Este puente, llamado de Tébar, de Cañavate o del Henchidero, está situado en la parte norte de Alarcón (Cuenca), sobre el río Jucar. Se trató de un enclave estratégico durante muchos siglos en las comunicaciones desde el Mediterráneo hasta el interior de la Meseta. De la época romana destaca la vía secundaria que discurría por Alarcón, cuyo cerro parece haber estado habitado desde la prehistoria por ser lugar estratégico. Del puente de Tébar partía un camino que conducía hacia el norte, dirigiéndose a ciudades como Cuenca y Toledo. Este paso quedaba protegido por el castillo de Alarcón y las torres de Cañavate, Alarconcillos y la del Campo.
Se trata de un puente de piedra de medio punto, bastante deformado. Parece que el puente se pudo construir tras la toma de Alarcón por Alfonso VIII en 1184, aunque es muy posible que sustituyera a un puente anterior. Sin embargo, la estructura del puente actual es básicamente del siglo XV. El arco es de sillería, mientras el resto es de mampostería, todo en piedra caliza. El puente se encuentra cimentado sobre unos riscos de roca, lo suficientemente altos como para evitar riadas y permitir un tablero plano, lejos de los típicos puentes alomados medievales. Su buen cimiento, su continuo mantenimiento explican que se haya mantenido bien el puente hasta la fecha. Además, el hecho de que Alarcón quedase fuera del ámbito estratégico militar evitó que se destruyera el puente en los sucesivos conflictos.
La situación geográfica del puente es, en coordenadas geográficas: 39º 32′ 52.19» -2º 4′ 58.51», y en coordenadas UTM: X: 578.796,29 m Y: 4.377.974,45 m.
Alcoy (Alicante) es la ciudad de los puentes. Es, posiblemente, uno de los pueblos donde han nacido más ingenieros de caminos, entre los que me incluyo. El post de hoy va dedicado a una obra de ingeniería fallida, la línea de ferrocarril entre Alicante y Alcoy. El proyecto de esta línea de ferrocarril corrió a cargo del ingeniero de caminos José Roselló Martí , destinado en 1927 a la 3ª jefatura de Estudios y Construcciones de Ferrocarriles del Sureste de España, donde se encargó de la redacción del proyecto del viaducto sobre el rio Polop y los de los barrancos de Siete Lunas, Barchell, Uxola y Zinc, en Alcoy.
A finales de los años 20 del siglo XX se pudo materializar, tras no pocas dificultades, el trazado de la línea férrea que uniría Alicante y Alcoy. El último proyecto lo redactó Roselló el 13 de julio de 1929. De esta línea destacan los numerosos puentes y túneles que se tuvieron que hacer y que hoy sirven como ruta verde para el turismo de interior en estas comarcas.
La mayor parte de los viaductos se construyeron con tres elementos: arcos de medio punto de hormigón armado de 30 m de luz, arcos de hormigón en masa de 12 m de luz y vigas rectas de hormigón armado de 17,60 m. El más grande y espectacular de los viaductos es el que salva el río Polop, situado al pie del Parque Natural de la “Font Roja”. Posee 230 m. de longitud y una altura máxima sobre el cauce de 46 m. Consta de cinco arcos de 30 m. de luz de hormigón armado y tres arcos de avenida de 12 m. de luz, más pequeños, de hormigón en masa. Las bóvedas tienen todas 3,60 m de anchura, 0,90 m de espesor en la clave y 1,40 m. en los arranques. Los tímpanos están aligerados por arquillos de 4 m. y arriostrados transversalmente por tirantes del mismo material. Dispone de miradores en los arcos pares.
Se utilizaron cerchas semirrígidas para el armado de los arcos, pues aún no se habían publicado los modelos oficiales de puentes para ferrocarril. Consistía este sistema en el empleo de estructuras rígidas de acero, dimensionadas para sostener el peso propio de la bóveda durante la construcción. Colgado de las cerchas, y bien sujeto a las cabezas inferiores de las mismas, se colocaba un encofrado de madera siguiendo el intradós de la bóveda. Se complementaba este entablonado con unas paredes laterales de madera hasta la altura del trasdós, quedando así establecido el encofrado de las bóvedas, pudiendo de este modo suprimirse costosas cimbras y andamios. A esta armadura se le añadía las armaduras en aquellas zonas necesarias para resistir la flexión que ocasionaban las sobrecargas móviles de servicio del puente.
Asistimos, en las primeras décadas del siglo XX, al predominio de los puentes de hormigón armado en España, que poco a poco fueron desplazando a los puentes metálicos por su mayor economía frente al alto precio del acero y menores gastos de mantenimiento. El predominio del hormigón fue posible al desarrollo en nuestro país de la técnica con figuras como Juan Manuel Zafra o José Eugenio Ribera.
Puente de Cangas del Narcea (Asturias). Fotografía de V. Yepes.
La visión de la Edad Media como una época tenebrosa supone ignorar el sorprendente progreso de la innovación y el saber técnico. Si bien es cierto que la caída del Imperio Romano y la caída de un poder central provocaron una caída drástica en la construcción. El inicio del nuevo milenio vino parejo al desarrollo de las ciudades y de la expansión comercial; se empiezan a construir nuevos puentes, en paralelo con las catedrales góticas. Esta actividad constructiva se reforzó con los caminos de peregrinaje hacia Roma y Santiago de Compostela, donde los monjes constructores tuvieron un papel de primera magnitud. Si se comparan con los puentes romanos, los medievales olvidan reglas estrictas en cuanto a su diseño, con arcos asimétricos, plantas curvas o quebradas, tímpanos aligerados, etc. Los medievales eran puentes pintorescos, atrevidos en ocasiones, pero de menor calidad y solidez que los romanos. La labra de los sillares en los puentes medievales es más tosca y defectuosa que la de los romanos. Los arcos suelen ser macizos, con bóvedas formadas por anillos paralelos unos a otros o bien dos roscas en los extremos con un relleno entre sí.
Sin entrar en más detalles, os propongo un concurso. Si te atreves, incluso puedes dedicar tus vacaciones a hacer un recorrido para fotografiarlos y luego nos lo cuentas. He publicado en Twitter un conjunto de puentes representativos del medievo español. No están todos, ni mucho menos. Puedes incluir los que quieras con la etiqueta #Puentes_medievales . Se trata de retuitear aquellos que más te gusten o incorporar nuevos puentes. Aunque muchos se llaman popularmente «puentes romanos», gran parte de ellos son medievales. Otros también se denominan «Puentes del Diablo«. Algunos se han rehabilitado o restaurado y han perdido parte del diseño original. Empezamos, pues. No se trata de votar la foto más bonita o al puente de tu pueblo, sino al que creas que estéticamente está más logrado, poniendo en marcha tu sentido ingenieril.
Una de las actividades con más éxito que suelen celebrarse en muchas escuelas de ingeniería civil es el famoso concurso de puentes de palillos. La idea es sencilla. Con los mismos materiales y con unas reglas mínimas de diseño, se trata de ver qué estructura es la que más peso soporta. Ese fue el caso del Primer Concurso de Puentes de Palillos que tuvo lugar ayer en la Escuela de Ingenieros de Caminos de Valencia con motivo de la festividad del Santo Patrón y la Semana de la Ingeniería Civil. El diseño más resistente fue capaz de soportar más de 1500 kg. Sin embargo, ¿por qué tienen tanto éxito este tipo de eventos?
En primer lugar, es de las pocas veces que los alumnos abandonan el individualismo de los estudios y los exámenes y se incorporan a un reto común. Además, es divertido y se suma a una actividad lúdica donde el compañerismo entre alumnos (e incluso profesores) se hace patente. Por otra parte, vemos cómo algunos diseños de los alumnos de primer curso, que sin haber cursado estructuras se atreven con todo, dejan volar su imaginación e intuición. Tampoco es desdeñable la observación y la predicción por parte de muchos de cuál va a ser el motivo del fallo de la estructura y porqué. En fin, más de uno ha aprendido más estructuras en una tarde que en todo un cuatrimestre.
Curiosamente, algunos hijos pequeños y no tan pequeños de algunos profesores empezaron a «oler» lo que puede ser una profesión como la nuestra. No está mal en tiempos tan complicados como los que vivimos. ¡Enhorabuena a la Escuela y a la Delegación de Alumnos por esta iniciativa! Seguro que al año que viene vendrán mejores diseños, pues los equipos vendrán con la lección aprendida. Os dejo algunas fotografías y vídeos del evento (agradezco a la profesora María José Pelufo algunas de las fotografía, otras son mías).
Lucio del Valle y Arana (1815-1874) fue un ingeniero de caminos y arquitecto muy influyente en su época. Dedicó su vida a las obras públicas, entre las que destacan la carretera de Madrid a Valencia por las Cabrillas, el Canal de Isabel II, la gran reforma de la Puerta del Sol y los faros metálicos del delta del Ebro. Finalmente, acabó sus días como director de la Escuela de Ingenieros de Caminos.
Este artículo lo vamos a dedicar a la carretera de Valencia a Madrid por las cuestas de Contreras, en particular al puente sobre el Cabriel. El camino de las Cabrillas, también conocido como camino de las Cabrillas, tenía fama de ser intransitable y peligroso a causa de los bandoleros, si bien era paso obligado entre Valencia y Castilla. D. Lucio dedicó 10 años a estos trabajos, desde finales de 1840, cuando terminó la carrera. Solucionó el proyecto del trazado con pendientes no superiores al 5 % de inclinación y una anchura viaria mínima de 13 m, apto para el tránsito de carruajes, para lo cual tuvo que realizar un trazado zigzagueante que se extendía por varios kilómetros en la provincia de Cuenca.
Puente del Cabriel, en la carretera Madrid-Valencia, por las Cabrillas. José Martínez Sánchez (fotógrafo). Hacia 1866. Copia a la albúmina. WikipediaPuente del Cabriel, frente aguas abajo de la presa. Imagen: V. Yepes, 2015
El problema era salvar la garganta del río Cabriel, de 159 m de anchura y unos 50 m de profundidad, para lo cual pensó inicialmente en un puente colgante. Sin embargo, el proyecto final fue una obra de sillería situada en un punto más bajo. La posibilidad de abaratar costes al contar con 1200 presidiarios influyó en la decisión. Su construcción comenzó en 1846 y finalizó en 1851. El puente actual, apodado por el propio D. Lucio como el «ciempiés», tiene numerosos pilares a modo de patas y es ligero, pues su espesor no supera los 2,5 m. Tiene una longitud de 86,80 m, una anchura de 6,40 m en el tramo central y 8,90 m en los dos tramos de acceso, y consta de siete arcos de medio punto de 28 m de altura máxima, con una luz de 16,7 m en el arco central y 8 m en los tres arcos de cada lado. No obstante, la envergadura del arco principal y la relación ancho de pila/luz del arco, de 1/2,5, son dimensiones superadas anteriormente por muchos puentes romanos, como el de Alcántara, construido casi dos mil años antes. Según Javier Manterola (2015), este puente y el puente de piedra de Logroño (1882) suponen un anacronismo en una época en la que el hierro y el acero ya se habían impuesto, revolucionando la forma de construir los puentes, y en la que empezaban a utilizarse el cemento Portland y el hormigón. Solo Seyourné, con su enorme habilidad y talento, prolongó el anacronismo de los puentes de piedra hasta 1911, con el puente de los Catalanes, en Toulouse.
El aspecto actual del puente se mantiene desde la década de 1930, con la obra original del siglo XIX y las mejoras efectuadas por el Circuito Nacional de Firmes Especiales (carretera asfaltada y peraltada, con el vallado en algunos tramos). Esto se debe a que primero el tráfico se desvió por la parte alta del embalse y luego por el actual viaducto de Contreras. Una lápida en mármol en el puente nos recuerda: «D. LUCIO DEL VALLE, INGENIERO DE CAMINOS, CANALES Y PUERTOS, PROYECTÓ Y DIRIGIÓ ESTA CARRETERA Y TODAS SUS OBRAS DESDE 1841 A 1851».
Presa de Aldeadávila. https://commons.m.wikimedia.org/wiki/File:Presa_de_Aldeadavila.jpg
Hoy, 17 de octubre de 2014, se cumplen 50 años de la inauguración oficial de la presa de Aldeadávila. Un hito de la ingeniería civil española. No podíamos dejar pasar la ocasión para recordar esta obra en nuestro blog.
El embalse, la central y la presa de Aldeadávila (también conocida como salto de Aldeadávila) son una obra de ingeniería hidroeléctrica construida en el curso medio del río Duero, a 7 km de la localidad de Aldeadávila de la Ribera (Salamanca). La presa es un arco de gravedad de hormigón de 139,50 m de altura. Constituye la central hidroeléctrica más importante de España en cuanto a potencia instalada y de producción. El conjunto de los trabajos realizados para llevar a cabo esta infraestructura tuvieron lugar entre 1956 y 1963. Dispone de un aliviadero de superficie con ocho compuertas de segmento de 14,00 m por 8,30 m. Además, posee un túnel aliviadero con dos compuertas tipo segmento de 12,50 m x 9,70 m.
Construida entre los años 1958 y 1965 —justo tras el periodo de autarquía y al comienzo de la apertura española al exterior—, se trata de una de las presas más emblemáticas de la Ingeniería de Presas tanto a nivel español como a nivel mundial. Es conocido el rodaje de las tomas iniciales y finales de la película Doctor Zhivago, en julio de 1965 en la presa.
De edu1975, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=54504643
El Puente del Tercer Milenio, situado en Zaragoza sobre el río Ebro, es un puente de arco en hormigón atirantado por el tablero (bow-string) diseñado por Juan José Arenas de Pablo y su equipo de ingenieros de Arenas & Asociados. El puente, construido sobre el río Ebro en la nueva Ronda del Rabal e inaugurado el 7 de junio de 2008, integra en la ciudad la margen izquierda del río en el entorno del Meandro Ranillas, conectando los barrios de La Almozara y del Actur. Fue construido como parte de las infraestructuras del recinto ferial de la Exposición Internacional de Zaragoza de 2008 constituyendo durante la misma el principal acceso al recinto.
Aunque el puente puede parecerse al de La Barqueta de Sevilla, una de las diferencias más relevantes es el material, de acero en Sevilla y de hormigón en Zaragoza. El hormigón se usó en este puente por su mayor capacidad para amortiguar la estructura ante posibles vibraciones producidas por el viento o el tráfico.
Detalle de la pasarela acristalada para los peatones
La tipología elegida, la de arco atirantado por el tablero, permite compensar la falta de solidez del terreno para responder a las cargas. Su estructura presenta una luz de 216 m, con una longitud de tablero de 270 m y 43 m de ancho. Desde el arco y para soportar el tablero se distribuyen dos familias de 32 péndolas soportando cada una de ellas una tensión aproximada de 300 t. Cuenta con 6 carriles de circulación de automóviles, 2 carriles para bicicletas y 2 paseos peatonales acristalados. En su construcción se utilizaron innovaciones técnicas en materiales y sistemas constructivos, destacando entre ellas el uso del hormigón blanco de alta resistencia.
Os recomiendo el artículo sobre este puente firmado por sus propios autores que podéis ver en este enlace. O también este artículo de Arenas sobre su diseño. Os paso un par de vídeos sobre este puente, que espero os gusten.
Exterior de la Colegiata de Santa Cruz en Castañeda, en Cantabria. Wikipedia
Se llama estilo románico en arquitectura al resultado de la combinación razonada y armónica de elementos constructivos y ornamentales de procedencia latina, oriental (bizantinos, sirios, persas y árabes) y septentrional (celtas, germánicos, normandos) que se formó en la Europa cristiana durante los primeros siglos de la baja Edad Media como consecuencia de la prosperidad material y de la renovación espiritual y abarca los siglos XI al XIII.
No es el objetivo de este post desarrollar las características de este estilo arquitectónico. Lo que pretendo es presentar un vídeo donde Peridis nos presenta el proceso completo de la construcción de esta época a través de algunas iglesias románicas de Castilla-León: la elección del lugar, la contratación del maestro albañil, la búsqueda y traslado de los materiales y, finalmente, la construcción del templo. Espero que os guste.
La ingeniería romana declinó después de 100 d.C., siendo a partir de ese momento sus avances modestos. De hecho, hay quien opina que uno de los factores clave que contribuyeron a la caída del Imperio Romano, fue, precisamente, el estancamiento producido en la ciencia y la ingeniería. Aunque el año 476 d.C. indica dicha caída, es probable que las leyes impuestas cerca de 301 d.C. por Diocleciano, por las que pretendía reformar el control de precios y salarios, fuesen el inicio del declive. Dichas leyes, orientadas a proporcionar estabilidad económica, obligaban a todo hombre del imperio a seguir el oficio de su padre. No deja de sorprender cómo las crisis económicas no son algo nuevo. Pero sigamos con lo que estamos. Continue reading «¿Qué ingeniería podemos destacar en el periodo bizantino?»→
El Embalse de Casasola es un embalse situado en el término municipal de Almogía, a 19 km del centro urbano de Málaga. Casasola tiene una capacidad de 23’45 hm³ y una superficie de 112 ha. Afecta a una longitud de 6 km del río Campanillas, afluente del Guadalhorce sobre el que se encuentra situado. Este embalse tiene como objetivo la laminación de las avenidas para proteger la barriada de Campanillas, contribuyendo a la defensa del tramo final del Guadalhorce disminuyendo su aportación a este río, y el refuerzo del abastecimiento de la ciudad de Málaga, con agua de excelente calidad.
La presa que forma el embalse es un arco de gravedad de tres radios, con una altura máxima sobre cimiento de 76 m y una longitud de coronación de 240 m. Su periodo de construcción fue entre los años 1995 y 1998. El volumen total de hormigón es ligeramente superior a 200.000 m3.