Compactación del hormigón por vibrado

Figura 1. Vibrado del hormigón. https://lobcor.com/6-pasos-para-hacer-un-buen-vibrado-del-hormigon/

El hormigón recién mezclado no se compacta por sí solo debido a su baja fluidez, lo que le impide superar la fricción interna. Solo mediante vibración es posible vencer estas fuerzas. El vibrado es el método más eficaz para obtener hormigones con un alto grado de compactación, ya que permite rellenar correctamente los encofrados y moldes, eliminando los huecos. Esta técnica se utiliza especialmente cuando se quieren conseguir hormigones resistentes y es adecuada para masas de consistencia seca. El proceso genera movimientos oscilatorios en las partículas del hormigón, sometiéndolas a cincuenta o más impulsos por segundo. La vibración aplicada reduce el rozamiento entre las partículas, facilitando su consolidación al convertir el material en un fluido que se adapta perfectamente a las formas del molde.

La vibración proporciona varios beneficios:

  • Facilita la expulsión del aire atrapado en el hormigón hacia la superficie.
  • Permite el desplazamiento de los áridos, alineándolos entre sí y reduciendo las cavidades, lo que da como resultado una mayor densidad y una homogeneidad perfecta.
  • Mejora la adherencia del hormigón a las barras de refuerzo y a otras inserciones estructurales internas, así como a los anclajes básicos.

Las fuerzas cohesivas son de mayor magnitud en hormigones más secos, por lo que es necesario trabajar con relaciones agua/cemento bajas para obtener mejores resistencias mecánicas. Esto hace indispensable el uso de la vibración para reducir el rozamiento entre las partículas del hormigón, de modo que, bajo la acción de la gravedad, puedan entrelazarse y formar masas compactas. Además, la vibración distribuye el agua de manera más homogénea, lo que mejora la hidratación del cemento.

Finalmente, el uso de la vibración permite emplear mezclas más ásperas, con mayores proporciones de áridos gruesos, en comparación con los hormigones apisonados comunes.

La vibración del hormigón ofrece varias ventajas significativas: alta resistencia mecánica, baja porosidad y, por tanto, baja permeabilidad al agua y a sustancias agresivas; previene la formación de grietas cerca de las barras o armaduras de refuerzo; garantiza un llenado completo del encofrado; prolonga la vida útil del hormigón, y proporciona un resultado estético de alta calidad.

La vibración del hormigón se realiza mediante vibradores que generan un movimiento armónico descrito por una curva sinusoidal, gracias a masas excéntricas giratorias. La efectividad de este sistema depende de la magnitud de la masa vibrante, así como de la amplitud y la frecuencia del movimiento vibratorio.

Si denominamos la semiamplitud del movimiento como 𝐴 y la frecuencia como 𝑓, la aceleración máxima del movimiento se define como:

La eficacia de la vibración depende de varios factores:

  • Amplitud de las oscilaciones: La amplitud mínima eficaz es de 0,05 mm. A mayor amplitud, mayor es el radio de acción.
  • Aceleración de las oscilaciones: La aceleración está relacionada con el cuadrado de la frecuencia (f²). Para fluidificar el hormigón, es mejor que las partículas finas se desplacen, ya que tienen frecuencias de resonancia altas, de más de 100 Hz.
  • Duración de la vibración: generalmente, se considera que la vibración ha finalizado cuando la lechada de cemento empieza a llegar a la superficie.

El funcionamiento de los vibradores de uso más frecuente se basa en dos principios mecánicos diferentes:

  1. Las vibraciones se originan por el movimiento de una masa excéntrica que gira dentro de un cilindro. Este es el caso más habitual, y existen diversos mecanismos y formas de accionamiento.
  2. Las vibraciones se generan mediante un sistema de resortes que sostienen la masa vibrante.

Los efectos de la vibración dependen más de su adecuación a las condiciones de trabajo y al tipo de hormigón que del equipo vibrador en sí. Aunque la vibración suele ser más eficaz con vibradores de mayor potencia, el tamaño de las piezas, la forma del encofrado y la densidad de las armaduras a menudo determinan el sistema de vibración y las condiciones en las que debe realizarse la compactación.

Es fundamental ajustar la frecuencia y la amplitud del sistema de vibración a la consistencia y las características de los áridos que componen el hormigón. Aunque la vibración es el método de compactación más eficaz y ampliamente utilizado, no todos los hormigones son aptos para vibrarse: los hormigones que se segregan durante la vibración (hormigones fluidos) no deben someterse a este proceso.

Los áridos gruesos se mueven más lentamente que los finos cuando se someten a frecuencias de vibración entre 25 Hz y 350 Hz. Los áridos gruesos requieren frecuencias más bajas y mayor energía de vibración, mientras que los áridos finos necesitan frecuencias más altas y menor energía. Por lo tanto, los hormigones más secos y con áridos de mayor tamaño necesitan una vibración con mayor fuerza y amplitud, pero a una frecuencia más baja. En cambio, los hormigones plásticos, con una mayor relación agua/cemento, requieren una mayor frecuencia y una menor fuerza y amplitud de vibración.

Otros factores importantes a considerar son la masa de hormigón afectada por el vibrador y el tiempo de vibración. La eficacia de la vibración, evaluada en función de la energía transmitida al hormigón, indica que si una masa de hormigón 𝑀′ es superior a la masa 𝑀 que puede compactarse con una determinada energía de vibración 𝐸, la diferencia 𝑀′−𝑀 quedará sin compactar o se compactará deficientemente. Es decir, el vibrador tiene un radio de acción a partir del cual su efecto deja de ser eficaz.

La aceleración transmitida a la masa de hormigón por el vibrador es mayor en los puntos más cercanos a este, lo que resulta en una compactación más enérgica en esas áreas. Para lograr un mayor rendimiento y homogeneidad, es preferible vibrar durante períodos más cortos en puntos cercanos entre sí que hacerlo durante períodos más largos en puntos más distantes.

Durante la compactación en obra, se recomienda observar el radio de acción, que puede identificarse fácilmente por la superficie en la que la pasta refluye y se forman pequeñas burbujas de aire.

En la siguiente tabla (Fernández Cánovas, 2004) se muestran los valores de 𝛾/𝑔 para diferentes consistencias del hormigón y para una frecuencia de vibración de 50 Hz.

La Figura 2 muestra la variación de la aceleración transmitida al hormigón, medida a distintas distancias del eje del vibrador, con distintos valores de amplitud y frecuencia.

Figura 2. Efecto producido por la vibración (L’Hermite, 1948: en Calavera et al., 2004)

En ensayos similares realizados con un vibrador de aguja y tiempos de vibración de 10 y 30 segundos, específicamente para hormigones plásticos, se establece la relación entre el radio de acción (en cm) y la frecuencia de vibración (vib./min). Se observa que el radio de acción, que aumenta con la amplitud, alcanza su valor máximo alrededor de una frecuencia de aproximadamente 12 000 vibraciones por minuto.

Figura 3. Radio de acción en función de la frecuencia y la amplitud. (Bergstrom, 1949: en Calavera et al., 2004)

Además, al prolongar el tiempo de vibración, sus efectos se intensifican. Por lo tanto, al utilizar un vibrador con una frecuencia y amplitud determinadas, es importante considerar el tiempo de vibración necesario para lograr cada radio de acción.

En la Figura 4 se presenta la relación entre el radio de acción y el tiempo de vibración para un vibrador interno con una amplitud de 1,2 mm en el aire. Es fundamental tener en cuenta que la amplitud de un vibrador sumergido puede ser hasta un 75 % menor dependiendo de la consistencia del hormigón. De acuerdo con la curva, un tiempo de vibración adecuado sería de aproximadamente 10-15 segundos.

Figura 4. Variación del radio de acción en función del tiempo de vibrado

En cuanto al Código Estructural, se establecen dos recomendaciones respecto a la vibración y el uso de vibradores:

  • Al utilizar vibradores de superficie, el espesor de la capa no debe ser mayor de 20 cm después de compactarla.
  • El uso de vibradores de molde o encofrado debe estudiarse cuidadosamente para asegurar que la vibración transmitida a través del encofrado sea la adecuada para una correcta compactación, evitando la formación de huecos y capas de menor resistencia.

Os dejo algunos vídeos que espero os sean de interés.

Referencias:

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Efectos del calor en el fraguado del hormigón fresco

Figura 1. Hormigonado en tiempo caluroso. https://hormigonaldia.ich.cl/recomendaciones-tecnicas/hormigonado-en-tiempo-caluroso/

Una temperatura elevada del hormigón fresco acelera la reacción química de fraguado y aumenta la velocidad de hidratación, lo que incrementa la demanda de agua para lograr una consistencia determinada. Aproximadamente, un aumento de 10 °C en la temperatura del hormigón requiere unos 7 litros de agua adicionales por metro cúbico para mantener la misma consistencia. Además, si se desea aumentar el asentamiento del cono de Abrams en 25 mm, se debería incrementar en un 2 % la cantidad de agua necesaria; sin embargo, a 40 °C, sería necesario un 3,5 % adicional de agua (ver Calavera et al., 2004). Esto reduce la fluidez del hormigón, que disminuye rápidamente con el tiempo, lo que dificulta las condiciones para su puesta en obra.

Otro efecto de las altas temperaturas es la rápida pérdida de consistencia del hormigón. A temperatura normal, el hormigón puede perder alrededor de 25 mm de asentamiento en media hora. Sin embargo, a temperaturas elevadas, esta pérdida aumenta significativamente debido a la evaporación y al mayor consumo de agua durante la rápida reacción química inicial del cemento.

Dado que no es posible aumentar la cantidad de agua en la mezcla sin comprometer la resistencia y durabilidad del hormigón, es necesario añadir plastificantes o cambiar a superfluidificantes para mantener las condiciones de trabajabilidad previstas, o reducir los tiempos de puesta en obra. En el caso del hormigón premezclado, puede ser necesario añadir estos aditivos en obra con un nuevo mezclado, una operación cuyo control es complejo. Por otro lado, la eficacia del superfluidificante disminuye rápidamente con el aumento de la temperatura, aunque los productos derivados de copolímeros vinílicos pueden mitigar este problema.

Los hormigones fabricados, colocados y curados a temperaturas más altas desarrollan su resistencia más rápidamente. Se ha observado que el hormigón se endurece el doble de rápido a 35 °C que a 20 °C. Sin embargo, debido a un curado deficiente, estos hormigones suelen presentar menores resistencias a los 7 y 28 días. De hecho, tras 28 días, su resistencia puede reducirse entre un 15 % y un 20 % (ver Calavera et al., 2004). Esta pérdida de resistencia se explica por la formación de productos de hidratación más porosos, resultado de un proceso de hidratación acelerado e imperfecto.

Las altas temperaturas ambientales suelen ir acompañadas de bajas humedades relativas, lo que aumenta la evaporación del agua del hormigón fresco y reduce la cantidad disponible para la correcta hidratación del cemento. Asimismo, la rápida pérdida de agua del hormigón en la superficie, superior al aporte por difusión desde el resto del hormigón, provoca la formación de fisuras superficiales por retracción plástica. Estos efectos se agravan con la presencia de viento y la exposición al sol (ver nomograma de Menzel). El secado superficial comienza cuando la velocidad de evaporación supera la velocidad a la que el agua asciende a la superficie recién colocada por exudación. Además, si las condiciones de sequedad son suficientes, puede formarse una costra superficial seca que bloquea el agua de exudación, impidiendo que llegue a la superficie. Esta agua queda almacenada debajo de la capa seca, lo que puede ocasionar una descamación posterior.

El rápido endurecimiento del hormigón incrementa la velocidad de generación de calor durante la hidratación del cemento, lo que provoca altas temperaturas y mayores diferencias térmicas debido a la lenta disipación del calor. Las altas temperaturas alteran el proceso de hidratación y generan compuestos como la etringita, que perjudican la durabilidad del hormigón.

Las diferencias térmicas entre el núcleo y la periferia de las piezas generan tensiones de tracción que el hormigón en proceso de endurecimiento no puede soportar, provocando fisuras que reducen su durabilidad. En secciones delgadas, de menos de 150 mm, es crucial evitar la formación de fisuras de retracción plástica, ya que pueden afectar a una parte significativa de la sección. En elementos masivos, el problema radica en el riesgo de fisuración térmica debido a las altas temperaturas que el hormigón puede alcanzar. Las fisuras pueden aparecer tanto durante la fase de aumento de temperatura (fisuras internas) como durante el enfriamiento (fisuras en la superficie). Para prevenirlo, la temperatura de colocación del hormigón no debe superar los 15 °C, siendo preferible que esté alrededor de los 5 °C. Además, la diferencia de temperatura entre dos puntos de la sección no debe exceder los 20 °C, lo que requiere el uso de protección térmica durante el curado.

En elementos protegidos de grandes cambios de humedad, como las cimentaciones de estructuras interiores, la temperatura máxima durante el proceso de fraguado no debería superar los 80 °C. Si se trata de estructuras exteriores que no están protegidas de los cambios de humedad, la temperatura no debería exceder los 70 °C. Para elementos especialmente expuestos a ciclos de hielo-deshielo, la temperatura no debería superar los 65 °C, e incluso menos en algunos casos. Esta temperatura máxima generalmente se alcanza entre las 12 y las 24 horas desde el amasado.

Para evitar los efectos perjudiciales del calor en el hormigón fresco, se pueden adoptar dos tipos de medidas: utilizar hormigón más frío y diseñar una mezcla adecuada en cuanto a componentes y dosificación. Pero este tipo de precauciones las estudiaremos en detalle en otro artículo.

Referencias:

AA. VV. (2002). Hormigones de ejecución especial (seis tipos). Colegio de Ingenieros de Caminos, Madrid, 114 pp.

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Cálculo de la consistencia y el vector propio en AHP

En varios artículos de este blog hemos descrito distintos aspectos del Proceso Analítico Jerárquico (Analytic Hierarchy Process, AHP). Se trata de una técnica de decisión Multicriterio propuesta por T.L. Saaty que combina aspectos tangibles e intangibles para obtener, en una escala de razón, las prioridades asociadas con las alternativas del problema. No obstante, AHP presenta limitaciones que debemos conocer antes de utilizar este método.

Pues bien, una de las ventajas de AHP es que permite medir la consistencia del decisor al emitir sus juicios. Este aspecto es muy relevante, puesto que si decimos que A>B y que B>C, no podemos decir que A<C. Este aspecto es de gran interés cuando consultamos a expertos en una materia para comprobar que la información que nos facilita es correcta. Si la consistencia es aceptable, se puede continuar con el proceso de decisión. Pero si no lo es, entonces el que toma las decisiones debe replantearse sus juicios sobre las comparaciones pareadas antes de continuar con el análisis.

Saaty sugiere para el método AHP convencional (en el que se utiliza el método del autovector principal para obtener las prioridades), que la inconsistencia sea capturada mediante un único valor denominado índice de consistencia (Consistency Index, CI) donde λmax es el máximo autovalor y n es la dimensión de la matriz de decisión. Un índice de consistencia igual a cero significa que la consistencia es completa. Como esta medida depende del orden de la matriz (n), Saaty propone la utilización de la Razón de Consistencia (CR) que se obtiene dividiendo CI por su valor esperado RI, calculado a partir de un gran número de matrices recíprocas positivas de orden n generadas aleatoriamente (Tabla 1). Por tanto, una vez la matriz es consistente siempre y cuando CR no supere los valores indicados en la Tabla 2. Si en una matriz se supera el CR máximo, hay que revisar las ponderaciones.

Donde RI es el índice aleatorio, que indica la consistencia de una matriz aleatoria (Tabla 1):

Tabla 1. Índice aleatorio RI

 

Tabla 2. Porcentajes máximos del ratio de consistencia CR

Una vez verificada la consistencia, se obtienen los pesos, que representan la importancia relativa de cada criterio o las prioridades de las diferentes alternativas respecto a un determinado criterio. Para ello, el AHP original utiliza el método del autovector principal por la derecha, basado en el teorema de Perron-Frobenius, donde hay que resolver la siguiente ecuación:

donde A representa la matriz de comparación, w el autovector o vector de preferencia, y λmax el autovalor.

En la práctica, el vector de los pesos w=(w1, w2,…, wn) se obtiene (método de las potencias) elevando la matriz de juicios a una potencia suficientemente grande, sumando por filas y normalizando estos valores mediante la división de la suma de cada fila por la suma total. El proceso concluye cuando la diferencia entre dos potencias consecutivas sea pequeña.

Sin embargo, este vector de los pesos de cada alternativa también se pueden calcular por el método de la media geométrica por filas (Crawford y Williams, 1985). En este caso, el peso de cada prioridad se calcula como la media geométrica por filas normalizado a la suma de las medias geométricas de todas las filas. Este método se está utilizando ampliamente en los últimos años por sus propiedades matemáticas y sociológicas. Los resultados de este método, comparados con el cálculo del autovector, son parecidos, aunque su cálculo es más sencillo.

De todas formas, os dejo un vídeo del profesor Aznar donde se explica con cierto detalle cómo calcular la consistencia y el autovector. Espero que os sea de utilidad.

Referencias:

AZNAR, J.; GUIJARRO, F. (2012). Nuevos métodos de valoración: modelos multicriterio. Editorial Universitat Politècnica de València.

CRAWFORD, G.; WILLIAMS, C. (1985). A note on the analysis of subjective judgement matrices. Journal of Mathematical Psychology, 29:387-405.

SAATY, T.L. (1980). The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation, McGraw-Hill.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.