Tipos de ensayos de fiabilidad para la distribución exponencial

Figura 1. Los ensayos de fiabilidad permiten estimar el tiempo medio entre fallos de la maquinaria en una obra

En obra pueden estimarse el tiempo medio entre fallos de una máquina mediante los denominados como ensayos de fiabilidad, basándose para ello en la distribución exponencial. Los tipos de ensayos posibles son los siguientes:

  • Ensayos completos: Se realizan hasta el fallo de todas las unidades. 
  • Ensayos censurados: Un ensayo de fiabilidad se llama censurado de orden k si la experiencia se detiene al producirse el fallo k-ésimo. También se llama test limitado por fallos. Puede ser con o sin reemplazamiento de las unidades averiadas. 
  • Ensayos truncados: Un ensayo de fiabilidad se llama truncado cuando la experiencia se detiene al cabo de una cierta duración. También se llama test limitado por tiempo. También pueden ser con o sin reemplazamiento.

La estimación del tiempo medio entre fallos (MTBF) se obtiene repartiendo la duración del ensayo por en número de fallos:

donde

T = tiempo total acumulado del test

r = número de fallos

En los ensayos censurados, si se conoce el valor de q se puede obtener la duración esperada para el ensayo.

  • En ensayo sin reemplazamiento:

  • En ensayo con reemplazamiento:

siendo r el número de fallos y n el de unidades

Asimismo, si se conoce el valor de q se puede obtener el número esperado de fallos en un ensayo trucado de duración T:

  • En ensayo sin reemplazamiento:

  • En ensayo con reemplazamiento:

donde n es el número de unidades ensayadas y T la duración prefijada del ensayo.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Curva de fiabilidad de una máquina

Figura 1. La fiabilidad de la maquinaria garantiza su productividad. Imagen: V. Yepes

En determinadas condiciones, una unidad simple o compuesta puede no completar la misión para la que fue diseñada y, por lo tanto, dar lugar a un fallo. Los mecanismos que llevan al fracaso se deben a deterioros por desgaste, al medio ambiente o al azar. Los fallos pueden clasificarse en dos categorías:

  • Fallo de parada o avería: causa el cese de una función.
  • Fallo de deterioro: afecta a la calidad o causa deterioro funcional. El equipo sigue trabajando, pero las imprecisiones y otros tipos de degradación funcional crean defectos en el producto acabado o afecta a su productividad.

El concepto de fiabilidad está relacionado con los de disponibilidad y mantenimiento. En efecto, las máquinas no son infalibles, por lo que, para aumentar su tiempo disponible en las obras, es necesaria una correcta política de reparación y mantenimiento (Figura 1).

Se define la fiabilidad como la probabilidad de que una unidad funcione satisfactoriamente en un intervalo de tiempo determinado, sin que sufra interrupciones de su trabajo por fallo de alguno de sus componentes, siempre que dicho dispositivo se emplee en condiciones establecidas.

La fiabilidad se relaciona con el promedio de horas entre averías, o tiempo medio entre fallos (TMEF), definiéndose para un equipo reparable como la relación del número de horas trabajadas en un intervalo de tiempo y el número de averías sufridas en ese mismo período.

Los equipos siguen a menudo un modelo de fallo similar. La curva de fiabilidad de una máquina representa la evolución de la tasa de fallos de una máquina a lo largo del tiempo. También recibe el nombre de “curva de la bañera”, por su forma. En dicha curva aparecen tres zonas que se diferencian por la frecuencia de los fallos y su causa (ver Figura 2):

1.- Período de mortalidad infantil o de fallos prematuros. Caracterizada por una tasa de fallos elevada que disminuye rápidamente con el tiempo. Las causas de los fallos normalmente se deben a errores de diseño, de fabricación, de utilización u otras causas identificables, que una vez resueltas no suelen repetirse. Los fallos precoces ocurren durante la fase de rodaje de la máquina.

2.- Período de tasa de fallos constante o vida útil. Los fallos aparecen de forma aleatoria y accidental debido a limitaciones del diseño más los percances causados por el uso o por un mal mantenimiento. Es aconsejable limitar la utilización de las máquinas a este período. Para reducir la cuota de fallos durante la vida útil, se debería rediseñar el equipo.

3.- Período de desgaste. Caracterizado por deterioros crecientes con el tiempo, debidos a la vejez y terminación de la vida útil del equipo. Para reducir la tasa de fallos se requiere el reemplazamiento preventivo de los componentes gastados, antes de un incidente catastrófico, llegando incluso a la renovación completa del equipo.

Figura 2. Curva de fiabilidad de una máquina

Se podría alargar al máximo la vida útil de un equipo:

  1. Mediante un envejecimiento preventivo de las máquinas o sus componentes. Al someter a una unidad a un funcionamiento preliminar se eliminan los fallos prematuros. Constituye la «purga» de un elemento antes de instalarlo en un sistema.
  2. Mediante la sustitución preventiva, reemplazando las unidades o componentes al acabar su vida útil, sin esperar a su avería, evitando que se produzcan fenómenos masivos de mortalidad por envejecimiento.

Cuando la tasa de fallos es constante, la ocurrencia de un fallo es imprevisible, es decir, independiente de la vida acumulada de la unidad. En este caso, el tiempo libre de fallos se distribuye exponencialmente, siendo la fiabilidad únicamente dependiente de la duración de la misión del elemento. Estas hipótesis sustentan el denominado modelo exponencial de la fiabilidad que, si bien no es estrictamente exacto para las máquinas, debido a sus desgastes, es un modelo muy utilizado por su sencillez:

donde

R(t) = Probabilidad de funcionamiento libre de fallos durante un período de tiempo igual o mayor que t.

e = 2.718

t = Un período especificado de funcionamiento libre de fallos.

θ  = Tiempo medio entre fallos o “vida media”.

λ = Tasa de fallos (la inversa de q).

Se comprueba que la vida media es superada solo por el 36,8% de las unidades del mismo tipo en funcionamiento, pues R(1/λ)=0,368.

Una generalización del modelo exponencial es la función de Weibull, para situaciones con tasa de fallo variable, siendo adecuado en fases de fallos precoces y de envejecimiento:

donde

δ = vida mínima (>= 0)

θ = vida característica (> δ)

β = parámetro de forma (> 0)

con frecuencia se toma δ = 0, con lo cual:

β = 1 con una cuota de fallos constante. Si β <1 la tasa de fallos disminuye con el tiempo, correspondiendo con la etapa de mortalidad infantil. Si β >1, la tasa de fallos aumenta con el tiempo, recayendo con el período de desgaste. Para β =3,5 la distribución de Weibull se aproxima mucho a la normal.

Figura 3. Representación de la función de Weibull en función del parámetro de forma

La vida media adquiere con el modelo de Weibull la siguiente expresión:

donde

De la función de distribución de Weibull resulta, por desarrollo matemático, que la tasa de fallos sería:

donde λ(t) indicaría qué porcentaje de unidades sobreviven hasta la duración t, se avería en el intervalo siguiente (t+dt).

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Fiabilidad de los equipos de maquinaria

Se define la fiabilidad como la probabilidad de que una unidad funcione satisfactoriamente en un intervalo de tiempo determinado, sin que se interrumpan sus operaciones por el fallo de alguno de sus componentes, siempre que dicho dispositivo se emplee en las condiciones establecidas.

El concepto de fiabilidad está relacionado con los de disponibilidad y mantenimiento. En efecto, las máquinas no son infalibles, por lo que, para aumentar su tiempo disponible en las obras, es necesaria una correcta política de reparación y mantenimiento.

La fiabilidad de un sistema formado por un conjunto de componentes depende de la fiabilidad de sus partes constitutivas. Para su estudio, consideraremos los sistemas con componentes acoplados en serie y en paralelo.

En el caso de la maquinaria de movimiento de tierras, una cargadora se encontraría en serie respecto a un conjunto de camiones, puesto que si falla la cargadora o el conjunto de los camiones, el equipo se para. En cambio, los camiones se encuentran en paralelo entre ellos, pues aunque falle uno de ellos, el resto del equipo puede seguir funcionando.

Sistemas con componentes acoplados en serie

El fallo de cualquier unidad de un sistema acoplado en serie supone el fracaso del conjunto. Suponiendo que n elementos funcionan con independencia, y la i-ésima componente tiene una fiabilidad Ri(t), entonces la fiabilidad del sistema completo R(t) viene dada por el producto de las fiabilidades.

Consecuencia de la ley del producto es que la fiabilidad de un sistema con componentes acoplados en serie disminuye con rapidez al aumentar su número.

Con probabilidades de fallo muy pequeñas, el producto de las probabilidades es despreciable:

Sistemas con componentes acoplados en paralelo

Un sistema con componentes acoplados en paralelo solo dejará de funcionar si lo hacen todos los elementos que lo componen. Si n unidades que actúan con independencia se conectan en paralelo y la i-ésima componente presenta una fiabilidad Ri(t), la fiabilidad del sistema completo se obtiene de la siguiente forma:

y en cuanto a las probabilidades de fallo:

La ley del producto establece que la probabilidad de fallo de un sistema con componentes acoplados en paralelo disminuye rápidamente al aumentar su número.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Problemas teóricamente sencillos pero que marean a nuestros estudiantes

Cuando llevas casi 28 años impartiendo una asignatura, examen tras examen, llega un momento que te falta cierta imaginación para no repetir los problemas. Con toda la buena intención del mundo, propones un ejercicio que crees sencillo de resolver y luego te das cuenta que es más difícil de lo que habías planeado.

Si analizas las posibles causas te das cuenta que no suele fallar lo que se explica en clase, sino ciertos conceptos muy básicos que deberían haberse adquirido en Bachiller, o incluso en Secundaria. Mi impresión es que algunos estudiantes prefieren aprender un método o forma de solucionar un problema antes de pensar un poco e intentar resolverlo. Voy a poner algún ejemplo de estos problemas, con su solución para que veáis de qué estoy hablando.

Pincha aquí para descargar

Referencias:

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Clasificación de las máquinas empleadas en construcción

Figura 1. Maquinaria de movimiento de tierras: dúmper articulado. Imagen: V. Yepes

La mecanización del trabajo en cualquier obra civil o de edificación es totalmente necesaria desde la perspectiva técnica, económica, humana e incluso jurídica. Las máquinas, que nacieron con el propósito de liberar al hombre de las tareas más penosas, se han convertido en herramientas para producir más, más barato y con mejor calidad. Han permitido abreviar la realización de labores que en otros tiempos parecían imposibles y, por consiguiente, han conseguido acelerar la acción del hombre sobre su entorno más inmediato. La adjudicación de un contrato de obras suele requerir de la empresa constructora la disposición de la maquinaria adecuada que garantice los plazos, las calidades y la seguridad. Además, determinadas unidades de obra no pueden ejecutarse sin el uso de la maquinaria, tales como las inyecciones, el pilotaje, los dragados, cimentaciones por aire comprimido, etc. En otros casos, la fabricación manual de hormigones, compactaciones de tierras, etc., no podría satisfacer las elevadas exigencias de los pliegos de condiciones técnicas vigentes.

La maquinaria ha cambiado rápidamente con las innovaciones tecnológicas. Se ha derivado hacia la especialización, evolucionando unas hacia el gigantismo para obtener grandes producciones, mientras otras se han convertido en diminutas y versátiles. En otros casos se ha buscado la polivalencia del trabajo en equipos pequeños y medianos. Los medios informáticos han auxiliado y mejorado los sistemas de los equipos. La maquinaria va siendo cada vez más fiable, segura y cómoda para el operador, facilitándole las labores de conservación. En general se observa una preocupación creciente por la seguridad, el medio ambiente y la calidad.

Con todo, las máquinas suponen fuertes inversiones para las empresas constructoras, que si bien son menores en las obras de edificación, mayores en las obras de carreteras e hidráulicas, son importantísimas en las obras portuarias. El índice de inversión en maquinaria, calculado como la relación entre el valor anual de adquisición de la misma y la obra total anual, oscila entre el 3 y el 13%. Se estima entre el 13% y el 19% el índice de mecanización -valor del parque de maquinaria respecto a la producción anual- de las firmas constructoras.

Aunque existen múltiples criterios para clasificar las máquinas, en las Figuras 2 y 3 se presenta una ordenación de los distintos equipos empleados tanto en edificación como en obra civil.

Figura 2. Clasificación de la maquinaria de edificación
Figura 3. Clasificación de la maquinaria de obra civil

Otra posible agrupación de la maquinaria es la que utiliza la Hacienda Pública para la clasificación de contratistas:

  • Grupo 1.- Material de bombeo, aire comprimido, sondeos y cimentaciones.
  • Grupo 2.- Material de producción y transformación de energía.
  • Grupo 3.- Maquinaria de movimiento de tierras.
  • Grupo 4.- Maquinaria de transporte.
  • Grupo 5.- Maquinaria de elevación.
  • Grupo 6.- Maquinaria de construcción de firmes.
  • Grupo 7.- Maquinaria de machaqueo y clasificación de áridos.
  • Grupo 8.- Maquinaria de hormigonado y edificación.
  • Grupo 9.- Maquinaria para construcción de ferrocarriles.
  • Grupo 10.- Material flotante.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 156 pp. ISBN: 978-84-9048-301-5. Ref. 402.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Curso gratuito online masivo: Introducción a los procedimientos de construcción para la mejora de terrenos en obra civil y edificación

Compactación dinámica (cortesía de Menard)
Compactación dinámica (cortesía de Menard)

Acerca de este curso MOOC de la UPV

Este es un curso básico de procedimientos constructivos necesarios para la mejora de terrenos en obras civiles y de edificación. Es un curso que no requiere conocimientos especiales y está diseñado para que sea útil a un amplio abanico de profesionales con o sin experiencia, estudiantes de cualquier rama de la construcción, ya sea universitaria o de formación profesional. Además, el aprendizaje se ha escalonado de modo que el estudiante puede profundizar en aquellos aspectos que más les sea de interés mediante documentación complementaria y enlaces de internet a vídeos, catálogos, etc.

En este curso aprenderás las distintas técnicas de mejora del terreno utilizadas habitualmente en obras de ingeniería civil y de edificación. Se índice especialmente en la maquinaria necesaria, en los procedimientos constructivos, en la aplicabilidad a los distintos tipos de suelos, en aspectos económicos, medioambientales y de seguridad en los trabajos. A lo largo del curso se abordarán aspectos como la precarga, las columnas de grava, las inclusiones en el terreno, los pilotes de desplazamiento, la compactación dinámica, la compactación mecánica de suelos, las inyecciones del terreno, la estabilización de suelos, la mezcla profunda, los anclajes, el control del nivel freático, entre otros temas.

El contenido del curso está organizado en 8 módulos, cada uno con 4 secuencias de aprendizaje que permiten, con una dedicación menor a una hora diaria, aprender los aspectos básicos de las técnicas de mejora del terreno. Cada semana se trabaja un módulo, teniendo el curso una duración estimada de dos meses (8 semanas).

El inicio del curso es el 25 de mayo de 2021. La inscripción la puedes realizar en el siguiente enlace: https://www.edx.org/es/course/introduccion-a-los-procedimientos-de-construccion-para-la-mejora-de-terrenos-en-obra-civil-y-edificacion

Lo que aprenderás

Al finalizar el curso, los objetivos de aprendizaje básicos son los siguientes:

  • Comprender la utilidad y las limitaciones de las distintas técnicas de mejora del terreno empleadas en la construcción de obras civiles y de edificación.
  • Evaluar y seleccionar el mejor procedimiento constructivo y maquinaria necesaria para la mejora del terreno en unas condiciones determinadas, considerando la economía y la seguridad.

Programa del curso

  1. Clasificaciones de las técnicas de mejora y refuerzo del terreno
  2. Sustitución del terreno como técnica de mejora
  3. La precarga como técnica para la mejora de terrenos.
  4. Drenes verticales como técnica de mejora de terrenos
  5. Consolidación por vacío de suelos
  6. Columnas de grava
  7. Columna de grava ejecutada por medios convencionales
  8. Columna de grava mediante vibrodesplazamiento
  9. Columna de grava mediante vibrosustitución
  10. Columnas de grava compactada
  11. Pilotes de arena compactada
  12. Columnas encapsuladas con geotextil
  13. Refuerzo del terreno mediante inclusiones rígidas
  14. Concepto de pilotes y clasificaciones
  15. Pilotes de compactación
  16. Columnas de hormigón vibrado
  17. Columnas de módulo controlado
  18. Columnas de cal y de cal-cemento
  19. Columna de grava inyectada
  20. Pilotes de desplazamiento
  21. Pilotes de madera
  22. Pilotes metálicos
  23. Pilotes metálicos hincados
  24. Pilotes de hormigón armado hincados
  25. Pilotes prefabricados de hormigón pretensado
  26. Pilote de desplazamiento con azuche
  27. Sistema “Franki” de ejecución de pilotes de desplazamiento
  28. Hinca de pilotes con mazas de caída libre
  29. Hinca por vibración de pilotes
  30. Hinca silenciosa de pilotes
  31. Pilotes de extracción
  32. Pilotes perforados con barrena continua
  33. STARSOL: Pilotes con hélice continua mejorada
  34. Micropilotes
  35. Mejora del terreno mediante vibrocompactación
  36. Mejora de terreno mediante Terra-Probe
  37. Método vibroalas para mejora de suelos no cohesivos
  38. Compactación por resonancia de suelos
  39. Compactación dinámica
  40. Compactación dinámica rápida
  41. Sustitución dinámica
  42. Compactación con explosivos
  43. Compactación por impulso eléctrico
  44. Compactación por hidrovoladura
  45. Compactación mecánica de suelos
  46. Curva de compactación de un suelo
  47. Selección de un equipo de compactación
  48. Los tramos de prueba en la compactación de suelos
  49. Recomendaciones de trabajo en la compactación
  50. Técnicas de inyección del terreno
  51. Procedimientos empleados en la inyección de terrenos
  52. Materiales empleados en la inyección de terrenos
  53. Tipos de lechadas y aplicabilidad de los materiales de inyección de terrenos
  54. Inyección de lechadas inestables
  55. Inyección de lechadas estables
  56. Inyección de lechadas químicas
  57. Inyecciones de alta presión: Jet grouting
  58. Inyecciones de compactación
  59. Inyecciones de hidrofracturación
  60. Mezcla profunda de suelos
  61. Springsol: mejora de terrenos mediante columnas de suelo-cemento
  62. Pantallas realizadas por mezcla profunda de suelos (Deep Soil Mixing Walls)
  63. Pantallas de suelo-cemento con hidrofresa (Cutter Soil Mixing)
  64. Pantallas plásticas de bentonita-cemento
  65. Pantallas de suelo-bentonita
  66. Pantalla de lodo autoendurecible armado
  67. Pantallas delgadas de lodo ejecutadas mediante vibración de perfiles
  68. Pantallas de geomembranas
  69. Muros de tierra mecánicamente estabilizada: Tierra Armada
  70. Suelo reforzado con geosintéticos
  71. Soil nailing o suelo claveteado
  72. La técnica del bulonaje
  73. Concepto y clasificación de los anclajes
  74. Zonas de un anclaje
  75. Ejecución de un anclaje
  76. Seguridad en la ejecución de los anclajes
  77. La estabilización de suelos
  78. Estabilización de suelos con cal
  79. Estabilización de suelos con cemento
  80. Estabilización de suelos con ligantes bituminosos
  81. Estabilización de suelos con cloruros
  82. Grava-cemento
  83. Grava-emulsión
  84. Grava-escoria
  85. Mejora de terrenos por calentamiento
  86. Congelación de suelos
  87. Métodos biológicos como técnica de mejora de terrenos
  88. El problema del agua en las excavaciones
  89. Clasificación de las técnicas de control del agua en excavaciones
  90. Selección del sistema de control del nivel freático
  91. Drenaje de excavaciones mediante bombeos superficiales y sumideros
  92. Drenaje de excavaciones mediante zanjas perimetrales
  93. Drenaje horizontal con pozos radiales
  94. Drenaje de excavaciones mediante pozos filtrantes profundos
  95. Control del nivel freático mediante lanzas de drenaje (wellpoints)
  96. Electroósmosis como técnica de drenaje del terreno

Conozca al profesor

Víctor Yepes Piqueras

Catedrático de Universidad. Doctor Ingeniero de Caminos, Canales y Puertos. Universitat Politècnica de València

Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente «cum laude». Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València. Consejero del Colegio de Ingenieros de Caminos, Canales y Puertos. Su experiencia profesional se ha desarrollado fundamentalmente en Dragados y Construcciones S.A. (1989-1992) como jefe de obra y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 6 proyectos de investigación competitivos. Ha publicado más de un centenar artículos en revistas indexadas en el JCR. Autor de 10 libros, 22 apuntes docentes y más de 250 comunicaciones a congresos. Ha dirigido 14 tesis doctorales, con 6 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos.

 

Curso en línea de «Compactación superficial y profunda de suelos en obras de ingeniería civil y edificación»

La Universitat Politècnica de València, en colaboración con la empresa Ingeoexpert, ha elaborado un Curso online sobre “Compactación superficial y profunda de suelos en obras de ingeniería civil y edificación”. El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 75 horas de dedicación del estudiante. Empieza próximamente. Hay plazas limitadas.

Toda la información la puedes encontrar en esta página: https://ingeoexpert.com/cursos/curso-de-compactacion-superficial-y-profunda-de-suelos-en-obras-de-ingenieria-civil-y-edificacion/

Os paso un vídeo explicativo y os doy algo de información tras el vídeo.

Este es un curso básico de técnicas y equipos de compactación superficial y profunda de suelos en obras civiles y de edificación. Se trata de un curso que no requiere conocimientos previos especiales y está diseñado para que sea útil a un amplio abanico de profesionales con o sin experiencia, estudiantes de cualquier rama de la construcción, ya sea universitaria o de formación profesional. Además, el aprendizaje se ha escalonado para que el estudiante pueda profundizar en aquellos aspectos que les sea de interés mediante documentación complementaria y enlaces de internet a vídeos, catálogos, etc.

En este curso aprenderás los conceptos básicos de las técnicas y equipos necesarios para la compactación de suelos, así como para su control, rendimientos y costes. El curso se centra especialmente en la comprensión de los procedimientos constructivos y la maquinaria específica necesaria para la compactación, tanto superficial como profunda. Es un curso de espectro amplio que incide en el conocimiento de la maquinaria y procesos constructivos. Resulta de especial interés desarrollar el pensamiento crítico del estudiante en relación con la selección de las mejores soluciones constructivas para un problema determinado. El curso trata llenar el hueco que deja la bibliografía habitual, donde los aspectos de proyecto, geotecnia, hidrogeología, estructuras, etc., oscurecen los aspectos puramente constructivos. Asimismo, está diseñado para que el estudiante pueda ampliar por sí mismo la profundidad de los conocimientos adquiridos en función de su experiencia previa o sus objetivos personales o de empresa.

El contenido del curso se organiza en 50 lecciones, que constituyen cada una de ellas una secuencia de aprendizaje completa. La dedicación aproximada para cada lección se estima en 1-2 horas, en función del interés del estudiante para ampliar los temas con el material adicional. Al finalizar cada unidad didáctica, el estudiante afronta una batería de preguntas cuyo objetivo fundamental es afianzar los conceptos básicos y provocar la duda o el interés por aspectos del tema abordado. Al final se han diseñado tres unidades adicionales para afianzar los conocimientos adquiridos a través del desarrollo de casos prácticos, donde lo importante es desarrollar el espíritu crítico y la argumentación a la hora de decidir la conveniencia de un procedimiento de control del agua u otro. Por último, al finalizar el curso se realiza una batería de preguntas tipo test cuyo objetivo es conocer el aprovechamiento del estudiante, además de servir como herramienta de aprendizaje.

El curso está programado para 75 horas de dedicación por parte del estudiante. Se pretende un ritmo moderado, con una dedicación semanal en torno a las 10-15 horas, dependiendo de la profundidad requerida por el estudiante, con una duración total de 6 semanas de aprendizaje.

Este curso único, impartido Víctor Yepes, Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València, se presenta mediante contenidos multimedia interactivos y de alta calidad dentro de la plataforma virtual Moodle, combinado con la realización de ejercicios prácticos. Así mismo, se realizarán clases en directo mediante videoconferencias, que podrán ser vistas en diferido en caso de no poder estar presente en las mismas.

Objetivos

Los objetivos de aprendizaje son los siguientes:

  1. Comprender la utilidad y las limitaciones de la maquinaria y de las técnicas de compactación superficial y profunda de terrenos
  2. Evaluar y seleccionar la mejor maquinaria y técnica de compactación en unas condiciones determinadas, considerando la economía, la seguridad y los aspectos medioambientales

Programa

  • – Lección 1. Composición y clasificación de suelos
  • – Lección 2. Materiales de terraplén
  • – Lección 3. Efectos de la compactación y deformaciones
  • – Lección 4. Porosidad y permeabilidad
  • – Lección 5. La curva de compactación
  • – Lección 6. Densidad de los suelos granulares
  • – Lección 7. Ensayo Proctor
  • – Lección 8. Sistemas de compactación: compactación normal y seca
  • – Lección 9. Ensayos de resistencia del suelo
  • – Lección 10. Fundamentos de las técnicas de compactación
  • – Lección 11. Clasificación de los equipos de compactación mecánica
  • – Lección 12. Apisonadoras estáticas de rodillos lisos
  • – Lección 13. Compactadores estáticos de patas apisonadoras
  • – Lección 14. Compactadores estáticos de ruedas neumáticas
  • – Lección 15. Rodillos de malla y compactador por impactos con rodillo lobular
  • – Lección 16. Introducción a la compactación vibratoria
  • – Lección 17. Compactadores vibratorios cilíndricos
  • – Lección 18. Compactadores de pequeño tamaño y de tracción manual
  • – Lección 19. Compactadores de zanja
  • – Lección 20. Selección del equipo y método de compactación
  • – Lección 21. Espesor de tongada y número de pasadas óptimo: tramo de prueba
  • – Lección 22. Normas y recomendaciones de trabajo
  • – Lección 23. El control de la compactación
  • – Lección 24. Condiciones de seguridad de los compactadores
  • – Lección 25. Costes y productividad de la compactación
  • – Lección 26. Compactación de aglomerado asfáltico
  • – Lección 27. Mejora del terreno mediante vibrocompactación
  • – Lección 28. Mejora del terreno mediante Terra-Probe
  • – Lección 29. Método vibroalas para mejora de suelos no cohesivos
  • – Lección 30. Compactación por resonancia de suelos
  • – Lección 31. Compactación dinámica
  • – Lección 32. Compactación dinámica rápida
  • – Lección 33. Sustitución dinámica
  • – Lección 34. Compactación con explosivos
  • – Lección 35. Compactación por impulso eléctrico
  • – Lección 36. Refuerzo del terreno mediante inclusiones rígidas
  • – Lección 37. Pilotes de compactación
  • – Lección 38. Columna de grava mediante vibrodesplazamiento
  • – Lección 39. Columna de grava mediante vibrosustitución
  • – Lección 40. Columnas de grava ejecutadas por medios convencionales
  • – Lección 41. Columnas de grava compactada
  • – Lección 42. Columnas de arena compactada
  • – Lección 43. La estabilización de suelos
  • – Lección 44. Estabilización de suelos con cal
  • – Lección 45. Estabilización de suelos con cemento
  • – Lección 46. Estabilización de suelos con ligantes bituminosos
  • – Lección 47. Problema resuelto sobre rendimientos y costes
  • – Lección 48. Problema resuelto sobre curva de compactación
  • – Lección 49. Problema resuelto sobre tramo de prueba
  • – Lección 50. Problema resuelto sobre control de calidad
  • – Supuesto práctico 1.
  • – Supuesto práctico 2.
  • – Supuesto práctico 3.
  • – Batería de preguntas final

Profesorado

Víctor Yepes Piqueras

Doctor Ingeniero de Caminos, Canales y Puertos. Universitat Politècnica de València

Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente “cum laude”. Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València y profesor, entre otras, de las asignaturas de Procedimientos de Construcción en los grados de ingeniería civil y de obras públicas. Su experiencia profesional se ha desarrollado como jefe de obra en Dragados y Construcciones S.A. (1989-1992) y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 5 proyectos de investigación competitivos. Ha publicado más de un centenar artículos en revistas indexadas en el JCR. Autor de 8 libros, 22 apuntes docentes y más de 250 comunicaciones a congresos. Ha dirigido 16 tesis doctorales, con 8 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos.

Referencias:

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Conferencia: La Perforación Horizontal Dirigida como Tecnología sin Zanja

Recibí recientemente una invitación del Centro de Investigación CIEIC Perú para participar en una ponencia relacionada con la Perforación Horizontal Dirigida. Se trata de una organización sin ánimo de lucro que se centra en la ciencia, la tecnología y la ingeniería.

La conferencia se transmitirá en directo a través de Facebook Live y Zoom. Tendrá lugar el lunes 12 de abril de 2021, a las 3.00 p.m. (hora Perú) / 10:00 p.m. (hora España). La participación es gratuita y se puede solicitar la inscripción en el siguiente enlace: https://cutt.ly/GcF3C1I

Os paso a continuación el folleto sobre la conferencia. Sin embargo, podéis encontrar información adicional sobre este procedimiento constructivo en mi blog: https://victoryepes.blogs.upv.es/?s=perforaci%C3%B3n+horizontal+dirigida

Dejo la ponencia para aquellos que no la hayáis visto:

Capas y bases tratadas: Gravacemento

En España es habitual el empleo de la gravacemento en las capas de base de los denominados firmes semirrígidos. También se puede emplear bajo pavimentos de hormigón, aunque su función es diferente respecto al caso anterior. El artículo 513 del PG3 define gravacemento como una mezcla homogénea de áridos, cemento, agua y eventualmente adiciones que, convenientemente compactada, se utiliza en la construcción de firmes de carretera. Su origen se corresponde a las mezclas de granulometría gruesa utilizadas en California.

Figura 1. Gravacemento. https://www.promsa.com/es/productos/p/grava-cemento

Los áridos utilizados serán naturales o procedentes del machaqueo y trituración de piedra de cantera o grava natural. Serán limpios, sólidos y resistentes, de uniformidad razonable, exentos de polvo, suciedad, arcilla y otros materiales extraños. El desgaste de Los Ángeles debe ser inferior a 30 y el equivalente de arena mayor a 30. Los husos granulométricos deben ser estrictos (GC-1 y GC2). El contenido en cemento en masa varía entre el 3% y el 5%. Se exige una resistencia a compresión a los 7 días de 4,5 MPa y, a largo plazo, que supere los 8 MPa. Si el contenido de cemento supera el 5-7%, entonces se puede hablar de gravacemento de altas prestaciones.

Las características del cemento empleado para la gravacemento se recogen en el artículo 202 del PG3. Su clase resistente es 32,5N. En el caso de existir sulfatos solubles en el suelo, se deberá emplear un cemento sulforresistente. El principio del fraguado debe ser posterior a las 2 horas. El contenido de agua se selecciona mediante un Proctor Modificado, de forma que la humedad óptima proporcione la densidad máxima. No obstante la humedad suele ser un 0,5% inferior a la óptima para alcanzar la máxima resistencia. Se utilizan retardadores de fraguado para ampliar la trabajabilidad del material, siendo obligatorio cuando la temperatura durante la extensión de la mezcla supera los 30ºC.

El cemento proporciona resistencia a la capa resultante. Se exige una densidad superior o igual al 98% del Proctor Modificado, y una resistencia mínima de 4,5 MPa a siete días. La resistencia máxima a siete días será de 7,0 MPa en calzada y 6,0 MPa en arcenes. Estas resistencias son medias sobre, al menos tres probetas de la misma amasada.

Figura 2. Descarga de gravacemento en obra. https://conorsa.es/catalog/gravacemento/

La mezcla del material se realiza en central, se transporta en volquetes y se extiende con extendedoras. Las extendedoras proporcionan una mayor regularidad que las motoniveladoras, que se podrían emplear si la mezcla presentan suficiente trabajabilidad. La fabricación en central permite un porcentaje homogéneo y controlado de humedad y cemento.

El proceso de ejecución será el siguiente:

  • Preparación de la superficie
  • Fabricación de la mezcla
  • Transporte de la mezcla
  • Vertido y compactado de la mezcla
  • Ejecución de las juntas
  • Curado

La terminación de la capa debe presentar una textura uniforme, exenta de segregaciones y ondulaciones. La rasante no superará la teórica en ningún punto y no debe quedar por debajo de la teórica en más de 15 mm. La anchura de la capa no será inferior a la definida en planos, ni superarla en más de 10 cm. El espesor no deber ser, en ningún punto, menor al previsto. En tiempo caluroso se aconseja no solo un retardador de fraguado, sino un riego con emulsión bituminosa de rotura rápida para garantizar el curado. Por otra parte, aunque se aconsejan varios días para permitir la circulación de vehículos sobre la gravacemento, parece ser que solo sería necesaria una protección superficial.

En los firmes semirrígidos, la capa de gravacemento es estructural, absorbiendo la mayor parte de las tensiones del tráfico. El principal problema a resolver es el agrietamiento por retracción, que puede reflejarse a través del pavimento bituminoso en función de los gradientes termohigrométricos y el espesor del pavimento. Por dicho motivo, el espesor del pavimento para tráfico pesado no suele bajar de 12-15 cm. Las grietas pueden solucionarse conjuntas en fresco, antes de la compactación, separadas unos 3 m. También se pueden interponer capas o membranas que absorban las tensiones concentradas.

Cuando la capa de gravacemento sirve de apoyo a un firme rígido, los requerimientos estructurales pasan a segundo plano, siendo más importante la formación de una buena plataforma de trabajo y de apoyo estable a largo plazo. En este caso, la gravacemento puede apoyarse directamente sobre una zahorra natural o sobre la propia explanada si ésta es de cierta calidad. Basta en este caso que la capa de gravacemento presente un ancho mínimo constructivo de 15 cm.

Os dejo un vídeo de la profesora Ana María Pérez, de la Universitat Politècnica de València, que explica las características más relevantes del gravacemento utilizado en las capas de base de las carreteras.

En esta ponencia, Amaia Lisbona, de Tecnalia, explica cómo fabricar suelocemento y gravacemento a partir de áridos reciclados procedentes de los residuos de la construcción y demolición.

Os dejo a continuación el artículo 513 del PG3 donde se regulan los materiales tratados con cemento (suelocemento y gravacemento).

Pincha aquí para descargar

Referencias:

JOFRE, C.; KRAEMER, C. (dir.) (2008). Manual de estabilización de suelos con cemento o cal. Instituto Español del Cemento y sus Aplicaciones (IECA), 217 pp.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Mezcla profunda de suelos como técnica de mejora del terreno

Es habitual mezclar los suelos con cemento, cal o aglutinantes para estabilizarlos («Soil Mixing Methods«). En un relleno, la mezcla se puede hacer antes o después de su colocación, pudiéndose compactar en su caso. Es frecuente estabilizar los suelos «in situ» con cemento o cal utilizando máquinas específicas para ello. Son técnicas adecuadas que mejoran y refuerzan los suelos blandos como arcillas, limos, arenas sueltas, etc. La mezcla consigue mayor estabilidad, capacidad portante, resistencia al corte, menor compresibilidad y permeabilidad que el terreno original.

Dentro de estas técnicas destacan aquellas que consiguen la estabilización en profundidad, las llamadas mezclas profundas de suelos («Deep Soil Mixing«, DSM»). Se obtienen así una serie de inclusiones en forma de columna, elementos lineales, pantallas o secciones rectangulares de un material mejorado del tipo suelo-cemento. Se trata de una técnica desarrollada en Japón y en países escandinavos en los años 70 del siglo pasado. Estos sistemas están evolucionando rápidamente en cuanto a su aplicabilidad, rentabilidad y ventajas medioambientales.

Figura 1. Fases de ejecución de la mezcla profunda de suelos (Deep Soil Mixing). https://menardoceania.com.au/technique/soil-mixing/

Dentro de las técnicas de mejora profunda de suelos podrían incluirse las inyecciones y el Jet Grouting, pero son procedimientos que difieren del DSM en la forma de desestructurar el terreno. En efecto, en el caso que nos ocupa, la deconstrucción es mecánica, con un ligante hidráulico que facilita la reacción química entre el suelo y el agua. Se usa el cemento, la cal y la bentonita como ligantes habituales, aunque es posible usar yesos, cenizas y aditivos específicos para mejorar el terreno.

Se utilizan diferentes medios mecánicos para romper, batir y mezclar el suelo con el ligante. Pueden ser cadenas y cangilones, tambores giratorios con elementos cortantes, ejes con aletas y otros mecanismos similares, que son más complicados a medida que aumenta la finura y la rigidez del terreno. El ligante se puede aportar por vía seca o por vía húmeda.

Se han desarrollado procedimientos registrados por las diferentes empresas como es el sistema Trenchmix, el sistema Cutter Soil Mixing (CSM-Geomix), o las columnas de suelo-cemento (CSC-Springsol). El método CSM emplea un cortador para formar paredes, proporcionando un a solución rentable y rápida en la construcción de pantallas mediante la mezcla de suelo «in situ» con una lechada de cemento/lechada de bentonita. Trenchmix se vale de herramientas de corte para excavar zanjas en aplicaciones estructurales o pantallas impermeables.

En la Figura 2 se observan las fases constructivas con un equipo Trenchmix. Consta de una zanjadora diseñada especialmente para no extraer el terreno, permitir la incorporación del ligante y efectuar la mezcla in situ. Este ligante puede introducirse en polvo o mediante una lechada. La profundidad de la pantalla se limita a la longitud de la sierra, hasta unos 8 m. El espesor de la pantalla varía entre 400 y 600 mm.

Figura 2. Fases de ejecución de una pantalla con el sistema Trenchmix. https://www.rodiokronsa.es/exclusivas/trenchmix/

A continuación os dejo un vídeo donde se puede ver la mezcla profunda de suelos mediante una fresadora.

En este otro caso se observa la mezcla profunda de suelos mediante Trenchmix.

En este otro vídeo se observa la técnica de Deep Soil Mixing mediante un cabezal rotatorio.

Referencias:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.