Ricardo Bellsolá y los primeros puentes españoles de hormigón con cemento artificial

Ricardo Bellsolá Bayo (1836-1882). https://www.gasteizhoy.com/ricardo-bellsola-elciego/

Ricardo Bellsolá y Bayo (1836-1882) fue uno de esos ingenieros de caminos pioneros que introdujo como novedad en España la primera experiencia en la utilización del hormigón (en masa) hidráulico, de la que se tiene noticia hacia el año 1862. Hay que tener en cuenta que Vicat ya había investigado la fabricación de cementos artificiales entre 1812 y 1818, y que la primera aplicación del hormigón armado no aparecería hasta mediados de siglo, cuando Lambot construyó una pequeña barca con paredes delgadas.

En efecto, de forma muy modesta, pero bien documentada, se construye un puente sobre el río Iregua cerca del pueblo de Villanueva de Cameros (La Rioja), con una luz principal de 22 m, pero cuyo interés principal se encuentra en la pequeña obra de fábrica adyacente, de apenas 3 m de luz y 4.5 m de altura que se ejecuta monolíticamente con hormigón hidráulico en masa y cuya descripción podemos ver en una reseña de 1862 de la Revista de Obras Públicas. El puente se empezó a construir un 16 de mayo de 1860 por el contratista D. Domingo Garmendia, y si bien el director de las obras fue al principio el autor del proyecto, D. Alfonso Ibarreta, terminó su construcción, en particular las bóvedas, D. Ricardo Bellsolá, que en aquel momento era el ingeniero de la provincia. En la citada reseña de 1862, atribuible al propio D. Ricardo, ya se justifican los beneficios económicos del empleo del hormigón hidráulico, cuya bóveda se descimbró a los 10 días “sin que se notasen grietas ni defecto alguno de unión”.

Puente sobre el Iregua, en Villanueva de Cameros. Fotografía: José Ramón Francia

El paso siguiente que confirmó el éxito del primer experimento de D. Ricardo con los arcos monolíticos de hormigón en masa fue la construcción, hacia 1866, de los puentes de Lavalé y Lumbreras en la carretera de Logroño a Soria. Se trataban de dos obras muy semejantes, ambas de tres bóvedas de 10 m cada una. Sin embargo, para defender la dignidad de su obra, dispuso de unos “aristones” o boquillas exteriores de dovelas de piedra, pues parece ser que no le resultaba muy elegante el hormigón.

Puente de Lavalé sobre el río Iregua, de Ricardo Bellsolá (Fotografía: Juan Donaire Merino) http://ropdigital.ciccp.es/pdf/publico/2011/2011_SEPTIEMBRE_3524_03.pdf

El propio ingeniero nos explica que modificó la construcción de los arcos en ladrillo por el hormigón por motivos puramente económicos:

“Las circunstancia mencionadas y la de encontrarse en la localidad un cemento regular, que aunque caro en fábrica, estaba cerca de las obras, me sugirieron la idea de los arcos de hormigón hidráulico […] y es que se han construido bóvedas de hormigón hidráulico de una sola pieza, sin más precauciones para el hormigón que las que se usan en el de las fundaciones. Este sistema de construcción creo puede llegar a ser sumamente expedito y económico, cuando experimentos repetidos, hechos por personas ilustradas, fijen, ayudados de la teoría, los espesores mínimos de esta clase de bóvedas”.

Así, D. Adolfo Ibarreta, en 1860, proyectó las obras que faltaban para completar la carretera que ya había sido explanada para 1861 con unos puentes de ladrillo, pues era la solución más económica para hacer las bóvedas sobre las que iba a descansar el firme. No obstante, el ladrillo se encontraba a un precio desorbitado al estar construyéndose, por entonces, el ferrocarril Tudela-Bilbao.

Sin embargo, el propio D. Ricardo se ve forzado, por motivos también económicos, a fabricar su propio cemento en una instalación provisional cerca del tajo. De ese modo, convierte un molino harinero situado en Torrecilla de Cameros en una fábrica artesanal de cemento Portland. Comprobó que una vez cocida la piedra caliza, más bien margosa, triturada, poseía buenas cualidades hidráulicas. Como curiosidad, decir que no se atrevieron a descimbrar los arcos hasta pasados ocho meses, aunque mucho antes ya se había separado la bóveda del encofrado por sí sola.

Hablar de los inicios del hormigón armado en España es hablar de dos personajes muy diferentes que pueden considerarse los verdaderos impulsores del hormigón armado en España: José Eugenio Ribera  y Juan Manuel de Zafra y Esteban, pero eso ya requiere otro post.

Sin embargo, para tener una visión completa de este nuestro protagonista, os dejo la referencia del propio Ricardo Bellsolá, que en la Revista de Obras Públicas del año 1867 publicó una memoria sobre estos puentes. Una mención muy especial requiere las 15 recomendaciones prácticas que D. Ricardo nos deja en sus memorias, relativas a la fabricación y puesta en obra del hormigón, pues sorprende lo acertado que para su época fueron estas conclusiones (criterios de descimbrado, hormigonado en tiempo demasiado caluroso o frío, reducir al máximo el agua de amasado, cubrir y proteger con tierra la bóveda de hormigón recién vertida, etc. También es muy aconsejable el reciente artículo del profesor L.J. Sanz sobre el mismo tema.

Referencias:

Arenas, J.J. (2002) Caminos en el aire. Los puentes. Tomos I y II. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

Bellsolá, R. (1867). Memoria relativa a los arcos de hormigón hidráulico construidos en la carretera de primer orden de Soria a Logroño. Revista de Obras Públicas, 15, tomo I (2): 13-17; tomo I (3): 25-26 y tomo I (4): 37-43

Revista de Obras Públicas (1862). Puente de Villanueva de Cameros, en la carretera de rpimer orden de Soria a Logroño, y noticia de esta carretera y otras de la provincia. Revista de Obras Públicas, 10, Tomo I (24):288-294.

Rubiato, F.J. (2009). Los puentes de Cenicero-Elciego y Baños de Ebro. El tránsito en la utilización de la bóveda de sillería a la de hormigón en masa. Sexto Congreso Nacional de la Historia de la Construcción, Valencia, 21-24 de octubre (link)

Sanz, L.J. (2011). Ricardo Bellsolá y los primeros puentes de hormigón en España. Revista de Obras Públicas, 158 (3524): 25-40.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Montaje de un arco flexible de hormigón prefabricado

puente-prefabricado-hormigon-armado-59280-3586967En un artículo reciente del blog Fieras de la Ingeniería, tuvimos ocasión de ver un sistema ingenioso de construcción de arcos flexibles de hormigón prefabricado. Este sistema, denominado FlexiArch, fue desarrollado por los ingenieros de la Escuela de Ingeniería Civil de la Universidad de Belfast. Se trata de unos arcos flexibles de hormigón prefabricado que permite agilizar enormemente las labores de construcción de puentes en arco, de modo sencillo y rápido. El concepto fue patentado en la década del 2000, y gracias a la colaboración con Macrete Ireland, pudo finalmente llevarse a la realidad por primera vez en septiembre de 2007 durante la construcción de un puente cerca de Belfast.

Os dejo un vídeo explicativo de la técnica. Espero que os guste.

Esto me suena… El puente Hong Kong-Zhuhai-Macao y el «Ciudadano García»

2016092713594970294Con motivo de la terminación del puente Hong Kong-Zhuhai-Macao, el programa de «Esto me suena», de Radio Nacional de España, me realizó una pequeña entrevista para explicar algunos de los aspectos de este puente. En este post os dejo la entrevista y una pequeña descripción del mismo, señalando algunas páginas donde podéis ampliar información si os interesa.

 

 

 

 

El puente Hong Kong–Zhuhai–Macao es un proyecto que consiste en una serie de puentes y túneles que conectan Hong Kong, Macao y Zhuhai, las tres ciudades principales del delta del río de las Perlas en China. Este puente tiene una longitud total de 55 km, 6,7 de ellos bajo el agua y 23 sobre el mar, convirtiéndolo en el más largo de su tipo en el mundo. Su desarrollo conforma la red nacional de carreteras del país que une los bancos occidental y oriental del río; y servirá para transportar pasajeros y carga entre la región de Hong Kong, la parte continental de China y la región de Macao.  Este puente reducirá el tiempo que se tarda en ir en coche de Hong Kong a Zhuhai, en la parte continental de China, pasando de 3 horas a solo 30 minutos. 

El puente consta de dos islas que unirá un túnel de 6,7 km, permitiendo el paso del tráfico marítimo. Cada isla está construida por 130 cilindros de acero de 22 m de diámetro, 40/50 m de longitud y 450 t de peso. En el vídeo que os muestro a continuación se puede ver cómo se introducen estos grandes cilindros mediante vibración.
Para más información, el gobierno de Hong Kong habilitó una página web con todos los datos sobre este proyecto en hzmb.hk.

¿Qué es un cable-grúa o blondín?

Vía @HercRentalsInc

También denominado como cable-grúa, grúa funicular o andarivel, es una instalación similar a los puentes-grúa donde la viga-puente se reemplaza por un cable portante sobre el que se desliza el carretón del que se suspende la carga. Tanto el accionamiento del carretón como los movimientos de izado o descenso se consiguen mediante cables que se manejan desde el suelo. Su aplicación es habitual en la construcción de presas, puentes, astilleros, etc. El nombre de «blondin» viene del funámbulo y acróbata francés Jean François Gravelet-Blondin ( 1824-1897).BLONDIN

Esquema de funcionamiento del blondín
Esquema de funcionamiento del blondín

Se distinguen los siguientes cables en el blondín:

  • Cable vía o cable carril: cable atirantado sobre el que se desplaza el carretón o bicicleta. Está fijo a dos mástiles o torres, actuando a modo de dintel de pórtico.
  • Cable tractor o de vaivén: es el que desplaza al carretón.
  • Cable elevador: sirve para el izado de la carga, fijando la posición vertical del gancho.
Sistema de cables del blondín
Sistema de cables del blondín

Los tipos de blondines más habituales, en función de los grados de libertad de los soportes, son los siguientes:

  • Fijos: si los mástiles son completamente inmóviles.
  • Basculantes: cuando un mástil es fijo y el otro abatible alrededor de la base.
  • Radiales: con un mástil fijo y el otro desplazable sobre carriles.
  • Paralelos: si los dos mástiles pueden deslizarse paralelamente sobre carriles.
Blondín de cable fijo
Blondín de cable fijo
Blondín de cable basculante
Blondín de cable basculante
Blondín de cable radial
Blondín de cable radial

Los blondines han permitido alcanzar luces que se aproximan a los 1000 m, y una capacidad de carga ha llegado a las 50 t. Sin embargo las características normales de estas instalaciones se recogen en la Tabla. Sin embargo, estos equipos requieren una instalación compleja y por tanto difícilmente amortizable si la obra no es de gran volumen.

Tabla.- Características normales de los blondines

Luz entre torres 300 – 1,000 m
Capacidad de carga 10 – 25 t
Altura de las torres 10 – 30 m
Velocidad de traslación del carretón 2 – 8 m/s
Velocidad de elevación del gancho 0.3 – 1.5 m/s
Velocidad de traslación de las torres 0.1 – 0.3 m/s

 

Os dejo un vídeo de un blondín usado en la construcción de la presa de Ibiur.

En este otro vídeo podéis ver cómo se vacía hormigón con un blondín.

Referencia:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

Cimentación mediante cajones de aire comprimido

Disposición general de un cajón neumático (adaptado de Wilson y Sully, 1949)

Un cajón es una estructura que hundida a través  del terreno o del agua permite colocar la cimentación a la profundidad de proyecto, y que posteriormente pasa a formar parte de la estructura definitiva. Estos cajones pueden ser de fondo abierto o de fondo cerrado (ver cajones flotantes). Nos centraremos en este post en los cajones de fondo abierto en las que existe una cámara de trabajo sometida a una presión superior a la atmosférica para impedir que el agua entre en la excavación. Se trata de las cimentaciones mediante cajones neumáticos o de aire comprimido.

Alguien puede preguntarse a qué viene un post sobre una técnica que tiene riesgos evidentes de ejecución y que ya en un artículo de Presa y Eraso (1970) nos avisaba que era una técnica en trance de desaparecer. Hoy día existen procedimientos (por ejemplo pilotes de gran diámetro) que son más sencillos de construir, suficientemente seguros, rápidos y económicos que permiten evitar riesgos innecesarios, especialmente los procesos de compresión y descompresión que requieren tiempos suficientes, tal y como ocurre en los trabajos realizados por los buzos o submarinistas. Pues bien, razones históricas y docentes nos llevan a analizar brevemente este procedimiento constructivo y a dejar unas cuantas referencias al lector curioso que quiera ampliar información al respecto.

En 1830 el británico Thomas Cochrane ideó y patentó un sistema para cimentar en seco, mientras que en Francia, de forma paralela, el ingeniero de minas francés Jacques Triger ideó en el año 1839 un sistema para poder excavar en el interior de la mina de Chalonnes  -que dirigía- en la zona cubierta por el agua del cercano río Loira. Mediante una cámara llena de aire a presión conseguía evitar la entrada del agua y así poder trabajar cómodamente. Habían inventado el cajón de aire comprimido.

Puente de Saltash (Isambar Brunel, 1854-1859)

El aire comprimido fue empleado por primera vez en cajones de puentes por John Wright en 1851 para los pilares de puente Rochester, y algunos años más tarde por Isambard Brunel en el puente Saltash. El primero que lo utilizó en cimentaciones de puentes muy grandes fue James B. Eads, en el puente St. Louis sobre el río Mississippi, comenzado en 1864. El capitán Eads conocía muy bien el Mississippi, por eso sabía que el lecho era muy socavable. En una ocasión había buceado con escafandra durante una de las crecidas del rió y pudo observar el movimiento de las arenas del fondo. Por eso no dudó en bajar las cimentaciones a gran profundidad por debajo del lecho del río. Los dos pilares situados en el río se hundieron por medio de aire comprimido hasta profundidades de 26 y 28 m bajo el nivel del agua, lo que constituyó un éxito notable ya que los efectos fisiológicos al trabajar bajo elevadas presiones de aire eran más o menos desconocidos por aquel tiempo. Los métodos de hundimiento ideados por Eads han variado hasta ahora únicamente en algunos detalles. Daniel E. Moran introdujo en 1936 un nuevo tipo de cajón conocido con el nombre de “cajón de flotación”, siendo empleado para el puente sobre la  bahía de San Francisco-Oakland.

Puente de St. Louis sobre el río Mississippi (James B. Eads, 1864-1874)
Puente de Brooklyn, Nueva York (John Augustus Roebling, 1867-1883)
Puente de Brooklyn, Nueva York (John Augustus Roebling, 1867-1883)

En Estados Unidos el ejemplo más llamativo en el uso de cajones de aire comprimido es el puente de Brooklyn. Se trata de cajones de 52 por 31 m, en el lado de Nueva York, que se dividieron en seis habitaciones donde trabajaban entre 15 y 20 personas en cada una de ellas –hasta 180 personas en su interior- y lo bajaron cerca de 24 metros bajo las aguas del East River. Hubieron grandes problemas y accidentes con las descompresiones, donde la mitad de los trabajadores sufrieron graves secuelas, y donde el propio Washington Roebling,  ingeniero jefe tras la muerte de su padre John A. Roebling, diseñador del puente, sufrió también las secuelas tras una visita de obra.

El procedimiento constructivo consiste en la hinca de un cajón con su borde inferior biselado o con forma de cuchilla que se va construyendo a medida que progresa la excavación del material que va quedando encerrado en su interior. Cuando se alcanza el lecho de roca, la cámara de trabajo se llena de hormigón y se convierte en la base permanente para la cimentación.  Su uso se limita a terrenos muy permeables o flojos debido al posible sifonamiento, cuando no sea posible el uso de un método alternativo. Antes de iniciar el proceso constructivo se hunde como un cajón abierto, tan profundo como sea posible. Mediante la inyección de aire comprimido se evita el desmoronamiento de las paredes.

El cajón de aire comprimido suele tener un cilindro de acceso para los trabajadores,  y otro cilindro independiente para los cangilones donde se coloca el material excavado. Hay unas compuertas herméticas que permiten mantener constante la presión de la campana durante la entrada y la salida de trabajadores y materiales. La presión debe equilibrarse en ambos lados de la compuerta para poder abrirla.

Mediante este método se pueden llegar a estratos de hasta 35 m de profundidad bajo el nivel del agua (pues los hombres on pueden trabajar a presiones de aire superiores a los 3,5 kg/cm2), no es necesario el agotamiento, es posible el acceso directo al fondo para vencer ciertos obstáculos durante el proceso de hinca y el fondo, una vez alcanzado, se puede observar y limpiar directamente, por lo que se garantiza unas condiciones buenas de cimentación. Sin embargo, entre los inconvenientes de este tipo de técnica destacan los siguientes: costes unitarios por material excavado altos y primas por peligrosidad a los trabajadores, pues se puede producir la muerte de los trabajadores por asfixia si hay una descompresión rápida de la cámara de trabajo. Ello obliga a duplicar las fuentes de energía para mantener la seguridad en la presión de aire.

Referencias:

Marsal, R.; Lloréns, M. (1980). Cimentaciones semiprofundas, en Jiménez-Salas, J.A. (Ed.) Geotecnia y Cimientos III: 212-251. Editorial Rueda, Madrid.

Presa, J.; Eraso, A. (1970). Las cimentaciones realizadas con cajones de aire comprimido. Una técnica en trance de desaparecer. Revista de Obras Públicas, 117(3064):855-862.

Tomlinson, M.J. (1982). Diseño y construcción de cimientos. Urmo, S.A. de Ediciones, Bilbao.

Willson, W.S.; Sully, F.W. (1949). Compressed-air caisson foundations. Inst. C.E. Works Comstruction Paper núm. 13.

Yepes, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Sistema «lift-slab», precursor de los forjados postesados

Técnica “lift-slab”. www.joostdevree.nl

Las losas de hormigón postesado en edificación pueden encontrarse ya en el año 1955 en los Estados Unidos, cuando apareció un sistema de construcción denominado «lift-slab», patentado por Tom Slick, que consistía en hormigonar las losas en la planta baja de forma que sirvieran de encofrado para las otras, y elevarlas hasta su posición definitiva tras sucesivas operaciones de izado. En pocos años, entre los años 50 y 60, los constructores emplearon este método constructivo, que se hizo con una parte muy importante del mercado de la edificación americano.

Inicialmente, las losas eran de hormigón armado, lo que generaba dos problemas básicos:
— Las losas tendían a pegarse las unas con las otras en el momento del izado y se fisuraban debido al peso propio añadido al tratar de despegarlas.
— En vanos de 8,5 a 9 m los espesores de las losas oscilaban entre 20 y 25 cm., por lo que las deformaciones eran un problema considerable.

Los ingenieros que trabajaban con este método constructivo tenían conocimiento del pretensado y del modo como podía evitar las deformaciones. En estas primeras realizaciones el postesado empezó a solucionar los problemas del aligeramiento del peso para reducir flechas y la fisuración. La técnica del postesado ya se utilizaba por aquellos años en Europa en puentes y otras tipologías constructivas.

Los sistemas más conocidos de izado de forjados son el Jack Block en el que los gatos están situados en la parte inferior y el Lift-Slab en el que los gatos se colocan sobre los pilares. En el caso del Lift-Slab los forjados se construyen unos sobre otros, eliminándose así todo encofrado, interponiéndose entre dos consecutivos unas láminas de separación. Este procedimiento permite ejecutar los forjados en óptimas condiciones, sobre un plano horizontal, sin puntales ni encofrados, a cambio de una elevación cuidadosa de cada una de las placas y la ejecución de las uniones de elementos ya terminados, donde a veces es difícil establecer la continuidad.

Os dejo a continuación un vídeo donde podemos ver los principios básicos de este procedimiento constructivo. Espero que os guste.

Aquí puedes ver una animación al respecto:

Cimentaciones mediante cajones indios

Esquema de cajón abierto

Las cimentaciones con cajones abiertos, o cajones indios, se definen como aquellas realizadas a base de cajones abiertos por arriba y sin fondo, con su borde inferior biselado o con forma de cuchilla que se van hincando en el terreno por su propio peso o mediante lastre, a medida que se excava en su interior, mientras se recrecen sus paredes. Este proceso continúa hasta alcanzar la profundidad deseada. El cajón se fabrica total o parcialmente en su altura total a nivel del suelo. La sección de estos cajones es rectangular o circular. Este procedimiento es factible en terrenos blandos, debiendo tener precaución, en el caso de excavar bajo nivel freático, de que no se produzca sifonamiento. En los casos en que sea necesario recurrir a bombas de agotamiento, las alcachofas de las mangueras se sitúan en pequeños pozos practicados en el fondo de la excavación. En el caso de no poder realizarse el agotamiento del agua, entonces se inyectan productos en el terreno para disminuir su permeabilidad.

Cajon indio 1

El rozamiento entre el elemento y el terreno circundante se puede reducir mediante una rendija anular rellena de bentonita, de un ancho entre 5 y 10 cm. Estas fuerzas de rozamiento crecen al incrementarse la profundidad, por lo que habrá que ir incrementando el peso de empuje del cajón. Una vez alcanzada la profundidad prevista, se tapona el fondo de la excavación con hormigón. Durante este proceso a da estar garantizada en todo momento la resistencia frente al empuje hidrostático ascendente.

En el Pliego de Prescripciones Técnicas Generales para Obras de Carreteras y Puentes del año 2000, en su artículo 674, se incluían las cimentaciones por cajones indios de hormigón armado, sin embargo, este artículo quedó suprimido posteriormente.

Cajon indio 3
Construcción de cajón abierto cilíndrico de 24 m de diámetro, con paredes de 1,20 m de espesor

Os dejo un vídeo donde se puede ver el proceso de excavación de un cajón indio hecho con muros de hormigón armado para arqueta. Se hace el muro en superficie y baja por su peso a la vez que se excava.

Aquí os dejo otro vídeo similar.

Referencia:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La viabilidad de la vía en placa en líneas de alta velocidad

Vía en placa de hormigón en Alemania. Fuente: https://es.wikipedia.org/wiki/V%C3%ADa_en_placa#/media/File:Feste_Fahrbahn_FFB%C3%B6gl.jpg
Vía en placa de hormigón en Alemania. Fuente: https://es.wikipedia.org

La concepción de la superestructura del ferrocarril presenta ciertas semejanzas de evolución conceptual e histórica respecto a la de las carreteras. De hecho, el dualismo existente en los firmes de carreteras referido a los firmes flexibles y los rígidos, puede extenderse, de alguna forma, al existente en la tecnología del ferrocarril respecto a la superestructura de vía con balasto o sin él, es decir, con vía en placa. El debate entre el uso del balasto o de la vía en placa es un debate abierto (Puebla et al., 2000), donde los condicionantes técnicos, funcionales y económicos cobran especial importancia, especialmente cuando se refieren a las líneas de alta velocidad.

La superestructura de balasto presenta, sin duda, ventajas importantes como son los costes de construcción menores que las alternativas sin balasto, la posibilidad de modificar la situación de la vía sin causar problemas de explotación, la regulación sencilla de la altura en caso de asientos de terraplenes, una buena amortiguación acústica y una conservación avalada por la experiencia, con medios mecanizados (Estrade, 1991). Países mediterráneos como Francia, Italia o España han sido partidarios del balasto debido, entre otras causas, a la calidad de los yacimientos de rocas silíceas que permiten, según indican Puebla et al. (2000) una adecuada relación comportamiento/coste. Además, como indica Melis (2006a), los grandes descensos de los terraplenes impiden en ocasiones poner vía en placa sobre ellos. Ello supone, de hecho (Melis, 2006b) la práctica eliminación de los terraplenes altos en las líneas de alta velocidad, reduciendo su altura a 9 m y su asiento a 30 mm, bajando rasantes y alargando túneles.

Sin embargo, uno de los problemas más importantes de las líneas de alta velocidad es el mantenimiento de la calidad de la vía sobre balasto. Este hecho se constató ya en la línea del Tokaido, en Japón, en el año 1964, para velocidades máximas de 210 km/h. El mantenimiento de la calidad geométrica de la vía obliga a operaciones mecanizadas de mantenimiento. Esta dificultad, además, suele ser mayor en infraestructuras difíciles como puentes y túneles. Así, ya en 1924 en un túnel japonés se sustituyó el balasto por unos bloques de madera embebidos en hormigón, formando un basamento bajo cada carril para evitar los problemas con los flujos de agua. Por tanto, la necesidad de una alternativa al balasto se reveló como importante, a pesar de que dicha tecnología también presentaba problemas a resolver. Esta necesidad de un sistema de vía distinto al tradicional ya se puso de manifiesto en 1971 en el estudio HSB (ver Escolano, 1998) para velocidades superiores a los 200 km/h. Ello se debe a que el esfuerzo dinámico aumenta con la velocidad del tren y depende de la calidad posicional de la vía. Es por ello que Alemania adoptó la decisión de aplicar este tipo de montaje en todas sus nuevas líneas de alta velocidad. A todo ello habría que añadir el efecto del schotterflug o “vuelo del balasto” arrastrastrado en el caso de trenes circulando a elevada velocidad (Melis, 2006b).

Vista de como se construye la vía, las armaduras posicionan las traviesas y luego serán hormigonadas. Fuente: https://es.wikipedia.org/wiki/V%C3%ADa_en_placa#/media/File:Schwellen_Rheda.jpg
Vista de como se construye la vía, las armaduras posicionan las traviesas y luego serán hormigonadas. Fuente: https://es.wikipedia.org/wiki/V%C3%ADa_en_placa#/media/File:Schwellen_Rheda.jpg

Los elementos constitutivos de la vía en placa lo forma la plataforma, la solera, la placa soporte, la fijación del carril, la soldadura en barra larga y los elementos adicionales. Una ventaja que caracteriza a la vía en placa es que, frente a la rodadura, el sistema presenta una elasticidad y una amortiguación independiente de la climatología, con una alta disponibilidad para el servicio del vial, con un buen comportamiento ante la dinámica de la marcha, y por tanto, y bajo mantenimiento (Escolano, 1998). Además, las proyecciones de balasto quedan descartadas, precisan de una sección menor de los túneles, se adapta mejor al terreno y el comportamiento se garantiza para velocidades menores a 300 km/h (Escolano, 1998). Otro aspecto de gran importancia es, tal y como indica López-Pita (2001), la cuantificación de la rigidez vertical de la vía. Se trata de un indicador clave en los fenómenos de interacción vía-vehículo, y por tanto, en el deterioro de la vía, especialmente importante en las líneas de alta velocidad. En este sentido, López-Pita (2001) indica que la degradación de la capa de balasto por causa de las vibraciones generadas por el material ferroviario, especialmente en líneas de alta velocidad, podría limitarse con el empleo de vía en placas de asiento de elevada elasticidad. En este sentido, Sheng et al. (2004) comentan que la placa en vía puede reducir el nivel de vibración frente al balasto en el caso de presencia de irregularidades verticales. La solución de vía en placa es más cara de construcción, pero más económica en su mantenimiento. Así por ejemplo, Esveld (2001) indica que este coste de mantenimiento puede reducirse hasta un 70-90%. El encarecimiento se debe, fundamentalmente, a los bajos rendimientos. Además, el rectificado y ajustado del posicionamiento del carril se mueve dentro de límites muy estrictos.

Lei y Zhang (2011) presentaron un modelo de análisis dinámico que le permitió desarrollar un nuevo tipo de placa para vía. Poveda et al. (2015) han presentado recientemente un estudio numérico sobre fatiga en el diseño de placas para vía. Parte de estos autores presentaron también un diseño experimental que comprobaba el comportamiento a fatiga de estos elementos (Tarifa et al., 2015). El Ministerio de Fomento (2014), elaboró una monografía sobre la aplicación de los Eurocódigos para el cálculo de puentes de ferrocarril, centrándose en la vía en placa en aquellos aspectos no contradictorios con dichos códigos.

Puebla et al. (2000) indican cuatro grupos de sistemas de vía en placa: construcción en capas, construcción monolítica, construcción por bloques recubiertos de elastómero y sistemas de construcción especiales. En cualquier caso, el problema más importante que afecta a la viabilidad económica de la vía en placa es su materialización, es decir, los costes elevados derivados de su construcción. Las causas del bajo rendimiento y del elevado coste del montaje de vía sobre placa se debe fundamentalmente a dos motivos. El primero al propio montaje de la vía a su posición teórica definitiva, con un elevado grado de precisión y tolerancias muy restrictivas. Así, el hormigonado tradicional permite un rendimiento de 150 a 200 m/día, muy por debajo de los rendimientos en balasto, que pueden ser más de 1000 m/día. Incluso con el método Alemán, que consiste básicamente en introducir un tren de mezcladoras por una vía auxiliar -construida expresamente a tal efecto- y bombear el contenido de forma íntegra, los rendimientos no superan los 175 a 250 m/día. Es evidente que es necesario un salto tecnológico para superar esta barrera en los rendimientos para ser competitivo económicamente frente al balasto.

Os dejo a continuación un vídeo sobre el hormigonado tradicional de la vía en placa. Espero que os guste.

Os dejo también la Guía Técnica de IECA sobre «Vía en placa mediante losa portante de hormigón para ferrocarril». Espero que os sea útil.

Pincha aquí para descargar

Referencias:

  • Escolano, J. (1998). La “vía en placa” en la DB AG. Revista de Obras Públicas, 145(3382):21-34.
  • Estrade, J.M. (1991) La superestructura de vía sin balasto: perspectivas de su aplicación en las nuevas líneas de alta velocidad. Revista de Obras Públicas, 138(3305):9-28.
  • Estrade, J.M. (1998) La superestructura de vía en placa en las nuevas líneas de alta velocidad de nuestro país. Revista de Obras Públicas, 145(3372):63-74.
  • Esveld, C. (2001). Modern railway track. 2nd ed. The Netherlands: Delft University of Technology.
  • Lei, X.; Zhang, B. (2011). Analysis of dynamic behavior for slab track of high-speed railway base don vehicle and track elements. ASCE Journal of Transportation Engineering, 137(4): 227-240.
  • López-Pita, A. (2001). La rigidez vertical de la vía y el deterioro de las líneas de alta velocidad. Revista de Obras Públicas, 148(3415):7-26.
  • Melis, M. (2006a). Terraplenes y balasto en la alta velocidad ferroviaria (primera parte). Revista de Obras Públicas, 153(3464):7-36.
  • Melis, M. (2006b). Terraplenes y balasto en la alta velocidad ferroviaria. Segunda parte: Los trazados de Alta velocidad en otros países. Revista de Obras Públicas, 153(3468):7-26.
  • Ministerio de Fomento (2014). Documentos complementarios no contradictorios para la aplicación de los Eurocódigos para el cálculo de puentes de ferrocarril. Centro de Publicaciones, 211 pp.
  • Poveda, E.; Yu, R.C.; Lancha, J.C.; Ruíz, G. (2015). A numerical study on the fatigue life design of concrete slabs for railway tracks. Engineering Structures, 100:455-467.
  • Puebla, J.; Fernández, A.; Gilaberte, M.; Hernández, S.; Ruíz, A. (2000). Para altas velocidades ¿Vía con o sin balasto? Revista de Obras Públicas, 147(3401): 29-40.
  • Sheng, X.; Jones, C; Thompson, D. (2004). A theoretical model for ground vibration from trains generated by vertical track irregularities. Journal of Sound and Vibration, 272(3–5):937–65.
  • Tarifa, M.; Zhang, X.; Ruíz, G.; Poveda, E. (2015). Full-scale fatigue tests of precast reinforced concrete slabs for railway tracks. Engineering Structures, 100: 610-621.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Desarrollo y evaluación de la competencia transversal “pensamiento crítico” en el grado de ingeniería civil

Viaducto sobre el río Deba. Fuente: http://www.ideam.es/
Viaducto sobre el río Deba. Fuente: http://www.ideam.es/

Resumen: La comunicación presenta una metodología para el desarrollo y evaluación de la competencia transversal “pensamiento crítico” en el grado de ingeniería civil, en el ámbito de la asignatura “Procedimientos de Construcción II” de segundo curso. Se presenta una actividad de trabajo individual y en grupo basada en la discusión del procedimiento constructivo de un puente y de sus cimentaciones. Dicha actividad permite la evaluación de la competencia de “pensamiento crítico” basada en una rúbrica, así como la evaluación de competencias específicas de la asignatura. Se ha realizado un análisis estadístico, de correlación y de regresión lineal múltiple de las calificaciones obtenidas en la actividad y en la prueba de evaluación continua individual. Los resultados muestran como casi tres cuartas partes de los alumnos han alcanzado suficientemente la competencia. Sin embargo, también se evidencia cierta desconexión entre los resultados relativos a las competencias específicas y los relativos a la competencia transversal. Estas evidencias manifiestan que la adquisición de la competencia transversal del pensamiento crítico se ve favorecida por los trabajos de discusión en grupo. No obstante, la adquisición de competencias específicas por parte de los alumnos requiere no sólo de trabajos en grupo, sino también de trabajos individuales.

Palabras clave: competencias transversales, pensamiento crítico, ingeniería civil, grado, análisis multivariante

Referencia: YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2016). Desarrollo y evaluación de la competencia transversal “pensamiento crítico” en el grado de ingeniería civil. Congreso Nacional de Innovación Educativa y de Docencia en Red IN-RED 2016, Universitat Politècnica de València, 7 y 8 de julio, 14 pp.

Cm06VP_WgAAyEsf

Pincha aquí para descargar

Muros de tierra mecánicamente estabilizada: Tierra Armada®

Figura 1. Muro de Tierra Armada®. Fuente: http://www.tierra-armada.cl/sistema.html
Figura 1. Muro de Tierra Armada®. Fuente: http://www.tierra-armada.cl/sistema.html

La técnica de construcción de muros altos con problemas de cimentación en espacios abiertos, denominada Tierra Armada®, fue patentada por el francés Henri Vidal. Consiste en colocar de forma ordenada bandas de acero de refuerzo en un terraplén, en planos horizontales, que se unen a unas placas prefabricadas que conforman el paramento del muro. Las bandas o armaduras suelen ser de chapa metálica de varios metros de longitud (aproximadamente un 80 % de la altura del muro), con un ancho de entre 2 y 12 cm y un espesor de entre 3 y 5 mm (ver Figura 2). El relleno debe ser granular para garantizar el rozamiento con las armaduras. Con esta técnica se consiguen muros verticales de hasta 25 o 30 m de altura.

Figura 2. Detalle de las bandas y la placa de un muro de Tierra Armada®. http://www.tierra-armada.com/
Figura 2. Detalle de las bandas y la placa de un muro de Tierra Armada®. http://www.tierra-armada.com/

La tierra armada debe su resistencia interna al refuerzo, pero externamente actúa como una estructura masiva de gravedad. Permite la construcción de muros en suelos con poca capacidad portante, tolera asientos diferenciales y puede demolerse o repararse fácilmente. Además de una ejecución rápida y un coste competitivo, las placas prefabricadas son de calidad y pueden utilizarse como elementos decorativos. Sin embargo, hay que asegurarse de usar un relleno de calidad, cuidar la corrosión de las bandas de refuerzo y tener presente que este tipo de muros está sometido a patentes.

A continuación os paso un vídeo (en inglés) de Sand Castle Holds Up A Car! – Mechanically Stabilized Earth dedicado a los suelos reforzados o estabilizados mecánicamente. Resulta muy interesante la prueba que hacen de resistencia.

Referencia:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Curso:

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.