Os paso a continuación un artículo que acabamos de publicar en la revista ANUARI d’Arquitectura. El trabajo analiza el impacto de la crisis económica de 2008 en el sector de la vivienda en España, que provocó un envejecimiento del parque de viviendas y dificultades para acceder a la vivienda. Destaca la necesidad de rehabilitación social de las viviendas existentes y la importancia de una vida sostenible. El artículo enfatiza el cambio hacia la rehabilitación de viviendas existentes en lugar de construir otras nuevas, lo que presenta un nuevo desafío para que la arquitectura aborde las necesidades de la sociedad.
Se pueden aportar las siguientes contribuciones del trabajo:
El trabajo destaca el impacto de la crisis económica de 2008 en el sector de la vivienda en España, que provocó un envejecimiento del parque de viviendas y dificultades para acceder a la vivienda.
Hace hincapié en la necesidad de la rehabilitación social de las viviendas existentes como respuesta a las demandas de la sociedad y en la importancia de promover una vida sostenible.
El documento analiza la demanda social de viviendas con características específicas, como los balcones y la eficiencia energética, y la importancia de adaptar los edificios a las nuevas demandas.
Explora el uso de herramientas de simulación del rendimiento de edificios (herramientas BPS) para facilitar los análisis especializados y mejorar el impacto ambiental de los edificios.
El documento también destaca los avances en los materiales y técnicas de construcción, como el uso de materiales puzolánicos y el sistema de aislamiento térmico externo (ETIS), para mejorar la utilización de los recursos, la durabilidad y la eficiencia energética.
Alinea el concepto de renovación de edificios con los Objetivos de Desarrollo Sostenible (ODS) establecidos en la Agenda 2030 de las Naciones Unidas, en particular el ODS 11 (ciudades y comunidades sostenibles) y el ODS 9 (infraestructura resiliente e industrialización sostenible)
Resumen:
El año 2008 se desencadenó una crisis económica mundial que hizo temblar los cimientos de la sociedad y produjo cambios en su visión. En España, esta crisis afectó con crudeza al sector inmobiliario, dejando miles de viviendas vacías. En la actualidad, aún quedan vestigios de esta herida en la sociedad: un parque de vivienda envejecido y la dificultad de acceso a la vivienda, entre otros factores. Este contexto social, sumado a la necesidad de trabajar para conseguir una manera de habitar más sostenible, justifica una necesidad social que se está convirtiendo en una realidad. Rehabilitar vivienda en lugar de construir nueva. Un nuevo reto para la arquitectura en respuesta a la sociedad. Un nuevo reto para el que se están planteando diferentes soluciones.
Palabras clave:
BIM; rehabilitación de edificios; sostenibilidad; vivienda
Los puentes de tablero continuo con longitudes superiores a 150 m se construyen en fases sucesivas, vano a vano, utilizando el pretensado para unirlos. Esto permite ahorrar en cimbra y reduce las pérdidas de pretensado respecto al cimbrado en una sola etapa. Por lo general, las juntas de cada tramo de vano se ubican a una distancia de 0,20 veces la longitud del vano desde la pila, y no directamente sobre la misma pila. Este proceso es evolutivo y requiere cálculos específicos para cada fase de construcción. La continuidad del pretensado se logra mediante el uso de acopladores o cruces de cables en la cara frontal de cada fase. Se distinguen tres métodos constructivos según los equipos auxiliares utilizados: cimbras desmontables, cimbras trasladables y cimbras autoportantes o autolanzables.
Cimbras desmontables
Las cimbras desmontables se recomiendan cuando existen múltiples vanos de igual luz, resulta difícil el apoyo sobre el terreno o con un tablero de canto constante. Estas cimbras presentan pocos apoyos, con vigas y pilares metálicos modulares reutilizables. Con este sistema se construyeron los viaductos del Guadalmellato para el AVE en el tramo de Alcolea-Adamuz (Córdoba) y el de Garraf en la autopista Castelldefels-Sitges (Barcelona).
A continuación os dejo un vídeo sobre este proceso constructivo.
Cimbra móvil sobre ruedas o trasladable paso a paso
Un puente con más de tres vanos de sección constante, de altura reducida, situado sobre un terreno plano y con suficiente capacidad portante, puede construirse con una cimbra móvil. Se trata de una mejora lógica de las cimbras desmontables, donde se hormigona un tramo de una vez hasta la sección de momento nulo del tramo siguiente. Una vez se pretensa el tramo terminado, el encofrado desciende con su cimbra y se traslada hasta el tramo siguiente.
Suele ser una cimbra tubular desplazable sobre carretones. Durante el hormigonado se descargan las ruedas y se apoya la cimbra mediante husillos, cuñas o gatos, que son los elementos que facilitarán el descimbrado. Si el terreno presenta poca capacidad portante, la cimbra se traslada sobre unos carriles que descansan sobre las pilas del puente o sobre una cimentación provisional. Asimismo, se sujeta el extremo de la cimbra al tablero ya ejecutado para evitar movimientos diferenciales en la junta de hormigonado. Las torres de la cimbra se sitúan fuera de las pilas para facilitar el paso de vano a vano. Asimismo, el fondo del encofrado, sus correas y cerchas pueden abrirse para sortear las pilas.
Referencias:
SEOPAN (2015). Manual de cimbras autolanzables. Tornapunta Ediciones, Madrid, 359 pp.
PEURIFOY, R.L. (1967). Encofrados para estructuras de hormigón. McGraw-Hill y Ediciones Castillo, Madrid, 344 pp.
RICOUARD, M.J. (1980). Encofrados. Cálculo y aplicaciones en edificación y obras civiles. Editores Técnicos Asociados, S.A. Barcelona, 312 pp.
La Universitat Politècnica de València, en colaboración con la empresa Ingeoexpert, ha elaborado un Curso online sobre “Estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras”.
El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 75 horas de dedicación del estudiante. Hay plazas limitadas.
Este curso aborda de manera amplia las estructuras auxiliares utilizadas en la construcción, abarcando tanto el ámbito de la edificación como el de las obras de ingeniería civil. No se requieren conocimientos previos específicos para participar, ya que está diseñado para beneficiar a un amplio espectro de profesionales, tanto con experiencia como sin ella, así como a estudiantes de diversas disciplinas relacionadas con la construcción, ya sea a nivel universitario o de formación profesional. Además, el proceso de aprendizaje ha sido estructurado de manera gradual, permitiendo a los estudiantes adentrarse en aquellos aspectos que despierten su interés mediante material complementario y enlaces a recursos en línea, como videos y catálogos.
En este curso, adquirirás conocimientos fundamentales sobre andamios, apeos, entibaciones, encofrados y cimbras. El enfoque principal de este programa se centra en comprender los principios básicos que rigen las estructuras auxiliares esenciales para la construcción de edificios e infraestructuras, especialmente aquellas destinadas a la contención temporal del terreno y a la ejecución de estructuras de hormigón. Este curso abarca un amplio espectro, profundizando en los fundamentos de la ingeniería de la construcción. Se destaca la importancia de cultivar el pensamiento crítico del estudiante, particularmente en relación con la selección de métodos y técnicas empleadas en el diseño y uso de medios auxiliares en casos concretos. El curso trata llenar el hueco que deja la bibliografía habitual, donde no se profundiza en los procedimientos constructivos y el empleo de estas estructuras auxiliares, especialmente desde el punto de vista de su diseño, uso y seguridad. Además, el curso está diseñado para que el estudiante pueda ampliar por sí mismo la profundidad de los conocimientos adquiridos en función de su experiencia previa o sus objetivos personales o de empresa.
El contenido del curso se organiza en 50 lecciones, que constituyen cada una de ellas una secuencia de aprendizaje completa. Además, se entregan un amplio conjunto problemas resueltos que complementan la teoría estudiada en cada lección. La dedicación aproximada para cada lección se estima en 2-3 horas, en función del interés del estudiante para ampliar los temas con el material adicional. Al finalizar cada unidad didáctica, el estudiante afronta una batería de preguntas cuyo objetivo fundamental es afianzar los conceptos básicos y provocar la duda o el interés por aspectos del tema abordado. Al final se han diseñado tres unidades adicionales para afianzar los conocimientos adquiridos a través del desarrollo de casos prácticos, donde lo importante es desarrollar el espíritu crítico y su capacidad para resolver problemas reales. Por último, al finalizar el curso se realiza una batería de preguntas tipo test cuyo objetivo es conocer el aprovechamiento del estudiante, además de servir como herramienta de aprendizaje.
El curso está programado para 75 horas de dedicación por parte del estudiante. Se pretende un ritmo moderado, con una dedicación semanal en torno a las 10-15 horas, dependiendo de la profundidad requerida por el estudiante, con una duración total de 6 semanas de aprendizaje.
Lo que aprenderás
Al finalizar el curso, los objetivos de aprendizaje básicos son los siguientes:
Comprender la utilidad y las limitaciones de los medios auxiliares empleados para la construcción
Evaluar y seleccionar las estructuras temporales atendiendo a criterios económicos y técnicos
Conocer las buenas prácticas y los aspectos de seguridad implicados en el uso de las estructuras temporales
Comprobar los aspectos básicos de las acciones que intervienen en el diseño de las estructuras temporales
Programa del curso
Lección 1. Estructuras auxiliares y desmontables: concepto y clasificaciones
Lección 2. Apeos y apuntalamientos
Lección 3. Apeo de fachadas para el vaciado de edificios: estabilizadores de fachada
Lección 4. El apeo de urgencia
Lección 5. Entibaciones de madera
Lección 6. Entibación de zanjas mediante paneles
Lección 7. Problemas resueltos de entibaciones
Lección 8. Andamio de trabajo en obras de construcción
Lección 9. Andamio de borriquetas
Lección 10. Torres de trabajo móviles
Lección 11. Plataformas de trabajo desplazables sobre mástil: andamio de cremallera
Lección 12. Plataformas de trabajo suspendidas de nivel variables
Lección 13. Andamios de marcos prefabricados: andamios de fachada europeos
Lección 14. Andamios multidireccionales o de volumen
Lección 15. Criterios generales para la ejecución de estructuras de hormigón
Lección 16. Introducción a los encofrados y moldes
Lección 17. Clasificación de los sistemas de encofrado
Lección 18. Requisitos sobre encofrados y moldes
Lección 19. Reducción de costes en la construcción de encofrados
Lección 20. Moldes para hormigón prefabricado
Lección 21. Encofrado prefabricado para pilares
Lección 22. Encofrados para forjados reticulares
Lección 23. Construcción mediante encofrados túnel
Lección 24. Mesas encofrantes o sistemas premontados
Lección 25. Encofrados de contrachapado fenólico
Lección 26. Productos desencofrantes de desmoldeo
Lección 27. Cimbras y encofrados hinchables
Lección 28. Encofrados deslizantes
Lección 29. Encofrado trepante
Lección 30. Carros de encofrado para túnel
Lección 31. Carros de encofrado para la construcción de puentes por avance en voladizo
Lección 32. Medidas de seguridad durante el desencofrado
Lección 33. Coeficientes de seguridad de los materiales de un encofrado
Lección 34. Empuje del hormigón fresco sobre un encofrado
Lección 35. Problemas resueltos de encofrados
Lección 36. El proyecto de una cimbra
Lección 37. Parámetros de diseño y seguridad en las cimbras
Lección 38. Clases de diseño de cimbras según la norma UNE-EN 12812
Lección 39. El anejo y la guía de operación de una cimbra
Lección 40. Construcción in situ de tableros con cimbra completa apoyada
Lección 41. Construcción in situ de tableros por vanos sucesivos
Lección 42. Cimbras autolanzables
Lección 43. Clasificación de cimbras autolanzables
Lección 44. Lanzadores de vigas
Lección 45. Construcción con cimbra y autocimbra de puentes arco
Lección 46. Requisitos de los cimientos de una cimbra
Lección 47. Cimbrado, recimbrado, clareado y descimbrado de plantas consecutivas
Lección 48. Resistencia del hormigón para el descimbrado
Lección 49. Precauciones específicas en seguridad relativas al montaje y desmontaje de cimbras
Lección 50. Problemas resueltos de cimbras
Supuesto práctico 1.
Supuesto práctico 2.
Supuesto práctico 3.
Batería de preguntas final
Conozca a los profesores
Víctor Yepes Piqueras
Doctor Ingeniero de Caminos, Canales y Puertos. Universitat Politècnica de València
Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente “cum laude”. Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València y profesor, entre otras, de las asignaturas de Procedimientos de Construcción en los grados de ingeniería civil y de obras públicas. Su experiencia profesional se ha desarrollado como jefe de obra en Dragados y Construcciones S.A. (1989-1992) y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 5 proyectos de investigación competitivos. Ha publicado más de 160 artículos en revistas indexadas en el JCR. Autor de 10 libros, 22 apuntes docentes y más de 350 comunicaciones a congresos. Ha dirigido 16 tesis doctorales, con 10 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos. Ha recibido el Premio a la Excelencia Docente por parte del Consejo Social, así como el Premio a la Trayectoria Excelente en Investigación y el Premio al Impacto Excelente en Investigación, ambos otorgados por la Universitat Politècnica de València.
Lorena Yepes Bellver
Ingeniera civil, máster en ingeniería de caminos, canales y puertos y máster en ingeniería del hormigón. Universitat Politècnica de València.
Profesora Asociada en el Departamento de Mecánica de los Medios Continuos y Teoría de las Estructuras de la Universitat Politècnica de València. Es ingeniera civil, máster en ingeniería de caminos, canales y puertos y máster en ingeniería del hormigón. Ha trabajado en los últimos años en empresas constructoras y consultoras de ámbito internacional. Aparte de su dedicación docente e investigadora, actualmente se dedica a la consultoría en materia de ingeniería y formación.
En el prólogo de obras anteriores, mencioné que la enseñanza de “Procedimientos de Construcción” es complicada, ya que implica instruir a futuros ingenieros civiles sobre la realización de obras. Este proceso abarca no solo las fases constructivas, sino también aspectos de gran relevancia, como el manejo de maquinaria y medios auxiliares, la seguridad y salud, el impacto ambiental de las obras, y sobre todo, conocimientos fundamentales en geotecnia, resistencia de materiales, mecánica, cálculo de estructuras, gestión de empresas, planificación de obras y economía. Todo este conjunto de conocimientos es esencial para tomar decisiones acertadas al seleccionar el mejor proceso constructivo para un proyecto específico. Además, debemos abordar toda esta información, considerando que la mayoría de los alumnos tienen poca o nula experiencia práctica en relación con el entorno físico de las obras.
Una dificultad adicional radica en la creación de un conjunto ordenado y coherente de problemas resueltos que no sean meramente teóricos, sino que se acerquen al mundo real de la profesión. Esta tarea resulta compleja en ocasiones, pues los procedimientos constructivos requieren conocimientos que abarcan casi todas las áreas de la ingeniería. En consecuencia, explicar esta asignatura en los primeros cursos de un grado universitario puede parecer arriesgado, debido a la amplia gama de conocimientos necesarios. Sin embargo, los planes de estudio a veces presentan estas incongruencias y desafíos en la enseñanza de esta materia.
Al final ha salido un volumen extenso, con una amplia variedad de problemas resueltos, que intenta abarcar todo el campo de conocimiento de los procedimientos de construcción, incluyendo la maquinaria y los medios auxiliares utilizados tanto en la ingeniería civil como en la edificación, e incluso en algunos casos, en la minería.
Esta colección forma parte del conjunto de materiales, libros y documentación que he elaborado como autor, complementando así el contenido teórico de la asignatura. Por esta razón, recomiendo al lector que acuda a manuales, libros o apuntes para reforzar la parte teórica de los problemas. No obstante, he incluido una extensa bibliografía que espero sea útil para este propósito. Además, me complace recomendar mi blog, que cuenta con
una trayectoria de casi 12 años y ha recopilado cerca de 2.000 artículos relacionados con aspectos de la ingeniería de la construcción. Puedes encontrarlo en el siguiente enlace: https://victoryepes.blogs.upv.es/.
El libro ofrece una completa colección de 300 problemas resueltos, abarcando aspectos relacionados con la maquinaria, medios auxiliares y procedimientos de construcción. Su contenido se enfoca en la mecanización de las obras, costos, disponibilidad, fiabilidad y mantenimiento de equipos, estudio del trabajo, producción de maquinaria, sondeos y perforaciones, técnicas de mejora del terreno, control y abatimiento del nivel freático, movimiento de tierras, equipos de dragado, explosivos y voladuras, excavación de túneles, instalaciones de tratamiento de áridos, compactación de suelos, ejecución de firmes, maquinaria auxiliar como bombas, compresores o ventiladores, cables y equipos de elevación, cimentaciones y vaciados, encofrados y cimbras, fabricación y puesta en obra del hormigón, organización y planificación de obras.
Es un libro, por tanto, muy enfocado a los ámbitos de la ingeniería de la construcción, tanto en el ámbito de la edificación, de la minería o de la ingeniería civil. Además, se incluyen 27 nomogramas originales y 19 apéndices para apoyar tanto a estudiantes de ingeniería o arquitectura, como a profesionales que enfrentan desafíos similares en su práctica diaria en obra o proyecto. La colección se complementa con un listado de referencias bibliográficas que respaldan los aspectos teóricos y prácticos abordados en los problemas. Estos problemas son similares a los tratados durante las clases de resolución de casos prácticos en la asignatura de Procedimientos de Construcción del Grado en Ingeniería Civil de la Universitat Politècnica de València (España). Por tanto, el libro resulta adecuado tanto para estudiantes de grado como para cursos de máster relacionados con la ingeniería civil, la edificación y las obras públicas.
Por último, y a pesar de que he puesto todo el empeño en resolver y revisar cada uno de los problemas, es posible que existan erratas o errores. Por ello, agradezco de antemano cualquier sugerencia o mejora que pueda ser útil para futuras ediciones. Espero sinceramente que este libro que tiene en sus manos contribuya a mejorar la calidad de la enseñanza de este tipo de asignaturas y que se convierta en una herramienta valiosa tanto para estudiantes como para profesionales. Su éxito en el aprendizaje y aplicación de los procedimientos de construcción es mi mayor deseo.
La producción de un compactador es directamente proporcional a su velocidad de trabajo, al ancho eficaz del compactador y al espesor de la tongada una vez compactada, e inversamente proporcional al número de pasadas necesarias. El ancho eficaz sería la diferencia entre la anchura del órgano de trabajo del compactador y el solape necesario para garantizar la compactación entre los distintos carriles.
Debido a la multitud de factores que influyen en la compactación, para grandes volúmenes de obra, se aconseja la realización de tramos de prueba, donde se pueden establecer los criterios que, bajo la perspectiva económica, sean óptimos para llegar a la compactación especificada. Los tramos de prueba no suelen estar justificados en el caso de que los materiales sean suficientemente homogéneos y siempre resulta interesante cuando nos encontramos ante yacimientos importantes. En otro caso, no resulta económica su ejecución. Estos tramos de prueba están formados por una cuña, cuyo espesor llega hasta el máximo que se considere para el equipo empleado.
A continuación os dejo un par de nomogramas que permiten el cálculo directo de esta producción. En uno de ellos se han utilizado tanto las unidades del sistema internacional como las anglosajonas. Estos nomogramas se han elaborado en colaboración con el profesor Pedro Martínez Pagán, de la Universidad Politécnica de Cartagena.
Referencias:
MORILLA, I. (2012). Interpretación de los ensayos geotécnicos en suelos. 627 pp., Madrid.
Os presento el libro que he publicado sobre maquinaria y procedimientos de construcción. Se trata de una completa colección de 300 problemas resueltos, abarcando aspectos relacionados con la maquinaria, medios auxiliares y procedimientos de construcción. Su contenido se enfoca en la mecanización de las obras, costos, disponibilidad, fiabilidad y mantenimiento de equipos, estudio del trabajo, producción de maquinaria, sondeos y perforaciones, técnicas de mejora del terreno, control y abatimiento del nivel freático, movimiento de tierras, equipos de dragado, explosivos y voladuras, excavación de túneles, instalaciones de tratamiento de áridos, compactación de suelos, ejecución de firmes, maquinaria auxiliar como bombas, compresores o ventiladores, cables y equipos de elevación, cimentaciones y vaciados, encofrados y cimbras, fabricación y puesta en obra del hormigón, organización y planificación de obras.
Es un libro, por tanto, muy enfocado a los ámbitos de la ingeniería de la construcción, tanto en el ámbito de la edificación, de la minería o de la ingeniería civil. Además, se incluyen 27 nomogramas originales y 19 apéndices para apoyar tanto a estudiantes de ingeniería o arquitectura, como a profesionales que enfrentan desafíos similares en su práctica diaria en obra o proyecto. La colección se complementa con un listado de referencias bibliográficas que respaldan los aspectos teóricos y prácticos abordados en los problemas. Estos problemas son similares a los tratados durante las clases de resolución de casos prácticos en la asignatura de Procedimientos de Construcción del Grado en Ingeniería Civil de la Universitat Politècnica de València (España). Por tanto, el libro resulta adecuado tanto para estudiantes de grado como para cursos de máster relacionados con la ingeniería civil y la edificación.
Sobre el autor:Víctor Yepes Piqueras. Doctor Ingeniero de Caminos, Canales y Puertos. Catedrático de Universidad del Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil de la Universitat Politècnica de València. Número 1 de su promoción, ha desarrollado su vida profesional en empresas constructoras, en el sector público y en el ámbito universitario. Ha sido director académico del Máster Universitario en Ingeniería del Hormigón (acreditado con el sello EUR-ACE®), investigador del Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y profesor visitante en la Pontificia Universidad Católica de Chile. Imparte docencia en asignaturas de grado y posgrado relacionadas con procedimientos de construcción y gestión de obras, calidad e innovación, modelos predictivos y optimización en la ingeniería. Sus líneas de investigación actuales se centran en la optimización multiobjetivo, la sostenibilidad y el análisis de ciclo de vida de puentes y estructuras de hormigón.
En la industria en general, y especialmente en el sector de la construcción, se realizan numerosos trabajos de acabado, reparación y mantenimiento que no requieren la instalación de un andamio fijo. En cambio, resulta más adecuado emplear una torre de trabajo móvil. Estos equipos se ensamblan de manera sencilla y, debido a su capacidad de movilidad, pueden permanecer montados de forma continua y ser almacenados en un lugar apropiado cuando no están en uso.
El desarrollo de las torres móviles de acceso y trabajo tiene sus raíces en dos fuentes principales: en un lado, fabricantes de andamios que innovaron al diseñar andamios prefabricados sin necesidad de anclaje, equipados con cuatro apoyos y ruedas para una movilidad óptima; por otro lado, fabricantes de escaleras incursionaron en la creación de torres móviles de acceso mediante la combinación de escaleras ligeras con marcos de aluminio y ruedas, dando origen a una solución versátil y eficiente para trabajos en altura.
Las torres de trabajo y acceso móviles son estructuras temporales autoestables constituidas por elementos prefabricados, ya sean de tipo marco o multidireccionales. Estas estructuras colaboran de manera conjunta entre sus elementos, lo que las hace altamente versátiles. Pueden utilizarse de manera independiente, sin necesidad de ser ancladas, y gracias a las ruedas pivotantes que se encuentran en sus patas, pueden desplazarse manualmente sobre superficies lisas, firmes y uniformes. Su estabilidad proviene de sus apoyos en el suelo, y en caso necesario, pueden anclarse a una construcción vertical adyacente mediante una barra transversal. La superficie de apoyo para las torres de trabajo móviles debe ser nivelada y sin irregularidades, preferiblemente horizontal o con una inclinación mínima (no más del 1 al 2%, a menos que se usen ruedas con regulación de desnivel), además de estar despejada de objetos. El suelo debe ser sólido y resistente para asegurar un desplazamiento adecuado.
Conforme a la norma UNE-EN 1004-1, las torres móviles se clasifican en dos categorías de carga. La Clase de Carga 2 se caracteriza por una carga uniformemente distribuida de 1,50 kN/m², mientras que la Clase de Carga 3 tiene una carga uniformemente distribuida de 2,00 kN/m².
En su configuración más sencilla, estas torres se apoyan en cuatro ruedas pivotantes equipadas con sistemas de frenado. Los montantes se nivelan mediante husillos de nivelación, garantizando una capacidad de carga adecuada para resistir las fuerzas aplicadas. Además, pueden configurarse con una o varias plataformas de trabajo y escaleras de acceso, según las dimensiones requeridas en el proyecto.
Estas estructuras encuentran aplicaciones en una variedad de contextos, abarcando inspecciones, tareas de ejecución rápida y operaciones que no demandan un gran almacenamiento de materiales, sino el uso inmediato de una cantidad limitada de ellos. Entre estas actividades se incluyen instalaciones eléctricas, albañilería, pintura, limpieza de cristales, carpintería, trabajos en tejados, revestimientos, enyesados, saneamiento y pequeñas obras de rehabilitación de fachadas, entre otros.
En la industria en general, se emplean para tareas de mantenimiento en alturas, en proyectos de construcción industrial y en otros contextos que requieren un andamio ligero, al mismo tiempo que proporciona una superficie de trabajo cómoda y una capacidad de carga específica. Estos andamios suelen tener alturas que oscilan entre 2,5 m y 12 m en interiores, donde no están expuestos al viento, como en el interior de naves industriales, y entre 2,5 m y 8 m en exteriores, donde las condiciones de viento pueden ser un factor a considerar.
Las plataformas de trabajo pueden ser de madera contrachapada con marcos de aluminio o metálicas antideslizantes. En caso de tener el pavimento perforado, la apertura máxima de los intersticios no debe superar los 25 mm. Además, deben estar equipadas con garras de encaje que cuenten con un seguro antidesmontaje para evitar que el viento las pueda levantar. Algunas de estas plataformas también disponen de una trampilla abatible para facilitar el acceso. En cuanto a la estructura de los andamios, esta debe estar conformada por tubos de aluminio o acero, que pueden estar pintados o galvanizados, con un diámetro de 48 mm. Es esencial que los materiales estén en perfecto estado, sin ninguna anomalía que pueda afectar a su rendimiento, como deformaciones en los tubos, madera agrietada en los rodapiés, o garras defectuosas, entre otros.
Estos equipos de trabajo deben construirse de acuerdo con la norma UNE-EN1004-1. Las torres móviles de acceso y trabajo deben consistir en una estructura de un solo módulo y estar diseñadas para facilitar el montaje, modificación y desmontaje sin requerir el uso de equipos de protección individual contra caídas. Además, solo se permite una plataforma de trabajo en cada torre móvil, donde la plataforma superior debe ser exclusivamente una plataforma de trabajo, mientras que las plataformas inferiores se consideran plataformas intermedias, con la posibilidad de convertirse en plataformas de trabajo si se les añade protección lateral, incluyendo un rodapié. Las distancias entre las plataformas de trabajo, donde la distancia desde la base hasta el primer piso debe ser igual o menor a 3,40 m, y la distancia entre plataformas sucesivas debe ser igual o menor a 2,25 m . Asimismo, la superficie de la base, cuando esté presente, no debe ubicarse a más de 0,60 m del suelo.
Entre los componentes más relevantes de este tipo de andamio, se encuentran los siguientes:
Rueda pivotante: es una rueda giratoria que se encuentra asegurada en la base de un elemento, permitiendo la movilidad de la torre. Esta rueda está equipada con un sistema de bloqueo o freno. Las ruedas deben estar firmemente unidas a la estructura, evitando cualquier posibilidad de desprendimiento accidental. Estas ruedas pueden ser de acero macizo, material plástico u otro similar, y se les permite estar recubiertas con una banda de goma para prevenir daños en las superficies de uso.
Pata regulable: parte integrada en la estructura que se utiliza exclusivamente para nivelar una torre cuando se encuentra en un terreno irregular o en pendiente. Esta pata está equipada con una rueda pivotante.
Elemento de anclaje: medio empleado para reforzar la estructura. Usualmente, se emplea una barra o un perfil hueco tubular dispuesto transversalmente. Un extremo de este elemento se conecta a la torre, mientras que el otro se fija a una pared o estructura vertical cercana. De esta manera, proporciona una restricción compresiva que previene el posible vuelco de la torre debido a fuerzas horizontales que actúen sobre ella.
Estabilizadores y puntales inclinados: son componentes que posibilitan la extensión de la altura de la torre y, en algunos casos, pueden estar equipados con ruedas. Se conectan a los montantes de la estructura mediante grapas y deben ser diseñados como elementos esenciales de la estructura principal. Además, deben contar con mecanismos de ajuste que garanticen un contacto firme con el suelo.
Plataforma de trabajo: compuesta por una superficie circundada por barandillas, barras intermedias y rodapiés. Su longitud recomendada puede variar entre 1 m como mínimo y hasta 3 m, con una anchura mínima de 0,60 m. Se exige una altura libre mínima entre pisos de 1,90 m y una capacidad de carga mínima de 150 kg/m², junto con una indicación clara de la carga máxima permitida. Esta plataforma se construye sobre una estructura metálica de acero o aluminio, que sostiene una chapa o contraplacado como superficie de trabajo. Para garantizar la seguridad, se requiere que la plataforma esté rodeada en los cuatro lados por una barandilla de al menos 90 cm de altura, aunque se sugiere una altura de 1 m ± 50 mm. Además, debe incluir una barra intermedia a una altura mínima de 0,45 m y un rodapié de al menos 0,15 m de altura. Es importante destacar que los elementos de las barandillas de seguridad no deben ser extraíbles, excepto mediante una acción intencionada directa.
Medios de acceso: el acceso a las plataformas de trabajo se efectúa desde el interior mediante los marcos estructurales diseñados para ello o a través de escaleras, ya sean de tramos, escalones o escalas de progresión vertical o inclinada. Estos medios de acceso deben cumplir con requisitos generales esenciales, como estar firmemente asegurados a la estructura para evitar desprendimientos accidentales, no apoyarse en el suelo, mantener una distancia máxima desde el suelo hasta el primer escalón de 0,4 m (o 0,6 m si el primer escalón es un piso) y no exceder los 4 m entre niveles de trabajo. Además, la distancia entre los peldaños debe ser uniforme en todos los tramos de las escaleras, y los peldaños deben contar con superficies antideslizantes para garantizar la seguridad.
Trampillas de acceso: deben ser abatibles y cumplir con dimensiones mínimas de 0,40 m de ancho por 0,60 m de largo, aunque se recomienda una anchura de 0,50 m en la práctica. Además, es fundamental que estas trampillas cuenten con un mecanismo de cierre automático de seguridad y se abran de manera que no obstruyan el paso. Después de utilizarlas para ascender o descender, es necesario cerrarlas de inmediato.
El uso de andamios y torres móviles se ve influenciado por diversos factores cruciales. Las condiciones meteorológicas, como fuertes vientos, lluvia o nieve, pueden limitar su utilización de manera segura, representando un riesgo para los trabajadores. La estabilidad de estos andamios, especialmente en torres móviles, es una prioridad fundamental, y en la mayoría de los casos, sobre todo a alturas considerables, requieren ser anclados a la pared para garantizar la seguridad en el trabajo. Además, es esencial contar con una superficie de apoyo adecuada, lo que a menudo implica la presencia de estabilizadores o anclajes a la pared, junto con la necesidad de que esta superficie esté nivelada y libre de obstáculos. Algunos andamios incorporan husillos reguladores que permiten sortear desniveles comunes, como aceras o bordillos, obstáculos típicos en trabajos en fachadas, por ejemplo.
En las torres de trabajo móviles, los principales riesgos incluyen caídas a diferentes niveles debido a montajes incorrectos, falta de seguridad en las plataformas, acceso inadecuado, vuelcos, rotura de plataformas y alteraciones en las trampillas de acceso. También existe el peligro de derrumbe debido a problemas en la superficie de apoyo, deformaciones o montajes deficientes, así como riesgos de caídas de materiales. La proximidad a líneas eléctricas y caídas al mismo nivel por falta de orden, golpes o sobreesfuerzos también son factores de riesgo. Es fundamental tomar medidas preventivas para mitigar estos peligros y garantizar la seguridad en el trabajo en torres de trabajo móviles.
ARCENEGUI, G.A. (2005). Disposiciones mínimas de seguridad y salud en la utilización de andamios (I y II). Revista del Colegio de Aparejadores y Arquitectos Técnicos de Alicante.
FUENTES GINER, B.; MARTÍNEZ BOQUERA, J.J.; OLIVER FAUBEL, I. (2001). Equipos de obra, instalaciones y medios auxiliares. Editorial UPV. Ref.: 2001-700.
Los andamios multidireccionales, también conocidos como andamios de volumen, son un tipo de andamios que se basan en un sistema modular de componentes prefabricados que se interconectan entre sí, al igual que los andamios de marco, pero con la particularidad de ser configurables en múltiples direcciones. Estos andamios están compuestos principalmente por montantes tubulares verticales, a diferencia de los andamios de marco, que tienen un marco vertical como componente principal. Estos montantes se conectan con otros componentes longitudinales mediante discos de unión integrados en los propios montantes.
El sistema de andamios multidireccionales se fundamenta en elementos longitudinales que incluyen montantes verticales, travesaños horizontales, largueros longitudinales y diagonales, además de plataformas y otros componentes adicionales. En general, los montantes están equipados con discos o rosetas de conexión cada 50 cm (Figura 2), lo que permite el ensamblaje de los demás elementos y proporciona al conjunto una gran rigidez y estabilidad.
Las conexiones las realiza un único montador a través de un mecanismo de cuña imperdible (Figura 3). Esto garantiza uniones sólidas que no se ven afectadas por las vibraciones, reduciendo al mínimo las holguras y permitiendo soportar cargas considerablemente grandes. Además, el diseño del nudo no circular previene que los pies se deslicen cuando se colocan en el suelo. Todo esto se logra con rapidez y simplicidad en el montaje, utilizando un número reducido de elementos y herramientas.
Estos andamios son extremadamente versátiles y se pueden adaptar a una amplia variedad de aplicaciones en la construcción, pudiéndose emplear como lugar de trabajo, protección, acceso o soporte, tanto en obra nueva como rehabilitación, así como en el mantenimiento industrial, ocio y espectáculos.
Se emplean en casos en los que los andamios prefabricados de marco unidireccional no cumplen con los requisitos técnicos necesarios, especialmente en obras con geometrías irregulares. Pueden adaptarse a diversas situaciones, permitiendo la creación de formas complejas y brindando soluciones efectivas para estructuras de geometría irregular o más complicada, como cúpulas, depósitos esféricos, superficies inclinadas en pendiente a favor o en contra, entre otras. Dependiendo de la situación, los andamios multidireccionales pueden desempeñar funciones de servicio, carga o protección. En algunas situaciones, particularmente en el ámbito industrial, es común configurar una parte de estos andamios, ya sean de marco o multidireccionales, usando extensiones de andamio mediante tubos y grapas.
La norma UNE-EN 12811-1 establece los componentes que pueden ser parte de los andamios de trabajo y acceso en general, sin hacer distinción entre andamios de marco o andamios multidireccionales. La principal distinción entre estos dos tipos radica en que, en los andamios multidireccionales, los montantes verticales y travesaños horizontales son componentes separados, mientras que en los andamios de marco constituyen un único componente denominado marco vertical. La mayoría de los componentes ya fueron detallados en el artículo sobre andamios de fachada, por lo que nos centraremos en los elementos que difieren de los andamios de marco en los andamios multidireccionales.
Montante: componente vertical principal que conforma el andamio multidireccional. Están equipados con discos o rosetas de conexión fabricadas en acero, que generalmente cuentan con 6 u 8 orificios. Estos orificios permiten ajustar los ángulos necesarios con los módulos de andamio adyacentes y se sitúan cada 50 cm a lo largo del montante. Estas rosetas conectan los diversos elementos que constituyen el andamio, como las protecciones laterales, las plataformas de trabajo, las diagonales de rigidización, entre otros. Debido a la ausencia de una configuración predeterminada, se brinda la flexibilidad necesaria para colocar las plataformas de trabajo a las alturas y direcciones requeridas en la obra, así como para ajustar los ángulos necesarios con el fin de adaptarse a la geometría especificada en el proyecto.
Travesaño: componente que suele colocarse horizontalmente en la dirección de la dimensión más pequeña del andamio de trabajo empleado en el andamio multidireccional. Su función principal es proporcionar rigidez a los montantes verticales. En algunas situaciones, los propios travesaños pueden actuar como una o ambas de las barandillas necesarias para la protección lateral.
A continuación os dejo varios vídeos sobre este sistema, que espero os sean de interés.
También os dejo un catálogo de la empresa ULMA del andamio multidireccional BRIO.
ARCENEGUI, G.A. (2005). Disposiciones mínimas de seguridad y salud en la utilización de andamios (I y II). Revista del Colegio de Aparejadores y Arquitectos Técnicos de Alicante.
FUENTES GINER, B.; MARTÍNEZ BOQUERA, J.J.; OLIVER FAUBEL, I. (2001). Equipos de obra, instalaciones y medios auxiliares. Editorial UPV. Ref.: 2001-700.
Los andamios de fachada, también conocidos como andamios europeos o unidireccionales, son sistemas modulares de componentes prefabricados que se interconectan entre sí en una sola dirección. Estos andamios se caracterizan por su estructura principal, que consiste en marcos metálicos prefabricados, a diferencia de los andamios multidireccionales. Esto implica que en una pieza ligeramente más compleja, el marco, se agrupan varias de las componentes que normalmente formarían un módulo en un andamio de tipo multidireccional.
Los marcos sostienen las plataformas de trabajo a diferentes alturas y se conectan de manera sólida mediante largueros horizontales y diagonales. Dependiendo de la situación, estos andamios cumplen diversas funciones, como servicio, carga y protección. A diferencia de los andamios multidireccionales, son más sencillos y rápidos de montar, idóneo para fachadas, pero es menos versátil. Se trata de la estructura más comúnmente empleada por las empresas constructoras cuando el edificio no demanda equipos especiales para alcanzar la altura de trabajo. La instalación y montaje implican la unión de marcos metálicos de dimensiones estándar (prefabricados), a los cuales se les adhieren las tarimas y parapetos.
Este sistema se compone principalmente de marcos, plataformas, barandillas y diagonales. Los materiales utilizados en su construcción suelen ser acero o aleaciones de aluminio para la estructura, mientras que las plataformas y los rodapiés pueden estar hechos de madera o materiales a base de madera, aunque también se pueden encontrar versiones metálicas. Estos materiales deben ser lo suficientemente robustos y duraderos para resistir las condiciones de trabajo normales. El andamio europeo se distingue por su construcción con tubos de Ø 48 mm x 3 mm y por cumplir las normas UNE EN 12810, UNE EN 12811 y UNE EN 39, lo que lo certifica como un andamio homologado. La medida más común es de 2 m x 2,5 m x 0,75 m. Estas medidas pueden variar con respecto a la longitud y anchura de los módulos, manteniendo, no obstante, la altura de 2 m.
Los andamios de fachada ofrecen conjuntos modulares estables y adaptables que permiten cubrir completamente fachadas y otras estructuras verticales con geometría plana y regular. Además, proporcionan plataformas de trabajo seguras y métodos de acceso para realizar una variedad de tareas, como rehabilitación, aplicación de revestimientos, mantenimiento y trabajos de albañilería en general.
La norma UNE-EN 12811-1 ofrece una descripción de los componentes que pueden ser parte de los andamios de trabajo y acceso en general, sin distinguir entre andamios de marco y multidireccionales. La principal diferencia entre ambos tipos radica en que los andamios de marco incorporan en un solo componente los montantes verticales y un travesaño horizontal, mientras que en los andamios multidireccionales estos componentes son separados. A pesar de esta diferencia, en su mayor parte, estos tipos de andamios son bastante similares. Aquí definiremos todos los componentes de los andamios con componentes prefabricados y abordaremos los detalles específicos de los andamios multidireccionales para otro artículo.
Describimos a continuación algunos de los componentes más característicos de este sistema:
Arriostramiento en plano vertical transversal: se refiere al conjunto de elementos utilizados para proporcionar la rigidez tangencial de la estructura en los planos verticales transversales. Estos elementos pueden incluir tubos, marcos con o sin refuerzos en las esquinas, marcos abiertos tipo pórticos, conexiones que pueden ser rígidas o semirrígidas entre los componentes horizontales y verticales, diagonales y otros elementos destinados al arriostramiento vertical. La finalidad de estos elementos es asegurar la estabilidad del andamio y garantizar su indeformabilidad en su plano correspondiente.
Arriostramiento en plano horizontal: se refiere al ensamblaje de componentes que brindan rigidez tangencial en los planos horizontales, logrando esto a través de elementos como techos, marcos, paneles, diagonales y conexiones rígidas entre travesaños, largueros y otros elementos destinados al arriostramiento horizontal.
Protección lateral: consiste en un conjunto de componentes diseñados para crear una barrera que garantice la seguridad de los operarios, evitando así el riesgo de caídas desde alturas y retención de materiales para prevenir su caída. Estos elementos de protección incluyen: la barandilla principal, postes (cuando no se fijan directamente en los montantes verticales o en el marco modular, como ocurre en el último nivel de trabajo), barandilla intermedia y rodapié.
Unidad de plataforma: se refiere al elemento, prefabricado u otro tipo, capaz de soportar una carga por sí misma y que constituye la plataforma o una parte de ella. Puede ser una parte esencial de la estructura de un andamio de trabajo, como en el caso de los andamios unidireccionales, donde forma uno de sus componentes estructurales. Estas unidades pueden ser estándares o también pueden ser plataformas de acceso, que cuentan con una trampilla practicable para permitir el acceso entre niveles a través de ella utilizando una escalera de mano.
Marco vertical: es un componente prefabricado compuesto por dos montantes verticales que se conectan de manera sólida mediante un travesaño horizontal. Este travesaño sirve como base para sostener los diversos módulos de las plataformas de trabajo, siendo, por lo tanto, un elemento esencial para sostener los diferentes niveles del andamio. Por lo general, los fabricantes de estos componentes incorporan esquinas de refuerzo en la unión entre los montantes y el travesaño para mejorar la rigidez y la capacidad estructural de estos marcos. Los montantes verticales del marco están equipados con elementos de conexión, generalmente del tipo cuña, que permiten la unión con las protecciones laterales, diagonales y otros elementos de refuerzo que deben estar integrados. Para la primera altura del andamio, los fabricantes proporcionan travesaños de arranque para cerrar el marco en la parte inferior.
Escalera: es un dispositivo diseñado para facilitar el acceso entre diferentes niveles. En un andamio que utiliza escaleras de mano, el acceso se logra a través de trampillas practicables ubicadas en las plataformas. Estas escaleras suelen ser abatibles, lo que permite guardarlas cuando no están en uso para evitar que interfieran con las tareas en curso. En otros casos, el andamio puede incluir escaleras de acceso incorporadas en algún punto de ensanchamiento del mismo, o también puede contar con torres de acceso adyacentes.
Aquí se presentan algunos consejos esenciales para el empleo de este tipo de andamios: se debe mantener la homogeneidad de las piezas, evitando la mezcla de componentes de diferentes fabricantes con el fin de garantizar una construcción segura y estable. Se recomienda la implementación de sistemas de seguridad automatizados para prevenir posibles vuelcos de las plataformas de trabajo. Asimismo, se sugiere facilitar la instalación de protección perimetral desde el nivel inferior y restringir el acceso de los operarios al andamio hasta que se haya asegurado la protección total de la estructura. Además, se puede considerar la reducción del peso de los elementos utilizados con el objetivo de mejorar la ergonomía de los montadores, e incluso, en caso necesario, se pueden emplear elevadores para facilitar el izado de las piezas, optimizando así la eficiencia y seguridad del trabajo. Estos consejos contribuirán a un entorno de trabajo más seguro y eficiente al utilizar este tipo de andamios.
Os dejo un catálogo de la empresa scaform-rux por si os resulta de interés.
Os paso varios vídeos sobre este andamio. A continuación, uno de prevención de riesgos laborales.
Aquí otro vídeo sobre su montaje.
Referencias:
ARCENEGUI, G.A. (2005). Disposiciones mínimas de seguridad y salud en la utilización de andamios (I y II). Revista del Colegio de Aparejadores y Arquitectos Técnicos de Alicante.
FUENTES GINER, B.; MARTÍNEZ BOQUERA, J.J.; OLIVER FAUBEL, I. (2001). Equipos de obra, instalaciones y medios auxiliares. Editorial UPV. Ref.: 2001-700.
Acaban de publicarnos un artículo en el Journal of Cleaner Production, revista indexada en el primer decil del JCR. El trabajo se centra en la optimización del diseño multicriterio de los edificios con estructura de hormigón armado, teniendo en cuenta aspectos como el diseño eficiente, los factores ambientales (emisiones de CO₂) y la durabilidad. Explora las estrategias de optimización multiobjetivo y de un solo objetivo, así como el uso de los metamodelos de Kriging.
Los resultados muestran que tanto los enfoques de optimización multiobjetivo como los de un solo objetivo producen soluciones satisfactorias, lo que mejora significativamente los índices de sostenibilidad en comparación con el diseño tradicional. La metodología propuesta destaca la importancia de integrar técnicas de optimización avanzadas en los procedimientos de diseño tradicionales para promover prácticas de producción más limpias en el sector de la construcción.
Cabe destacar que la metodología propuesta mejora significativamente los índices de sostenibilidad en comparación con el diseño tradicional, lo que destaca la importancia de integrar técnicas de optimización avanzadas en los procedimientos de diseño tradicionales para promover prácticas de producción más limpias en el sector de la construcción.
El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València. Es fruto de la tesis doctoral en marcha de Iván Negrín (Cuba), que tengo el placer de codirigir con el profesor Moacir Kripka (Brasil).
Abstract:
This paper implements the multi-criteria design optimization of three-dimensional reinforced concrete frame building structures, considering aspects such as the realistic design of the elements, including foundations within the structural assembly, or considering the soil-structure interaction. The criteria for a more comprehensive sustainable approach are related to environmental, constructive, and durability aspects. The environmental factor is measured through CO2 emissions, considering its capture due to concrete carbonation. The use of multi-objective strategies is evident in solving the multi-criteria problem. Still, it is also proposed to formulate this problem with a single function containing all the criteria to solve it as a single-objective optimization problem. Strategies are also offered to perform multi-objective optimization based on Kriging metamodels. Several alternatives for multi-criteria decision-making are explored. The results show that multi-objective metamodel-based optimization is a good strategy for solving this problem. Alternatively, the results of the single-objective optimization of the multi-criteria problem are very satisfactory. The solutions obtained are analyzed according to the type of optimization and the decision-making criteria. Optimized solutions significantly improve the sustainability indexes compared to traditional design. Multi-criteria optimization contributes significantly to achieving these indexes. Therefore, the proposed methodology allows for the sustainable design of any reinforced concrete frame structure. It highlights the importance of integrating more encompassing formulations and advanced optimization techniques into traditional design procedures to adopt cleaner production practices in the construction sector. Finally, several promising lines of research are presented.
Keywords:
Structural optimization; Reinforced concrete frame structures; Sustainable design; CO₂ emissions; Buildability; Service life
Reference:
NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Multi-criteria optimization for sustainability-based design of reinforced concrete frame buildings. Journal of Cleaner Production, 425:139115. DOI:10.1016/j.jclepro.2023.139115
Os podéis descargar el artículo de forma gratuita hasta el 22 de noviembre de 2023 en esta dirección: