Planificación y programación del mantenimiento

La planificación y programación del mantenimiento de una máquina depende del tamaño de la empresa, de la complejidad de los equipos, del número de máquinas iguales, de la naturaleza de las operaciones, del coste de las paradas, etc. Siempre es necesario un procedimiento que evite, o al menos reduzca, las averías, detecte y diagnostique los defectos y repare o corrija los efectos del uso, sin que en ningún momento se sobrepasen los presupuestos económicos de la empresa.

No existe una clasificación rígida de los sistemas de mantenimiento, por lo que cada empresa debe elegir el más adecuado para cada tipo de máquina. En algunas máquinas es necesario un sistema preventivo avanzado, mientras que en otras se les permite funcionar hasta que se produzca una avería y se detengan de forma forzosa. No es admisible que una misma máquina participe en dos sistemas diferentes. Las políticas de mantenimiento pueden clasificarse de la siguiente forma:

  • Corrección por avería: Consiste en dejar los equipos en servicio hasta que aparezca un fallo, subsanándose la avería lo antes posible. Ello no implica dejar de lado el entretenimiento del primer escalón. Este sistema se utiliza en pequeñas empresas en las que no es justificable tener una plantilla para estas tareas, por lo que se acude a especialistas externos para las reparaciones. A pesar de la aparente economía de este procedimiento, solo se justifica en contadas ocasiones, o cuando se cuenta con muchas máquinas iguales y de capacidad holgada. El problema económico que provoca la paralización súbita e inesperada de una máquina es que puede dejar fuera de producción a otros equipos que dependen de ella.
  • Mantenimiento rutinario:Se dan unas instrucciones generales para el entretenimiento de grupos homogéneos de máquinas para evitar los fallos. La frecuencia de las tareas suele depender de la experiencia y el buen sentido del responsable de mantenimiento. Estas revisiones suelen incluir engrases, pruebas, inspecciones y ajustes. Se trata de un sistema de bajo coste, dada su simplicidad, que puede resolver numerosas averías antes de que se produzcan.
  • Mantenimiento preventivo planificado: Se establecen ciclos de revisiones y sustituciones de los órganos más importantes de la maquinaria en función de las instrucciones del fabricante, del tipo de utilización, del emplazamiento de la obra, etc. Este método permite llevar un registro de averías, frecuencias, piezas dañadas, etc., que proporciona información sobre la esperanza de vida de los elementos en funcionamiento. Cuando llega el momento previsto, se sustituye la pieza o el conjunto, aun cuando estén en buenas condiciones de funcionamiento. La programación de las tareas se realiza según el “método de la pieza crítica”. El elemento que presenta menor esperanza de vida establece la cadencia temporal de la sustitución del resto de las piezas.

 

   Sistema de actuación    Objeto    Actuaciones

    Revisiones normales

Facilitan el conocimiento de la situación de los diferentes elementos de la máquina

A través de controles espectrofotométricos de desgaste periódicos

Mediante inspecciones visuales punto por punto desde los conjuntos complejos a los elementos simples de cada uno

Atendiendo a las informaciones del propio operador

    Revisiones especiales

 

Encaminadas a detectar la proximidad de la avería, tratando de evitarla

Chequeos: revisiones normales más profundas de los distintos órganos

Comprobaciones: comparando los datos obtenidos mediante los útiles de diagnóstico con los parámetros de la máquina e interpretando los valores resultantes

Tabla: Sistema de actuación en el mantenimiento preventivo.

El mantenimiento preventivo es más caro a corto plazo, pero permite programar los tiempos de fuera de servicio y evitar fallos catastróficos, con lo que aumenta la eficacia del servicio. Por el contrario, la corrección de averías resulta más cara a medio y largo plazo, ya que no permite programar a priori los tiempos de parada, lo que aumenta la probabilidad de que se produzcan fallos graves y disminuye la eficacia del servicio de reparación.

El mantenimiento preventivo permite conocer el desgaste de la máquina y repara antes de que se produzca una avería importante y, por tanto, costosa. Por tanto, reparar antes de que se produzca la avería es:

a)      Más rápido: averías de menor gravedad, ahorro de tiempo de reparación, posibilidad de programar la reparación, menor trastorno a la situación de trabajo de la máquina.

b)      Más económico: tiempo de reparación más corto, ahorro en mano de obra y en número de piezas a sustituir.

Sin embargo, aunque se detecte la avería con la mayor anticipación posible, no se remedian las causas que la ocasionan. Lo adecuado es tener en cuenta el mantenimiento desde el diseño o la adquisición de las máquinas e instalaciones. Los fabricantes pueden actuar en el diseño de sus productos para que estos sean robustos y, por tanto, se reduzcan al mínimo las tareas y los costes de mantenimiento.

La gestión del mantenimiento llevada a sus últimas consecuencias se plasma en el llamado mantenimiento productivo total (TPM). El TPM se diseña para maximizar la eficacia del equipo (mejorar la eficiencia global) estableciendo un sistema de mantenimiento productivo de alcance amplio que cubre la vida entera del equipo, conectando todas las áreas relacionadas con el equipo (planificación, producción, mantenimiento, etc.) con la participación de todos los empleados empezando por la alta dirección hasta llegar a los operarios, para promover el mantenimiento productivo mediante la “gestión de la motivación”, o actividades de pequeños grupos voluntarios. Es una filosofía que prioriza la gestión dirigida a los equipos. Se basa en un trabajo de adiestramiento eficaz que forme a tantos trabajadores como sea posible en los fundamentos y componentes clave del equipo que utilizan. Adopta un enfoque de medio y largo plazo y, para lograr los resultados que pretende, trabaja coordinadamente con otros departamentos de la empresa y de la dirección.

A continuación podemos ver una presentación sobre el mantenimiento productivo total.

Referencias:

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Grúa torre trepadora

Las nuevas tecnologías han servido para facilitar la labor docente en la asignatura de “Procedimientos de construcción”. Aún recuerdo cuando, en los años 80, nuestro profesor Hermelando Corbí nos enseñaba catálogos de máquinas y, con un proyector de opacos, intentaba explicarnos el funcionamiento de algún medio auxiliar. Era una tarea algo complicada, ya que se trataba de explicar la obra en las cuatro paredes del aula. El PowerPoint, los vídeos o las animaciones en 3D han provocado tirar a la basura kilos de transparencias que, hasta hace apenas 10 años, utilizábamos habitualmente para exponer nuestras clases.

Hoy en día, las nuevas tecnologías pueden traer las obras no solo a clase, sino también a casa de cada uno de nuestros futuros ingenieros. Como ejemplo, quería mostraros un vídeo sobre el proceso de trepa de una grúa torre, que es difícil de explicar en la pizarra o con transparencias.

La grúa torre trepadora constituye un medio auxiliar para el izado de cargas que se instala sobre la estructura de una obra en construcción y se desplaza de abajo hacia arriba por sus propios medios a medida que avanza la construcción. Os paso un par de vídeos que espero que os gusten, y también la referencia del libro de apuntes que usamos en clase.

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La estabilización de suelos

Figura 1. Suelo mejorado con cemento. https://www.360enconcreto.com/blog/detalle/caracteristicas-del-suelo-cemento-que-y-para-que

No siempre es posible encontrar el suelo adecuado que garantice la estabilidad y durabilidad de una explanada. Si a esto se suma la creciente importancia medioambiental y la presión social por minimizar la apertura de nuevos préstamos y vertederos necesarios para el movimiento de tierras de una infraestructura, queda claro que hay que hacer un esfuerzo para utilizar materiales calificados como tolerables, marginales e incluso inadecuados. La estabilización permite reemplazar un suelo de baja calidad por otro estabilizado y mejorado. Se trata de una de las técnicas más antiguas y utilizadas en bases y subbases para uso vial. No obstante, el espesor de la capa de suelo a tratar es relativamente pequeño, por lo que algunos autores no la consideran una técnica de mejora de terrenos.

La estabilización de un suelo mejora o controla su estabilidad volumétrica, aumenta su resistencia y el módulo esfuerzo-deformación, mejora su permeabilidad y durabilidad y reduce su susceptibilidad al agua. Para evaluar el rendimiento de esta técnica, son necesarios ensayos de laboratorio y pruebas de campo. De este modo, se aprovechan los suelos de baja calidad, se evita su extracción y transporte a vertedero, aumenta su resistencia a la erosión, a las heladas y a otros agentes climáticos, se puede circular por terrenos impracticables y se obtiene una plataforma estable de apoyo del firme de infraestructuras lineales que colabore estructuralmente con este.

Figura 2. Maquinaria para la estabilización de suelos. Fuente: M. López-Bachiller

La compactación y el drenaje del agua son los métodos más sencillos de estabilización. También es posible mezclar dos o más suelos para obtener uno de mejor granulometría, plasticidad o grado de permeabilidad. Además, se puede lograr mediante aditivos que actúan física o químicamente sobre las propiedades del suelo. Los más utilizados son el cemento y la cal, pero también se usan cenizas volantes, escorias granuladas, puzolanas, ligantes hidrocarbonados fluidos, cloruro cálcico, cloruro potásico, etc. Por tanto, la estabilización puede ser mecánica o química.

La estabilización mecánica se emplea en las explanadas de carreteras mediante compactación o por mezcla del suelo existente con otro de aportación. Por ejemplo, en presencia de un suelo granular sin finos se agregaría otro con finos y cierta plasticidad para conseguir una mezcla de mayor cohesión más fácil de compactar y menos permeable.

El tipo de suelo, el porcentaje de aditivo y la ejecución de la mezcla influyen en el grado de estabilización química. Se denominan suelos mejorados cuando se añaden pequeñas cantidades de aditivo para mejorar ligeramente el suelo. No obstante, ciertos suelos de buena granulometría y pequeña plasticidad mejoran considerablemente con porcentajes mínimos de aditivo.

La estabilización química puede realizarse “in situ” o bien realizarse la mezcla en central. Asimismo, en función de la profundidad del tratamiento, la estabilización puede considerarse como un método de mezcla profunda (“deep mixing method”) o una estabilización en masa (“mass stabilization”). La mezcla profunda de suelos podría clasificarse también como una técnica de mejora por inclusiones rígidas. También podrían incluirse aquí las mezclas de suelos realizadas mediante inyecciones o mediante jet grouting. Igualmente es posible dividir la estabilización de suelos en técnicas de mezcla húmeda (“wet soil mixing”), por ejemplo, en el caso de lechadas de cemento, y mezcla seca (“dry soil mixing”), como es el caso de las mezclas con cal y cemento.

Os dejo un enlace al “Manual de estabilización de suelos con cemento o cal” que creo os puede ser de ayuda. También os aconsejo acudir a la página web de ANTER (Asociación Nacional Técnica de Suelos y Reciclado de Firmes).

Aquí os he grabado un pequeño vídeo introductorio a esta técnica.

Asimismo, os dejo algunos vídeos al respecto para que veáis el procedimiento constructivo. Espero que os gusten.

Referencias:

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Cursos:

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Compactación dinámica

Figura 1. Compactación dinámica. https://civildigital.com/ground-improvement-techniques-complete-list-of-methods-classifications/

La compactación dinámica (“dynamic compaction”, DC) es una técnica que mejora la capacidad portante de los suelos mediante al dejar caer una masa desde cierta altura. El nombre de compactación dinámica no refleja con exactitud los procesos reales de carga y transmisión de energía, por lo que también suele llamarse compactación dinámica profunda (“deep dynamic compaction”). Uno de los mitos de la compactación dinámica es que se trata de un tratamiento superficial del suelo, ya que las cargas se aplican en la superficie. Sin embargo, a diferencia de la compactación superficial, es un proceso de densificación que llega a profundidades de entre 3 y 4 metros. Tras el impacto, se crean cráteres de hasta dos metros de profundidad, que deben rellenarse y compactarse. La densificación en profundidad se produce como resultado de la energía de las ondas dinámicas que se transmite a través del suelo. Este tratamiento se aplica en edificios industriales, plataformas portuarias y aeroportuarias, terraplenes viarios y ferroviarios, etc. Además, es idóneo para obras extensas, con rendimientos de más de 10000 m2 por mes.

La técnica de dejar caer grandes masas sobre la superficie del suelo para mejorarla en profundidad se viene empleando desde hace tiempo. Menard y Broise (1976) hacen referencia a dibujos muy antiguos que sugieren que esta técnica se utilizaba en China desde hacía siglos. Los romanos también la utilizaron en sus construcciones antes del año 100 a. C. En Estados Unidos se empleó un antiguo cañón para compactar ya en 1871 (Lundwall, 1968). En la antigua Unión Soviética también se compactaron loess con buenos resultados, si bien con pesos y alturas de caída mucho menores que en la actualidad (Faraco, 1980). En los años cuarenta, este procedimiento constructivo se empleó en la construcción de un aeropuerto en China y un área portuaria en Dublín. Sin embargo, la técnica actual se puede fechar en 1970, cuando Louis Menard patentó este método en Francia, favorecido sin duda por la aparición de las gigantescas grúas montadas sobre orugas. En Gran Bretaña y en Estados Unidos se empezó a utilizar en los años 1973 y 1975, respectivamente.

Hoy en día, es habitual el uso de pesos que oscilan entre 1 y 30 t, con alturas de caída de entre 10 y 30 m, a veces más. Los pesos son de acero para soportar las fuerzas dinámicas repetitivas. Normalmente, se utiliza una grúa para dejar caer el peso, aunque también existen equipos especiales. Las grúas deben permanecer en buenas condiciones, ya que no están diseñadas para cargas dinámicas repetitivas.

Figura 2. Esquema de la ejecución de la compactación dinámica. Cortesía de Menard

Este tipo de tratamiento depende de las características del suelo y de la energía utilizada. En principio, se puede utilizar en suelos granulares, tanto saturados como no saturados. También ofrece buenos resultados en rellenos artificiales heterogéneos, que difícilmente se mejorarían con otros procedimientos. La mejora se traduce en un aumento de la capacidad portante y una reducción de los asientos, incluidos los diferenciales. Es un método muy adaptado y empleado para prevenir la licuefacción de suelos. La compactación dinámica permite incluso cimentar con zapatas convencionales, ya que proporciona una capacidad portante al suelo de entre 100 y 150 kPa. Además, es una solución económica en comparación con la excavación y sustitución del suelo, la precarga o las inyecciones. Los costes son aproximadamente de 2/3 respecto a las columnas de grava, con un ahorro de hasta el 50 % en comparación con la compactación profunda. Se pueden conseguir rendimientos de 300 a 600 m2/día (García Valcarce et al., 2003).

La compactación dinámica se utiliza para densificar suelos flojos, saturados y sin cohesión, y así se reduce el riesgo de licuefacción del terreno. En este sentido, el proceso de densificación es similar al de la vibrocompactación. Es una de las mejores alternativas para densificar rellenos heterogéneos y escombros, que podrían causar problemas a otras técnicas como las columnas de grava o las inclusiones rígidas. También se podría emplear en suelos finos cohesivos, pero el éxito en este caso es más dudoso y es necesario prestar atención a la generación y disipación de las presiones intersticiales. En ocasiones, esta técnica se emplea conjuntamente con las columnas de grava para facilitar la disipación de las presiones intersticiales (Bayuk y Walker, 1994).

Los patrones de caída suelen consistir en cuadrículas primarias y secundarias (y ocasionalmente terciarias), como las que se muestran en la Figura 3. El espaciamiento entre puntos de impacto oscila entre 2 y 3 m en el caso de las mazas pequeñas y supera los 10 m en el de las mazas pesadas. Una vez que la profundidad del cráter alcanza aproximadamente 1 m, se rellena con material granular antes de proceder a nuevas caídas en ese lugar.

Figura 3. Fases en la compactación dinámica. Cortesía de Menard

El tratamiento se da en varias pasadas y la profundidad alcanzada por la densificación se puede relacionar con la energía del golpe mediante la siguiente fórmula empírica (Mayne et al., 1984):

donde:

M = masa de la maza (toneladas)

H = altura de caída (metros)

D = profundidad efectiva de la compactación (metros)

k = factor empírico que depende del tipo de suelo y de las características del tratamiento, que varía entre 0,35 (arenas limosas y limos con IP=10%) y 0,6 (gravas y arenas limpias), aunque un valor usual puede ser 0,5.

Teniendo en cuenta lo anterior, y conociendo las capacidades máximas de las grúas normalmente disponibles (H=30 m, M=20 t), la profundidad efectiva máxima varía entre 7 y 12 m, aproximadamente (Armijo y Blanco, 2017). No obstante, se pueden alcanzar profundidades de tratamiento de hasta 30 m (García Valcarce et al., 2003).

Durante la compactación existe un efecto instantáneo al reducirse el índice de huecos tras el impacto, y un efecto diferido en el caso de suelos saturados al disiparse la sobrepresión intersticial y reestructurarse el material a un estado más denso.

Con todo, la compactación dinámica presenta algunos inconvenientes. En efecto, se necesita una superficie mínima de 15000 m2 para garantizar cierta rentabilidad económica y, además, se debe dejar una distancia mínima de 20 a 30 m a las estructuras próximas para evitar daños (García Valcarce et al., 2003).

El procedimiento de cómo se realiza la compactación dinámica está ampliamente descrito en el trabajo de Liausu (1984).

He grabado un pequeño vídeo explicativo de esta técnica de mejora de terrenos.

A continuación tenéis un folleto explicativo de Menard.

Pincha aquí para descargar

Os dejo un vídeo explicativo del procedimiento constructivo que espero que os sea de interés.

Referencias

  • Armijo, G.; Blanco, M.A. (2017). Diseño y verificación del tratamiento de mejora del terreno mediante compactación dinámica. Aplicación a un caso real. https://www.interempresas.net/ObrasPublicas/Articulos/195230-Diseno-verificacion-tratamiento-mejora-terreno-mediante-compactacion-dinamica-Aplicacion.html
  • Bayuk, A.A.; Walker, A.D. (1994). «Dynamic Compaction. Two Case Histories Utilizing Innovative Techniques.» In-Situ Deep Soil Improvement, ASCE, Geotechnical Special Publication No.45.
  • Faraco, C. (1980). “Mejora del terreno de cimentación”, en Jiménez Salas (coord.) Geotecnia y Cimientos III, primera parte, pp. 489-531.
  • Findlay, J.D.; Sherwood, D.E. (1986).”Improvement of a hydraulic fill site in Bahrain using modified heavy tamping methods” Building on Marginal & Derelict Land., May 7-9.
  • García Valcarce, A. (dir.) (2003). Manual de edificación: mecánica de los terrenos y cimientos. CIE Inversiones Editoriales Dossat-2000 S.L. Madrid, 716 pp.
  • Liausu, P. (1984) Renforcement de Couches de Sol Compressibles par Substitution Dynamique, In-Situ Soil and Rock Reinforcement Conference, Paris.
  • Lundwall, N.B. (1968). The Saint George Temple, in “Temples of the Most High, Bookcraft, Salt Lake City, Chapter 3, p. 78.
  • Mayne, P.W.; Jones, J.S.; Dumas, J.C. (1984). Ground response to dynamic compaction. Journal of Geotechnical Engineering, ASCE, Vol. 110(6), pp. 757-774.
  • Ministerio de Fomento (2002). Guía de Cimentaciones. Dirección General de Carreteras.
  • Menard, L.; Broise Y. (1976). “Theoretical and practical aspects of dynamic consolidation”, Ground Treatment by deep compaction, Institution of Civil Engineers, LONDON, pp. 3-18.
  • Skempton, A.W. (1986). Standard Penetration Test Procedures and the Effects in Sand of Overburden Pressure, Relative Density, Particle Size, Ageing and Overconsolidation. Geotechnique, 36, pp. 425-437.
  • Uto, K.; Fuyuki, M. (1981). “Present and Future Trend on Penetration Testing in Japan”, Japanese Soc. SMFE.
  • Varaksin, S. (1981). “Recent development in soil improvement techniques and their practical applications”. Sol. Soils, N.º 38/39.
  • Yepes, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • Yepes, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Cursos:

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Perforación con martillo en fondo

La perforación con martillo en fondo (D.T.H. down the hole), desarrollada por Stenuick en 1951, se basa en que un martillo golpea directamente la boca en el fondo de la perforación. De esta forma se evita la pérdida de energía transmitida por la percusión del pistón a través del varillaje (a partir de 15-20 m, los martillos en cabeza dejan de ser efectivos). Hoy en día se pueden alcanzar profundidades superiores a los 100 m con rendimientos de entre 60 y 100 m/turno. El martillo en el fondo y la boca forman una unidad integrada dentro del barreno. Esto garantiza una velocidad de perforación bastante homogénea a medida que aumenta la profundidad del taladro, aunque es normal que disminuya debido a la reducción de la velocidad de barrido con la profundidad. El accionamiento del pistón se lleva a cabo neumáticamente, mientras que la rotación puede ser neumática o hidráulica.

El martillo DTH consta de un cilindro cuya longitud es función de la carrera del pistón y cuyo diámetro es acorde con el diámetro de perforación. En el extremo de este cilindro se encuentra la boca de perforación, alojada en un portabocas. El varillaje se sustituye por un tubo hueco que conecta el martillo con el equipo y que transmite el par de rotación y la fuerza de avance. Los barrenos perforados con martillo en el fondo presentan mínimas desviaciones y ofrecen buenos resultados en rocas muy fracturadas. El varillaje, compuesto por tubos de igual diámetro en toda su longitud, no tiene acoplamientos que puedan obstruir la perforación. La rotación la realiza un motor neumático o hidráulico montado en el carro, al igual que el sistema de avance. El aire de escape limpia los detritos y los transporta fuera.

Martillo DTH Secoroc COP 64 Gold. www.dthrotarydrilling.com

El campo de aplicación del martillo DTH son las rocas con una resistencia a compresión media-alta (60-100 MPa), para los cuales se utilizan diámetros más frecuentes entre 85 y 200 mm, aunque podrían ampliarse a diámetros mayores entrando en competencia con los sistemas rotopercutivos hidráulicos con martillo en cabeza. La velocidad de penetración de estos martillos, para diámetros entre 105 y 165 mm, es de 0,5 a 0,6 m/min, con presiones de trabajo entre 1800 y 2000 kPa. La frecuencia de golpeo oscila entre 600 y 1600 golpes por minuto. En cuanto al empuje, son necesarios unos 85 kg por cada cm de diámetro. Para hacerse una idea, con diámetros de 125 mm podemos obtener el doble de potencia que con un diámetro de 100 mm, a igualdad de presión y carrera de pistón.

Hoy en día, el sistema DTH, en el rango de 76 a 125 mm, está siendo sustituido por la perforación con martillo hidráulico en cabeza.

Las ventajas de la perforación con martillo DTH frente a otros sistemas son las siguientes:

  • Velocidad de penetración prácticamente constante con el aumento de la profundidad de perforación
  • Salvo en rocas muy abrasivas, desgastes de las bocas menores que con martillo en cabeza
  • Vida más larga de los tubos que de las varillas y manguitos de los martillos en cabeza
  • Desviaciones pequeñas de los barrenos, por lo que son adecuados para profundidades largas
  • Menor energía de impacto y más frecuencia, lo cual es apto para macizos muy fracturados o desfavorables
  • Par y velocidad de rotación menor que otros métodos
  • No necesitan barras de carga, lo cual permite pequeños carros de perforación para barrenos de gran diámetro y profundidad
  • Menor coste por metro lineal que con perforación rotativa en diámetros grandes y rocas muy duras
  • Consumo de aire comprimido más bajo que con martillo en cabeza neumático
  • Nivel de ruido inferior al estar el martillo dentro de la perforación.

En cuanto a los inconvenientes de este sistema:

  • Velocidades de penetración bajas
  • Cada martillo está diseñado para una gama de diámetros muy estrecha que oscila en unos 12 mm
  • El diámetro más pequeño está limitado por las dimensiones del martillo para un rendimiento aceptable (unos 76 mm)
  • El costo de un martillo de fondo es muy elevado frente a la pequeña inversión de un tren de varillaje
  • Riesgo de pérdida del martillo en el interior de la perforación
  • Se necesitan compresores de alta presión con elevados consumos energéticos.

Os dejo a continuación algunos vídeos de este sistema de perforación. En el primero os dejo un Polimedia que espero os sea útil.

En el siguiente vemos una máquina perforadora neumática  Stenuick modelo MD25-60 con motor de rotación Stenuick mod F574, martillo del fondo de 2″, broca de carburo de tungsteno de 2 ¾ » y 3″ y tubos de perforación de 60 mm de diámetro por 2 m.

En este vemos una perforación de anclajes con martillo de fondo para la estabilización de un talud en roca meteorizada de basalto.

En este otro se puede ver una perforación con DTH a través de estructuras geotécnicas para la ejecución de inyecciones de contacto en una estructura subterránea.

 [politube2]65113:450:358[/politube2]

Referencias:

  • DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
  • INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Editorial de la Universitat Politècnica de València. Ref. 530, 165 pp.
  • UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Rio Blast, S.A., Madrid, 206 pp.
  • YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Perforación con martillo en cabeza

Figura 1. Equipo de perforación Simba 7.

La forma habitual de perforación de una roca a rotopercusión es la perforación con martillo en cabeza. El principio de corte se basa en el impacto realizado en el exterior de la perforación por un pistón de acero sobre una barrena o varillaje, que a su vez transmite la energía al fondo del taladro por medio del elemento final (la boca) que fragmenta la roca en esquirlas. Para asegurar una sección circular en el barreno, el útil gira con cada golpe para presentar nueva roca virgen en el fondo del barreno. Además, es preciso evacuar los detritos del barreno (barrido), lo que se consigue insuflando aire al fondo del taladro. Parte de la energía del impacto se pierde en la transmisión y en los cambios de sección del varillaje, por lo que la velocidad de penetración de la perforación disminuirá a medida que se profundice en el barreno. Es un sistema que conceptualmente es similar al barrenado manual, donde un operario golpea con una maza la cabeza de una barrena.

Se pueden distinguir los martillos manuales de las perforadoras de martillo en cabeza propiamente dichas. Los primeros son equipos sencillos, actualmente en desuso, salvo en demoliciones o perforaciones de pequeña sección no mecanizable. Los segundos son equipos pesados que, en consecuencia, precisan de su montaje en chasis especiales.

Las perforadoras con martillo en cabeza pueden accionarse mediante martillos neumáticos y martillos hidráulicos. El desarrollo de los martillos hidráulicos en los años sesenta y comienzos de los setenta supuso un gran avance tecnológico en la perforación de rocas.

Tanto las perforadoras neumáticas como las hidráulicas constan de los siguientes elementos:

  • Un cilindro que con su movimiento alternativo golpea el extremo de una barrena
  • Un mecanismo de rotación incorporado al pistón (barra rifle o rueda trinquete) o independiente de este (motor de rotación)
  • Un sistema que permite el barrido del barreno mediante una aguja de barrido que atraviesa el pistón o bien por medio de la inyección del fluido de barrido lateralmente en la cabeza frontal de la perforadora

 

Perforadoras neumáticas

El accionamiento de estas perforadoras es mediante aire comprimido, con una misma presión tanto para el mecanismo de impacto como para el aire de barrido. Son perforadoras que se han empleado de forma tradicional para barrenos de menos de 150 mm de diámetro. Su peso y tamaño son menores que el de las perforadoras hidráulicas. Presentan un consumo de aire de unos 2,1-2,8 m³/min por cada centímetro de diámetro, la velocidad de rotación es de 40-400 rpm y la carrera del pistón de 35-95 mm.

La rotación del varillaje puede realizarse mediante:

  • Barra estriada o rueda de trinquete: Muy generalizado en perforadoras ligeras
  • Motor independiente: Barrenos de gran diámetro

Las longitudes de perforación con este sistema no superan habitualmente los 30 m debido a las importantes pérdidas de energía ocasionadas por la transmisión de la onda de choque y por las desviaciones de los barrenos. Lo normal es utilizar barrenos cortos, con longitudes de entre 2 y 15 m, y diámetros pequeños, de entre 38 y 100 mm. Además, a medida que aumenta la longitud del barreno, se precisa una mayor presión de aire de barrido.

Entre las ventajas de las perforadoras neumáticas cabe destacar las siguientes:

  • Gran simplicidad
  • Fiabilidad y bajo mantenimiento
  • Facilidad de reparación
  • Precios de adquisición bajos

 

Perforadoras hidráulicas

Estos equipos se introdujeron inicialmente en los trabajos subterráneos, pero poco a poco se están imponiendo también en la perforación en superficie. Estructuralmente, la perforadora hidráulica es similar a la neumática, aunque el accionamiento se realiza mediante un grupo de bombas que suministran un caudal de aceite que impulsa los componentes. Además, estas unidades van equipadas con un compresor cuya función es suministrar aire para barrer los escombros y se puede incrementar la presión del aire con la profundidad del barreno. La presión de trabajo de estos equipos oscila entre 7,5 y 25 MPa, la potencia de impacto entre 6 y 20 kW y la velocidad de rotación entre 0 y 500 rpm. Aquí el consumo relativo de aire comprimido es menor, entre 0,6 y 0,9 m³/min por cada centímetro de diámetro.

Respecto a las perforadoras neumáticas, necesitan una mayor inversión inicial, requieren reparaciones más complejas y costosas y necesitan una mejor organización y formación del personal de mantenimiento. En cambio, las ventajas tecnológicas de las perforadoras hidráulicas son las siguientes:

  • Menor consumo de energía: tres veces menos
  • Menor coste de accesorios de perforación: incremento del 20% de la vida útil del varillaje
  • Mayor capacidad de perforación: velocidades de penetración entre un 50 y un 100% mayores
  • Mejores condiciones ambientales: más limpios y silenciosos
  • Mayor elasticidad en la operación: posibilidad de variar la presión de accionamiento, la energía y la frecuencia de golpeo
  • Mayor facilidad para la automatización: cambio de varillaje, mecanismos antiatranque, etc.
Carro para martillo en fondo semihidráulico AirROC D45 (Atlas Copco)

Os dejo un Polimedia explicativo sobre este sistema de perforación que espero os sea útil.

Referencias:

  • DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
  • INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Editorial de la Universitat Politècnica de València. Ref. 530, 165 pp.
  • UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Rio Blast, S.A., Madrid, 206 pp.
  • YEPES, V. (2022). Maquinaria para sondeos, movimientos de tierras y construcción de firmes. Apuntes de la Universitat Politècnica de València, Ref. 22.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Perforación rotativa con trépanos triturantes o triconos

Tricono de dientes para formación blanda. Wikipedia

Trépano es la herramienta de corte localizado en el extremo inferior de la sarta de perforación que se utiliza para cortar o triturar la formación durante el proceso de la perforación rotatoria. Actualmente los trépanos más utilizados son los trépanos triturantes o triconos. Esta herramienta se creó en 1910, pero no fue hasta que se perfeccionaron los equipos de rotación en la década de los sesenta cuando su uso se popularizó. Al principio, este tipo de perforación se utilizaba solo en rocas blandas o de poca resistencia, pero actualmente estos sistemas ya son competitivos en rocas duras. Con este sistema de perforación se alcanzan buenos rendimientos, de entre 60 y 100 m por turno, en profundidades de hasta 200 m. Se utiliza en ingeniería civil con diámetros de entre 100 y 300 mm. Sin embargo, estos límites se superan en perforaciones petrolíferas, donde en España se han superado los 4500 m de profundidad.

El principio de perforación se basa en dos acciones combinadas:

  • Indentación: Los dientes o insertos penetran en la roca debido al empuje sobre la boca. Este mecanismo tritura la roca.
  • Corte: La roca se fragmenta debido al movimiento lateral de desgarre de los conos al girar sobre el fondo del barreno.

 

La fuerza de avance se produce al introducir los botones del tricono en la roca. Este empuje se transmite al varillaje mediante una cadena de accionamiento hidráulico. La magnitud del empuje no debe sobrepasar cierto umbral para evitar que el trépano se agarrote a la roca y se produzcan otros fallos. La limpieza de la perforación se realiza inyectando un fluido, generalmente lodo, aunque en ocasiones se usa agua o aire comprimido, por el interior de la columna de barras hacia el fondo del barreno. Este caudal, aparte de barrer el detritus, permite refrigerar y lubricar los rodamientos del tricono.

La velocidad de penetración de este sistema depende de la dureza o resistencia de la roca y de las variables de operación, que son las siguientes:

  • Velocidad de rotación
  • Fuerza de empuje
  • Diámetro de la perforación
  • Velocidad y caudal del aire de barrido
  • Desgaste de los trépanos

 

Tricono de insertos. https://www.talleresegovia.com

Se pueden distinguir dos tipos de triconos: de dientes y de insertos de carburo de tungsteno. Los triconos de dientes tienen un coste económico menor, aproximadamente una quinta parte menos que los de insertos. Sin embargo, estos últimos presentan claras ventajas:

  • Mantienen la velocidad de penetración durante la vida útil
  • Requieren menos empuje para una determinada velocidad de penetración
  • Necesitan menos par, disminuyendo las tensiones sobre los motores de rotación
  • Reducen las vibraciones, con menos fatiga sobre la perforadora y el varillaje
  • Disminuye el desgaste sobre el estabilizador y la barra
  • Producen menos pérdidas de tiempo por cambio de bocas y menores daños en las roscas.

Un Polimedia explicativo es el siguiente:

Os dejo a continuación algunos vídeos sobre triconos que espero os sean útiles.

Referencias:

  • DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
  • INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
  • UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Rio Blast, S.A., Madrid, 206 pp.
  • YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia, 89 pp.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Draga de succión con cabezal cortador

Figura 1. Draga de succión con cortador

La draga de succión con cabezal cortador, también conocida como cutter suction dredger o simplemente cutter en inglés, es un tipo de draga que tienen un cabezal cortador sumergible, capaces de manejar materiales compactos con una alta producción volumétrica. Gracias a sus equipos de succión, el material se transporta a bordo para su inmediato bombeo. Su campo de aplicación es muy amplio, desde restauración de terrenos a rellenos hidráulicos.

Estas dragas funcionan estacionariamente, pero pueden ser remolcadas sobre pontonas o incluso autopropulsadas (especialmente las más grandes). La combinación de características mecánicas e hidráulicas permite que estas dragas utilicen un dispositivo mecánico para cortar el material y un sistema hidráulico para su transporte y vertido a través de tuberías.

Puede dragar cualquier tipo de material, excepto rocas de elevada dureza. El dragado de bolos y piedra quebrantada en tamaños grandes presenta dificultades, pues el material debe pasar por el cortador y las bombas centrífugas. Además, el dragado de materiales cohesivos como la arcilla puede obstruir y cerrar el cortador, reduciendo drásticamente la producción.

La draga cuenta con un spud en la popa para operar y mantener su posición, así como con dos anclas en la proa. Gracias a las anclas, la embarcación puede realizar movimientos transversales de borneo durante su operación, mientras que el spud de popa le permite avanzar longitudinalmente. Además, el tubo de succión está ubicado en la proa. Muchas dragas están equipadas con una pluma en la proa que les permite mover las anclas de borneo por sí mismas.

Ciclo de trabajo:

  • Navegación hacia el área de operación
  • Fijación de la embarcación (basada en el número de anclas o spuds disponibles)
  • Duración del proceso de carga (que depende del espesor y tipo de terreno)
  • Descarga sobre el gánguil, o bombeo por tubería
  • Desplazamiento de los anclajes o spuds
Figura 2. Ciclo de trabajo de la draga de succión con cortador (Bray et al., 1997)

Una vez que la pontona se ubica en la zona de dragado, las spuds se anclan y, en caso de emplear tubería, se conecta desde la embarcación hasta el punto de descarga. Luego, se hace bajar la cabeza cortadora hasta alcanzar la profundidad deseada, se encienden las bombas de dragado y se activa el motor del cortador. Con materiales blandos, el grosor de corte es igual al diámetro de la cabeza cortadora. No obstante, con rocas y arcillas duras, la profundidad de corte es menor que el diámetro del cabezal. Por lo tanto, en este caso, se suelen dar varias pasadas antes de avanzar el equipo. En general, para completar el proceso de corte, se realiza una última pasada hasta alcanzar la altura del cortador. Una vez terminado el corte de esta sección, se levanta el spud y se desplaza el equipo hacia adelante, repitiendo el proceso.

Las producciones son moderadamente elevadas y están determinadas por la eficiencia de las bombas, la potencia del cortador y la distancia de bombeo. El diámetro de la tubería de succión oscila entre los 150 mm y los 1.100 mm, y el poder de corte de la cabeza cortadora varía entre 15 kW y 4.500 kW. La instalación de una bomba en la escala de la draga mantiene la producción sin variaciones significativas, independientemente de la profundidad. A pesar de que la adquisición de estos equipos requiere una inversión considerable y el costo del personal es medio, la producción elevada reduce el costo unitario de manera significativa.

En cuanto a las ventajas de esta draga, se destacan las siguientes: la capacidad de dragar una amplia variedad de materiales, incluyendo roca, y transportándolos directamente mediante bombeo a las áreas de descarga o restauración. Además, esta draga es efectiva en zonas con un radio de acción limitado, también puede operar en aguas poco profundas, permitiendo nivelar el fondo marino y lograr altos volúmenes de producción. Para los equipos más avanzados, también existe la posibilidad de realizar operaciones de dragado siguiendo un perfil predeterminado.

La draga presenta una serie de desafíos en su funcionamiento. Es muy sensible a las condiciones marítimas debido al uso exclusivo de un spud, lo que provoca una menor precisión del dragado en comparación con sistemas que utilizan anclas. La profundidad máxima de dragado se limita a unos 35 m. Además, el oleaje puede afectar la dilución del material dragado y limitar la profundidad de este proceso. Desde un punto de vista económico, la distancia de transporte del material se ve limitada debido a los elevados costos de desplazamiento de la draga.

Las cabezas cortadoras más empleadas son las de tipo corona, compuestas por un grupo de cuchillas diseñadas especialmente para cortar o romper el fondo marino y dirigir el material hacia la entrada del tubo de succión. Hay tres tipos de cuchillas más comunes:

  1. Cuchilla con hojas de filo plano, ideal para materiales blandos como arena, sedimentos y arcilla.
  2. Cuchilla con hojas de filo aserrado, usadas para materiales consolidados como arcillas duras, arenas densas y, en algunos casos, para trabajar con rocas muy débiles y altamente meteorizadas.
  3. Cuchillas para roca, con hojas diseñadas para mantener el mayor número de dientes en contacto con la capa, independientemente de la profundidad de dragado. La forma de la cuchilla varía en función del material a trabajar y puede ser en forma de trépano para arcillas compactas y rocas débiles, o en forma de pica para rocas de dureza moderada.

La eficacia de las dragas depende de sus características específicas, sin embargo, se pueden establecer unos parámetros mínimos para determinar su viabilidad económica en términos de operación. Para que una draga sea considerada viable, debe tener una profundidad mínima de trabajo de 0,75 m y una profundidad máxima de dragado de 35 m. Además, la anchura máxima de corte debe ser de 175 m, la altura máxima de las olas debe ser de 2 m, la velocidad máxima de la corriente debe ser de 2 nudos, el espesor máximo de la capa de hielo debe ser de 200 mm, el tamaño máximo de la partícula debe ser de 500 mm y la resistencia máxima de compresión del terreno debe ser de 50 MPa.

Es importante tener en cuenta que cuando las operaciones de dragado se realizan en aguas confinadas donde el flujo de agua es insuficiente para el bombeo de la draga, el nivel del agua puede disminuir continuamente, lo que puede causar problemas operacionales y graves impactos ambientales. Es relevante destacar que incluso las dragas más pequeñas son capaces de remover 300 m3/h, lo que demuestra su poder y capacidad de impacto.

Os paso los siguientes vídeos donde se puede ver cómo trabaja esta máquina:

A continuación os paso un vídeo sobre Artemis, la segunda draga de succión cortadora autopropulsada construida para Van Oord en los Países Bajos.

[politube2]65108:450:384[/politube2]

Referencias:

BRAY, R.N.; BATES, A.D.; LAND, J.M. (1997). Dredging: A handbook for engineers. 2nd edition, Willey, 434 pp.

CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J.; MARTÍ, J.V. (2010). Temas de procedimientos de construcción. Equipos de dragado. Editorial de la Universitat Politècnica de València. Ref. 2010.4038.

SANZ, C. (2001). Manual de equipos de dragado. Ed. Carlos López Jimeno. Madrid, 323 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Perforación rotativa de rocas

Figura 1. Trépano tricono típico. Wikipedia

El principio utilizado por las perforadoras rotativas consiste en aplicar energía a la roca haciendo rotar un útil de corte o destroza conjuntamente con la acción de una gran fuerza de empuje. Los diámetros habituales de barreno conseguidos con este tipo de perforadoras oscilan entre 50 y 311 mm, estando los mayores diámetros especialmente indicados para los grandes volúmenes de excavación.

Este sistema consta de una fuente de energía, una columna de barras o tubos individuales o conectados en serie, que transmiten el peso, la rotación y el aire de barrido a una boca con dientes de acero o de insertos de carburo de tungsteno que deben fragmentar la roca. De este modo, se puede distinguir la perforación con tricono (Figura 1) y la perforación con útiles de corte (Figura 2). El primer sistema se aplica a rocas de dureza media a alta y el segundo a rocas blandas.

Figura 2. Trialeta. www.krham.com

La fuente primaria de potencia utilizada por estos equipos puede ser eléctrica o motores diésel, y su aplicación se realiza mediante mecanismos de transmisión mecánicos e hidráulicos. La energía se transmite a través de las barras de perforación, que giran al mismo tiempo que penetra la boca, debido a la intensidad de la fuerza de avance. Prácticamente, casi sin excepciones, esta fuerza de empuje se obtiene a partir de un motor hidráulico. En este tipo de perforación, las pérdidas de energía en las barras y la boca son despreciables, por este motivo, la velocidad de penetración no varía apenas con la longitud del barreno. Para girar las barras y conseguir el par necesario, estas máquinas tienen un sistema de rotación montado habitualmente sobre un bastidor que se desliza a lo largo del mástil de la perforadora. El barrido del detritus de la perforación se realiza con aire comprimido, para lo cual el equipo está dotado de uno o dos compresores ubicados en la sala de máquinas.

El empuje a aplicar dependerá de la resistencia de la roca y del diámetro de la perforación. El mecanismo de empuje está diseñado para aplicar una fuerza del orden del 50% del peso de la máquina, alcanzando los equipos de mayor tamaño un peso de unas 120 toneladas. La rotación la provee un motor eléctrico o hidráulico y se transmite a la herramienta por medio de la columna de barras. Los sistemas de rotación pueden ser los siguientes:

  • Directos
  • De mesa de rotación
  • Falsa barra Kelly
Figura 3. Sistemas de rotación: (a) directo, (b) mesa de rotación y (c) falsa barra Kelly

A su vez, estas perforadoras se pueden montar sobre orugas o sobre neumáticos. La elección de uno u otro depende de las condiciones del terreno y de factores como la maniobrabilidad, la movilidad o la estabilidad de la máquina. El montaje sobre orugas se utiliza preferentemente en las grandes excavaciones a cielo abierto, donde los requerimientos de movilidad son escasos. Su limitación en cuanto a menor velocidad de traslación, 2 a 3 km/h, es poco relevante cuando el equipo permanece durante largos períodos de tiempo operando en un mismo banco o sector de la excavación. En tareas medianas, donde se requiere un desplazamiento más frecuente y ágil del equipo, se prefiere el montaje sobre neumáticos. Estos equipos van montados sobre un camión de dos o tres ejes, los más ligeros, y solo los de mayor tamaño se construyen sobre un chasis de cuatro ejes. Su velocidad media de desplazamiento es de 20 a 30 km/h.

El éxito de la perforación rotativa depende de una serie de factores, unos directamente relacionados con la máquina y otros que son factores externos a la misma. Entre los primeros caben resaltar la magnitud del empuje sobre la roca, la velocidad de rotación, el desgaste de la boca, el diámetro del barreno y el caudal de aire necesario para la evacuación del detritus. Entre los factores que no dependen de la máquina se encuentran las características del macizo rocoso y los rendimientos dependientes del operario.

TIPO DE ROCA

RESISTENCIA A

COMPRESIÓN SIMPLE (MPa)

VELOCIDAD

(rpm)

Muy blandas

< 40

120 – 100

Blandas

40 – 80

100 – 80

Medianas

80 – 120

80 – 60

Duras

120 – 200

60 – 40

Muy duras

> 200

40 – 30

 

En el Polimedia que os presento se resumen las ideas más importantes acerca de la perforación rotativa de roca. Espero que os sea útil.

Os dejo a continuación un pequeño vídeo donde se muestra el funcionamiento del tricono.

Referencias:

  • DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
  • INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Editorial de la Universitat Politècnica de València. Ref. 530, 165 pp.
  • UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Rio Blast, S.A., Madrid, 206 pp.

¿Cuándo hay que comprar o renovar la maquinaria empleada en la construcción?

La adquisición de maquinaria puede motivarse, bien por la implantación de un proceso novedoso, por la mejora de otro ya existente, por el incremento de la capacidad de producción, o simplemente por una sustitución periódica de otra máquina similar que llegó al término de su vida económica. El conocimiento de las causas que provocan la pérdida de valor de las máquinas proporciona las pautas para su renovación, que dependerán, en gran medida, de las disponibilidades y circunstancias de la empresa. El envejecimiento de los equipos, una producción baja o con unos costes elevados y el mercado de maquinaria nueva y usada son algunos de los criterios que deberían guiar a la empresa en la adquisición de una máquina. Además, deben considerarse otros factores como el estado general de la economía, el futuro de la empresa y sus necesidades inmediatas, los objetivos a largo plazo y la selección de los medios adecuados para sus logros. Sin embargo, la realidad es que la necesidad concreta que surge en una obra determinada es la que plantea la adquisición de una nueva máquina.

El problema de la renovación es independiente de la dimensión de las organizaciones. Las pequeñas empresas deben afrontar el reemplazamiento de los equipos con la misma amplitud que las grandes, so pena de soportar serios problemas de descapitalización y de incrementos en los costes de producción. Las opciones a la compra de un equipo nuevo son la gran reparación, el alquiler, el arrendamiento financiero y la compra de máquinas usadas. Siempre que la empresa pueda abordar la adquisición de un nuevo equipo, son los criterios de rentabilidad económica durante la vida útil los que decidirán la opción más adecuada en cada caso. Como variantes a la adquisición de equipos para grandes obras, en ocasiones se compran los equipos para una obra y se venden a terceros cuando se termina, o bien se adquieren con el compromiso de recompra por parte del vendedor. Con ello se evita que estos equipos graven al parque de maquinaria por su falta de empleo. La maquinaria propia representa para la empresa un mayor potencial y prestigio; sin embargo, supone un mayor inmovilizado, el riesgo de paralización si no existe suficiente obra, la necesidad de contar con un parque o servicio de maquinaria y el riesgo de personal excedente cuando se paran las máquinas. Una alternativa puede ser el alquiler.

Para profundizar un poco más en este tema, os paso un vídeo Polimedia sobre el tema. Espero que os guste.

Referencias:

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.