Grandes vertidos de hormigón

Figura 1. Vertido de 16 200 m³ de hormigón en la losa de cimentación del rascacielos Wilshire Grand Center. https://ycivilengineering.blogspot.com/2014/02/record-mundial-en-vertido-continuo-de.html

Se considera un gran vertido la colocación de más de 200 m³ de hormigón en un mismo elemento. Es el caso del hormigonado en presas o en grandes losas de cimentación, entre otros. Por ejemplo, en la losa de cimentación del rascacielos Wilshire Grand Center (Los Ángeles, Estados Unidos), se vertieron 16 200 m³ de hormigón en un lapso de 18 horas y media, empleando 208 camiones que realizaron más de 2100 viajes. Se llenó un enorme hueco de 5,5 m de profundidad que está revestido con 3180 toneladas de armaduras de acero.

Los principales problemas asociados a los grandes vertidos son la liberación de una gran cantidad de calor de hidratación y la consiguiente contracción del hormigón al enfriarse, lo que puede causar fisuras. En estructuras de gran envergadura, como las presas, los espesores son tan significativos que la pérdida de calor de la masa a través de su superficie es extremadamente lenta, a menudo tardando varios meses. Este prolongado período de elevación de la temperatura provocan fisuras considerables debido a la retracción térmica. A continuación, se presentan algunas recomendaciones para mitigar los efectos de la colocación de grandes masas de hormigón.

Las medidas a adoptar para este tipo de hormigonado empiezan en el proceso de dosificación, en el que se deben utilizar cementos de bajo calor de hidratación (inferiores a 65 cal/g a los cinco días de edad), sustituir parte del cemento por cenizas volantes o escorias de alto horno y enfriar los componentes. En cuanto al procedimiento de construcción, se recomienda evitar diferencias de temperatura superiores a 20 °C entre dos puntos cualesquiera, evitar restricciones externas y hormigonar de forma continua.

El cemento de bajo calor de hidratación, a veces llamado «cemento frío», resulta especialmente útil en la producción de grandes volúmenes de hormigón concentrado, dado que reduce significativamente el calor liberado durante la reacción de hidratación, evitando así la formación de fisuras térmicas debido al rápido secado que puede provocar el intenso desprendimiento de calor. Por otro lado, debido a esta misma razón, son altamente susceptibles a las bajas temperaturas, las cuales retrasan significativamente su proceso de endurecimiento. Por lo tanto, no se recomienda su uso cuando la temperatura desciende por debajo de +5 °C. En general, se debe minimizar la cantidad de cemento utilizada. Un exceso de cemento conlleva la necesidad de incrementar la cantidad de agua, lo que puede provocar problemas de fisuración y pérdida de resistencia. Es esencial recordar que los mejores hormigones son aquellos que proporcionan las características de resistencia y durabilidad deseadas con el menor consumo posible de cemento. Un exceso de cemento, especialmente si es rico en silicato tricálcico, genera una considerable liberación de calor. Esto puede provocar tensiones térmicas diferenciales que superen la resistencia a la tracción del hormigón, sobre todo en las etapas tempranas de fraguado.

Además de reducir la cantidad de cemento y, por tanto, el calor de fraguado (y, en consecuencia, el riesgo de fisuración), la inclusión de puzolanas y cenizas conlleva otros beneficios significativos. Estos materiales no solo mejoran la trabajabilidad de la mezcla fresca, lo que se traduce en una reducción del contenido de agua necesario para el amasado (entre un 5 % y un 8 %), sino que también aumentan la resistencia y promueven una mayor durabilidad del hormigón.

El control de la temperatura se realiza mediante termopares colocados a 25 mm de la superficie exterior del hormigón y en el centro del elemento. Si la diferencia de temperaturas supera los 20 °C, se debe elevar la temperatura de la zona más fría utilizando una capa de arena, láminas de polietileno, cartón aislante, mantas aislantes, lonas, etc., aplicadas durante varios días. Para reducir la temperatura máxima alcanzada, se recomienda utilizar cementos de bajo calor de hidratación y reemplazar parte del cemento por aditivos. Estas medidas son efectivas para elementos de hasta 2,5 m de espesor.

En elementos más gruesos, el hormigón permanece en condiciones adiabáticas durante muchos días, lo que acelera la hidratación del cemento debido al aumento de la temperatura. Aproximadamente, la temperatura máxima aumenta en 12 °C por cada 100 kg de cemento Portland por m³ de hormigón. En estos casos, el uso de retardadores puede retrasar el aumento de temperatura, pero no reducirlo.

Las restricciones al enfriamiento pueden surgir cuando el hormigón se coloca sobre una base ya endurecida o cuando la secuencia de vertido deja una masa significativa atrapada entre dos áreas de hormigón endurecido con armadura intermedia. En situaciones donde no se puede evitar esta restricción a la contracción o dilatación térmica, es fundamental colocar suficiente armadura de distribución para controlar la formación de fisuras.

Además, se recomienda verter el hormigón de manera continua. Esto requiere un suministro adecuado de hormigón en las proximidades y una planificación cuidadosa. La realización de vertidos en pequeñas cantidades puede ser poco recomendable debido a la creación de numerosas juntas de hormigonado.

Os dejo algunos vídeos ilustrativos. Espero que os interesen.

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

TIKTIN, J. (1994). Procesamiento de áridos: instalaciones y puesta en obra de hormigón. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Madrid, 360 pp. ISBN: 84-7493-205-X.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Compactación manual del hormigón: picado y apisonado

Figura 1. Compactación manual.

La compactación manual se realiza generalmente con pisones o herramientas de diversas formas, en función de las dimensiones y la forma de las superficies que se van a compactar. El primer método de compactación manual a considerar es el picado con barra. Este método, tradicional y ampliamente utilizado en la fabricación de probetas para el control de calidad de hormigones con diferentes consistencias, consiste en insertar repetidamente y con energía una barra metálica o de madera, ligeramente afilada pero con la punta roma, que se introduce repetidamente en la masa de hormigón. La barra debe atravesar la capa que se está consolidando y penetrar en la capa subyacente, favoreciendo así la eliminación de huecos y burbujas de aire atrapadas en la masa del hormigón tras su vertido.

Este método es adecuado para hormigones de consistencia blanda y fluida y se usa comúnmente en obras de poca envergadura. Además, es adecuado para compactar áreas de piezas con gran cantidad de armaduras, como los nudos de ciertas vigas, donde no es posible compactar mediante vibración una masa seca sin riesgo de crear coqueras. El picado se emplea en zonas muy armadas como complemento del vibrado. Se utiliza siempre en hormigones de consistencia fluida, ya que el vibrador podría provocar segregación.

En ocasiones, en lugar de utilizar barras, se emplean palas en las zonas contiguas a los encofrados. Esto separa los áridos del encofrado, facilita la ascensión del aire hacia la superficie de vertido y reduce la posterior aparición de coqueras en las superficies encofradas del elemento. Las herramientas en forma de pala son especialmente adecuadas para trabajar cerca de los encofrados, mientras que las de forma de aguja se usan en las zonas comprendidas entre las armaduras.

Figura 2. Pisón de acero para hormigón impreso 20 cm x 20 cm. https://www.hormigonimpreso.asia/pisones/303-pison-de-acero-20-cm-x-20-cm.html

Un sistema alternativo al picado es el apisonado, que consiste en aplicar energía superficial al hormigón mediante el impacto continuado de un elemento plano, generalmente metálico, unido a un mástil de madera para facilitar su manipulación. Debe aplicarse en capas delgadas con hormigones de consistencia entre plástica y semiplástica. Este método actúa solo sobre las zonas más superficiales del hormigón, por lo que su uso está limitado a capas con un espesor máximo de 15 cm si el tamaño de los áridos no supera los 30 mm, y hasta 20 cm con áridos de mayor tamaño. Estas capas deben compactarse de manera uniforme y sin interrupciones mediante apisonado. Los golpes deben repetirse en el mismo lugar, pero sin ser violentos, para evitar posibles segregaciones en las zonas recién apisonadas. Es más importante la cantidad de golpes que la intensidad de estos.

El apisonado manual con pisones de base cuadrada o cilíndrica de unos 8 o 10 kg es un método costoso y anticuado que dificulta la compactación uniforme y que solo se usa para la puesta en obra de volúmenes pequeños de hormigón. Por esta razón, se utilizan pisones o bandejas accionados por motores, generalmente de combustión interna. Su funcionamiento es similar al utilizado para la compactación de tierras.

Os dejo algún vídeo al respecto.

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

MONTERO, E. (2006). Puesta en obra del hormigón. Exigencias básicas. Consejo General de la Arquitectura Técnica de España, Madrid, 750 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Transporte del hormigón en tiempo frío

Figura 1. Transporte del hormigón en tiempo frío. https://betoniatecnico.blog/2024/04/08/influencia-de-la-climatologia-las-condiciones-ambientales-del-entorno-y-la-temperatura-de-los-materiales-en-la-realizacion-de-pavimentos-de-hormigon-concreto/

El transporte del hormigón en tiempo frío debe realizarse con mayor cuidado para evitar interrupciones y retrasos en su puesta en obra. El calor generado en el interior de la cuba, si se trata de una amasadora, por el rozamiento del hormigón con las paredes y las palas, evita que el agua de amasado se congele, siempre y cuando el tiempo de permanencia no sea muy prolongado y las temperaturas ambientales no sean extremadamente frías. De lo contrario, sería necesario adoptar medidas especiales de aislamiento de las cubas. El suministro debe estar sincronizado con la puesta en obra para evitar esperas, tanto del hormigón ya colocado y desprotegido como de los camiones pendientes de descarga. Se recomienda que el tiempo de transporte desde la planta hasta la obra sea lo más breve posible.

Se pueden evaluar las pérdidas de temperatura del hormigón durante el transporte, expresadas en °C por cada hora, considerando el tiempo transcurrido entre el amasado y la colocación. Estas pérdidas se expresan como un porcentaje de la diferencia entre la temperatura prevista del hormigón en el momento de su colocación y la temperatura ambiente. El porcentaje de pérdida depende del tipo de transporte: 25 % en camiones hormigoneras, 20 % en camiones o recipientes abiertos, y 10 % en camiones o recipientes cubiertos.

Las bajas temperaturas ambientales en las que se va a transportar el hormigón afectan especialmente a los camiones hormigoneras. Estos vehículos, con su tambor metálico y su sistema de paletas, así como la canaleta, pueden estar extremadamente fríos, especialmente los primeros camiones de la mañana después de una noche de temperaturas gélidas y formación de hielo. En algunas regiones, se implementan medidas para contrarrestar estos efectos, como el uso de resistencias externas que generan calor en el tambor, el lavado con agua caliente o el estacionamiento de los camiones en espacios interiores.

En el caso del transporte por cinta, especialmente si es muy larga, se debe proteger el hormigón de la acción del viento para evitar su enfriamiento y desecación. Además, si se emplea una relación agua/cemento muy baja, también se debe proteger del secado.

En el caso del transporte por bombeo, si la tubería es muy larga, se recomienda aislarla para evitar el enfriamiento del hormigón.

Referencias:

AA. VV. (2002). Hormigones de ejecución especial (seis tipos). Colegio de Ingenieros de Caminos, Madrid, 114 pp.

ACI COMMITTEE 306. Cold wheather concreting (ACI 306R-16). American Concrete Institute.

AENOR (2022). UNE 83151-1 IN Hormigonado en condiciones climáticas especiales. Parte 1: Hormigonado en tiempo frío. Madrid, 27 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Efectos del frío en el fraguado del hormigón fresco

Figura 1. Hormigonado con tiempo frío. https://madridsurarquiobras.es/blog/?p=199

La baja temperatura del hormigón fresco retrasa la reacción química de fraguado, disminuye la velocidad de hidratación y reduce la demanda de agua, lo que aumenta su fluidez. Además, esta fluidez disminuye más lentamente con el tiempo, lo que mejora las condiciones de puesta en obra. Esto permite reducir la cantidad de agua en la mezcla y aumentar la resistencia y durabilidad del hormigón, al tiempo que se puede reducir la cantidad de plastificante o superfluidificante, manteniendo las condiciones de trabajabilidad necesarias para una correcta colocación. Sin embargo, esto también implica períodos más largos de curado y desencofrado, así como retrasos en los posibles tesados, lo que repercute en el coste de la obra.

Es importante destacar que los hormigones fabricados, colocados y curados a temperaturas bajas, cercanas a los 10 °C y sin congelación, desarrollan su resistencia de forma más lenta, pero suelen alcanzar resistencias superiores a los 28 días y tienen una mayor durabilidad. Calavera et al. (2004) indican que, a una temperatura ambiente de 7 °C, el hormigón tarda el doble en alcanzar el final del fraguado en comparación con una temperatura de 15 °C. La razón es un mejor curado, pues las bajas temperaturas suelen ir acompañadas de una mayor humedad relativa, lo que reduce la evaporación del agua del hormigón fresco y asegura una correcta hidratación del cemento. Además, la pérdida de agua en la superficie del hormigón es más lenta que la difusión del agua desde el interior, lo que reduce la formación de fisuras superficiales por retracción plástica. La exposición al sol tampoco suele ser perjudicial, debido a su corta duración e intensidad.

A temperaturas inferiores a 5 °C, el endurecimiento del hormigón se retrasa significativamente y, por debajo de 0 °C, se reduce drásticamente, deteniéndose casi por completo a temperaturas cercanas a -10 °C. El cemento necesita una cantidad específica de agua para lograr una hidratación completa y endurecer adecuadamente. Si parte del agua está congelada, esto no interviene en el proceso de hidratación del cemento, lo que produce una hidratación incompleta y, en consecuencia, no se alcanza la resistencia prevista.

Las bajas temperaturas tienen efectos perjudiciales sobre el hormigón fresco, ya que el agua se congela. Esto provoca un aumento de volumen de aproximadamente un 9 %. Si esto ocurre y el hormigón aún no ha alcanzado una resistencia a tracción suficiente para soportar la tensión generada por la congelación del agua interna, se producirán daños irreversibles que afectarán a la capacidad mecánica y la durabilidad del hormigón. Se considera que el hormigón es resistente a los efectos del frío (debido a la expansión del agua congelada) cuando ha alcanzado una resistencia de aproximadamente 3,5 MPa. Como referencia, a 10 °C, la resistencia de 3,5 MPa se alcanza en menos de 48 horas en hormigones correctamente dosificados.

Es importante recordar que el agua del hormigón contiene una gran cantidad de sales disueltas procedentes del cemento, los aditivos, etc., por lo que en la práctica no se congela a 0 °C, sino a temperaturas inferiores. Sin embargo, no se debe confiar en este margen, ya que no se puede prever de manera fiable si se sobrepasará debido a la evolución de las temperaturas externas.

En términos generales, para que el hormigón desarrolle su resistencia a una velocidad adecuada, la temperatura debe mantenerse entre 10 °C y 15 °C para secciones delgadas, y entre 5 °C y 10 °C para grandes masas de hormigón.

Las medidas para evitar los efectos perjudiciales del tiempo frío en el hormigón fresco se dividen en dos tipos: calentar uno o varios de los componentes del hormigón, y diseñar una mezcla de hormigón apropiada en cuanto a componentes y dosificación. Pero estas medidas las veremos en un próximo artículo.

Referencias:

AA. VV. (2002). Hormigones de ejecución especial (seis tipos). Colegio de Ingenieros de Caminos, Madrid, 114 pp.

ACI COMMITTEE 306. Cold wheather concreting (ACI 306R-16). American Concrete Institute.

AENOR (2022). UNE 83151-1 IN Hormigonado en condiciones climáticas especiales. Parte 1: Hormigonado en tiempo frío. Madrid, 27 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Efectos del calor en el fraguado del hormigón fresco

Figura 1. Hormigonado en tiempo caluroso. https://hormigonaldia.ich.cl/recomendaciones-tecnicas/hormigonado-en-tiempo-caluroso/

Una temperatura elevada del hormigón fresco acelera la reacción química de fraguado y aumenta la velocidad de hidratación, lo que incrementa la demanda de agua para lograr una consistencia determinada. Aproximadamente, un aumento de 10 °C en la temperatura del hormigón requiere unos 7 litros de agua adicionales por metro cúbico para mantener la misma consistencia. Además, si se desea aumentar el asentamiento del cono de Abrams en 25 mm, se debería incrementar en un 2 % la cantidad de agua necesaria; sin embargo, a 40 °C, sería necesario un 3,5 % adicional de agua (ver Calavera et al., 2004). Esto reduce la fluidez del hormigón, que disminuye rápidamente con el tiempo, lo que dificulta las condiciones para su puesta en obra.

Otro efecto de las altas temperaturas es la rápida pérdida de consistencia del hormigón. A temperatura normal, el hormigón puede perder alrededor de 25 mm de asentamiento en media hora. Sin embargo, a temperaturas elevadas, esta pérdida aumenta significativamente debido a la evaporación y al mayor consumo de agua durante la rápida reacción química inicial del cemento.

Dado que no es posible aumentar la cantidad de agua en la mezcla sin comprometer la resistencia y durabilidad del hormigón, es necesario añadir plastificantes o cambiar a superfluidificantes para mantener las condiciones de trabajabilidad previstas, o reducir los tiempos de puesta en obra. En el caso del hormigón premezclado, puede ser necesario añadir estos aditivos en obra con un nuevo mezclado, una operación cuyo control es complejo. Por otro lado, la eficacia del superfluidificante disminuye rápidamente con el aumento de la temperatura, aunque los productos derivados de copolímeros vinílicos pueden mitigar este problema.

Los hormigones fabricados, colocados y curados a temperaturas más altas desarrollan su resistencia más rápidamente. Se ha observado que el hormigón se endurece el doble de rápido a 35 °C que a 20 °C. Sin embargo, debido a un curado deficiente, estos hormigones suelen presentar menores resistencias a los 7 y 28 días. De hecho, tras 28 días, su resistencia puede reducirse entre un 15 % y un 20 % (ver Calavera et al., 2004). Esta pérdida de resistencia se explica por la formación de productos de hidratación más porosos, resultado de un proceso de hidratación acelerado e imperfecto.

Las altas temperaturas ambientales suelen ir acompañadas de bajas humedades relativas, lo que aumenta la evaporación del agua del hormigón fresco y reduce la cantidad disponible para la correcta hidratación del cemento. Asimismo, la rápida pérdida de agua del hormigón en la superficie, superior al aporte por difusión desde el resto del hormigón, provoca la formación de fisuras superficiales por retracción plástica. Estos efectos se agravan con la presencia de viento y la exposición al sol (ver nomograma de Menzel). El secado superficial comienza cuando la velocidad de evaporación supera la velocidad a la que el agua asciende a la superficie recién colocada por exudación. Además, si las condiciones de sequedad son suficientes, puede formarse una costra superficial seca que bloquea el agua de exudación, impidiendo que llegue a la superficie. Esta agua queda almacenada debajo de la capa seca, lo que puede ocasionar una descamación posterior.

El rápido endurecimiento del hormigón incrementa la velocidad de generación de calor durante la hidratación del cemento, lo que provoca altas temperaturas y mayores diferencias térmicas debido a la lenta disipación del calor. Las altas temperaturas alteran el proceso de hidratación y generan compuestos como la etringita, que perjudican la durabilidad del hormigón.

Las diferencias térmicas entre el núcleo y la periferia de las piezas generan tensiones de tracción que el hormigón en proceso de endurecimiento no puede soportar, provocando fisuras que reducen su durabilidad. En secciones delgadas, de menos de 150 mm, es crucial evitar la formación de fisuras de retracción plástica, ya que pueden afectar a una parte significativa de la sección. En elementos masivos, el problema radica en el riesgo de fisuración térmica debido a las altas temperaturas que el hormigón puede alcanzar. Las fisuras pueden aparecer tanto durante la fase de aumento de temperatura (fisuras internas) como durante el enfriamiento (fisuras en la superficie). Para prevenirlo, la temperatura de colocación del hormigón no debe superar los 15 °C, siendo preferible que esté alrededor de los 5 °C. Además, la diferencia de temperatura entre dos puntos de la sección no debe exceder los 20 °C, lo que requiere el uso de protección térmica durante el curado.

En elementos protegidos de grandes cambios de humedad, como las cimentaciones de estructuras interiores, la temperatura máxima durante el proceso de fraguado no debería superar los 80 °C. Si se trata de estructuras exteriores que no están protegidas de los cambios de humedad, la temperatura no debería exceder los 70 °C. Para elementos especialmente expuestos a ciclos de hielo-deshielo, la temperatura no debería superar los 65 °C, e incluso menos en algunos casos. Esta temperatura máxima generalmente se alcanza entre las 12 y las 24 horas desde el amasado.

Para evitar los efectos perjudiciales del calor en el hormigón fresco, se pueden adoptar dos tipos de medidas: utilizar hormigón más frío y diseñar una mezcla adecuada en cuanto a componentes y dosificación. Pero este tipo de precauciones las estudiaremos en detalle en otro artículo.

Referencias:

AA. VV. (2002). Hormigones de ejecución especial (seis tipos). Colegio de Ingenieros de Caminos, Madrid, 114 pp.

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Premio para Mehrdad Hadizadeh-Bazaz en el IX Encuentro de Estudiantes de Doctorado

Quisiera felicitar públicamente a nuestro estudiante de doctorado Mehrdad Hadizadeb-Bazaz por su Premio al mejor trabajo en la modalidad de póster otorgado por la Escuela de Doctorado de la Universitat Politècnica de València, dentro del IX Encuentro de Estudiantes de Doctorado. Tengo el honor y el placer de dirigir su tesis doctoral junto con el profesor Ignacio J. Navarro. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal. Es el segundo año consecutivo que Mehrdad consigue este premio.

Hoy en día, debido a los elevados costes de construcción, reparación y mantenimiento de grandes estructuras como los puentes, así como la creciente atención al ciclo de vida sostenible en todas las etapas, desde el diseño hasta el final de su vida útil, es crucial emplear diversos métodos para identificar daños y evaluar su eficacia en diferentes estructuras y condiciones. Esto no solo puede aumentar la vida útil de las estructuras y reducir los costes, sino también minimizar el impacto ambiental y social.

En este estudio, se examina la precisión de diversos métodos de detección de daños, tanto dinámicos como no destructivos, para identificar la magnitud, ubicación y momento en que se produce el daño en la estructura a lo largo de su vida útil. Se evalúa la precisión y posibles variaciones de cada uno de los métodos de detección de daños en distintos entornos, especialmente en ambientes costeros y ambientes agresivos. Además, se realiza una evaluación del desempeño y comparación de diferentes métodos de detección de daños no destructivos, teniendo en cuenta casos de sostenibilidad de diseño y evaluación del ciclo de vida, incluyendo aspectos económicos, ambientales e impactos sociales.

Os dejo el póster completo, para que lo podáis leer.

Descargar (PDF, 830KB)

Referencias:

HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023). Life Cycle Assessment of a Coastal Concrete Bridge Aided by Non-Destructive Damage Detection Methods. Journal of Marine Science and Engineering, 11(9):1656. DOI:10.3390/jmse11091656

HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023).  Life-cycle cost assessment using the power spectral density function in a coastal concrete bridgeJournal of Marine Science and Engineering, 11(2):433. DOI:10.3390/jmse11020433

HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023). Power Spectral Density method performance in detecting damages by chloride attack on coastal RC bridge. Structural Engineering and Mechanics, 85(2):197-206. DOI:10.12989/sem.2023.85.2.197

HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2022). Performance comparison of structural damage detection methods based on Frequency Response Function and Power Spectral Density. DYNA, 97(5):493-500. DOI:10.6036/10504

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Carretillas manuales o a motor para la colocación del hormigón

Figura 1. Buggy para colocación de hormigón. https://www.concretehireandsales.com/hire-old/concrete-power-buggies/

Las carretillas manuales o motorizadas (buggies) se utilizan habitualmente en obras pequeñas debido a su limitado rendimiento y a la alta demanda de mano de obra que requieren. Estas deben circular sobre superficies rígidas y lisas para evitar la segregación del hormigón. Una ventaja significativa de estas carretillas es su capacidad para acceder a lugares muy estrechos. Para realizar la descarga, deben situarse por encima de las armaduras.

La distancia horizontal máxima recomendable para las carretillas manuales es de 60 m. Tienen una capacidad de 80 litros. En el caso de los carros de dos ruedas, la capacidad varía entre 0,2 y 0,3 m³, con una capacidad de colocación que oscila entre 3 y 5 m³ por hora. Se recomienda que las ruedas sean de goma, pues así se amortigua el movimiento durante el transporte y, por tanto, la segregación.

Un buggy para hormigón es un vehículo motorizado diseñado para transportar hormigón y otros materiales en una obra. Está equipado con una gran cuchara montada sobre un conjunto de cuatro ruedas, lo que facilita el movimiento de materiales sin requerir mano de obra. Los carritos motorizados están disponibles en tamaños de 0,3 m³ a 0,4 m³, con una capacidad de colocación que varía entre 14 m³ y 18 m³ por hora, dependiendo de la distancia de transporte. La distancia horizontal máxima recomendable de transporte es de 300 m.

Figura 2. Carretilla a motor para colocar hormigón. https://www.concretehireandsales.com/hire-old/concrete-power-buggies/

Los buggies de hormigón están diseñados para su uso en cualquier obra. Cuentan con cucharas de gran capacidad para manipular el material de forma eficaz, neumáticos que no dejan marcas para su uso en superficies delicadas, control de velocidad variable para conducir con precisión, controles fáciles de usar para un funcionamiento sencillo y una construcción resistente que garantiza un rendimiento duradero.

Os dejo algunos vídeos al respecto.

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

TIKTIN, J. (1994). Procesamiento de áridos: instalaciones y puesta en obra de hormigón. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Madrid, 360 pp. ISBN: 84-7493-205-X.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Silos fijos de cemento

Figura 1. Silo de cemento atornillado. https://www.machinio.es/anuncios/80213364-silo-de-cemento-vertical-de-200-toneladas-silo-de-hormigon-en-esmirna-turquia

Durante mucho tiempo, el cemento se ha suministrado en sacos de papel. Sin embargo, en la actualidad, en la mayoría de los casos, se transporta a granel en camiones cisterna y se almacena en silos herméticos que forman parte integral de las centrales. Los silos se pueden clasificar según su movilidad en fijos y móviles. En este artículo se describen las características principales de los silos fijos.

Los silos fijos de cemento suelen ser depósitos cilíndricos metálicos que terminan en la parte inferior con un cono en el que se encuentra la base de salida. La extracción en los silos de cemento se realiza por gravedad, con un ángulo de inclinación en el cono inferior de aproximadamente 50 grados. Este diseño asegura un flujo eficiente del material, lo que permite que el cemento se desplace de manera constante y sin obstrucciones hacia la salida del silo. El conjunto se apoya en una estructura de perfiles con una altura variable, por lo que es muy importante formar unos buenos cimientos para evitar caídas de silos.

Estas instalaciones ofrecen varias ventajas en comparación con el almacenamiento tradicional en sacos, especialmente cuando la producción horaria de hormigón debe superar los 10 m³:

  • Ahorro en la compra de cemento: se puede obtener una reducción de costos de entre el 10 % y el 15 %.
  • Reducción de pérdidas de material: se evita el desperdicio de cemento causado por sacos rotos o mojados.
  • Dosificación precisa: permite una dosificación regulable para cualquier cantidad, incluyendo múltiplos de 50 kg e incluso 25 kg.
  • Incremento de la productividad: el cemento está inmediatamente disponible, lo que mejora la eficiencia operativa de la planta.
  • Reducción de los costes de manipulación: se reducen los costes asociados con la descarga, el almacenamiento y la manipulación del cemento.

Los inconvenientes son relativamente pocos. Aunque los silos tienen generalmente un costo inicial bajo, su precio aumenta considerablemente cuando se les equipa con los dispositivos necesarios para su funcionamiento (chimenea filtrante, sistemas antibóveda, indicadores de nivel, etc.). No obstante, las ventajas económicas y la eficiencia operativa que proporcionan superan con creces estas desventajas en comparación con el método de almacenamiento en sacos.

El material principal para fabricar el silo de cemento es el acero de diversos grados, adecuado para las condiciones del área de instalación, y está recubierto con un compuesto protector anticorrosivo. El espesor de las partes del silo varía entre 6 y 10 mm. En las áreas con bajas temperaturas invernales, el silo se aísla externamente para mantener el cemento en condiciones óptimas.

Para capacidades entre 25 y 40 t, los silos se construyen de una sola pieza con un diámetro máximo de 2,50 m, lo que permite su transporte por carretera en camiones. También se pueden fabricar en un diseño telescópico, de modo que una sección del silo se inserta dentro de otra, lo que permite su transporte en un solo camión y alcanza capacidades de hasta 60 t. Para capacidades superiores, el transporte supone un problema, por lo que los silos se construyen de manera desmontable. Estos silos están divididos en secciones ensambladas longitudinalmente con bridas y se atornillan en la ubicación de la obra. De esta manera, se pueden alcanzar capacidades de 200, 500 y hasta 1000 t.

La carga se realiza a través de un tubo de 3 o 4 pulgadas para el llenado neumático y cuentan con un respiradero o un filtro en la parte superior que permite la salida del aire durante el vaciado o el llenado. Los silos suelen estar equipados con un sistema de fluidificación para evitar la formación de bóvedas en su interior. Este sistema consta de boquillas que inyectan aire a una presión no superior a 200 kPa.

En la parte inferior, los silos disponen de un cierre de tajadera o de mariposa que permite cerrar la salida de cemento cuando es necesario realizar una reparación.

Es obligatorio que los silos estén equipados con una escalera con protecciones para acceder a la parte superior, donde también es preceptivo contar con barandillas de seguridad. En algunos casos, los silos de cemento están equipados con indicadores de nivel que informan sobre su estado de llenado. Además, es importante tener en cuenta que cada tipo de cemento debe almacenarse en silos separados, designados específicamente para un tipo y procedencia determinados. Se deben tomar las precauciones necesarias para evitar cualquier tipo de mezcla.

Os dejo algunos vídeos que, espero, os sean de interés.

Os paso también algunas instrucciones de seguridad respecto a los silos.

Descargar (PDF, 467KB)

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

CORMON, P. (1979). Fabricación del hormigón. Editores Técnicos Asociados, Barcelona, 232 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

MORILLA, I. (1992). Plantas de fabricación de hormigón y grava-cemento. Monografías de maquinaria. Asociación Española de la Carretera, Madrid.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Trompas de elefante para la colocación del hormigón

Figura 1. Trompa de elefante.

Las trompas de elefante o tubos de caída son tuberías circulares que se alimentan a través de un embudo y están diseñadas para transferir el hormigón de manera vertical, evitando así la segregación que puede producirse al impactar el hormigón con las armaduras u otros obstáculos. Se utilizan cuando se descarga hormigón a diferentes niveles. Deben estar firmes y en línea, y colocarse de tal manera que el hormigón caiga verticalmente. Estas tuberías son especialmente útiles en proyectos de gran altura y en hormigonados bajo el agua. También son útiles en estructuras de pequeño canto y gran altura, como muros y otros elementos verticales, donde se busca evitar que la caída del hormigón supere los 2 m.

Las velocidades de colocación varían de 0,5 a 3 m de altura por hora, y el espaciado de las tuberías suele ser de una por cada 30 m² de superficie o con centros de radio de 4 o 5 m. No obstante, en situaciones de hormigonado sin congestión de armaduras, estas distancias pueden ser mayores.

Las tuberías pueden ser metálicas, de plástico o de goma, dispuestas en pequeños tramos de tubo ensamblados, lo que las hace flexibles y fáciles de acortar según sea necesario. Se recomienda que el diámetro de estas tuberías sea al menos 8 veces el tamaño máximo del árido en la parte superior, pero puede reducirse aproximadamente a 6 veces el tamaño máximo en la parte inferior. Es fundamental que las trompas de elefante se posicionen en vertical y se aseguren correctamente para garantizar que el hormigón se vierta con precisión.

Figura 2. Trompa de elefante. https://shop.kuhlman-corp.com/deslauriers-8-wide-concrete-mini-hopper-with-6-long-elephant-trunk-and-chains/p3517/

El embudo que suministra el hormigón a estos dispositivos debe ser de dimensiones suficientemente grandes y tener paredes inclinadas para permitir una descarga rápida y sin obstrucciones del hormigón.

Figura 3. Cuándo se utiliza una trompa de elefante

Os dejo algunos vídeos ilustrativos.

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

TIKTIN, J. (1994). Procesamiento de áridos: instalaciones y puesta en obra de hormigón. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Madrid, 360 pp. ISBN: 84-7493-205-X.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Curado de pavimentos y otras losas de hormigón sobre tierra

Figura 1. Losa de hormigón sobre tierra. https://ich.cl/unidad/05-uso-del-hormigon-en-obra/

Las losas en el terreno tienen diversas aplicaciones, que incluyen la pavimentación de carreteras y aeropuertos, el revestimiento de canales, aparcamientos, entradas de cocheras, aceras y losas niveladas en edificaciones. Debido a su alta relación entre área superficial y volumen de hormigón, si no se toman las medidas adecuadas, la evaporación de la humedad puede ser rápida y significativa, lo que puede provocar la aparición de grietas por contracción. Esto puede afectar negativamente a la resistencia, así como a la capacidad de soportar la abrasión y las heladas.

Un problema que surge en la ejecución de las losas de hormigón es la formación de un gradiente considerable de humedad entre su cara superior e inferior. Cuando la pérdida de humedad ocurre en la cara superior, se produce una retracción que provoca la curvatura de la losa. Por otro lado, si la base de tierra está seca, puede absorber agua del hormigón, generando un gradiente de humedad opuesto si la superficie está húmeda, lo que también provoca la curvatura de la losa en sentido contrario.

Para prevenir este inconveniente, es crucial garantizar condiciones de humedad uniformes en ambas caras de la losa. Esto implica humedecer previamente la base y minimizar la pérdida de humedad de la superficie mediante un proceso de curado inicial, intermedio y final. Además, si se coloca una lámina impermeable debajo de la losa, es fundamental mantener la cara superior húmeda para evitar que se curve. La instalación de un relleno de drenaje compactado de 100 mm sobre la lámina ayuda a secar la base de la losa y reduce el problema.

Otro factor importante a tener en cuenta en estos elementos es el riesgo de fisuración debido a la retracción plástica. La pérdida rápida de humedad por evaporación desde la superficie puede aumentar este riesgo. Es esencial aplicar el curado inmediatamente después del acabado para evitar daños en la superficie. Se pueden utilizar diferentes métodos para reducir la evaporación, como reductores de evaporación, nebulización o compuestos de curado. Cuando se interrumpe el proceso de curado, es fundamental evitar una rápida pérdida de humedad, por ejemplo, sustituyendo las arpilleras por láminas de plástico. Además, se recomienda utilizar techado y cortavientos para proteger la losa y mantener condiciones óptimas de curado.

El método más efectivo para el curado de losas implica el uso de agua mediante aspersores o inmersión. Esta técnica no solo proporciona hidratación al hormigón, sino que también ayuda a enfriarlo, lo que reduce el riesgo de fisuración térmica. No obstante, el método más simple y práctico consiste en aplicar compuestos de curado mediante pulverización. Estos compuestos pueden aplicarse inmediatamente después del acabado y no requieren ninguna intervención adicional. En caso de que la temperatura ambiente supere los 25 °C, se recomienda el uso de compuestos pigmentados en blanco.

Para temperaturas ambientales superiores a los 5 °C, se recomienda conservar la humedad y la temperatura del hormigón durante un período mínimo de 7 días o, al menos, hasta que se alcance el 70 % de las resistencias especificadas a la compresión o a la flexión, eligiendo el período más corto entre ambas condiciones. En el caso de que el hormigón se vierta a temperaturas ambientales iguales o inferiores a 5 °C, se deben tomar precauciones adicionales para prevenir daños por congelación.

Referencias:

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

MENZEL, C.A. (1954). Causes and Prevention of Crack Development in Plastic Concrete. Proceedings of the Portland Cement Association, Vol. 130:136.

LERCH, W. (1957). Plastic shrinkage. ACI Journal, 53(8):797-802.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.