Durante los días 3-4 de julio de 2024 tiene lugar en Jaén (Spain) el 28th International Congress on Project Management and EngineeringAEIPRO 2024. Es una buena oportunidad para debatir y conocer propuestas sobre dirección e ingeniería de proyectos. Nuestro grupo de investigación, dentro del proyecto de investigación HYDELIFE, presenta varias comunicaciones. A continuación os paso los resúmenes.
SÁNCHEZ-GARRIDO, A.; GUAYGUA, B.; VILLALBA, P.; YEPES, V. (2024). Ingeniería de proyectos basada en modelos de análisis multivariante. Aplicación al dimensionamiento de losas planas aligeradas.28th International Congress on Project Management and Engineering, AEIPRO, 3-4 de julio, Jaén (Spain)
Esta investigación propone una metodología para dimensionar losas innovadoras de hormigón armado sin vigas, que permiten el uso eficiente de materiales. Utilizando un enfoque estadístico y modelos de regresión lineal, se proporcionan criterios para calcular el espesor de la losa aligerada con esferas o discos plásticos presurizados, minimizando el número de variables. Este espesor puede estimarse a partir de la luz principal entre apoyos, la altura del disco o el diámetro de la esfera, así como el uso previsto del edificio. El modelo final ajustado logra explicar el 98% de la variabilidad en el espesor de la losa para luces comprendidas entre 5 m y 16 m. Este tipo de forjado contribuye a la reducción del consumo de hormigón y acero, lo que resulta en una disminución del peso y las cargas aplicadas. Esto impacta directamente en los costos y mejora los indicadores ambientales en comparación con los sistemas tradicionales. Se presenta como una alternativa eficiente para edificaciones, permitiendo la combinación de parámetros estructurales, constructivos y sostenibles.
SÁNCHEZ-GARRIDO, A.; YEPES-BELLVER, L.; SAIZ, D.; YEPES, V. (2024). Ingeniería de proyectos en Modernos Métodos de Construcción: El caso de edificios con losas planas mediante elementos aligerantes multiaxiales.28th International Congress on Project Management and Engineering, AEIPRO, 3-4 de julio, Jaén (Spain)
Los métodos modernos de construcción (Modern Methods of Construction, MMC), o como algunos llaman “construcción inteligente“, constituyen alternativas a la construcción tradicional. Esta nueva forma de construir implica, necesariamente, un cambio en la forma de dirigir los proyectos, que pasan a ser industrializados, donde la eficiencia estructural, constructiva y la sostenibilidad ambiental y social son protagonistas. El objetivo del artículo es identificar los aspectos característicos de estas construcciones innovadoras que influyen en la ingeniería de proyectos, integrando a grupos multidisciplinares como arquitectos, ingenieros estructurales y empresas constructoras. Para ello se realizará un estudio para el caso de edificios construidos con losas planas aligeradas mediante elementos aligerantes multiaxiales. Los resultados muestran que estos diseños permiten integrar el proyecto, la fabricación de elementos y el procedimiento constructivo. El proyecto de estas construcciones permite aligerar y reducir las cuantías de hormigón y acero en aquellas zonas de las losas donde la capacidad portante es insignificante. Además, se ha comparado este diseño con otros tradicionales, destacando una reducción de costes y un aumento de la sostenibilidad a lo largo del ciclo de vida.
YEPES-BELLVER, L.; MARTÍNEZ-PAGÁN, P.; ALCALÁ, J.; YEPES, V. (2024). Análisis del predimensionamiento de tableros óptimos de puentes losa pretensados aligerados y su incidencia en el proyecto estructural.28th International Congress on Project Management and Engineering, AEIPRO, 3-4 de julio, Jaén (Spain)
El proyecto estructural normalmente se basa en la experiencia del proyectista. En ocasiones, dicha experiencia se plasma en fórmulas de predimensionamiento que, si bien ofrecen buenos resultados, en ocasiones arrastran ineficiencias cuando se comparan con técnicas actuales de optimización que tenga en cuenta las dimensiones económicas y ambientales. En este artículo se comparan reglas de dimensionamiento previo de estructuras basadas en la experiencia con técnicas de optimización. Se aplica al caso del proyecto de tableros de puentes tipo losa pretensados aligerados. El resultado de la investigación resalta la importancia de aplicar métodos basados en la optimización heurística y en metamodelos para actualizar la experiencia de los proyectistas y proponer nuevas fórmulas de predimensionamiento más ajustadas a la optimización económica y ambiental. Además, en el trabajo se ofrecen nomogramas de predimensionamiento, con el mínimo número de datos posible, que pueden ser de utilidad al proyectista en sus diseños previos.
Las altas temperaturas del hormigón y del ambiente, la exposición solar, el viento fuerte y la baja humedad del aire son factores que, individualmente o combinados, provocan una rápida evaporación. Este fenómeno aumenta considerablemente la probabilidad de que la superficie del hormigón se agriete por retracción plástica. En climas más húmedos, este riesgo se reduce y la alta temperatura del hormigón deja de ser un factor tan determinante para la formación de este tipo de fisuras.
El éxito del hormigonado en climas cálidos depende de una planificación minuciosa tanto de los procesos internos de la planta como de los procedimientos externos en el lugar de trabajo. Con suficiente antelación, se deben planificar todas las operaciones para mitigar los efectos adversos del calor y evitar la improvisación. Es crucial que el personal de obra sea consciente de los daños que el calor puede causar al hormigón. Se recomienda contar con datos climáticos registrados, como temperaturas, insolación, vientos y evaporación, para estimar las condiciones a las que estará expuesto el hormigón y adoptar las medidas oportunas, tanto para el hormigón fresco como para el sistema de colocación en obra. Dado que el hormigón se endurece más rápidamente en condiciones calurosas, las operaciones que deben realizarse con el hormigón aún fresco o poco endurecido, como el corte y preparación de juntas o la aplicación de retardadores superficiales, son más críticas. Por lo tanto, estas operaciones deben estar cuidadosamente previstas y planificadas.
En condiciones de calor, es fundamental asegurarse de que el hormigón no se coloque en los encofrados a un ritmo superior al que permite su correcta compactación y acabado final. Durante el vertido en forjados y elementos superficiales, es necesario trabajar en frentes reducidos. Los encofrados metálicos y las armaduras expuestas a la radiación solar pueden alcanzar temperaturas elevadas, lo que provoca un rápido endurecimiento del hormigón antes de su correcta compactación. Por esta razón, antes del vertido, se deben humedecer los encofrados sin permitir que el agua se condense sobre las armaduras o que se forme un charco en la parte inferior. En caso de hormigonar directamente sobre el terreno, es crucial que la explanación esté húmeda, pero sin formar láminas de agua o charcos. Se recomienda utilizar pulverizadores que generen una fina nube de agua para enfriar el aire circundante, los encofrados y las armaduras, y así evitar la rápida evaporación en la superficie del hormigón. Sin embargo, debe evitarse una pulverización excesiva que pueda lavar la superficie del hormigón fresco.
Sin la pulverización adecuada antes y después de las operaciones de acabado, especialmente cuando la humedad es baja, el agua de la superficie puede evaporarse más rápido que la difusión del agua desde el interior del hormigón hacia la superficie que se está secando. Esto genera tensiones crecientes en la superficie que frecuentemente resultan en fisuras por retracción plástica. Cuando estas fisuras aparecen antes de que el fraguado esté completo, pueden cerrarse mediante el uso de una llana para alisar la superficie a ambos lados de la fisura.
Para evitar que el hormigón eleve su temperatura antes de colocarlo en el encofrado, es fundamental protegerlo del sol. Las unidades de transporte, como cintas, bombas y tuberías de bombeo, deben mantenerse a la sombra y pintadas de blanco. Las tuberías pueden enfriarse cubriéndolas con arpilleras húmedas y regándolas con mangueras u otros medios auxiliares.
Como medidas adicionales, se puede utilizar agua fría e incluso hielo picado en el amasado del hormigón. El uso de agua fría es muy eficaz, ya que su calor específico es cinco veces mayor que el del cemento y los áridos, y su temperatura es más fácil de controlar. Sin embargo, debido a su baja proporción en la masa del hormigón, su influencia no es muy significativa. Por otro lado, el uso de hielo picado es mucho más ventajoso, ya que aprovecha el calor latente de fusión del hielo (334 kJ/kg). El hielo se utiliza para sustituir parte del agua en el amasado.
Para garantizar una colocación rápida del hormigón, es importante contar con equipos de gran capacidad y en perfecto estado. Si se utiliza una grúa con cubas, estas deben tener una boca ancha y paredes muy inclinadas para facilitar una descarga rápida y completa del contenido. Es crucial establecer una comunicación efectiva entre el personal que carga las cubas y el que coloca el hormigón, para evitar que este permanezca en las cubas sin colocarse. En caso de utilizar bombas, estas deben estar adecuadamente dimensionadas para bombear el hormigón de la clase especificada a lo largo de toda la línea con la velocidad requerida.
La compactación del hormigón también debe realizarse lo más rápidamente posible. Para lograrlo, es necesario contar con un número adecuado de equipos de compactación y suficiente personal. Además, se deben tener agujas vibradoras de reserva y generadores de emergencia para prevenir problemas por cortes eléctricos. Puede ser conveniente colocar el hormigón en capas más delgadas, de manera que la capa inferior todavía responda a la vibración cuando se coloque la siguiente capa.
Las operaciones de acabado deben comenzar tan pronto como el hormigón esté listo, sin ningún retraso. Las fisuras producidas por la retracción plástica son difíciles de reparar, ya que extender pasta sobre ellas no funciona bien y tienden a reaparecer. Una posible solución es revibrar el hormigón antes de que alcance su fraguado final, aunque esta técnica no es recomendable en condiciones de calor porque puede dañar el hormigón si ya ha comenzado a endurecer. Otra opción es golpear la superficie con una llana a ambos lados de la fisura. Después, se debe volver a fratasar el área afectada para nivelar el acabado y protegerla de inmediato para evitar la evaporación.
En la Figura 2, cuyos datos han sido tomados de la norma ACI 305, se muestran las temperaturas del hormigón que pueden ser críticas para la fisuración plástica en función de diferentes niveles de humedad relativa del aire ambiente. No obstante, se remite al lector al nomograma de Menzel para una mejor aproximación a este efecto.
En la Figura 3 se resumen las precauciones que deberían adoptarse cuando se hormigona en tiempo caluroso.
El Código Estructural, en su artículo 52.3.2, establece las condiciones de hormigonado en tiempo caluroso.
“Cuando el hormigonado se efectúe en tiempo caluroso, se adoptarán las medidas oportunas para evitar la evaporación del agua de amasado, en particular durante el transporte del hormigón y para reducir la temperatura de la masa. Estas medidas deberán acentuarse para hormigones de resistencias altas.
Para ello, los materiales constituyentes del hormigón y los encofrados o moldes destinados a recibirlo deberán estar protegidos del soleamiento.
Una vez efectuada la colocación del hormigón se protegerá este del sol y especialmente del viento, para evitar que se deseque.
Si la temperatura ambiente es superior a 40 °C o hay un viento excesivo, se suspenderá el hormigonado, salvo que, previa autorización expresa de la dirección facultativa, se adopten medidas especiales”.
Los comentarios a este artículo dicen lo siguiente:
“Del contenido de este artículo se desprende que debe entenderse por tiempo caluroso, aquel en que se produzca cualquier combinación de altas temperaturas, baja humedad relativa y alta velocidad del viento, que tiendan a empeorar la calidad del hormigón o que puedan conferir propiedades no deseadas.
Las propiedades del hormigón pueden verse influidas de manera desfavorable en tiempo caluroso. Las temperaturas elevadas del hormigón fresco aceleran el fraguado, aumentan la velocidad de hidratación y la exigencia de agua, y conducen a una resistencia final más baja. Además, se dificultan las condiciones de puesta en obra y aumenta la aparición de fisuras de retracción plástica.
En consecuencia, debe tratarse de asegurar que la temperatura del hormigón en el momento del vertido sea inferior a 35ºC en el caso de estructuras normales, y menor que 15ºC en el caso de grandes masas de hormigón.
Se recomienda tomar medidas especiales para evitar retracciones plásticas cuando exista peligro de evaporaciones superficiales superiores a 1 kg/m2/h, lo que puede producirse cuando concurren circunstancias meteorológicas indicadas en la tabla 52.3.2.”
Tabla 52.3.2 Condiciones atmosféricas para riesgo de retracción plástica
Temperatura atmosférica (ºC)
Velocidad del viento (km/h)
Humedad relativa
40 ºC
10
≤ 35 %
25
≤ 45 %
40
≤ 55 %
35 ºC
25
≤ 25 %
40
≤ 35 %
Os dejo algunos vídeos al respecto:
Referencias:
AA. VV. (2002). Hormigones de ejecución especial (seis tipos). Colegio de Ingenieros de Caminos, Madrid, 114 pp.
ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.
CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.
GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.
MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.
Las hormigoneras de tambor basculante y eje inclinado son las más habituales en obras pequeñas, ideales para producir hormigón plástico de calidad media. En el mercado, hay una amplia variedad de modelos, desde los más pequeños, con una capacidad inferior a 60 litros, hasta máquinas de gran capacidad. No obstante, los modelos más frecuentes tienen capacidades que oscilan entre un cuarto y un tercio de metro cúbico. Estas hormigoneras están compuestas por una cuba o tambor que gira alrededor de su eje, con una parte superior troncocónica y una inferior cilíndrica.
La cuba está fabricada con chapa de acero soldada, reforzada en la boca de carga. En su interior, lleva atornilladas unas paletas deflectoras cuya función es arrastrar hacia el centro de la cuba los componentes más pesados de la mezcla, que tienden a situarse en la periferia debido al movimiento centrífugo. El conjunto generalmente está montado sobre un chasis principal provisto de un eje con dos ruedas neumáticas y una lanza de tiro para facilitar su remolque por carretera.
El tambor puede ajustar su inclinación según la operación en curso, ya sea llenado, amasado o descarga. Tanto el llenado como la descarga del aparato se realizan a través de una única abertura centrada en el eje de rotación del tambor. No obstante, existen ciertos modelos con dos aberturas: una para el llenado y otra para la descarga. En posición de amasado, el eje del tambor es horizontal y la descarga por gravedad se realiza inclinando la cuba. Para la descarga, la cuba se inclina alrededor de un eje horizontal con la ayuda de un volante o de un motor. Este volante hace pivotar la cuba y su abrazadera mediante un mecanismo de piñones dentados. El principio del tambor basculante permite una alimentación rápida y un vaciado completo. Este sistema también facilita una limpieza adecuada al final de la jornada laboral.
El movimiento de la cuba se produce mediante el engranaje de un piñón motor, cuyo eje coincide con el de la cuba, sobre una corona dentada. El conjunto motor, que puede ser eléctrico o térmico, y los elementos de reducción de velocidad están montados en una carcasa lateral. Los motores de gasolina se usan con capacidades de 80 a 150 litros, mientras que los diésel para capacidades mayores. La mezcla de los elementos se optimiza al reducir la inclinación del eje de la cuba respecto a la horizontal. No obstante, esta inclinación no debe exceder los 15º a 20º aproximadamente. Superar estos valores puede reducir el volumen del tambor, ya que aumenta su capacidad útil; sin embargo, aunque esto disminuye el precio de compra, empeora la calidad del amasado. Por lo tanto, el ángulo de inclinación es uno de los factores principales que el comprador debe considerar.
Este problema también ocurrirá si la pared interior del tambor no tiene ninguna paleta. Inicialmente, los materiales se acumulan en el fondo de la cuba y se arrastran hasta el principio del amasado debido a la fricción generada por el giro. Sin embargo, después de algunas vueltas, especialmente si se ha añadido mucha agua, la mezcla se vuelve muy plástica y se desliza a lo largo de la pared de la cuba en lugar de subir y caer de nuevo. En este caso, no se puede considerar un verdadero amasado. La presencia y la disposición de las paletas facilitan la elevación de los materiales y permiten una buena agitación de los componentes. Además, la fijación de las paletas al tambor debe diseñarse cuidadosamente para asegurar un impulso constante durante el amasado.
Un inconveniente frecuente de estas hormigoneras y las de eje horizontal es que parte del mortero del hormigón queda adherido a las paredes durante la primera amasada, lo que hace que esta primera mezcla sea de menor calidad que las siguientes y deba desecharse. Para evitar este problema, se debe realizar una pequeña amasada de mortero antes de comenzar a producir hormigón. Parte de este mortero recubrirá las paredes de la hormigonera y eliminará el exceso. Para facilitar el amasado, se debe introducir el árido grueso en último lugar. Si se introduce primero, la mezcla será deficiente y el hormigón corre el riesgo de ser heterogéneo. El tiempo mínimo de amasado, en segundos, para una hormigonera de este tipo y diámetro D, se calcula mediante la fórmula t = 120 √D.
Estas hormigoneras pueden estar equipadas con un cargador elevable para alimentar los materiales y con dispositivos de suministro de agua, como depósitos, dosificadores o contadores de agua. Se embraga para subir el cargador y este baja por gravedad al desembragar. El cargador puede ser de los siguientes tipos:
Basculante mediante cilindro hidráulico. Sin cargador para capacidades de 120 a 200 litros, con o sin cargador para 250 a 500 litros.
Skip, accionado por cable, que se enrolla en un cabrestante, accionado por el mismo motor que impulsa la hormigonera, con su correspondiente embrague. Al activar el embrague, el cargador se eleva, y al desactivarlo, desciende por gravedad.
Radio rascante, con un conjunto de cangilones de alimentación continua.
Os dejo algunos vídeos al respecto de esta hormigonera.
Referencias:
ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.
FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.
CORMON, P. (1979). Fabricación del hormigón. Editores Técnicos Asociados, Barcelona, 232 pp.
GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.
MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.
TIKTIN, J. (1994). Procesamiento de áridos: instalaciones y puesta en obra de hormigón. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Madrid, 360 pp. ISBN: 84-7493-205-X.
El proceso de amasado no difiere del realizado en condiciones normales. Es importante amasar durante el tiempo necesario para obtener una mezcla homogénea, pero no más, para evitar el calor generado por el rozamiento del hormigón con la cuba y las palas. Para lograr un mezclado eficaz en poco tiempo, se debe asegurar que la amasadora esté libre de adherencias y que las paletas de los camiones amasadores estén en buen estado. Una vez que se ha conseguido un hormigón homogéneo, la rotación debe mantenerse a la velocidad mínima de agitación de la unidad. No obstante, no es conveniente detener la cuba durante largos periodos, pues existe el riesgo de un falso fraguado del hormigón.
Proteger la amasadora de la luz solar directa ayuda a evitar un aumento innecesario de la temperatura. Pintar la superficie de blanco también reduce el efecto de la radiación solar. Además, cuando se utiliza un aditivo retardante, su efecto será mayor si se añade al final del amasado en lugar de al principio.
Es importante controlar cuidadosamente la fluidez del hormigón a la salida de la amasadora para asegurar que llegue a la obra en las condiciones necesarias para su uso. También es posible enfriar el hormigón en la amasadora mediante la evaporación de un producto inerte, aunque se trata de una instalación compleja.
Si bien no es una práctica habitual, para retrasar el fraguado del hormigón se pueden dosificar los materiales sólidos en la planta y premezclarlos, añadiendo el agua y los aditivos líquidos en la obra, seguido de un mezclado posterior en el camión de suministro. Sin embargo, esto puede causar una pérdida de uniformidad entre las amasadas. Dado que es complicado controlar la dosificación de líquidos y el mezclado en obra, es necesario preparar adecuadamente todo el proceso si se elige este método.
Cuando se utilizan aditivos plastificantes, superplastificantes y retardadores, su efecto es más prolongado si se introducen al final del amasado, mezclados con una pequeña cantidad del agua de amasado. Los superplastificantes pueden añadirse parcialmente en la planta para obtener la fluidez necesaria para la carga y el transporte del hormigón, y el resto en la obra para compensar la pérdida de asiento durante el transporte. Para un control preciso, el aditivo puede dosificarse previamente en recipientes. Es necesario un amasado posterior en el camión antes de verter el hormigón en el encofrado o en el sistema de colocación en obra.
Es esencial fabricar el hormigón según las especificaciones requeridas para evitar rechazos que provoquen la formación de juntas de hormigonado o problemas en el acabado. Por ello, se recomienda realizar una inspección previa al transporte. En la planta, el hormigón puede inspeccionarse visualmente durante la descarga. En el caso de utilizar un camión amasador, se recomienda realizar un amasado inicial en la planta y verificar el asiento antes de proceder al transporte.
Referencias:
AA.VV. (2002). Hormigones de ejecución especial (seis tipos). Colegio de Ingenieros de Caminos, Madrid, 114 pp.
ACI COMMITTEE 305. Guide to Hot Weather Concreting. ACI 305R-10.
CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.
GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.
MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.
Se deben tomar medidas de precaución especiales al hormigonar en condiciones de viento, pues puede causar serios problemas durante el proceso. Al igual que en condiciones de calor, especialmente cuando ambas se combinan, el viento aumenta la tasa de evaporación más allá de la cantidad de agua necesaria para el endurecimiento del hormigón, lo que acelera su fraguado. Esto provoca un curado inadecuado, grandes retracciones y problemas de resistencia a largo plazo. En la Figura 1 se puede apreciar cómo la velocidad del viento, junto con la temperatura del hormigón y la humedad relativa del aire, influyen en la cantidad de agua evaporada en el hormigón. Dejamos al lector un enlace para ampliar la información sobre el agrietamiento plástico durante el fraguado del hormigón.
La fisuración plástica ocurre durante las primeras horas del fraguado del hormigón, cuando aún está en estado plástico. Se debe a la disminución del volumen que experimenta la pasta de cemento al hidratarse. Esta hidratación natural puede agravarse por una rápida evaporación del agua de la mezcla (retracción hidráulica) durante esta fase plástica del hormigón.
Los casos de fisuración plástica incluyen la aparición de fisuras en «piel de cocodrilo» en losas y forjados, como un cúmulo de pequeñas fisuras sin dirección dominante, y las fisuras en elementos alargados, como losas, forjados y zapatas corridas, que son perpendiculares a la longitud mayor del elemento hormigonado y pueden llegar a cortar completamente su sección.
Para evitar la aparición de fisuras, es esencial:
Solicitar un hormigón con un contenido menor de finos y agua que el habitual, aunque esto implique reducir su trabajabilidad.
Humedecer generosamente los encofrados o soportes (terreno natural) que recibirán el hormigón.
Proteger el elemento hormigonado inmediatamente después del vertido para evitar la evaporación, especialmente en condiciones de altas temperaturas y viento fuerte.
Iniciar las tareas de curado lo antes posible.
En el caso de condiciones de frío extremo, el viento puede agravar los problemas asociados a las bajas temperaturas, pues favorece la congelación por efecto adiabático.
Os dejo un vídeo donde se explican algunas de estas patologías.
Referencias:
CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.
MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.
MENZEL, C.A. (1954). Causes and Prevention of Crack Development in Plastic Concrete. Proceedings of the Portland Cement Association, Vol. 130:136.
LERCH, W. (1957). Plastic shrinkage. ACI Journal, 53(8):797-802.
El vertido y la colocación del hormigón en soportes de sección reducida, como puede ser un pilar, debe realizarse de manera que se evite la disgregación de la mezcla, además de desplazamientos en armaduras o encofrados. También debe evitarse la formación de juntas, coqueras o planos de debilidad. Antes de iniciar el hormigonado, se monta un caballete o andamio, según corresponda, para facilitar el acceso de los operarios hasta la parte superior del pilar. Para alturas superiores a 2 m y cuando no se utiliza una bomba de hormigón ni es posible ejecutar el pilar en dos fases, se emplea un embudo metálico con una manguera para evitar caídas libres mayores de 1,50 m. Durante el vertido, el hormigón debe dirigirse mediante trompas de hormigonado u otros dispositivos para evitar que golpee directamente contra el encofrado o las armaduras.
El hormigón se coloca de forma continua o en capas, cuidando de que no se formen juntas frías. Se espera que cada capa esté en estado plástico cuando se coloca la siguiente. La compactación del hormigón se realiza con vibradores de aguja, introduciendo la aguja verticalmente en la masa de manera rápida y profunda. Posteriormente, se retira lentamente y de forma constante hasta que la lechada fluya a la superficie. El vibrador debe estar siempre en el fondo del encofrado antes de verter la primera capa de hormigón. Esta primera capa es la más crítica, pues debe adherirse al hormigón endurecido. Una compactación inadecuada puede provocar la aparición de coqueras, una permeabilidad excesiva o la formación de una capa superficial débil por compactación excesiva.
El método óptimo para colocar y compactar hormigón en columnas pequeñas consiste en verterlo de forma continua a una velocidad que permita al vibrador realizar la compactación mientras se retira lentamente a una velocidad constante. La velocidad de vertido no debe superar los 300 mm en 30 segundos. Para una columna de 25 cm x 25 cm de sección y 3 m de altura, esto equivale a un tiempo total de aproximadamente 5 minutos. Si las circunstancias no permiten ejecutarlo de esta forma, es necesario limitar el espesor de cada capa a unos 300 mm. La aguja del vibrador se introduce entre 10 y 15 cm en la capa inferior.
El vertido desde tolvas móviles solo está permitido si el operador puede controlar el inicio y la parada de la descarga, asegurando que no se viertan más de tres cubetas por soporte. Si no se puede garantizar este control, es preferible verter el hormigón sobre una plataforma situada encima del soporte y distribuirlo cuidadosamente con una pala. También se puede utilizar un balde, aunque este método puede ser más lento.
Para asegurar una buena compactación en secciones pequeñas al trabajar con columnas, un vibrador de 40 mm de diámetro es suficiente, siempre que haya espacio para insertarlo en el centro. El vibrado se debe extender hasta los vértices, aristas y fondos. Es fundamental asegurarse de que el vibrador no entre en contacto con las armaduras. Se recomienda sumergir el vibrador en diferentes puntos cercanos durante períodos cortos (5 a 15 segundos) en lugar de prolongar el tiempo de vibrado en puntos más distantes. Al verter capas de 300 mm de espesor, es crucial garantizar que cada capa esté completamente compactada antes de pasar a la siguiente. Además, se recomienda verificar la superficie del hormigón para asegurar su visibilidad; en caso contrario, se aconseja utilizar una fuente de luz adecuada.
Si se utiliza una bomba para verter el hormigón, la manguera flexible debe llegar hasta el fondo y retirarse al mismo tiempo que el vibrador. Es fundamental reducir la velocidad de descarga de la bomba para permitir una correcta compactación con el vibrador. Para obtener un acabado superficial de calidad, se recomienda volver a vibrar los últimos 450 mm media hora después del vertido. Si la caída es libre desde la parte superior del encofrado, el mortero se adhiere parcialmente al encofrado y a las armaduras, lo que altera la dosificación del hormigón que llega a la base.
Después del hormigonado, se verifica el aplomado del pilar tras un período aproximado de 30 minutos para asegurarse de que no haya habido ningún desplazamiento. Conviene no olvidar que, durante el fraguado y el primer período de endurecimiento del hormigón, es crucial mantener adecuadamente su humedad mediante un correcto proceso de curado.
Dejo algunos vídeos al respecto.
Os dejo un documento que puede complementar la información que os he ofrecido.
Por lo general, una mesa vibrante está compuesta por una superficie de acero u hormigón armado, con vibradores externos montados en el marco de soporte (ver Figura 1). Tanto la mesa como el marco están aislados de la base mediante resortes de acero, juntas aislantes de neopreno u otros dispositivos similares. La propia mesa puede formar parte del molde. Sin embargo, normalmente se coloca un molde separado sobre la mesa. La vibración se transmite desde la mesa al molde y, luego, al hormigón. Existen diferentes opiniones sobre la conveniencia de sujetar el molde a la mesa.
Normalmente, se prefiere una vibración de baja frecuencia (por debajo de 100 Hz) y alta amplitud (más de 0,13 mm), al menos para mezclas más rígidas. La efectividad de la vibración de mesa depende en gran medida de la aceleración que se imparte al hormigón por parte de la mesa. Generalmente, se recomiendan aceleraciones en el rango de 3 g a 10 g (30 m/s² a 100 m/s²), siendo necesarios valores más altos para las mezclas más rígidas. Además, la amplitud no debe ser inferior a 0,025 mm para las mezclas plásticas, ni a 0,050 mm para las más rígidas.
Se trata de mesas formadas por un tablero rígido, que suele ser de acero, y que se sostiene de manera elástica sobre una base fija y adecuadamente aislada. La vibración se genera mediante generadores ubicados debajo del tablero. En mesas de dimensiones pequeñas (L = 1,50 m), un solo vibrador es suficiente, pero si las dimensiones son mayores, hay que aumentar proporcionalmente el número de vibradores.
Estas mesas vibrantes se utilizan tanto en laboratorios como en la compactación de elementos prefabricados de hormigón. Por lo tanto, la amplitud y la frecuencia del vibrador deben poder ajustarse para adaptarse a los diferentes tipos de hormigón. Es esencial que la mesa sea completamente rígida para garantizar una transmisión uniforme de las vibraciones a toda la pieza.
Los vibradores, similares a los vibradores externos de encofrado, cuentan con dos masas excéntricas que giran en direcciones opuestas, generando fuerzas vibratorias perpendiculares a la mesa. Deben tener una amplitud elevada y una frecuencia baja, ya que los hormigones utilizados en la prefabricación suelen ser secos.
Al igual que con los vibradores de encofrado, la fuerza centrífuga del vibrador puede calcularse aproximadamente en función de los pesos del hormigón y del molde o encofrado, mediante la siguiente fórmula:
donde:
PM: peso de la mesa (más el del molde, en caso de que este sea solidario a ella).
Pm: peso del molde (apoyado y fijado correctamente a la mesa).
Ph: peso del hormigón.
k: coeficiente variable, que va de 0,5 a 4 según la rigidez de la mesa.
Cuando se vayan a vibrar secciones de hormigón de diferentes tamaños, la mesa debe tener una amplitud variable. Una frecuencia variable es un beneficio adicional. Si la mesa vibratoria tiene un elemento vibrante que contiene solo un excéntrico, puede generarse un movimiento vibratorio circular que imparte un movimiento rotacional no deseado al hormigón. Esto puede evitarse montando dos vibradores uno al lado del otro, de tal manera que sus ejes giren en direcciones opuestas. De este modo, se neutraliza la componente horizontal de la vibración, de modo que la mesa solo está sujeta a un movimiento armónico simple en la dirección vertical. De esta manera, se pueden obtener amplitudes muy altas. Para lograr una buena consolidación de mezclas muy rígidas, con frecuencia es necesario aplicar presión sobre la superficie superior durante la vibración.
Os dejo algunos vídeos sobre mesas vibradoras.
Referencias:
ACI COMMITTEE 309R-96. Guide for Consolidation of Concrete (ACI 309). American Concrete Institute.
BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.
CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.
MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València.
La vibración interna o por inmersión se realiza introduciendo en la masa de hormigón un elemento tubular, conocido como vibrador de aguja. Este dispositivo está compuesto por una cabeza cilíndrica metálica, resistente al desgaste y fácilmente intercambiable, que alberga en su interior el mecanismo vibratorio. Estos son los más utilizados en obras de carácter general. En la mayoría de situaciones, los vibradores internos requieren el efecto refrigerante del hormigón para prevenir el sobrecalentamiento, es decir, el hormigón actúa como un refrigerante.
La vibración por inmersión es una forma de compactación eficiente, pues el vibrador está en contacto directo con el hormigón. Esto permite que el vibrador actúe y cambie de posición según sea necesario, adaptándose al tipo de hormigón. Presentan la ventaja de ser sencillos de manejar y transportar de un lugar a otro. Su efecto se restringe a una masa contenida en un tronco de cono, con un diámetro mayor en la superficie que en el fondo, efecto causado por la mayor viscosidad del hormigón en las capas inferiores. Esta situación requiere insertar el vibrador en distintos puntos para que las zonas de acción se superpongan. Por lo general, la separación entre los pinchazos, en centímetros, es equivalente al tamaño de la aguja en milímetros. La distancia entre los puntos de inmersión también depende de la consistencia del hormigón, la forma y el tamaño de la pieza y el tipo específico de vibrador. Además, el radio de acción de un vibrador interno es significativamente menor en el caso del hormigón armado en comparación con el hormigón en masa. Esta reducción puede alcanzar hasta un 50 %.
Los vibradores internos utilizados en la actualidad son de tipo rotativo. Los impulsos vibratorios se generan desde la cabeza del vibrador en ángulo recto. Este tipo de maquinaria suele funcionar a altas frecuencias (entre 200 Hz y 300 Hz) para producir vibraciones intensas y con un radio de acción suficiente gracias a su peso reducido. Con el paso del tiempo, se ha tendido a emplear vibradores de aguja con diámetros más pequeños y una frecuencia de vibración mayor para conseguir una mayor eficacia. Este cambio también se debe a la demanda de herramientas ligeras y a la construcción de obras con secciones delgadas y armaduras cada vez más densas.
En cuanto al proceso, el vibrador interno se introduce verticalmente en el hormigón de manera rápida, pero no debe permanecer en funcionamiento durante un periodo prolongado para prevenir segregaciones o exudaciones, especialmente en hormigones fluidos. Debe continuarse la vibración hasta que las burbujas de aire grandes aparezcan esporádicamente y comience a formarse una capa muy delgada de mezcla fina. Los tiempos habituales de vibrado son de 10 a 15 segundos, al final de los cuales el vibrador debe retirarse lentamente. Tiempos excesivamente largos pueden causar segregación, especialmente si el hormigón no es muy seco. Prolongar el tiempo de vibración para eliminar todo el aire más allá de lo necesario no es práctico y, en hormigones mal dosificados, puede causar efectos nocivos como la disgregación del material. No obstante, es importante tener en cuenta que un exceso de vibración es menos perjudicial que una vibración insuficiente. La extracción debe ser lenta, para que el orificio que se forma se rellene con hormigón y mortero. Es preferible vibrar menos tiempo en muchos puntos, en vez de mucho tiempo en pocos puntos. La Tabla 1 incluye valores orientativos de amplitud y frecuencia, así como el radio de acción y la velocidad de vertido recomendados para diferentes calibres.
Tabla 1. Valores característicos de vibradores de inmersión
Ø vibrador (mm)
Frecuencia (Hz)
Amplitud (mm)
Radio de acción (cm)
Velocidad de vertido (m3/h)
20 – 40
170 – 250
0,4 – 0,8
8 – 15
0,8 -4
30 – 60
150 – 225
0,5 – 1,0
13 – 25
2,5 – 8
50 – 90
130 – 200
0,6 – 1,3
18 – 35
4,5 – 15
80 – 150
120 – 180
0,8 – 1,5
30 – 50
11- 30
En general, se considera que la capa de hormigón debe tener una altura inferior a la longitud de la aguja del vibrador para poder revibrar la capa inferior al mismo tiempo que se vibra la superior; no obstante, esto puede resultar complicado de conseguir. Al compactar en profundidad las sucesivas capas de hormigón, el vibrador debe introducirse entre 10 y 15 cm en la capa anterior para asegurar la unión entre las capas (Figura 3).
Las diferentes inserciones deben situarse aproximadamente a vez y media el radio de acción del vibrador interno para generar solapamientos. Como regla práctica, se puede decir que la distancia entre los puntos de inmersión debería ser unas 8 a 10 veces el diámetro de la aguja. Normalmente, no debe excederse los 50 cm entre los puntos de inserción (Figura 4).
Durante la vibración, se debe evitar que el vibrador toque el encofrado. Se debería mantener una distancia de unos 10 cm entre el vibrador y las caras verticales de los encofrados para evitar la formación de burbujas superficiales. En cuanto a las armaduras, aunque la norma tradicional recomienda no tocarlas, puede ser beneficioso vibrarlas para lograr una mayor adherencia y una densidad más alta del hormigón en las zonas con mayor concentración de barras. Tampoco se debe distribuir el hormigón utilizando el vibrador de aguja.
El campo de actuación óptimo de estos aparatos se encuentra con relaciones agua/cemento entre 0,4 y 0,6. Con valores inferiores, el hormigón se vuelve muy rígido y, con valores superiores, muy fluido, lo que puede causar problemas de exudación.
Una vibración inadecuada puede provocar distintos defectos en el hormigón:
Panal de abeja: Se forman bolsas de áridos sin mortero cuando la vibración es incompleta y no sistemática.
Estratos de hormigonado o vetas entre tongadas: Aparecen cuando no se realiza el revibrado y la fusión con la capa anterior, es decir, no se ha llevado a cabo el cosido de capas.
Vetas o regueros de arena en la superficie: Se deben a una mala dosificación del hormigón y a fugas en los encofrados, que permiten la pérdida de lechada por una vibración excesiva.
Aire ocluido no expulsado: Se manifiesta como huecos de aire en la superficie causados por burbujas de aire que no pudieron salir debido a un tiempo insuficiente de vibrado. Los encofrados de madera permiten liberar las burbujas de aire y lograr una mejor apariencia superficial que con los encofrados metálicos.
Fugas en los encofrados y superficies bombeadas: Se producen por un vibrado excesivo o por encofrados que no son estancos y resistentes a la vibración.
Desde la perspectiva del tipo de energía, existen tres tipos de vibradores internos: eléctricos, hidráulicos (especialmente utilizados en carreteras y presas), y de aire comprimido.
Las agujas eléctricas funcionan a 200 Hz y están diseñadas para vibrar el hormigón en obras de construcción e ingeniería civil. Los vibradores con motor eléctrico integrado en la cabeza han ganado popularidad en los últimos años. Al tener el motor ubicado en la cabeza del vibrador, no se necesitan motores o flechas separados. Desde la cabeza, sale un cable eléctrico resistente que también sirve como mango. Estos vibradores suelen tener un diámetro mínimo de 50 mm. Este tipo de vibradores está disponible en dos diseños. Uno de ellos utiliza un motor universal y el otro un motor trifásico de 180 Hz (alta frecuencia). En este último caso, la energía generalmente proviene de un motor de gasolina portátil; sin embargo, también se puede utilizar corriente comercial pasada a través de un convertidor de frecuencia. El diseño con motor de inducción experimenta una ligera disminución de velocidad al sumergirse en el hormigón. Esto permite que pueda rotar con un peso excéntrico mayor y desarrollar una fuerza centrífuga más alta que la que producen los modelos con motores eléctricos en la cabeza de un diámetro similar. En algunos países, se utilizan motores para vibradores de 150 o 200 Hz.
Los vibradores neumáticos suelen tener el motor neumático típico ubicado dentro de la cabeza del vibrador. El diseño más común emplea aspas que sostienen el motor y los elementos excéntricos sobre apoyos. Sin embargo, existen modelos sin apoyos que requieren menos mantenimiento, así como algunos con flecha flexible que colocan el motor neumático fuera de la cabeza. El uso de vibradores neumáticos presenta ventajas cuando el acceso al aire comprimido es fácil. La frecuencia de vibración depende en gran medida de la presión del aire, la cual debe mantenerse siempre dentro de los niveles recomendados por el fabricante. En ocasiones, puede ser conveniente ajustar la presión del aire para obtener una frecuencia diferente. Las agujas neumáticas, aunque presentan características similares a las eléctricas, incluyen modelos que alcanzan los 320 Hz y diámetros de hasta 140 mm.
Los vibradores que funcionan con un motor hidráulico se utilizan ampliamente en las máquinas de pavimentación. Estos vibradores están conectados al sistema hidráulico de la pavimentadora mediante mangueras de alta presión. La frecuencia de vibración puede ajustarse regulando el flujo del fluido hidráulico que pasa a través del vibrador. La eficacia del vibrador depende tanto de la presión como del flujo del fluido hidráulico. Por lo tanto, es crucial realizar revisiones periódicas del sistema hidráulico para garantizar su correcto funcionamiento.
Os dejo algunos vídeos que, espero, sean de vuestro interés.
Os dejo esta presentación que tiene consejos interesantes sobre el vibrado interno del hormigón.
En un artículo anterior explicamos cómo se podía calcular la presión y la potencia para el bombeo del hormigón. Aquí vamos a presentar un par de nomogramas que hemos desarrollado junto a los profesores Pedro Martínez Pagán y Daniel Boulet. Además, se incluye la resolución completa de un problema utilizando estos nomogramas.
Para los que estéis interesados en ampliar conocimientos, os recomiendo un libro de 300 problemas resueltos de Maquinaria y Procedimientos de Construcción. El libro ofrece una completa colección de 300 problemas resueltos, abarcando aspectos relacionados con la maquinaria, medios auxiliares y procedimientos de construcción. Su contenido se enfoca en la mecanización de las obras, costos, disponibilidad, fiabilidad y mantenimiento de equipos, estudio del trabajo, producción de maquinaria, sondeos y perforaciones, técnicas de mejora del terreno, control y abatimiento del nivel freático, movimiento de tierras, equipos de dragado, explosivos y voladuras, excavación de túneles, instalaciones de tratamiento de áridos, compactación de suelos, ejecución de firmes, maquinaria auxiliar como bombas, compresores o ventiladores, cables y equipos de elevación, cimentaciones y vaciados, encofrados y cimbras, fabricación y puesta en obra del hormigón, organización y planificación de obras. Es un libro, por tanto, muy enfocado a los ámbitos de la ingeniería de la construcción, tanto en el ámbito de la edificación, de la minería o de la ingeniería civil. Además, se incluyen 26 nomogramas originales y 19 apéndices para apoyar tanto a estudiantes de ingeniería o arquitectura, como a profesionales que enfrentan desafíos similares en su práctica diaria en obra o proyecto. La colección se complementa con un listado de referencias bibliográficas que respaldan los aspectos teóricos y prácticos abordados en los problemas. Estos problemas son similares a los tratados durante las clases de resolución de casos prácticos en la asignatura de Procedimientos de Construcción del Grado en Ingeniería Civil de la Universitat Politècnica de València (España). Por tanto, el libro resulta adecuado tanto para estudiantes de grado como para cursos de máster relacionados con la ingeniería civil, la edificación y las obras públicas.
MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014).Fabricación, transporte y colocación del hormigón.Apuntes de la Universitat Politècnica de València.
RODRÍGUEZ-LÓPEZ, A.J. (2015). Determinación automática de la eficiencia volumétrica y otros parámetros de operación de bombas alternativas de hormigón mediante análisis de los pulsos de presión en su salida. Tesis doctoral. Universidad Politécnica de Madrid.
Acaban de publicarnos un artículo en la revista científica Journal of Civil Engineering & Management (indexada en el JCR, Q1) un artículo que analiza el uso de la toma de decisiones con criterios múltiples (MCDM) para evaluar y modernizar edificios, centrándose en la integración de los criterios de seguridad y sostenibilidad. Asimismo, identifica los métodos MCDM más comunes, como el AHP, el SAW y el TOPSIS, y ofrece recomendaciones para futuras investigaciones a fin de mejorar los procesos de toma de decisiones en la renovación de edificios. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.
Las contribuciones más importantes de este trabajo son las siguientes:
El documento realiza una revisión exhaustiva de la literatura sobre los métodos de toma de decisiones con criterios múltiples (MCDM) para evaluar, seleccionar y modernizar edificios, haciendo hincapié en la integración de los criterios de seguridad y sostenibilidad.
Aborda la necesidad de realizar evaluaciones con múltiples objetivos en la modernización sostenible para demostrar la sostenibilidad tanto a corto como a largo plazo, colmando así un vacío de conocimiento en el campo de la seguridad estructural y la sostenibilidad de los edificios existentes.
El estudio evalúa la tendencia actual de utilizar los MCDM para integrar las tres dimensiones de la sostenibilidad con la seguridad estructural, destacando el potencial de las aplicaciones de los MCDM en la toma de decisiones en los ámbitos de la ingeniería civil, la construcción, la tecnología de la construcción y la sostenibilidad.
La investigación tiene como objetivo proporcionar información sobre la evaluación, la selección y la modernización de edificios sostenibles y seguros, y ofrece recomendaciones para futuras investigaciones a fin de mejorar las soluciones de toma de decisiones para integrar los aspectos de seguridad y sostenibilidad en los edificios existentes.
Las conclusiones del artículo son las siguientes:
El estudio revisa 91 artículos sobre la evaluación, la selección y la modernización de edificios mediante métodos de toma de decisiones basados en criterios múltiples, lo que indica el creciente interés de la comunidad científica por esta área.
Los investigadores se centran en los edificios públicos, en particular en las escuelas y los edificios históricos, e integran las consideraciones económicas y sociales al evaluar los edificios vulnerables y las opciones de modernización.
El enfoque actual hace hincapié en la integración en cuatro dimensiones de los aspectos de seguridad, económicos, sociales y ambientales en la modernización de edificios, aunque los criterios específicos para cada dimensión carecen de consenso.
El proceso analítico jerárquico (AHP) se utiliza ampliamente para la ponderación de los criterios, mientras que el método TOPSIS es el preferido para integrar los criterios de sostenibilidad y seguridad en la modernización de edificios.
El estudio destaca la necesidad de seguir investigando para abordar la subjetividad en la toma de decisiones, incorporar el análisis del ciclo de vida y explorar nuevos sistemas de gestión multifuncional para mejorar la integración de la seguridad y la sostenibilidad en las evaluaciones y modernizaciones de los edificios.
Abstract:
Multiple criteria decision-making (MCDM) has experienced significant growth in recent years, owing to its capacity to integrate even contradictory criteria. This study conducted a comprehensive literature review of MCDM for assessing, selecting, and retrofitting buildings. The bibliometric search used a search algorithm in specialized databases. A filtering and expansion process was done by reviewing references, and 91 relevant articles were selected. The analysis revealed that in a group of studies, socioeconomic criteria were used to assess the vulnerability of buildings. On the other hand, some research integrated the three dimensions of sustainability (economic, social, and environmental) along with safety considerations when identifying optimal retrofit alternatives. Classic MCDMs are prevalent in research within this field. Among the most used methods, the Analytic Hierarchy Process (AHP) was employed for criteria weighting, Simple Additive Weighting (SAW) for constructing vulnerability indices, and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) for building retrofitting. This literature review contributes to the path toward a holistic renovation of the existing building stock, providing recommendations for future research to improve decision-making solutions for integrating the safety and sustainability of existing buildings.