Izado defectuoso de pasarela metálica

Las operaciones de izado de grandes cargas son, en ocasiones, los procedimientos más complicados en determinadas construcciones. En el vídeo que os paso a continuación podemos ver cómo una pasarela metálica de 40 toneladas, valorada en más de un millón de euros, se ha deformado por haber cambiado el sistema de izado previsto en proyecto. En efecto, la estructura se iba a levantar con una única grúa de 500 toneladas, pero en el último momento, se cambió el procedimiento de izado a dos grúas más pequeñas, una de 350 toneladas y otra telescópica. Lo que ocurrió es que la estructura levantada en tándem introdujo esfuerzos no previstos en el proyecto y provocó la deformación del puente. Por cierto, el vídeo se grabó el 21 de febrero de 2013 en Omagh, Irlanda del Norte. Espero que os guste. Agradezco a Enrique Montalar el enlace.

Montaje de vigas artesa en pasos superiores

ala014Las vigas artesa prefabricadas constituyen elementos de sección en forma de U abierta con alas hacia el exterior de la viga. Este tipo de estructuras supuso un salto tecnológico en la prefabricación de los años 80 del siglo XX. Conforman una sección celular cerrada, situada entre la sección en cajón y la doble T. Se emplean para luces de pilas entre 25 y 45 m con vanos simplemente apoyados, llegando hasta los 60 m con vanos en cantilever. Lo habitual es disponer un par de piezas en sección transversal, con separaciones entre 5,5 y 6,5 m, con anchos de tablero entre 11,0 y 14,0 m. Son habituales los cantos de 1/20 de la luz, con cantos típicos entre 0,80 y 2,60 m. También es una sección muy adecuada para tableros de puentes de AVE, con un ancho de tablero de 14,0 m.

ala004

ala009

La maniobra de colocación de este tipo de vigas requiere grúas de gran capacidad de carga y una perfecta coordinación para su puesta en obra. En el vídeo que os presento se puede ver el izado e instalación de una viga artesa típica. Hay que tener en cuenta que los pesos de estas piezas pueden llegar a más de 2300 Kp/m, lo que supone izados del orden de 100 toneladas. En estos casos queda perfectamente justificada la optimización en coste y en peso de las piezas.

 

Referencias:

PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2018). An optimization-LCA of a prestressed concrete precast bridge. Sustainability, 10(3):685. (link)

MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J. (2013). Design of prestressed concrete precast road bridges with hybrid simulated annealing. Engineering Structures48:342-352. DOI:10.1016/j.engstruct.2012.09.014. ISSN: 0141-0296.(link)

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; LUZ, A. (2014). Diseño automático de tableros óptimos de puentes de carretera de vigas artesa prefabricadas mediante algoritmos meméticos híbridos. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 30(3), 145-154. DOI: http://dx.doi.org/10.1016/j.rimni.2013.04.010. (link)

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2015). A memetic algorithm approach to designing of precast-prestressed concrete road bridges with steel fiber-reinforcement. Journal of Structural Engineering ASCE, 141(2): 04014114. DOI:10.1061/(ASCE)ST.1943-541X.0001058 

MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120:231-240. (link)

YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49:123-134. DOI: 10.1016/j.autcon.2014.10.013 (link)

YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; GONZÁLEZ-VIDOSA, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4):738-749. (link)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Manipulación de contenedores en puertos

Figura 1. Contenedores de 40 pies en un buque portacontenedores. Wikipedia

Un contenedor o container (en inglés) es un recipiente de carga para el transporte marítimo o fluvial, transporte terrestre y transporte multimodal. Se trata de unidades estancas que protegen las mercancías de la climatología y que están fabricadas de acuerdo con la normativa ISO (International Standarization Organization), en concreto, ISO-668.

Los muelles de los puertos traen de serie una serie de elementos (infraestructura básica) con los cuales pueden cambiar el tipo de transporte (marítimo-terrestre). Estos elementos no son los más eficientes, así que se recurre al mercado para conseguir una maquinaria especializada y con ello optimizar el tiempo, lo que a la larga supondrá económicamente positivo (a pesar de la gran cantidad que habrá que desembolsar para comprar dichos equipos).

Figura 2. Contenedor de 10 pies. Wikipedia.

Entre los equipos especializados en la manipulación de los contenedores, podemos destacar los siguientes:

  • Grúa pórtico (Gantry crane): Grúa que consta de un puente elevado o pórtico soportado por dos patas a modo de un arco angulado, con capacidad para desplazar los contenedores en los tres sentidos posibles (vertical, horizontal y lateralmente), maniobrando sobre raíles (Rail Gantry Crane o Trastainer) o sobre neumáticos (Rubber Tire Gantry, RTG) en un espacio limitado.
  • Grúa apiladora de alcance (Reacher-staker crane): Permiten alcanzar con contenedores estibas de uno sobre tres y formar bloques de hasta cuatro filas.
  • Grúa de puerto (Quay crane o Portainer): Grúa con la que se introducen los contenedores en un barco portacontenedores.
  • Carretilla pórtico: Carretilla elevadora para la manipulación de los contenedores en las terminales portuarias.
  • Sidelifter: Camión grúa con elevador lateral, utilizado para la carga y descarga de contenedores en vagones de ferrocarril.

Os dejo a continuación algunos vídeos donde podemos ver la manipulación de contenedores por varias de las máquinas mencionadas. Espero que os gusten.

Carretilla portacontenedores:

Grúa portacontenedores:

Referencia:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

Grúa torre trepadora

Las nuevas tecnologías han servido para facilitar la labor docente en la asignatura de “Procedimientos de construcción“. Aún me acuerdo cuando en los años 80 nuestro profesor Hermelando Corbí nos enseñaba catálogos de máquinas y con un proyector de opacos intentaba explicarnos el funcionamiento de algún medio auxiliar. Tarea algo complicada cuando de lo que se trata es explicar la obra en las cuatro paredes del aula. El Power point, los vídeos o las animaciones en 3D han provocado tirar a la basura kilos de transparencias que, hasta hace apenas 10 años, utilizábamos como herramienta habitual en la exposición de nuestras clases.

Hoy día las nuevas tecnologías son capaces de traer las obras no sólo a clase, sino a la casa de todos y cada uno de nuestros futuros ingenieros. Como ejemplo quería mostraros un vídeo sobre el proceso de trepa de una grúa torre, proceso difícil de explicar en la pizarra o con transparencias.

La grúa torre trepadora constituye un medio auxiliar para el izado de cargas que se instala sobre la estructura de una obra en curso de construcción y que se desplaza de abajo hacia arriba por sus propios medios al ritmo y medida que la construcción progresa. Os paso un par de vídeos que espero os gusten y la referencia del libro de apuntes que usamos en clase.

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Grúa derrick

DerrickLa grúa Derrick es una grúa formada por un mástil de estructura de celosía sujeto por vientos, un brazo de la misma estructura unido al mástil por un extremo inferior y sujeto al mismo mediante cables por su extremo superior, un cabrestante situado en el suelo y un cable que se reenvía a través de poleas situadas en el brazo. Sobre este sencillo modelo, existen muchas variaciones, siendo la más corriente la grúa cuya base lleva ruedas y se mueve sobre ellas.

Son máquinas fijas, muy sencillas, poco costosas y de gran capacidad de carga. El tipo más usual consta de un mástil vertical fijo a una plataforma o zócalo situado en posición por medio de dos tornapuntas o tirantes que forman un tetraedro indeformable. Estas grúas se utilizan cuando hay sitio para la colocación de la base. En ella se sitúa un motor, los cabestrantes y los contrapesos. Apoyada en la base se encuentra una pluma que puede girar mediante una rótula o corona giratoria, de la cual penden las cargas.

El inconveniente de la disposición anterior es la limitación a unos 270º del giro del mástil, que no puede tropezar con los tirantes. Este inconveniente se elimina sustituyendo los soportes rígidos por 3 o más cables atirantados en forma de paraguas y haciendo que la pluma tenga una altura inferior a la del mástil.

Existen otras variantes  en la cual es posible el movimiento completo, donde el mástil no es completamente vertical. Es bastante frecuente ver diseños de este tipo incorporados a otros modelos de grúas (móviles o de puerto), con gran capacidad de carga. Pueden elevar cargas de hasta 200 t. y tener alcances de hasta 20 m.

Os paso a continuación un vídeo donde podréis ver en funcionamiento una derrick. Espero que os guste.

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.