser la que hice en su momento, le tengo un cariño especial.

Se trata del Plan 1982. Después de muchos cambios y vaivenes, hoy nos encontramos que para ser Máster Ingeniero de Caminos, Canales y Puertos son necesarios también 6 cursos completos, habiendo pasado por el Grado de Ingeniero Civil. Desconozco vuestra opinión al respecto, pero la mía es que aquel era un buen plan de estudios. Hoy en día no se reconoce como título de Máster a los que hicimos la carrera de ingenieros de caminos, lo cual parece, a la vista de lo visto, incomprensible. Continue reading “El Plan de Estudios de Ingeniero de Caminos, Canales y Puertos de 6 cursos.”

Tendencia al gigantismo en la maquinaria de obras públicas y minería

La maquinaria ha cambiado rápidamente con las innovaciones tecnológicas. Se ha derivado hacia la especialización, evolucionando unas hacia el gigantismo para obtener grandes producciones, mientras otras se han convertido en diminutas y versátiles. En otros casos se ha buscado la polivalencia del trabajo en equipos pequeños y medianos. Los medios informáticos han auxiliado y mejorado los sistemas de los equipos. La maquinaria va siendo cada vez más fiable, segura y cómoda para el operador, facilitándole las labores de conservación. En general se observa una preocupación creciente por la seguridad, el medio ambiente y la calidad.

Como muestra de la tendencia al gigantismo en la maquinaria de ingeniería civil y minería, os paso un pequeño documental donde se muestran brevemente estas megamáquinas. Espero que os guste.

Os paso ejemplos de máquinas gigantes. La grúa torre Kroll K-10000 es la más grande del mundo. Fue fabricada por la marca danesa Kroll y es capaz de levantar pesos de 132 toneladas de carga máxima y 91 toneladas a una distancia máxima de 100 m.

El Bulldozer D575A-3SD tiene casi 5 metros de altura y fue diseñado y fabricado en Japón. Esta potente máquina rebasa los 12 m de ancho y puede mover más de 215 toneladas de una sola vez.

La Bagger 288, es una excavadora giratoria empleada fundamentalmente en trabajos de minería. Una vez entró en funcionamiento, se convirtió en el vehículo de carga sobre tierra firme más grande del mundo. Mide 220 metros de largo, 96 de alto y 46 de ancho.

El BelAZ 75710 pesa 810 toneladas, 210 toneladas más que el Caterpillar, y tiene una capacidad de carga de 450 toneladas. Cuenta con dos motores turbodiésel de 16 cilindros asociados que generan 4.600 caballos con un par máximo de 18.626 Nm.

La motoniveladora ACCO se considera la mayor motoniveladora del mundo. Esta máquina pesa unas 200 toneladas y contiene dos motores Caterpillar, uno de 1000 CV en la parte trasera y otro de 700 CV en la parte delantera, la cual pertenece a la cabeza tractora de una mototraílla Caterpillar 657. La hoja o cuchilla posee una longitud de 10 m.

 

Referencias:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5. Ref. 402.

¿Puede una empresa consultora funcionar como Organismo de Control Autorizado?

¿Cómo pueden reorientarse las empresas consultoras de ingeniería civil? ¿Hay alguna salida posible para estas empresas que permita mantener mínimamente a su plantilla cualificada? En una tesis de máster que tuve la ocasión de dirigir a Pedro Suay, nos planteamos qué criterios y normas serían necesarios para que una empresa consultora de ingeniería civil pudiese funcionar como un Organismo de Control Autorizado (OCA), según la norma UNE EN ISO/IEC 17020 de diciembre de 2004. Fruto de este trabajo fue un artículo, que publicamos en la revista Técnica Industrial y que fue merecedora del premio “Héctor Arias” del COITI de Valladolid al mejor artículo sobre “Empresa y Calidad” en la convocatoria de 2008. Allí se aportó una guía para facilitar la generación de la documentación para implantar, en ete tipo de empresas, un sistema de calidad que pueda ser certificado y que permita la autorización en un área reglamentaria industrial. Este tipo de actuaciones supone para la empresa consultora una importante herramienta de competitividad, al permitir explotar una oportunidad de negocio aprovechando el personal técnico experimentado en disciplinas complementarias. Por su interés creo que vale la pena que extractemos alguna idea importante. Continue reading “¿Puede una empresa consultora funcionar como Organismo de Control Autorizado?”

Draga de rosario o de cangilones

Draga de rosario de cangilones. Vía: http://loostrom.com

La draga de rosario, de cangilones, o de tolva continua (bucket ladder dredge, en inglés) es una draga mecánica formada por una cadena de cangilones montada sobre un robusto castillete. La escala de cangilones atraviesa el pontón y se hunde en el fondo para excavar el material. La acción de dragado se realiza mediante un rosario continuo de cangilones que levantan el material del fondo y lo elevan por encima del nivel del agua, volcándolo sobre el mismo pontón.

Es la única draga mecánica que excava de forma continua. Su diseño ha permanecido inalterable durante muchos años. Puede trabajar en todo tipo de suelos, incluso en rocas de hasta 10 MPa, siendo la dilución que crean al excavar poco importante. Además, se puede controlar con precisión la profundidad a la que se excava.

La profundidad máxima de dragado se encuentra sobre 35 m, necesitando un mínimo de 5 m para trabajar. Puede dragar con unas condiciones de altura máxima de ola de 1,5 m y una velocidad máxima de corriente de 2,0 nudos.

Como inconvenientes podríamos decir que son muy costosas, ocupan demasiado sitio, pues al posicionarse necesitan mucho espacio para extender los anclajes y no son apropiadas para el trabajo en aguas someras o cuando el espesor a trabajar es pequeño. Además, la necesidad de barcazas o el vertido directo dificulta su uso en tareas de regeneración costera. Todo esto ha hecho que estas dragas estén cayendo en desuso.

Detalle de los cangilones. Vía: http://www.teara.govt.nz

Os dejo a continuación unos cuantos vídeos para que veáis el funcionamiento de esta draga.

Referencias:

BRAY, R.N.; BATES, A.D.; LAND, J.M. (1997). Dredging: A handbook for engineers. 2nd edition, Willey, 434 pp.

CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J.; MARTÍ, J.V. (2010). Temas de procedimientos de construcción. Equipos de dragado. Editorial de la Universitat Politècnica de València. Ref. 2010.4038.

SANZ, C. (2001). Manual de equipos de dragado. Ed. Carlos López Jimeno. Madrid, 323 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Montaje de muros prefabricados

La prefabricación de muros con hormigón armado permite competir con los sistemas tradicionales de hormigón “in situ”. De hecho, numerosas casas de prefabricados se dedican a este menester por la gran versatilidad y ligereza del sistema, capaz de dar una gran calidad de acabados y presentando en numerosas ocasiones ventajas económicas.

Con estos sistemas, no se hace necesario el uso de paneles de encofrado, ni tampoco se tiene que renovar el tablero de madera fenólico de los paneles. Así, un muro prefabricado tipo podría colocarse mediante autogrúa en 10-20 minutos. Por contra, un muro tradicional de unos 6 m de altura y 15 m de longitud, tardaría unos 3 días en ejecutarse y precisaría de un andamio para ejecutar la segunda altura del muro. No son necesarias ni reglas alineadoras ni latiguillos o barras tipo dywidag.

Un aspecto relevante en este tipo de montajes es el relativo a la seguridad. Es muy importante que se realice un estudio del montaje y de cómo realizar tal operación (posicionamiento de grúas, manipuladores telescópicos, gatos y puntales de montaje, etc.). El diseñador de los prefabricados debe considerar las acciones de carga de viento, sismicas, lluvia con lavado de cimientos, y otras, para evitar que se desplome la estructura durante su montaje con el peligro que conlleva. Os sugiero una publicación de la Asociación Nacional  de la Industria del Prefabricado de Hormigón (ANDECE) denominada “Recomendaciones de seguridad en la ejecución de estructuras de edificación con elementos prefabricados de hormigón“.

Una buena alternativa a los muros nervados que vemos en las fotografías anteriores, es el muro doble prefabricado. Consiste en dos placas de hormigón armado de unos 6 cm de espesor unidas entre sí por celosías metálicas. Forman un sándwich que realiza a la vez función de encofrado, armado y acabado superficial del muro. En obra basta con rellenar con hormigón la parte central del mismo. Os dejo un dossier técnico de la firma Isotravis.

 

Os dejo un vídeo explicativo para que veáis el montaje. En este vídeo me gustaría que os fijaseis en las medidas de seguridad, para poder realizar un análisis crítico de las mismas. Desgraciadamente, los accidentes son graves si no se sigue un protocolo preestablecido en relación al montaje. Espero que sirva de ayuda su visualización para evitar errores irreparables.